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Primes and modular arithmetic
Primes

Introduction

A prime number (or prime for short) is a natural number thatoosnbe wholly divided by 1
and itself. For theoretical reasons, the number 1 is not considgn@che (we shall see why
later on in this chapter). For example, 2 is a prime, 3 is printebas prime, but 4 is not a
prime because 4 divided by 2 equals 2 without a remainder.

The first 20 primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71.

Primes are an endless source of fascination for mathematiGamnse of the problems
concerning primes are so difficult that even decades of workobye of the most brilliant
mathematicians have failed to solve them. One such probl&olibach's conjecturavhich
states that all even numbers greater than 3 can be expressed as the sum of 8wvo prime

Geometric meaning of primes

Let's start with an example. Given 12 pieces of square flosr tidn we assemble them into a
rectangular shape in more than one way? Of course we can, this is due to tred fact t

12 = 12 x1
= 6Gx2
= 4x3

We do not distinguish between 2x6 and 6x2 because they are esseatjailjalent
arrangements.

But what about the number 7? Can you arrange 7 square floor tilegamgular shapes in
more than one way? The answer is no, because 7 is a prime number.

Fundamental Theorem of Arithmetic

A theoremis a non-obvious mathematical fact. A theorem must be proven; a proposition that is
generally believed to be true, but without a proof, is calleoingecture.

With those definitions out of the way the fundamental theorem of arithmetic sitapdg shat:

Any natural number (except for 1) can be expressed as the product espnrane and only
one way.

For example

12=2x2x3



Rearranging the multiplication order is not considered a diffesgmesentation of the number,
so there is no other way of expressing 12 as the product of primes.

A few more examples

9 = 3 x 3 x 11
22 = 2 x 2 x 13
17 = 17

A number that can be factorised into more than 1 prime factocadled a composite number
(or composite for short). Composite is the opposite of prime.

Think about it

Bearing in mind the definition of the fundamental theorem of arithmetic, whyhe number 1
considered a prime?

Factorisation

We know from the fundamental theorem of arithmetic that any inteayebe expressed as the
product of primes. The million dollar question is: given a number there areasyway to find
all prime factors ok?

If x is a small number that is easy. For example 90 = 2 x 3 8.38Buwt what ifx is large? For
examplex = 4539 Most people can't factorise 4539 into primes in their heads. Bua can
computer do it? Yes, the computer can factorise 4539 in no time. In fact 4539 = 3 x 17 x 89.

There is, indeed, amasyway to factorise a number into prime factors. Just apply thieatied
be described below (using a computer). However, that method is todasldavge numbers:
trying to factorise a number with thousands of digits would take rtime than the current age
of the universe. But is therefastway? Or more precisely, is thereefficientway? There may
be, but no one has found one yet. Some of the most widely used encryptioresdbday
(such as RSA) make use of the fact that we can't factiarige numbers into prime factors
quickly. If such a method is found, a lot of internet transactionsb&illendered unsafe. So if
you happen to be the discoverer of such a method, don't be too forthdanpuallishing it,
consult your national security agency first!

Since computers are very good at doing arithmetic, we can workllabedactors ofx by
simply instructing the computer to dividkeby 2 and then 3 then by 5 then by 7 then by 11 ...
and so on, and check whether at any point the result is a whole n@ohsider the following
three examples of the dividing method in action.

Example 1
x=21

x/ 2 =10.5 not a whole number
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x/ 3 =7 hence 3 and 7 are the factors of 21.
Example 2

x=153

x/ 2 =76.5 hence 2 is not a factor of 153

x/ 3 =51 hence 3 and 51 are factors of 153
51/3 =17 hence 3 and 17 are factors of 153

It is clear that 3, 9, 17 and 51 are the factors of 153. The pritwdaf 153 are 3, 3 and 17
(3x3%x17 = 153)

Example 3

2057 /2 =1028.5

2057 /11 =187
187 /11 =17
hence 11, 11 and 17 are the prime factors of 2057.
Exercise
Factor the following numbers:

13

26

59

82

101

121

2187 Give up if it takes too long. There is a quick way.
Fun Fact -- Is this prime?

Interestingly, due to recent developments, we can tell quickii, the help of a computer
programwhethera number is prime with 100% accuracy.



2,5and 3

The primes 2, 5, and 3 hold a special place in factorisation. Fiaditven numbers have 2 as
one of their prime factors. Secondly, all numbers whose last diglitar 5 can be divided
wholly by 5.

The third case, where 3 is a prime factor, is the focus of ¢etsos. The underlying question
is: is there a simple way to decide whether a number hasrgeasf its prime factors? Yes. See
the following theorem

Theorem - Divisibility by 3

A number is divisible by 3 if and only if them of itsdigitsis divisible by 3

E.g. 272 is not divisible by 3, because 2+7+2=11. And 11 isn't divisible by 3.

945 is divisible by 3, because 9+4+5 = 18. And 18 is divisible by 3. In fact 945/ 3 = 315
Is 123456789 divisible by 37?

1+2+3+4+5+6+7+8+9=(1+9)x9/2=45

4+5=9

Nine is divisible by 3, therefore 45 is divisible by 3, therefore 123456789 is divisible by 3!
(That this method works is a theorem, though the proof is not given here.)

The beauty of the theorem lies in its recursive nature. A nuisluivisible by 3 if and only if
the sum of its digits is divisible by 3. How do we know whether the sum of its diglivisible
by 3? Apply the theorem again! It's too true that "... to recurse, [is] divine".

Try a few more numbers yourself.

info -- Recursion

A prominent computer scientist once said "To iterate is human,ctoses divine." But
what does it meato recurs@ Before that, what it iterate€? "To iterate” simply means
doing the same thing over and over again, and computers are very gloatd Ah example
of iteration in mathematics is the exponential operation, & means doing x times x times
X times x...n times. That is an example of iteratibminking about iteratioreconomically
(in terms of mental resources), by defining a problem in taiself, is "to recurse”. To
recursively represent'xwe write:

x"=1ifnequals 0.

n

T =:r:><r”_1ifn>o



What is §? That is 9 times &. But what is §, it is 9 times 8 Repeating this way is an
example of recursion.

Exercises

1. Factorise
45
4050
2187

2. Show that the divisible-by-3 theorem works for any 3 digits nun{bins. Express a 3 digit
number as 100a + 10b + ¢, wher€ & b and ¢ <9)

3. "A number is divisible by 9 if and only if the sum of its diggsdivisible by 9." True or
false? Determine whether 89, 558, 51858, and 41857 are divisible by 9. Check your answers.

Finding primes

The prime sieve is a relatively efficient method of findingpsimes less than or equal to a
specified number. Let say we want to find all primes less than or equal to 50.

First we write out all numbers between 0 and 51 in a table as below

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

Cross out 1, because it's not a prime.

X 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

Now 2 is the smallest number not crossed out in the table. We naarka prime and cross out
all multiples of 2 i.e. 4, 6, 8, 10 ...

[l



X2 3 X 5 X 7 X 9 X
11 X 13 X 15 X 17 X 19 X
21 X 23 X 25 X 27 X 29 X
31 X 33 X 35 X 37 X 39 X
41 X 43 X 45 X 47 X 49 X

Now 3 is the smallest number not marked in anyway. We mark Joama and cross out all
multiples of 3i.e. 6,9, 12, 15 ...

X 23 X 5 X 7 X X X
11 X 13 X X X 17 X 19 X
X X 23 X 2% X X X 29 X
3 X X X 35 X 37T X X X
41 X 43 X X X 47 X 49 X

Continue is this way to find all the primes. When do you know you have fdutite @orimes
under 507?

Exercise

1.

X 2 3 X 5 X 7 X X X
11 X 13 X X X 17 X 19 X
X X 23 X X X X X 29 X
31 X X X X X 3w X X X
41 X 43 X X X 47 X X X

The prime sieve has been applied to the table above. Notice tmaiheweber situated directly
below 2 and 5 are crossed out. Construct a rectangular grid of numieirsy from 1 to 60 so
that after the prime sieve has been performed on it, all nuraibeased directly below 3 and 5
are crossed out. What is the width of the grid?

2. Find all primes below 200

Infinitely many primes

We know some numbers can be factorised into primes. Some have ondglesras a prime
factor, because they are prime. So how many primes are fHeee? are infinitely many! Here
is a classical proof of the infinitude of primes dating back 2088rsyto the ancient Greek
mathematician Euclid:

10



Proof of infinitude of primes

Let us first assume that

there are a finite number of primes

therefore

there must be one prime that is greater than all others,

let this prime be referred to as We now proceed to show the two assumptions made above
will lead to non-sense, and so there are infinitely many primes.

Take the product of all prime numbers to yield a numb@&hus:
T=2X3IXIX...Xn

Then, lety equal one more than

y=1xr+1

One may now conclude thgis not divisible by any of the primes upnpsincey differs from

a multiple of each such prime by exactly 1. Sigae not divisible by any prime numbey,
must either be prime, or its prime factors must all be gréhtsn, a contradiction of the
original assumption thamh is the largest prime! Therefore, one must declare the odrigina
assumption incorrect, and that there exists an infinite number of primes.

Fun Fact -- Largest known prime

The largest prime known to human f89?*°21. It has a whopping 9152052 digits! Primes
of the form 2-1 are called Mersenne primes named after the French monkimmate
mathematician.

Primes in arithmetic progression
Consider the arithmetic progression
a,at+ba+da+d...

if a andb share a common factor greater than 1, therkb for any k is not prime. But & and
b are coprimes, then there are infinitely maty such that + kb is prime! For example,
considera=3,b =4,

3,7,11, 15, 19, 23, 27, 31...

in this rather short list, 3, 7, 11, 19, 23 and 31 are prime and they aguallto & + 3 for
somek. And there are infinitely many primes in this progression (semf by contradiction
exerciseMathematical Proojs

11



Modular Arithmetic

Introduction

Modular arithmetic connects with primes in an interesting wasgtliFirecall clock-arithmetic.

It is a system by which all numbers up to some positive intagay, are used. So if you were
to start counting you would go 0, 1, 2, 3, n - 1 but instead of counting you would start
over at 0. And what would have beer 1 would be 1 and what would have been 2 would

be 2. Once 2 had been reach the number is reset to 0 again, and so on. Very mutte like
clocks we have which starts at 1 and continues to 12 then back to 1 again.

The sequence also continues into what would be the negitive numbers. Withhave been -
1 is nown - 1. For example, let's start with modulo 7 arithmetic, it's |ilk& ordinary
arithmetic except the only numbers we use are 0, 1, 2, 3, 4, 5 ande&sdfeva number outside
of this range we add 7 to (or subtract 7 from) it, until it lies within that range.

As mentioned above, modular arithmetic is not much different to ordimattymetic. For
example, consider modulo 7 arithmetic

3+2=05
24+6=11=4
d—6=—-1=6

The same deal for multiplication

3xd=15=1
dxX —6=-30=23

We have done some calculation with negative numbers. Consider 5 xcé.-6idoes not lie
in the range 0 to 6, we need to add 7 to it until it does. And -6 +17 S0 in modular 7
arithmetic, -6 = 1. In the above example we showed that 5 x -6 =53®ut 5 x 1 = 5. So we
didn't do ourselves any harm by using -6 instead @ty ?

Note - NegativesThe preferred representation of -3 is 4, as -3 + 7 = 4, but eghey -3 and
4 in a calculation will give us the same answer as long asomeert the final answer to a
number between 0 and 6 (inclusive).

Exercise

Find in modulo 11
1.

-1x-5

12



3x7

3. Compute all the powers of 2

2822 .., 20
What do you notice? Using the powers of 2 find
6, 6,6,..,6°

What do you notice again?

4.

V4

i.e. find, by trial and error (or otherwise), all numbersuch thaté = 4 (mod 11). There are
two solutions, find both .

5.
Vo
i.e. find all numbers such that® = 9 (mod 11). There are two solutions, find both.

Inverses

Let's consider a numbaer the inverse of is the number that when multiplied hywill give 1.
Let's consider a simple example, we want to solve the following equation in modulo 7,

Sr =3 (mod 7)

the (mod 7) is used to make clear that we doing arithemetic modulo 7. Weovgatrid of the
5 somehow, notice that

3x5H5=156=1 (modT7)

because 3 multiplied by 5 gives 1, so we say 3 is the inverseiroinodulo 7. Now we
multiply both sides by 3

3xbh r =3x3 (mod?7)
r =9 (mod?7)
=2 (mod 7)
Sox =2 modulo 7 is the required solution.

Inverse is unique

13



From above, we know the inverse of 5 is 3, but does 5 have another inlleesaff’swer is no.
In fact, in any reasonable number system, a number can have ondyaodeoinverse. We can
see that from the following proof

Supposen has two inversels andc
b=bx1l=bnc)=(njc=1xc=c

From the above argument, all inversesiohust be equal. As a result, if the numbdras
an inverse, the inverse must be unique.

From now on, we will usg’ to denote the inverse gfif it exists.

An interesting property of any modufoarithmetic is that the number- 1 has itself as an
inverse. That is,(- 1) x (1 - 1) = 1 (modh), or we can write (n - )= (-1 = 1 (modn). The
proof is left as an exercise at the end of the section.

Existence of inverse

Not every number has an inverse in every modulo arithmetic. ForpbxaBhdoesn't have an
inverse mod 6, i.e., we can't find a numbiesuch that 8 = 1 mod 6 (the reader can easily
check).

Let's consider modulo 15 arithmetic and note that 15 is composite. Wethaomverse of 1 is
1 and of 14 is 14. But what about 3, 6, 9, 12, 5 and 10? None of them has an inogrsabN
each of them shares a common factor with 15!

Let's look at 3, we want to usegeoof by contradictiorargument to show that 3 does not have
an inverse modulo 15. Suppose 3 has an inverse, which is denoted by

3r=1 (mod 15)

We make thgump from modular arithemetic into rational number arithmetic. ¥f=31 in
modulo 15 arithmetic, then

3r =15k+1

for some integek. Now we divide both sides by 3, we get
1
r=>5k+ -
+ 3

But this is can't be true, because we know xhsatan integer, not a fraction. Therefore 3 doesn't
have an inverse in mod 15 arithmetic. To show that 10 doesn't have aseirsvbarder and is
left as an exercise.

We will now state the theorem regarding the existence of inverses in maahhliaresc.

Theorem
14



If nis prime then every number (except 0) has an inverse in moa@uithmetic.
Similarly
If nis composite then every number that doesn't share a common factorhaglan inverse.

It is interesting to note thativision is closely related to the concept of inverses. Consider the
following expresion

6x3 " (mod?7)

the conventional way to calculate the above would be to find the inverse of 3 (being 5). So
6x3 '=6x5=30=2 (mod?7)

Let's write the inverse of 3 as 1/3, so we think of multiplyifi@8dividing by 3, we get

1 6
6><§=§=2 (mod 7)

Notice that we got the same answer! In fact, the division metithcalways work if the
inverse exists.

Be very careful though, the expression in a different modulo sysi#rpraduce the wrong
answer, for example

6 x 3" (mod 9)

we don't get 2, as*3does not exist in modulo 9, so we can't use the division method.
Exercise

1. Does 8 have an inverse in mod 16 arithemetic? If not, why not?

2. Findx mod 7 ifx exists:

r=2"
r=3"
r=47"
r=>5"
r=6"
r="7"

3. Calculatex in two waysfinding inverseanddivision

15



r=28-7"" (mod 29)
4. (Trick) Findx
r="5"%x(404+3"") (mod 11)

5. Find all inverses mod (n< 19)
This exercise may seem tedious, but it will increase your understanding of the topiololy te

Coprime and greatest common divisor

Two numbers are said to be coprimes if their greatest commosodiid 1. The greatest
common divisor (gcd) is just what its name says it is. And tiseaequick and elegant way to
compute the gcd of two numbers, called Euclid's algorithm. Let'strdteswith a few
examples:

16



Example 1:

Find the gcd of 21 and 49.

We set up a 2-column table where the bigger of the two numberstie oight hand side as

follows
smaller larger
21 49

We now compute 49(mod 21) which is 7 and put it in the secondgmmller column, and put
21 into thelarger column.

smaller larger
21 49
7 21

Perform the same acti

on on the second row to produce the third row.

smaller larger
21 49

7 21

0 7

Whenever we see the number O appear orstha&ller column, we know the corresponding
larger number is the the gcd of the two numbers we started with, i.e¢h& gcd of 21 and 49.
This algorithmis called Euclid's algorithm.

Example 2

Find the gcd of 31 and 101

smaller larger
31 101

8 31

7 8

1 7
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0 1

Example 3

Find the gcd of 132 and 200

D S o A

smaller larger
132 200
68 132
64 68

4 64

0 4
Remember

The gcd need not be a prime number.

The gcd of two primes is 1
Why does the Euclid's algorithm work? It is more fun for the questioner to discover.
Exercise
1. Determine whether the following sets of numbers are coprimes

5050 5051

59 78

111 369

2021 4032

. Find the gcd of the numbers 15, 510 and 375

info -- Algorithm

An algorithm is a step-by-step description of a series adractvhen performed correctly
can accomplish a task. There are algorithms for finding primeddidg whether 2
numbers are coprimes, finding inverses and many other purposes.
You'll learn how to implement some of the algorithms we have seen using a compler in
chapteMathematical Programming
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Finding Inverses

Let's look at the idea of inverse again, but from a different angfactrwe will provide a sure-
fire method to find the inverse of any number. Let's consider:

5x =1 (mod 7)

We knowx is the inverse of 5 and we can work out it's 3 pretty quickly. Batld is also a
solution, sois x =17, 24, 31, ... 7n + 3. So there are infinitely many soluti@nsfore we say
3 is equivalent to 10, 17, 24, 31 and so on. This is a crucial observation

Now let's consider
216x =1 (mod 811)

A new notation is introduced here, it is the equal sign with threkestrinstead of two. It is the
"equivalent” sign; the above statement should readX'Z&QUIVALENT to 1" instead of
"216x is EQUAL to 1". From now on, we will use the equivalent sign foduaio arithmetic
and the equal sign for ordinary arithmetic.

Back to the example, we know thaexists, as gcd(811,216) = 1. The problem with the above
guestion is that there is no quick way to decide the valué ©he best way we know is to
multiply 216 by 1, 2, 3, 4... until we get the answer, there are at8h6stalculations, way too
tedious for humans. But there is a better way, and we have touched on it quite a féw times

We notice that we could make tjumpjust like before into rational mathematics:

216a = 14+ 811b
0 14 163b (mod 216)

We jump into rational maths again

216c = 14 1635
53c = 1 (mod 163)
We jump once more

53c = 1+ 163d
0 144d (mod 53)

Now the pattern is clear, we shall start from the beginning so that the process is nat broke
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216a = 14 811b

216 = 14 163b

53¢ = 14 163d

53e = 144d
e = 14+4f

Now all we have to do is choose a valueffand substitute it back to firal Rememben is
the inverse of 216 mod 811. We choose f = 0, therefore e = 1, d = 13, ¢ = 8@, dnd finally
a =199! If chooséto be 1 we will get a different value far

The very perceptive reader should have noticed that this is jusit’Eugcd algorithm in
reverse.

Here are a few more examples of this ingenious method in action:
Example 1

Find the smallest positive value af

33c¢ = 1 (mod 101)

33a = 1+ 1016
33c = 1426
c = 14 2d

Choose d = 0, therefore a = 49.

Example 2Find the smallest positive value af

27 = 1 (mod 821)

27a = 1+ 8216
2Tc = 1+ 116
e = 1+ 11d
Se = 14d

Choose e = 0, therefore a = -152 = 669

Example 3Find the smallest positive value af
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3a = 1 (mod 55)
3a = 1+ 55b
Mc = 1+ 21b
13c = 1+ 21d
13e = 1+ 8d
Se = 1+8f
5 = 143f
29 = 143h
2t = 1+ h

Seti =0, then a = -21 = 3Why is this so slow for two numbers that are so small? What can
you say about the coefficients?
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Example 4Find the smallest positive value af

2la = 1 (mod 102)
2la = 1+ 1026
2le = 1+ 186

3 = 1+ 138d
3d = 1

Now d is not an integer, therefore 21 does not have an inverse mod 102.

What we have discussed so far is the method of finding integer solthictpiations of the
form:

ax+bhy=1

wherex andy are the unknowns aradandb are two given constants, these equations are called
linear Diophantine equationdt is interesting to note that sometimes there is no solutionf but i
a solution exists, it implies that infinitely many solutions exist.

Diophantine equation

In the Modular Arithmeticsection, we stated a theorem that says ifayotl(= 1 thena™ (the
inverse ofa) exists in modn. It is not difficult to see that i is prime then gcdp) = 1 for all
b less tharp, therefore we can say that in mmdevery number except O has an inverse.

We also showed a way to find the inverse of any elementpmiodfact, finding the inverse of
a number in modular arithmetic amounts to solving a type of equatidied €iophantine
equations. A Diophantine equation is an equation of the form

ax+by=d
wherex andy are unknown.

As an example, we should try to find the inverse of 216 in mod 811. Letvlese of 216 be
X, we can write

216r =1 (mod 811)

we can rewrite the above in every day arithmetic
216r 4+ 811y =1

which is in the form of a Diophantine equation.

Now we are going to do the inelegant method of solving the above proatehthen the
elegant method (using Magic Tables).
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Both methods mentioned above uses the Euclid's algorithm for findimggdhef two numbers.
In fact, the gcd is closely related to the idea of an invergss apply the Euclid's algorithm on
the two numbers 216 and 811. This time, however, we should store mores;detaie
specifically, we want to set up an additional column called PQ hwktands for partial
qguotient. The partial quotient is just a technical term for "howynmagoes intom" e.g. The
partial quotient of 3 and 19 is 6, the partial quotient of 4 and 21 is 5 andstrexample the
partial quotient of 7 and 49 is 7.

smaller larger PQ
216 811 3
163

The tables says three 216s goes into 811 with remainder 163, or symbollically:
811 = 3x216 + 163.

Let's continue:

smaller larger PQ
216 811 3
163 216 1
53 163 3

4 53 13
1 4 4
0 1

Reading off the table, we can form the following expressions

811 = 3x 216 + 163

216 = 1x 163 + 53

163 =3x53+4

53=13x4+1

Now that we can work out the inverse of 216 by working the results backwards
1=53-13x4

1 =53 - 13x(163 - 3x53)
23



1 =40x53 - 13x163

1 =40%(216 - 163) - 13x163

1 =40x%216 - 53%x163

1 =40x%216 - 53%(811 - 3x216)

1 =199x%x216 - 53x811

Now look at the equation mod 811, we will see the inverse of 216 is 199.
Magic Table

The Magic Table is a more elegant way to do the above catmdatiet us use the table we
form from Euclid's algorithm

smaller larger PQ
216 811 3
163 216 1
53 163 3

4 53 13
1 4 4

0 1
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Now we set up the so-called "magic table" which looks like this initially

0] 1

1/ O

Now we write the partial quotient on the first row:

3| 1| 3 4

0] 1

11 0

We produce the table according to the following rule:

Multiply a partial quotient one space to the left of it in aed#ht row, add the product to the
number two space to the left on the same row and put the sum in the corresponding row.

It sounds more complicated then it should. Let's illustrate by producing a column:

1
31334
0] 1| 3
1/ 0] 1

We put a 3 in the second row because 3 = 3x1 + 0. We put a 1 in theothibecause 1 = 3x0
+ 1.

We shall now produce the whole table without disruption:

3| 1| 3| 13| 4

1(19] 81
0134591
21

10114536

| claim
[199%216 - 811x53| =1

In fact, if you have done the magic table properly eru$s multiplied and subtractdtie last

25



two column correctly, then you will always get 1 or -1, provided thee nwmbers you started
with are coprimes. The magic table is just a cleaner way of doing the naditgem
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Exercises

1. Find the smallest positive

216r =1 (mod 816)

2. Find the smallest positive

42r =7 (mod 217)

3.

(a) Produce the magic table for&83 1 (mod 101)

(b) Evaluate and express in the form p/q

3 611

What do yo notice?
4.
(a) Produce the magic table for 17a = 1 (mod 317)
(b) Evaluate and express in the form p/q
18 + ;1
14+ —

1+T%-

What do yo notice?
Chinese remainder theorem

The Chinese remainder theorem is known in Chindlas Xing Dian Bing which in its most
naive translation meam$an Xing counts his soldier§he original problem goes like this:

There exists a numbes when divided by 3 leaves remainder 2, when divided by 5 leaves
remainder 3 and when divided by 7 leaves remaider 2. Find the smallest

We translate the question into symbolic form:

r = 2 (mod3)
r = 3 (modb))
r = 2 (mod?7)
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How do we go about finding suchx@ We shall use a familar method and it is best illustrated
by example:

Looking at x = 2 (mod 3), we make tjuempinto ordinary mathematics

r = 2 (mod3)
r = 243a (1)

Now we look at the equation modulo 5

2+ 3¢ =3 (mod5)

3¢ =1 (mod 5)
a =2 (modb5)
a =24+05b

Substitute into (1) to get the following
r =2+ 3(2+4 5b)

= 8+ 15b
Now look at the above modulo 7
r=8+415b=2 (mod7)
we get
b=1 (mod 7)

We choosé = 1 to minimisex, thereforex = 23. And a simple check (to be performed by the
reader) should confirm that = 23 is a solution. A good question to ask is what is the next
smallestx that satisfies the three congruences? The answet 528, and the next is 233 and
the next is 338, and they differ by 105, the product of 3, 5 and 7.

We will illustrate the method of solving a system of congruendurther by the following
examples:

Example 1Find the smallest that satifies:
r=1 (mod 3)
r=2 (mod?5)

r=3 (mod?7)
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Solution
r= 143 a 2 (mod 5)
a = 2+ 5b

now substitute back into the first equation, we get

r =1+3(2+5b)

=7+ 15b
=3 (mod 7)
we obtain
b=3 (mod 7)
b=3+Tc

again substituting back
r =T74+15(3+7c)
=52+ 15 x Tc
Therefore 52 is the smallesthat satifies the congruencies.
Example 2
Find the smallest that satisfies:
r=5 (mod1l)
r=3 (mod?7)
r=8 (mod?9)

Solution

r =54+11 a=3 (mod?7)
a=3 (mod?7)
a=3+7b
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substituting back

r= 54+ 11(3+7b)
— 38411 x7b
= 8 (mod 9)

now solve fob

24+2x7 =8 (mod?9)

b =3 (mod?9)
b =3+ 9c¢

again, substitue back

r = 38411 x7(34 9c)

— 269411 x 7 x9c

Therefore 269 is the smallesthat satifies the Congruences.

Excercises

1. Solve forx

3r = 5 (mod 14)
2r = -3 (mod 17)
r = 6 (mod15)
2. Solve forx

3r = 5 (mod 19)
7r = -3 (mod 17)
r = 6 (modl1l)

*Existence of a solution*

The exercises above all have a solution. So does there eystemf congruences such that
no solution could be found? It certainly is possible, consider:

X=5 (mod 15)
X=10 (mod 21)
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a cheekier example is:

X=1 (mod 2)

X=0 (mod 2)

but we won't consider silly examples like that.

Back to the first example, we can try to solve it by doing:

r = 5415k = 10 (mod 21)
15k 5
3k 1

the above equation has no solution because 3 does not have an inverse modulo 21!

One may be quick to conclude that if two modulo systems share a cofactanthen there is
no solution. But this is not true! Consider:

r=4 (mod 15)
r=7 (mod21)
we can find a solution
r= 4415k =7 (mod 21)
15k =3 (mod 21)
5x3k =3 (mod 21)
we now multiply both sides by the inverse of 5 (which is 17), we obtain
3k=9

obviously,k = 3 is a solution, and the two modulo systems are the same fastilexample
(i.e. 15 and 21).

So what determines whether a system of congruences hasiansolubot? Let's consider the
general case:

X

a (mod m)
r=b (modn)
we have
r=a+km
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r=>b+In
essentially, the problem asks us to finanhdl such that the above equations are satisfied.

We can approach the problem as follows

0=(a—->5b)+ (km —In)

(In—km) =(a —>5)

now suppose m and n have gcd(m,n) = d, and mgmm dn. We have
din, — dkm, = (a — b)

In, — km, =(a —b)/d

if (a - b)/d is an integer then we can read the equation mpavehave:
In, =(a—5)/d (modm,)

Again, the above only makes senseaif p)/d is integeral. Also if4 - b)/d is an integer, then
there is a solution, ag, andn, are coprimes!

In summary: for a system of two congruent equations
r=a (modm)

r=5b (modn)

there is a solution if and only if

d = gcdfn,n) divides @ - b)

And the above generalises well into more than 2 congruences. For a systeangfuences:

r=a; (modmy)

r=a; (modm;)

r=a, (modm,)

for a solution to exist, we require that i

gcd(mn,m) divides @ - &)
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Exercises
Decide whether a solution exists for each of the congruencies. Explain why.
1.

X =7 (mod 25)
X =22 (mod 45)
2.

X =7 (mod 23)
X=3 (mod 11)
X =3 (mod 13)
3.

X =7 (mod 25)
X =22 (mod 45)
X=7(mod 11)
4,

X =4 (mod 28)
X =28 (mod 52)
X =24 (mod 32)

To go further

This chapter has been a gentle introductionumber theorya profoundly beautiful branch of
mathematics. It is gentle in the sense that it is matheaigitight and overall quite easy. If
you enjoyed the material in this chapter, you would also eRjother Modular Arithmetic
which is a harder and more rigorous treatment of the subject.

Also, if you feel like a challenge you may like to try out Brebelem Setve have prepared for
you. On the other hand, thproject asks you to take a more investigative approach to work
through some of the finer implications of the Chinese Remainder Theorem.
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Reference

1. Largest Known Primes--A Summary

Feedback

What do you think? Too easy or too hard? Too much information or not enough? How can we
improve? Please let us know by leaving a comment in the discussithons Better still, edit it
yourself and make it better.

Problem Set

1. Is there a rule to determine whether a 3-digit number is deibypl11? If yes, derive that
rule.

2. Show thap, p + 2 andp + 4 cannot all be primesp @ positive integer)
3. Find x

r=3"+1"4+2"4+4"4+ 5 +674+ 7"  (mod 7)

4. Show that there are no integers x and y such that

r’— Eny2 =3

5. In modular arithmetic, if

=y (mod m)

for somem, then we can write

r=./y (modm)

we sayx is the square root gfmodm.

Note that ifx satisfiesé =y, thenm - x = -x when squared is also equivalentytde consider
bothx and x to be square roots gf

Let p be a prime number. Show that
(a)
(p—1)l= -1 (mod p)

where
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nl=1.-2.3.--(n-1)n
E.g. 31 =1:23=6
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(b)

Hence, show that
-1
v—1= }}T! (mod p)

for p=1 (mod 4), i.c., show that the above when squared gives one.
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Square root of minus 1

Project -- The Square Root of -1

Notation: In modular arithmetic, if
2

r" =y (mod m)

for somem, then we can write

r=./y (modm)

we sayx is the square root gfmodm.

Note that ifx satisfiesé =y, thenm - x = -x when squared is also equivalentytde consider
bothx and x to be square roots gf

1. Question 5 of the Problem Set showed that

r=+v-1= M.fp —1 (mod p)
exists forp =1 (mod 4) prime. Explain why no square root of -1 exist if p = 3 (mod 4) prime.

2. Show that fop=1 (mod 4) prime, there are exactly 2 solutions to

r=+v-1 (modp)

3. Supposen andn are integers with gcdfm) = 1. Show that for each of the numbers 0, 1, 2, 3,
.. ,hm- 1 there is a unique pair of numberandb such that the smallest numbethat
satisfies:

X =a (mod m)
X=b (mod n)
is that number. E.g. Suppose m = 2, n = 3, then 4 is uniquely represented by
X=0 (mod 2)
X=1 (mod 3)

as the smallest that satisfies the above two congruencies. ik this case the unique pair of
numbers are 0 and 1.

4. If p=1 (mod 4) prime and q = 3 (mod 4) prime. Does
r=+v—-1 (mod pg)
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have a solution? Why?

5. 1f p=1 (mod 4) prime and g = 1 (mod 4) prime and p # q. Show that
r=+v—-1 (mod pq)

has 4 solutions.

6. Find the 4 solutions to
r=+v—-1 (mod 493)
note that 493 = 17 x 29.

7. Take an integar with more than 2 prime factors. Consider:

r=+v-1 (modn)

Under what condition is there a solution? Explain thoroughly.
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Solutions to exercises

HSE Primes|Primes and Modular Arithmetic

At the moment, the main focus is on authoring the main conte of each chapter.
Therefore this exercise solutions section may be out of date and appearatganised.

If you have a question please leave a comment in the "disci@s section” or contact the
author or any of the major contributors.

Factorisation Exercises

Factorise the following numbers. (note: | know you didn't have to,ghisst for those who are
curious)

13 is prime

26=13-2

59 is prime

82=41-2

101 is prime

121 =11 -11

2187 =3-3-3-3-3-3-3
Recursive Factorisation Exercises
Factorise using recursion.

45 =3-3-5

4050=2-3-3-3-3-5-5

2187 =3-3-3-3-3-3-3
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Prime Sieve Exercises

Use the above result to quickly work out the numbers that still mekd trossed out in
the table below, knowing 5 is the next prime:

2, 3, X 5 X 7 X X X
X 13X X X 17 X 19 X
X 23 X 25 X X X 290 X
X X X 3 X 37 X X X
X 43 X X X 47 X 49 X

The next prime number is 5. Because 5 is an unmarked prime number, andZ5} &ess out
25. Also, 7 is an unmarked prime number, and 5 * 7 = 35, so cross off 35. Howeévet, =
55, which is too high, so mark 5 as prime ad move on to 7. The only numbendémgh to be
marked off is 7 * 7, which equals 35. You can go no higher.

2. Find all primes below 200.
The method will not be outlined here, as it is too long. However, all primes below 200 are:

2357111317192329313741434753596167 717379 838997101 103 107 109 113
127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199

Modular Arithmetic Exercises

(=1)-(=3) mod1l= 5a|ternative|y, -1=10,-5=6:10 x 6 = 60 = 5&times 11
+5=5

3-7 modll=21=10

2'=27=42=82=16=5
2°=32=10,2=64=9,2=128=7
2=256=32=512=6,2=1024=1
An easier list: 2, 4, 8,5,10,9,7,3,6, 1
Notice that it is not necessary to acutally
compute 2 to find 2'° mod 11.
If you know 2 mod 11 = 6.
You can find 2° mod 11 = (2*(2 mod 11)) mod 11 = 2*6 mod 11 = 12 mod 11 = 1.
We can note that’2= 6 and 2° = 1, we can calculate @asily: & = 2'® = 278 = 3. OR by the
above method
6'=6,6=36=36=6*3=-18=7,
6'=6*7=42=98=6*9=54=10,6=6*10=60=5,
6'=6*5=30=88=6*8=-48=48=6*4=24=28=6*2=12=1.
An easier list: 6, 3,7, 9, 10, 5, 8, 4, 2, 1.
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0°=0,F=1,%=4,3=09,
4°=16=55=25=56=36=3,7=49=3
82=64=58=81=4,16=100=1
An easier list: 0,1, 4, 9,5, 3,3,5,9,4,1
Thus V4 =2 and V4 =9

: x*=-2=09

Just look at the list above and you'll see \/—_2 =8and V-2=3
Division and Inverses Exercises
1.
x=2"1=4
x=31=
x=41=
x=5"1=
x=6"=
x =7 1= 0"'therefore the inverse does not exist

28

2T T
7' =25 (mod 29)

r=28-20=4 (mod 29)

=4 (mod 29)

1
r =57 x (40 + 3) (mod 11)

r="5" x(404+4) (mod 11)
r=5" %0 (mod 11)

r=0 (mod 11)
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3|45 6| 7] 8/ 9/ 10 1 13 14 15 16 (17 |18
mod 2
mod 3
3 mod 4
2| 4 mod 5
5 mod 6
5|12| 3| 6 mod 7
3 5 7 mod 8
71 2 41 8 mod 9
7 3 9 mod 10
41 3| 9| 2| 8| 7 5| 10 mod 11
5 7 11 mod 17
9| 100 8| 11 2| 5| 3| 4| 6 mod 13
5 3 11 9 13 mod 14
4 13 2 11 7| 14 mod 15
11 13 7 9 3 5 1% mod 1p
6| 13 7| 3| 5| 1% 2| 1P 1 4 3 116 mod (17
11 13 5 7 17 mod 18
13| 5| 4| 19 11 12 1y 2| 7 3 15 14 ¢ P (18 mod|19
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Coprime and greatest common divisor Exercises

1.

1.

smaller larger
5050 5051
1 5050

0 1

5050 and 5051 are coprime

2.

smaller larger
59 78

19 59

2 19

1 2

0 1

59 and 79 are coprime
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smaller larger
111 369
36 111
3 36

0 3

111 and 369 are not coprime

4.

[
smaller larger
2021 4032
2011 2021
10 2011
1 10
0 1

2021 and 4032 are coprime
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2.We first calculate the gcd for all combinations

smaller larger
15 510

0 15
smaller larger
15 375

0 15
smaller larger
375 510
135 375
105 135
30 105
15 30

0 15

The gcd for any combination of the numbers is 15 so the gcd is 15 for the three numbers.

Diophantine equation Exercises

1.

216z = 1+ 816b
216c = 14 168b
48¢ = 1+ 168d
48¢ = 14 24d
24e = 1+424f

There is no solution, because can never become an integer.
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2.
42r = T+ 217b

42c = T+ 7b
Tc = 0+4+7d

We choose d=1, then x=26.

3.

(a)

smaller larger P
Q

33 101 3
1

2 33 6

1 2 2

0 1

3| 16| 2

O 1| 3| 49| 101

10| 1| 16| 33

(b) To be added



4.

(a)
smaller | larger| PQ
17 317 18
11 17 1
6 11 1
5 6 1
1 5 5
0 1
18| 1 1 1 5
O| 1| 18| 19| 37| 56| 317
10| 1 1 2 3 17

(b) To be added
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Chinese remainder theorem exercises

1.
3r = 5 (mod 14)
r = 11 {mod 14)
r = 11+ 14a
2r = 2(11 4 14a) = -3 (mod 17)
22 4 28a = -3 (mod 17)
1la = —8 (mod 17)
a = 74 17b
r = 114147+ 17) = 6 (mod15)
= 109 + 238b = 6 (mod15)
= 4+ 13b = 6 (mod15)
= 13b = 2 (mod 15)
b = 14 (mod 15)
b = 14 + 15¢
r = 109+ 238(14 4 15c)
r = 3441 4 3570c
Question 1

Show that the divisible-by-3 theorem works for any 3 digits numberg: (Bxpress a 3 digit
number as 100a + 10b + ¢, where a, b and g drand < 10)

Solution 1 Any 3 digits integetcan be expressed as follows

X =100a+ 10b + ¢

where a, b and c are positive integer between 0 and 9 inclusive. Now
r=100a+ 10b4+c=a+b+c (mod 3)

r=0 (mod 3)

if and only if a + b + ¢ = 3k for some k. But a, b and c are the digits of x.
Question 2

"A number is divisible by 9 if and only if the sum of its digitgligisible by 9." True or false?
Determine whether 89, 558, 51858, and 41857 are divisible by 9. Check your answers.

Solution 2 The statement is true and can be proven as in question 1.
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Question 4

The prime sieve has been applied to the table of numbers abovee Mwticevery number
situated directly below 2 and 5 are crossed out. Construct a rectangulairrguidbers running
from 1 to 60 so that after the prime sieve has been performed on it, all nusietiesd directly
below 3 and 5 are crossed out. What is the width of the grid?

Solution 4 The width of the grid should be 15 or a multiple of it.

Question 6

Show that n - 1 has itself as an inverse modulo n.
Solution 6

(n-1f=rf-2n+1=1 (mod n)

Alternatively

(n-1¥ = (-1¥ = 1 (mod n)

Question 7

Show that 10 does not have an inverse modulo 15.
Solution 7 Suppose 10 does have an inversed 15,
10x =1 (mod 15)

2A-5x = 1 (mod 15)

5x = 8 (mod 15)

5x =8 + 15k

for some integer k

x=1.6+3k

but nowx is not an integer, therefore 10 does not have an inverse
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Problem set solutions

Question 1

Is there a rule to determine whether a 3-digit number is divisible by 11? Hemse that rule.
Solution

Let x be a 3-digit number We have

r = 100a + 106+ ¢

now

r=a+10b4+c=a—b+c (mod 11)

We can conclude a 3-digit number is divisible by 11 if and only ithm of first and last digit
minus the second is divisible by 11.

Question 2

Show thaip, p + 2 andp + 4 cannot all be primes & positive integer)
Solution

We look at the arithmetic mod 3, thprslotted into one of three categories
1st category

p=0 (mod 3)

we deduce is not prime, as it's a multiple of 3

2nd category

p=1 (mod 3)

p+2=0 (mod3)

SO p + 2 is not prime

3rd category

p=2 (mod 3)

p+4=0 (mod3)

thereforep + 4 is not prime
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Thereforep, p + 2 andp + 4 cannot all be primes.

Question 3
Find x

z=1"+2"4+3"4+474+ 5 +6"+7"  (mod 7)
Solution

Notice that

—a=7—a (mod?7)

Then

1"=(7-6)"=(-6)"=—(6") (mod 7)
Likewise,

2"= -5 (mod 7)

and

3"=—-4" (mod7)

r =1"4+2" 43" +4 45 46747
=1"4+2"4+3" -3" 2" 1747
=0 (mod 7)

Question 4

9. Show that there are no intege@ndy such that

r’— Eny2 =3

Solution

Look at the equation mod 5, we have

r* =3 (mod 5)
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but

17=1
2% =4
3 =4
47 =1

therefore there does not exast such that
=3 (mod 5)

Question 5

Letp be a prime number. Show that

(a)

(p—1)!=-1 (modp)

where

nl=1.-2.3.--(n-1)n
E.g.31=1A-2A-3=6

(b) Hence, show that
—1
Vv —1= pT! (mod p)

for p=1 (mod 4)
Solution

a) If p = 2, then it's obvious. So we supp@ses an odd prime. Since is prime, some deep
thought will reveal that every distinct element multiplied by sasther element will give 1.
Since

(p—D!=(p-(p-2)(p-3)--2

we can pair up the inverses (two numbers that multiply to give and)(p - 1) has itself as an
inverse, therefore it's the only element not "eliminated"”

(p-D=(p-1)=-1
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as required.

b) From part a)

—1=(p-1

sincep = 4k + 1 for some positive integéy (p - 1)! has kterms
—1=1%x2x3x---2bx(-2k)---x(=3)x(-2)x(=1)
there are an even number of minuses on the right hand side, so
—1=(1x2x3x---2k)

it follows

v—-1=1x2x3x..2k

and finally we note that p = 4k + 1, we can conclude

s it

2
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Definitions
Logic

Introduction

Logic is the study of the way we humans reason. In this chapteipams on thenethodsof
logical reasoning, i.e. digital logic, predicate calculus, apphicatb proofs and the (insanely)
fun logical puzzles.

Boolean algebra

In the black and white world of ideals, there is absolute truth. Shatsayeverythingis either
true orfalse With this philosophical backdrop, we consider the following examples:

"One plus one equals two." True or false?

That is (without a doubt) true!

"1+1=2AND 2+ 2=4."True or false?

That is also true.

But what about:

"1+ 1 =3 OR Sydney is in Australia" True or false?

It is true! Although 1 + 1 = 3 is not true, the OR in the statenmete it so that if either part of
the statement is true then the whole statement is true.

Now let's consider a more puzzling example
"2+2=40R1+1=3AND1-3=-1"True or false?

The truth or falsity of the statements depends omter in which you evaluate the statement.
If you evaluate "2 + 2 =4 OR 1 + 1 = 3" first, the statenefalse, and otherwise true. As in
ordinary algebra, it is necessary that we define some rulgsvern the order of evaluation, so
we don't have to deal with ambiguity.

Before we decide which order to evaluate the statementseijovwhat most mathematician
love to do -- replace sentences with symbols.
Let x represent the truth or falsity of the statement 2 + 2 4,
Let y represent the truth or falsity of the statement 1 + 1 3.
Letzrepresent the truth or falsity of the statement 1 - 3 = -1.

Then the above example can be rewritten in a more compact way:
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X ORyAND z

To go one step further, mathematicians also replace OR by ANBDdby A-, the statement
becomes:

r4yx:z

Now that the order of precedence is clear. We evaluate (y ANibst and then OR it with x.
The statement "x + yz" is true, or symbolically

XxX+yz=1
where the number 1 represents "true".

There is a good reason why we choose the multiplicative sigmdéoAND operation. As we
shall see later, we can draw some parallels between the AND operation aptiaatidtn.

The Boolean algebra we are about to investigate is named ladteBritish mathematician
George Boole. Boolean algebra is about two things -- "true" osé'falvhich are often
represented by the numbers 1 and 0 respectively. Alternative, T and F are also used.

Boolean algebra has operations (AND and OR) analogous to the ordgelryeathat we know
and love.

Basic Truth tables

We have all had to memorise the 9 by 9 multiplication table and reknaw it off by heart.
In Boolean algebra, the idea of a truth table is somewhat similar.

Let's consider the AND operation which is analogous to the muétmgit. We want to
consider:

X AND y

where andk andy each represent a true or false statement (e.g. Inimgaioday). It is true if
and only if bothx andy are true, in table form:

The AND function

X y X AND y
F F F

F T F

T F F

T T T
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We shall use 1 instead of T and 0 instead of F from now on.

The AND function

X y X AND y
0 0 0

0 1 0

1 0 0

1 1 1

Now you should be able to see why we say AND is analogous taphcaltion, we shall
replace the AND by A-, sk AND y becomexA-y (or justxy). From the AND truth table, we
have:

0A-0=0

0A-1=0

1A-0=0

1A-1=1

To the OR operatiorx OR y is FALSE if and only if botlx andy are false. In table form:
The OR function

X y XxORYy
0 0 0

0 1 1

1 0 1

1 1 1

We say OR is almost analoguous to addition. We shall illustrate this by rep@Bi with +:
0+0=0
0+1=1
1+0=1
1+1=1(ike1OR1lis1)
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The NOT operation is not binary operation like AND and OR, but ainary operation
meaning it works with one argumeMOT x is true ifx is false andalseif x is true. In table
form:

The NOT function

X NOT x
0 1
1 0

In symbolic formNOT x is denoted x' or ~x (or by a bar over the top of x).

Alternative notations:

rXy=xr’y
and
r+y=xVy

Compound truth tables

The three truth tables presented above are the most basic oabiah and they serve as the
building blocks for more complex ones. Suppose we want to construch dailg for xy + z
(i.,e. x AND y OR 2z). Notice this table involves three varialf}fes and z), so we would expect
it to be bigger then the previous ones.

To construct a truth table, firstly we write down all the possit®mbinations of the three
variables:

X|y| z
0| 0| O
0| 0] 1
0| 1] 0
0| 1|1
100
10| 1
1(1|0
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There is a pattern to the way the combinations are written dowral¥ays start with 000 and
end with 111. As to the middle part, it is up to the reader to figure out.

We then complete the table by hand computing what value each combiizagmmng to
produce using the expression xy + z. For example:

000
Xx=0,y=0andz=0
xy+z=0

001
x=0,y=0andz=1
xy+z=1

We continue in this way until we fill up the whole table

X ¥ Z xyORzZ
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

The procedure we follow to produce truth tables are now clear. ke faw more examples
of truth tables.

Example 1 --x+y+z

X y z X R
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1




Example 2 -- (x + yz)'

X y z Xxtyz (x+vyz)
0 0 0 0 1
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

When an expression is hard to compute, we can first compute intetenexfialts and then the
final result.

Example 3 -- (x + yz')w
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X v z W (x+vzw
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0] 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 I 0] I 1
1 1 1 0 0
1 1 1 1 1
Exercise
Produce the truth tables for the following operations:

8. NAND: x NAND y = NOT (x AND )

9. NOR: X NOR y =NOT (x OR YY)

10. XOR: x XOR y is true if and ONLY if one of x or y is true.

Produce truth tables for:

4, Xyz

S. X'y'z'

6. Xyz + Xy'z
7. Xz

8. (x+y)
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9. X'y'
10. (xy)'
11. X' +y
Laws of Boolean algebra

In ordinary algebra, two expressions may be equivalent to each efipexz + yz = (X + y)z.
The same can be said of Boolean algebra. Let's construct truth tables for:

XZ +yz
(x +y)z
XZ +Yyz
X ¥ z XZtyz
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1
(X +y)z
X y 7 (xty)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1




By comparing the two tables, you will have noticed that the outpetgiie last column) of the
two tables are the same!

Definition

We say two Boolean expressions agelivalentif the output of their truth tables are the same.

We list a few expressions that are equivalent to each other
X+0=x
XA-1=x

XZ+yz=(X+Yy)z

X+x' =1
XA-x'=0
X A- X = X

X+yz=(X+y)(x+2)
Take a few moments to think about why each of those laws might be true.

The last law is not obvious but we can prove that it's true using the other laws:

(r4+y)r+z) r(r+z)+ylr+z)
= rr4+rz4ry+y:z
= r4rz4ry+y:z

z(l+z+y)+yz

= r+yz

As Dr Kuo Tzee-Char, Honorary reader of mathematics dt/tineersity of Sydney, is so fond
of saying: "The only thing to remember in mathematics is ttiexte is nothing to remember.
Remember that!". You should not try to commit to memory the lavilsegsare stated, because
some of them are so deadly obvious once you are familiar with M@, KR and NOT
operations. You should only try to remember those things that are nsastdosze a high level
of familiarity is developed, you will agree there really isn't anghmremember.

Simplification

Once we have those laws, we will want to simplify Boolean eges just like we do in
ordinary algebra. We can all simplify the following example with ease:
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ryzw' 4+ ryzw = zryz(w +w')
= TYz
the same can be said about:
(z+y)(2'+y) = 22’ +¢)+y(@" +7)
= rr'+zy +ya' + gy
= O+ xy +yx'+0
= ry + yx'’

From those two examples we can see that complex-looking expressiorize reduced very
significantly. Of particular interest are expressions of fitven of a sum-of-product for
example:

Xyz + Xyz' + xy'z + X'yz + X'y'z' + xX'y'z

We can factorise and simplify the expression as follows

Xyz+XyZ + Xyz + Xyz+ XyzZ +Xy'z

= zy(z+ 2+ 2y 2+ 2yz+ 2y (7 + 2)

= ry+ rsz + Ifyz + ;rFyF

= z(y+y'z)+ 2 (y2 +y)

It is only hard to go any further, although we can. We use the identity:
X+yz=(X+y)(x+2)

If the next step is unclear, try constructing truth tables as an aid to understanding.
= zrly+z2)+2(z+7)

= aytrz+rz4+2%

= ay+(r+2)z+2%
= Ty +z + 2’y

And this is as far as we can go using the algebraic approadciny other approach). The
algebraic approach to simplication relies on the priniciple ofieditton. Consider, in ordinary
algebra:

X+y-X
We simplify by rearranging the expression as follows
(x-x)+y=y
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Although we only go through the process in our head, the idea iswkehring together terms
that cancel themselves out and so the expression is simplified.
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De Morgan's theorems

So far we have only dealt with expressions in the form sira of product®.g. xyz + X'z +
y'z'. De Morgan's theorems help us to deal with another type of Boolean expse¥ge revisit
the AND and OR truth tables:

X |y | xA-y| x+y
00| O

0

0] 1] 0

1

10| 0

1

11| 1

1

You would be correct to suspect that the two operations are connectedosordue to the
similarities between the two tables. In fact, if you invert AND operation, i.e. you perform
the NOT operations on x AND y. The outputs of the two operations are almost the same:

X |y | XAy | x+y
olo]f 1

0

ol1]1

1

1101

1

111]0

1
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The connection between AND, OR and NOT is revealedelgrsingthe output of x + y by
replacing it with x' + y'.

X|y| XAy | x+y
olo]f1

1

ol1]1

1

1101

1

111]o0

0

Now the two outputs match and so we can equate them:

xy) =x"+y

this is one of de Morgan's laws. The other which can be derived using a simiEsisc

(x+y) =xy

We can apply those two laws to simplify equations:

Example 1
Expressxin sum of productorm
r = (ab'+c)

_ {ﬂ_br}rcr

= (a' +b)

= a'd+ b
Example 2
Expressxin sum of productorm
r = (a+b+c)

= (a+b)d

= a'b'd

This points to a possible extension of De Morgan's laws to 3 or more
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variables.

Example 3
Expressxin sum of productorm

r = [([a+c)-(b+d)])

— (4o +(b+d)

= ac’ +b'd
Example 4
Expressxin sum of productorm
r = [(la+be)-(d+ef)]

= (a+be)+(d+ef)

= a'(be) +d'(ef)

= d' +)+d(+ f)
_ tI-FbF—I—EI-FCF—I—dFEF—I—deF

Another thing of interest we learnt is that we cawersethe truth table of any expression by
replacing each of its variables by their opposites, i.e. repldgex’ and y' by y etc. This result
shouldn't have been a suprise at all, try a few examples yourself.

De Morgan's laws

(x+y) =xy

(xy) =x +y

Exercise

Express in simplified sum-of-product form:

z =ab'c' + ab'c + abc
z=ab(c +d)
z=(a+b)(c+d+f)
z=a'c(a'bd)' + a'bc'd' + ab'c
z=(a'+b)a+b+d)d

Show that x + yz is equivalent to (X + y)(x + z)
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Propositions

We have been dealing with propositions since the start of thisechafihough we are not told
they are propositions. A proposition is simply a statement (orrsm)t¢hat is either TRUE or
FALSE. Hence, we can use Boolean algebra to handle propositions.

There are two special types of propositions -- tautology and daicticen. A tautology is a
proposition that is always TRUE, e.g. "1 + 1 = 2". A contradict®rthie opposite of a
tautology, it is a proposition that is always FALSE, e.g. 1 + 3 As usual, we use 1 to
represent TRUE and O to represent FALSE. Please note that opngéonet propositions, e.g.
"George W. Bush started the war on Iraq for its oil." is jasbpinion, its truth or falsity is not
universal, meaning some think it's true, some do not.

Examples

"It is raining today" is a proposition.

"Sydney is in Australia” is a proposition.
"1+2+3+4+5=16"Iis a proposition.

"Earth is a perfect sphere" is a proposition.

"How do you do?" isiota proposition - it's a question.

"Go clean your room!" igot a proposition - it's a command.
"Martians exist" is a proposition.

Since each proposition can only take two values (TRUE or FALSEYan represent each by
avariable and decide whether compound propositions are true by using Boolearaajgsbr
like we have been doing. For example "It is always hot in Atitar©R 1 + 1 = 2" will be
evaluated as true.

Implications

Propositions of the type isomethingsomethingthen something somethingare called
implications. The logic of implications are widely applicable iatmematics, computer science
and general everyday common sense reasoning! Let's start with a sinmpj#eexa

“If 1+1=2then2-1=1"

is an example of implication, it simply says that 2 - 1 =4 eé®@nsequence of 1 + 1 = 2. It's like
a cause and effect relationship. Consider this example:

John says:If | become a millionairghen! will donate $500,000 to the Red Cross."
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5
6.
7

8.

There are four situations:
John becomes a millionaire and donates $500,000 to the Red Cross
John becomes a millionaire and does not donate $500,000 to the Red Cross
John does not become a millionaire and donates $500,000 to the Red Cross

John does not become a millionaire and does not donate $500,000 to the Red Cross

In which of the four situations did John NOT fulfill his promise? @feaf and only if the second

situation occured. So, we say the proposition is FALSE if and onBohih becomes a
millionaire and does not donate. If John did not become a millionaire theanttebreak his
promise, because his promise is now claiming nothing, therefore it must be el/alR&atE.

If x andy are two propositions; impliesy (if x theny), or symbolically

Ir =1y

has the following truth table:

X Ir =1y

|| O| O
R |lo|r|o|X<
RO Fr |

For emphasis® = Uis FALSE if and only ifx is true andy false. Ifx is FALSE, it does not
matter what valugy takes, the proposition is automatically TRUE. On a side notewthe t
propositionsx andy need not have anything to do with each other, e.g. "1 + 1 = 2 implies
Australia is in the southern hemisphere" evaluates to TRUE!

If
(r = y) AND (y = z)

then we express it symbolically as
Ty
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It is a two way implication which translatesX@s TRUE if and only ify is true. Thef and only
if operation has the following truth table:

X |y r=y
0| 0| 1
0| 1|0
1{0| 0
1]1]1

The two new operations we have introduced are not really newatbgust combinations of
AND, OR and NOT. For example:

I=:-y=:r"—|—y

Check it with a truth tableBecause we can express th®lication operations in terms of
AND, OR and NOT, we have open them to manipulation by Boolean algetirde Morgan's
laws.

Example 1
Is the following proposition a tautology (a proposition that's always true)

(r=y)ly=2)]= (2= 2)
Solution 1

= [lz=yly=2)]=(r=:z)
= [+ + 2+ (2" +2)
= (IF-l—nyF-I-IfyF—I—z:JF—I—IF—I—z
= ny—l—yzF—l—rF—l—z

— 1= V4yt+2'+:z
Therefore it's a tautology.

Solution 2
A somewhat easier solution is to draw up a truth table of the ptigmpsand note that the
output column are all 1s. Therefore the proposition is a tautology, leeta@soutput is 1
regardless of thmputs(i.e. x, y and z).
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Example 2
Show that the proposition z is a contradiction (a proposition that is always false):

Z = xy(x +y)
Solution
: = zylz+y)

= ry(z'y)
— 0

Therefore it's a contradiction.

Back to Example 1,[,':I = y)y= 2= (2= 2) This isnt just a slab of symbols,
you should be able translate it into everyday language and understand intuitiyet\s Wwhe.

Exercises
Decide whether the following propositions are true or false:
If1+2=3,then2+2=5
If 1 + 1 = 3, then fish can't swim
Show that the following pair of propositions are equivalent

:r=:>y:g,r’=:-:rF

Logic Puzzles

Puzzle is an all-encompassing word, it refers to anythin@lrlat requires solving. Here is a
collection of logic puzzles that we can solve using Boolean algebra.

Example 1

We have two type of people -- knights or knaves. A knight alwalthtetruth but the knaves
always lie.

Two people, Alex and Barbara, are chatting. Alex says :"We are both knaves"

Who is who?

We can probably work out th#lex is a knave in our heads, but the algebraic approach to

determineAlex's identity is as follows:

Let Abe TRUE if Alex is a knight
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Let B be TRUE if Barbara is a knight

There ardwo situations, either:

Alex is a knight and what he says is TRUE, OR

he is NOT a knight and what he says it FALSE.

There we have it, we only need to translate it into symbols:
A(A'B) + A[(AB)] =1

we simplify:

(AAYB'+ ATA+B]=1

AA+AB=1

AB=1

ThereforeA is FALSE andB is TRUE. Therefore Alex is a knave and Barbara a knight.
Example 2

There are three businessmen, conveniently nakbeer,Bill and Charley, who order martinis
together every weekend according to the following rules:

If A orders a martini, so does B.

Either B or C always order a martini, but never at the same lunch.
Either A or C always order a martini (or both)

If C orders a martini, so does A.

A= BorAB+AB =1

BC+BC =1

A+C=1

C'= AorCA+CA =1

Putting all these into one formula and simplifying:
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1 = (AB+ A'B")(B'C + BC")(A+C)(CA+C'A)
= (AB + A'B"(B'C+ BC")(A+C)(C+C"A
= (AB+ A'B")(B'C + BC")(A+C)1A
= (AB+ A'B"(B'C+BC"(A4+C)A
Now that we know that 4 =1 we can substitute that in:
= (1B+0B")(B'C+ BC")(1+C)1
— (B)(B'C + BC")
Now that we know that B = 1 we can substitute that in:

— (1)(0C 4+ 1C")

— CF
Ifl1=C"then C =10
ABC" =1

Exercises

Please go thoqic puzzles
Problem Set

1. Decide whether the following propositions are equivalent:
=y

y=1r

2. Express in simplest sum-of-product form the following proposition:
(rey) =z

3. Translate the following sentences into symbolic form and decide if it's true:
a. For allx, if ¥*= 9 then- 6x-3=0

b. We can find &, such thai® = 9 and - 6x - 3 = 0 are both true.

4. NAND is a binary operation:

X NAND y = (xy)'

Find a proposition that consists of only NAND operators, equivalent to:
(x+yw+z

5. Do the same with NOR operators. Recall that x NORy = (X + y)'
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Feedback

What do you think? Too easy or too hard? Too much information or not enough? How can we
improve? Please let us know by leaving a comment in the discisesiban. Better still, edit it
yourself and make it better.
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Mathematical proofs

"It is by logic that we prove, but by intuition that we discover."

Introduction

Mathematicians have been, for the past five hundred years or sesetseith proofs. They
want to prove everything, and in the process proved that theypcavé everything (segnis).
This chapter will introduce the techniques of mathematical inducti@of fry contradiction
and the axiomatic approach to mathematics.

Mathematical induction

Deductive reasoning is the process of reaching a conclusion thaaranteed to follow. For
example, if we know

All ravens are black birds, and

For every action, there is an equal and opposite reaction
then we can conclude:

This bird is a raven, therefore it is black.

This billiard ball will move when struck with a cue.

Induction is the opposite of deduction. To induce, we observe how things hahsmecific
cases and from that we draw conclusions as to how things behave genbeal case. For
example:

(n+1)n
2

We know it is true for all numbers, becawausgold us. But how do we show that it's true for
all positive integers? Even if we can show the identity holdsdaonbers from one to a trillion
or any larger number we can think of, we still haven't proved tisatriie for all positive
integers. This is where mathematical induction comes in, it works somelsh#idi dominoes.

142434 ... 4+n=

If we can show that the identity holds for some nunipemd that mere fact implies that the
identity also holds fok + 1, then we have effectively shown that it works for all integers.

Example 1Show that the identity

(n+1)n

142434 ... 4+n= 5
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holds for all positive integers.

Solution Firstly, we show that it holds for integers 1, 2 and 3
1=2A-1/2

1+2=3A-2/2

1+2+3=4A-3/2=6

Suppose the identity holds for some number

1
1+2+3+..+ k= (k+ 1k

This supposition is known as the induction hypothesis. We assumeugjsatrd aim to show
that,

1
142434 ..+ k4 (k+1) = (k+2)(k+1)

is also true.

We proceed

14+24+3+...+k = S(E+1)k
142434+ ..+k +(k+1) = (k+1)k+ (E+1)
= (k+D(5+1)

= Lk+1)(k+2)

which is what we have set out to show. Since the identity holds fbal3o holds for 4, and
since it holds for 4 it also holds for 5, and 6, and 7, and so on.

There are two types of mathematical induction: strong and weake#ék induction, you
assume the identity holds for certain value k, and prove it for k+1trdngsinduction, the
identity must be true for any value lesser or equal to k, and then prove it for k+1.
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Example 2Show that n! > 2for n> 4.

Solution The claim is true for n = 4. As 4! ¥ 4.e. 24 > 16. Now suppose it's true for n = k, k
>4, 1.e.

ki > 2

it follows that

(k+1)k! > (k+1)ZF > 22
(k+1)! > 22

We have shown that if for n = k then it's also true for n = k 4#irlceSit's true for n = 4, it's true
forn=5, 6, 7, 8 and so on for all n.

Example 3Show that

13—|—23—|—...—|—?13=w

4
Solution Suppose it's true for n =k, i.e.
P24 4= hﬂ
it follows that
P42 4 4B (k+1)7 = EHEE ()

(k+ 15 + (E+1))
= HE+1)2(K +4k+4)
= lk+12(k4+20

We have shown that if it's true for n = k then it's also truefe k + 1. Now it's true forn =1
(clear). Therefore it's true for all integers.

Exercises

n(2n® +3n+ 1)
124224 . 4nt= .
1. Prove tha 6

2. Prove that for & 1,

(1+\/5‘]n:-rn+yn.v/g
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where x% and Yy, are integers.

3. Note that

n
Y= (i 1) =n"
i=1

Prove that there exists an explicit formula for
n

>

i=1  for all integem. E.g.

n?(n 4 1)

PP L. 4n = 1

4. The sum of all of the interior angles of a triangl 180" ; the sum of all the angles of a
rectangle is360° . Prove that the sum of all the angles of a polygon witkides, is

(n—2)-180°
Proof by contradiction

"When you have eliminated the impossible, what ever remains, howerebable must be
the truth.” Sir Arthur Conan Doyle

The idea of a proof by contradiction is to:
First, we assume that tleppositeof what we wish to prove is true.
Then, we show that the logical consequences of the assumption include a contradiction.

Finally, we conclude that the assumption must have been false.

Root 2 is irrational

As an example, we shall prove tl,ﬁis not a rational number. Recall that a rational number
is a number which can be expressed in the form of p/q, where p asdriegyers and g does
not equal O (see the 'categorizing numbers' sebBog.

First, assume th: ’/ﬁis rational:

1
va=y

wherea andb are coprimes (i.e. both integers with no common factorsy.adhdb are not
coprimes, we remove all common factors. In other woads,is in simplest form. Now,
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continuing:

V2 = a/fb
2 = a?/b?
2F = a?
We have now found thaf is some integer multiplied by 2. Therefoa must be divisible by

two. If a® is even, them must also be even, for an odd number squared yields an odd number.
Therefore we can writa = 2¢, wherec is another integer.

2 = a®
W = ()
26 = 4Ac?
B2 = 22

We have discovered thit is also an integer multiplied by two. It follows tHmmust be even.
We have a contradiction! Both and b are even integers. In other words, both have the
common factor of 2. But we already said thétis in simplest form. Since such a contradiction

AAw

has been established, we must conclude that our original assumptitelsea3 herefore, 4752
is irrational.

Contrapositive

Some propositions that take the formifokxx then yyycan be hard to prove. It is sometimes
useful to consider theontrapositiveof the statement. Before | explain what contrapositive is
let us see an example

"If X% is odd therx s is also odd"
is harder to prove than
"if x even thend is also even"

although they mean the same thing. So instead of proving the first pi@pabrectly, we
prove the second proposition instead.

If A andB are two propositions, and we aim to prove

If Ais true therB is true

we may prove the equivalent statement

If Bis false therA is false

instead. This technique is called proof by contrapositive.

To see why those two statements are equivalent, we show the ifgjld@olean algebra
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expressions is true (seeaqic)

p=q=qd=p

(to be done by the reader).

Exercises

1.Prove that there is no perfect square number for 11,111,1111,11111......

2. Prove that there are infinitely numberksf such that, K+ 3, is prime. (Hint: consider N =
P1P2...pm + 3)

Reading higher mathematics

This is some basic information to help with reading other highenenatical literature... to
be expanded

Quantifiers

Sometimes we need propositions that involve some description of rouglityguagt "Forall
odd integers x, Xis also odd". The wordll is a description of quantity. The word "some" is
also used to describe quantity.

Two special symbols are used to describe the quanties "all" and "some"
% means "for all" or "for any"
d means "there are some" or "there exists"

Example 1
The proposition:

For all even integers, X is also even.
can be expressed symbolically as:

. 2 .
(Vr)(r is even = x~ is even

Example 2
The proposition:

There are some odd integetssuch that Xis even.

can be expressed symbolically as:

(3z)(z is odd = z* is even)
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This proposition is false.

Example 3
Consider the proposition concerning (z = X'y" + xy):

For any value ok, there exist a value for, such that z = 1.
can be expressed symbolically as:
(V2)(Fy)(z = 1)

This proposition is true. Note that the order of the quantifiermymoitant. While the above
statement is true, the statement

(Fy)(vVz)(z = 1)

is false. It asserts that there is one value of y which is the sara# X for which z=1. The first
statement only asserts that there is a y for each x, butediffealues of x may have different
values of y.

Negation

Negation is just a fancy word for the opposite, e.g. idgationof "All named Britney can
sing” is "Some named Britney can't sing”. What this saybas to disprove that all people
named Britney can sing, we only need to find one named Britney afib tng. To express
symbolically:

Let p represent a person named Britney

[(¥p)(p can sing)]” = (Ip)(p cannot sing)
Similarly, to disprove

(Vz)(z is odd = z* is even)

we only need to find one odd number that doesn't satisfy the conditior. i§hvdd, but 3A-3
=9 is also odd, therefore the proposition is FALSE and

(3z)(x is odd = z* is odd)
is TRUE

In summary, to obtain theegationof a proposition involving a quantifier, you replace the
quantifier by its opposite (e..¥ with ) and thequantified propositior(e.g. "x is even") by
its negation (e.g. "x is odd").

Example 1
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(Vr)(Jy)r(z+1)(z+2)(z+3)+ 1= yzj

IS a true statement. Its negation is
(dr)(Vy)(z(z + Dz +2)(z+3)+ 1 # yzj

Axioms and Inference

If today's mathematicians were to describe the greatesivachent in mathematics in the 20th
century in one word, that word will bebstraction. True to its name, abstraction is a very
abstract concept (sédstractior).

In this chapter we shall discuss tessenceof some of the number systems we are familiar
with. For example, the real numbers and the rational numbers. We todke amost
fundamental properties that, in some sedsénethose number systems.

We begin our discussion by looking at some of the more obscure results we were toldéo be tr
0 times any number gives you O
a negative number multiplied by a negative number gives you a positive number

Most people simply accept that they are true (and they arehéuivo results above are
simple consequences of what we believe to be true in a number system like the besishum

To understand this we introduce the idea of axiomatic mathenfatadbematics with simple
assumptions). An axiom is a statement about a number systemetlagsume to be true. Each
number system has a few axioms, from these axioms we can draw conclusioaadeser

Let's consider the Real numbers, it has axiomsaleandc be real numbers

Fora, b, andc taken from the real numbers

Al: atbis a real number alsalosure

A2: There exist 0, such that Gat= a for all a (existence of zero - adentity)

A3: For everya, there exisb (written -a), such that a + b = 0 (existence of an additive inverse)
A4: (a+b) +c=a+ (b+c) (associativity of addition)

A5: a +b=b +a (commutativity of addition)

Fora, b, andc taken from the real numbers excluding zero

M1: ab (closurg

M2: There exist an element, 1, such thet1a for all a (existence of one - adentity)
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M3: For everya there exists & such thaab=1
M4: (ab)c = a(bc) (associativity of multiplication)
M5: ab = ba (commutativity of multiplication)
D1: a(b + ¢) = ab + ac (distributivity)

These are theninimumswe assume to be true in this system. Thesenamenumin the sense
that everything else that is true about this number system can be derivatidsgnaxioms!

Let's consider the following true identity
X+y)z=xz+yz
which is not included in the axioms, but we can prove it using the axioms. We proceed:

(r+y)z = z(r+4+y) bv M5
= zr+zy hy D1
= rz+yz by M5

Before we proceed any further, you will have notice that themeabers are not the only
numbers that satifies those axioms! For example the rational nunideeatfy all the axioms.
This leads to the abstract concept dfedd. In simple terms, &ield is a number system that
satisfies all those axiom. Let's definéedd more carefully:

A number systent, is afield if it supports + and A- operations such that:
Fora, b, andc taken fromF

Al:a+bisinF also €losure

A2: There exist 0, such that Gat= a for all a (existence of zero - ddentity)

A3: For everya, there existb (written a), such that a + b = 0 (existence of an additive
inverse)

A4: (a+b) +c=a+ (b +c) (associativity of addition)
A5: a+b=b +a (commutativity of addition)
Fora, b, andc taken fromF with the zero removed (sometimes writi
M1: abis inF (closurg
M2: There exist an element, 1, such thetla for all a (existence of one - thdentity)
M3: For everya there exists & such thaab = 1 (inverses)
M4: (ab)c = a(bc) (associativity of multiplication)
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M5: ab = ba (commutativity of multiplication)
D1: a(b + ¢) = ab + ac (distributivity)

Now, for M3, we do not leb be zero, since 1/0 has no meaning. However foMlexioms,
we have excluded zero anyway.

For interested students, the requirementsl@$ure identity, havinginversesandassociativity
on an operation and a set are known geoap If F is a group with addition an is a group
with multiplication, plus the distributivity requiremerft,is a field. The above axioms merely
state this fact in full.

Note that the natural numbers are not a fieldld@ss general not satified, i.e. not every natural
number has an inverse that is also a natural number.

Please note also thal)-denotes the additive inverse afit doesn't say that (-a) = (-1)(a),
although we can prove that they are equivalent.

Example 1

Prove using only the axioms that 0 = -0, where -0 is the additive inverse of 0.
Solution 1

0 =0 + (-0) byA3: existence of inverse

0=(0)byA2:0+a=a

Example 2

Let F be a field ana an element of F. Prove using nothing more than the axiomsaha0
for all a.

Solution

0 = 0a + (-0a) byA3 existence of inverse

0=(0 +0)a + (-0a) by Example 1

0 = (0a + Oa) + (-0a) by distributivity and commutativity of multiplication

0 =0a + (0a + (-0a)) by associativity of addition

0=0a+ 0 bhA3
0 = Oa byA2.
Example 3

Prove that @) = (-1)a.
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Solution 3

(a) = (-a) + 0

(-a) = (-a) + Oa by Example 2
(-8) = (-a) + (1 + (-)a

(-8) = (-8) + (1a + (-1)a)

(-8) = (-a) + (a + (-)a)

(a) = ((-2) + @) + (-1)a
(-@)=0+(-1a

() = (-1)a

One wonders why we need to prove such obvious things (obvious since psichaof). But
the idea is not to prove that they are true, but to practise icfeggrhow to logically join up
arguments to prove a point. That is a vital skill in mathematics.

Exercises
1. Describe a field in which 1 =0

2. Prove using only the axioms if u + v = u + w then v = w (sulitigict from both sides is not
accepted as a solution)

3. Prove that if xy = 0 then eitherx =0o0ory =0

4. In F, the operation + is defined to be the difference of two numbers grﬁﬁr{mration is
defined to be the ratio of two numbers. E.g. 1 + 2 =-1,5 + 3 = 2 and93-3A-2; = 2.5. Is
F. a field?

5. Explain why £ (modular arithmetic modular 6) is not a field.

Problem Set
1. Prove

1 1 1
S I Hp
AT AT +-ﬁﬁ__uﬁ
forn = 1

3 2
2. Prove by induction thi2n™ —3n" +n+ 31 = 0

3. Prove by induction
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() () () e (1) =2

(?1) B n!
m mlin—m)!__nl=n-m-1)-(n-2)-...-2-1

and 0! = 1 by definition.

Cj_+gtj_+f(n)+_“+2an:=3n
4. Prove by inductio 0 1 2 n

IJ‘! _I_ yn
5. Prove that if x and y are integers and n an odd intege T + Y isan integer.

6. Prove that (n~m) = n!/((n-m)!m!) is an integer. Where n{(+1)(n-2)...1. E.g 3! = 3A-2A-1
=6, and (5~3) = (51/31)/2! = 10.

Many questions in other chapters require you to prove things. Be sure tloettgchniques
discussed in this chapter.

Feedback

What do you think? Too easy or too hard? Too much information or not enough? How can we
improve? Please let us know by leaving a comment in the discisesiban. Better still, edit it
yourself and make it better.
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Exercises

Mathematical proofs

At the moment, the main focus is on authoring the main conte of each chapter.
Therefore this exercise solutions section may be out of date and appearatganised.

If you have a question please leave a comment in the "disci@s section” or contact the
author or any of the major contributors.

Mathematical induction exercises
1.
Prove that 1+ 2 + ... + f = n(n+1)(2n+1)/6
When n=1,
LHS. =f=1
R.H.S. =1*2*3/6 =6/6 = 1
Therefore L.H.S. = R.H.S.
Therefore this is true when n=1.
Assume that this is true for some positive integer Kk,
ie. B+ 2+ ...+ K=kk+1)(2k+1)/6
(A1) (2k+1
;;(;;+13(2;;+1f 2
Lk+1) [?%If% ++1‘Ei+6£ +1)]

Lk + 1) [2k% 4+ 7Tk + 6]
(k41 (k+2)(2k+3)
]

12 4+22 4324+ .+ k? =
124224324+ R (B4 1)2

Therefore this is also true for k+1.
Therefore, by the principle of mathematical induction, this holds for all positieger n.

2. Prove that for & 1,

(1+VB)" =1z, + y. V5

where x and y, are integers.
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When n=1,

1+V5=x, + yl\/g
Therefore =1 and y=1, which are both integers.
Therefore this is true when n=1.

Assume that this is true for some positive integer Kk,

k
e (14 "/Ej = T + Q'k‘/gwhere % and y are integers.

{14—\/5}“ = z, + VB
(1+ VB = (2 +wVB)(1+ Vb
= T+ yV5 + V5 + Sy

= (rp 4+ 5u) + (zr + % )V5
Because xand y are both integers, thereforg X 5y and x + yk are integers also.
Therefore this is true for k+1 also.
Therefore, by the principle of mathematical induction, this holds for all positieger n.

3. (The solution assume knowledgeinomial expansioandsummation notation

Note that

n

S =G -1 =n"

1=1

Prove that there exists an explicit formula for

n
>_i"
i=1
for all integem. E.g.

ni(n+ 1)
4

It's clear that 1+ 2 + ... = (n+1)n/2. So the proposition is true for m=1.

P+ 4. 40 =

Suppose that
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>

1=1

has an explicit formula in terms offor all j <k (**), we aim to prove that
n

>

i=1

also has an explicit formula.

Starting from the property given, i.e.

n

Z[ik-l_l _ (E _ 1:]k+1] — nF.:-l—l

i=1

n . k+1 k: 1 _ .

S5 (4

i=1 =0\ J

LI ﬁc+1),.. F*(ﬁc+1), "
1 k41 i1kt
i — i — Y , Yl=n

St = (e e - ()

n i k: 1

0 G

i=1 j=0 \ J

k n k 1

S8 () =i

j=01i=1 J

k k 1 n

() -e

=0\ 1 Ja;

Since we know the formula for power sum of any power less kh@t), we can solve the
above equation and find out the formula for kit power directly.

Hence, by the principle of strong mathematical induction, this proposition is true.
Additional info for question 3

The method employed in question 3 to find out the general formula for pweris calledthe
method of difference as shown by that we consider the sum of all difference of adjderms.
Aside from the method above, which lead to a recursive solution fondjnithe general formula,
there're also other methods, such as that of using generatingruitefer to the last question in the
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generating function project page for detail.
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Problem set

Mathematical Proofs Problem Set
1.

For all
il
n—+a

T

\YARVERVIRVIRVIRY.

When a>b and c>d, atc>b+&ée alsdreplace it if you find a better one).

Therefore we have:

1 1 1 1 1
ceean —_ o —=

1 1 1 1 ) v
e . =

ATRT BT R VR e

L, L1 . Jn
...... e __

V12 V3 NG n

-+ T+ = + -
Vi V2 V3 VACR

92



3.Let us call the proposition

Ti —|— T —|— T —I— —|— T —2”
0 1 2) " N An)
be P(n)

Assume this is true for some n, then

P ) )
SRR NN R EYNGHES

Therefore P(n) implies P(n+1), and by simple substitution P(0) is true.
Therefore by the principal of mathematical induction, P(n) is true for all n.

Alternate solution
Notice that

(a4 by = (”) a4 (”) a4 (”)b“
0 1 ()

lettinga=b =1, we get

n_on_ (7 n n
asr=2=()+ () =+ 1)
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as required.

5.
1n mn
Let P':I:] =T +U pea polynomial with x as the variable, y and n as constants.
P(—y) = (—y)" +y"
= —y" 4+ y"(When n is an odd integer)
= 0

Therefore by factor theorem(link here please), (x-(-y))=(x+y)fector of P(x).

Since the other factor, which is also a polynomial, has integee fal all integer x,y and

n(I've skipped the part about making sure all coeifficients argexjer value for this moment),
it's now obivous that

In_l_yn

T+ Y isan integer for all integer value of x,y and n when n is odd.
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Infinity and infinite processes

Introduction

As soon as a child first learns about numbers, they become iateredtig ones, a million, a
billion, a trillion. They even make up their own, a zillion etc. Onehef first mathematical
guestions a child asks is "what is the largest number?” THisoften lead to a short
explanation that there are infinitely many numbers.

But there are many differebgpesof infinity - in fact, there are infinite types of infinitylhis
chapter will try to explain what some of these types mean and the diffetstesen them.

Infinite Sets
How big is infinity?

Infinity is unlike a normal number because, by definition, it isfmote. Dividing infinity by
any positive number (except infinity) gives us infinity. You caro atailtiply it by anything
except zero (or infinity) and it will not get bigger. So let/ed more carefully at the different
types of infinity.

There was once a mathematician called Georg Cantor who createew branch of
mathematics calledet theory in the late 19th century. Set theory involves collections of
numbers or objects. Here's a set:

{1,2,3,4,5}
Is it the same size as this one?
{6,7,8,9,10}

Cantor's notion of sets being "the same size" does not considérewtiee numbers are bigger,
but whether there are the same amount of objects in it. You céy sseshere that they are the
same size, because you can simply count the number of membemshisetaBut with an
infinite number of members you cannot, in a finite amount of time, cdutiteamembers of
one set to see if they are the same number of them as there are in another set.

In order to decide if two infinite sets have the same numbenashbers we need to think
carefully about what we do when we count. Think of a small child ghatuhsweets, between
her and her brother.

"One for you, and one for me, two for you and two for me"

and so on. She knows that they both get the same number of sweets béthaseay the
sharing out was done. Even if she runs out of numbers (like if she gaccamit up to ten) she
can still distribute the candy with the even process of "anetieifor you and another one for
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me".

We can use the same idea to compare infinite sets. If wentha fvay to pair up one member
of set A with one member of set B, and if there are no members @¢h8uva partner in B and
vice versa then we can say that set A and set B have the same number ofsmember

Example

Let Set N be all counting numbers. N is called the set ofralahumbers. 1,2,3,4,5,6, ... and so
to infinity. Let Set B be the negative numbers -1,-2,-3, ... and so emfioity. Can the
members of N and B be paired up? The formal way of saying thais A and B be put into a
one to one correspondance"?

Obviously the answer is yes. 1 in set N corresponds with -1 in B. Likewise:
N B

1 -1

2 -2

3 -3

and so on.

So useful is the set of counting numbers that any set that can batpu one to one
correspondence with it is said to cmuntably infinite

Let's look at some more examples. Is the set of integers couméhblie? Integers are set N,
set B and 0.

..-3,-2,-1,0,1,2,3, ...

Historically this set is usually called Z. Note that N teeaf natural numbers is a subset of Z.
All members of N are in Z, but not all members of Z are in N.

What we need to find out is if Z can be put into a one to one correspomevith N. Your first
answer, given that N is a subset of Z, may be no but you would bgMroset theory, the
order of the elements is unimportant. There is no reason why werearrainge the elements
into any order we please as long as we don't leave any astpresented above doesn't look
countable, but if we rewrite it as O, -1, 1, -2, 2, -3, 3 ..... and so on weeeatha it is
countable.

Z N
01
-1 2
13
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2 4

and so on. Strange indeed! A subset of Z (namely the natural nurnbsitble same number of
members as Z itself? Infinite sets are not like ordinaryefisets. In fact this is sometimes used
as a definition of an infinite seAn infinite set is any set which can be put into a one tone
correspondence with at least one of its subset®Rather than saying "The number of
members" of a set, people sometimes use the wardinality or cardinal value. Z and N are
said to have the same cardinality.

Exercises
1.Is the number of even numbers the same as the natural numbers?
2.What about the number of square numbers?

3.Is the cardinality of positive even numbers less than 100 equal toatdenality of natural
numbers less than 100? Which set is bigger? How do you know? In whatlwdiyste sets
differ from infinite ones?

4.Using the idea of one to one correspondance prove that infinity + 1 = infinity alvbat infinity
+ A where A is dinite set? What about infinity plus C where C is a countably infinite set?

Is the set of rational numbers bigger than N?

In this section we will look to see if we can find a set te@igger than the countable infinity
we have looked at so far. To illustrate the idea we can imagine a story.

There was once a criminal who went to prison. The prison was not glaice so the poor
criminal went to the prison master and pleaded to be let out. She replied:

"Oh all right - I'm thinking of a number, every day you can have a go asiggei$. If you get
it correct, you can leave."

Now the question is - can the criminal get himself out of jailir(K about if for a while before
you read on)

Obviously it depends on the number. If the prison master chooses d natakzer, then the

criminal guesses 1, to first day, 2,the second day and so on untddiesethe correct number.
Likewise for the integers 0 on the first day, -1 on the second day.Hedhitd day and so on.
If the number is very large then it may take a long time to get out of prison but ¢et wilk

What the prison master needs to do is choose a set that is not coumthid way. Think of a
number line. The integers are widely spaced out. There are plentyndfers inbetween the
integers 0&5 for example. So we need to looketsersets. The first set that springs to most
peoples mind are the fractions. There are an infinite number aifoina between 0 and 1 so
surely there are more fractions than integers? Is it podsildeunt fractions? Let's think about
that possibility for a while. If we try to use the approachafrting all the fractions between 0
& 1 thengoontol-2and so on we will come unstuck becuase weewdl finish counting
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the ones up to 1 ( there are an infinite number of them). But doemé#an that they are
uncountable ? Think of the situation with the integers. Ordering them ...-2, -1, 0, 1, 2, .s render
them impossible to count, brgorderingthem 0, -1, 1, -2, 2, ... allows them to be counted.

There is in fact a way of ordering fractions to allow thenb& counted. Before we go on to it
let's revert to the normal mathematical language. Matheiauagi use the termational number

to define what we have been calling fractions. A rational numbanysnumber that can be
written in the form p/q where p and q are integers. So 3/4 is ratama -1/2. The set of all
rational numbers is usally called Q. Note that Z is a subs& lbécuase any integer can be
divided by 1 to make it into a rational. E.g. the number 3 can be written in the form p/q as 3/1.

Now as all the numbers in Q are defined by two numbers p andakés sense to write Q out
in the form of a table.

1 1 1
1 2
2 2 2
1 2 3
i 3 3
1 2

Note that this table isn't an exact representation of Q. It onlthegsositive members of Q and
has a number of multiple entries.( e.g. 1/1 and 2/2 are the samerhWeshall call this set
Q'. Itis simple enough to see that if Q' is countable then so is Q.

So how do we go about counting Q'? If we try counting the firstthen the second and so on
we will fail because the rows are infinite in length. Likegvif we try to count columns. But
look at the diagonals. In one direction they are infinite ( e.g. 121,323, ...) but in the other

direction they are finite. So this set is countable. We count thamy ¢he finite diagonals, 1/1,

1/2, 2/1, 1/3, 2/2, 3/1....

Exercises

1.Adapt the method of counting the set Q' to show that thet Q iscalsttable. How will you
include 0 and the negative rationals? How will you solve the problemuitiple entries
representing the same number ?

2.Show thai®@ x 00 = CO (provided that the infinites are both countable)
Can we find any sets that are bigger than N?

So far we have looked at N, Z, and Q and found them all to be thessmmeven though N is
a subset of Z which is a subset of Q. You might be beginning to thenthdt it? Are all
infinities the same size?" In this section we will look asanthat isbiggerthan N. A set that
cannotbe put into a one to one correspondence with N no matter how it is arranged.

98



The set in question is R the real numbers. A real number is anyenam the number line that
is not in Q. Remember that the set Q contains all the numbersathdite written in the form
p/g with p and g rational. Most numbers can never be put in this foramfidgs of irrational

numbers includé€.e, and \/5

The set R is huge! Much bigger than Q. To get a feel for therdift sizes of these two infinite
sets consider the decimal expansions of a real number and a ratiori@@r. Rational numbers
always either terminate:

1/8 =0.125
or repeat:
1/9=0.1111111......

Imagine measuring an object such as a book. If you use a rulerigbtigat 10cm. If you take
a bit more care to and read the mm you might get 10.2cm. You'd therichgeeon to more
accurate measing devices such as vernier micrometers anthdingou get 10.235cm. Going
onto a travelling microscope you may find its 10.235823cm and so on. In gdreeddcimal
expansion of anyeal measurement will be a list of digits that look completely random.

Now imagine you measure a book and found it to be 10.101010101010cm. You'd be pretty
surprised wouldn't you? But this is exactly the sort of resultwould need to get if the book's
length were rational. Rational numbers are dense (you find theovellthe number line),
infinite, yet much much rarer than real numbers.

How we can prove that R is bigger than Q

It's good to get a feel for the size of infinities as in the previous seBlubio be really sure we
have to come up with some form of proof. In order to prove that R is biggerQ we use a
classic method. We assume that R is the same size as Qmadip with a contradiction. For
the sake of clarity we will restrict our proof to the real nurabi®tween 0 and 1.We will call
this set R' Clearly if we can prove that R' is bigger than Q then R must be biygy€) Hiso.

If R" was the same size as Q it would mean that it is cblet&his means that we would be
able to write out some form of list of all the members of RigTs what countable means, so
far we have managed to write out all our infinite sets in the tdram infinitely long list). Let's
consider this list.

R1
R>
Rs
R4
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Where R is the first number in our list, Rs the second, and so on. Note that we haven't said
what order the list is to be written. For this proof we don't teesdy what the order of the list
needs to be, only that the mermbers of R are listable (hence countable).

Now lets write out the decimal expansion of each of the numbers in the list.
0.rari2r13r4...
0.rar22r 2324, ..
0.131r32I330 44

0.141r 42r 43V 24. ..

Here £; means the first digit after the decimal point of the first nuntb#re list. So if our first
number happened to be 0.3692%;would be 3, > would be 6 and so on. Remember that this
list is meant to be complete. By that we mean that it conéss@ssymember of R'. What we are
going to do in order to prove that R is not countable is to construanaer that is not already
on the list. Since the list is supposed to conwwery member of R', this will cause a
contradiction and therfore show that R' is unlistable.

In order to construct this unlisted number we choose a decimal representation:

0.a&aszay...
Where a is the first digit after the point etc.

We let g take any value from 0 - 9 inclusiexceptthe digit £;. So if B3 = 3 then acan be 0O,
1,2,4,5,6,7, 8, or 9. Then we letkee any digit excepts# (the second digit of the second
number on the list). Thery e any digit excepgsand so on.

Now if this number, that we have just constructegte on the list somewhere then it would
have to be equal tosRnething Let's see what fmetingit might be equal to. It can't be equal to R
because it has a different first digit;(and a. Nor can it be equal to Roecause it has a
different second digit, and so on. In fact it can't be equahjonumber on the list becuse it
differs by at least one digit froadl of them.

We have done what we set out to do. We have constructed a numberlirihatbsit is not on
the "list of all members of R". This means that R is biggem @nay list. It is not listable. It is
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not countable. It is a bigger infinity than Q.

Are there even bigger infinities?

There are but they are difficult to describe. The set of allpthesible combinations of any
number of real numbers is a bigger infinity than R. However trigngnagine such a set is
mind boggling. Let's look instead at a set that looks like it should berlilggeR but turns out
not to be.

Remember R', which we defined earlier on as the set of all mendme the number line
between 0 and 1. Let us now consider the set of all numbers in thefpolemi®,0] to [1,1]. At
first sight it would seem obvious that there must be more points onhible plane than there
are in a line. But in transfinite mathematics the "obvious" isahesays true and proof is the
only way to go. Cantor spent three years trying to prove itimiidailed. His reason for failure
was the best possible. It's false.

F 3 11
(1,0 (L1

v

(0.1

Each point in this plane is specified by two numbers, the x coordanatehe y coordinate; x
and y both belong to R. Lets consider one point in the lingp8sa.... Can you think of a way

of using this one number to specify a point in the plane ? Likevaiseyou think of a way of

combining the two numbers x= @xX3Xs.... and y= 0.)y2yaya.... t0o specify a point on the line?
(think about it before you read on)

One way is to do it is to take
a=X
=%
&B =X
=Y
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This defines a one to one correspondence between the points in tharglathe points in the
line. (Actually, for the sharp amongst you, not quite one to one. Can yothspotoblem and
how to cure it?)

Exercises

1.Prove that the number of points in a cube is the same as the number of points on one of its sides.

Continuum hypothesis

We shall end the section on infinite sets by looking at the Continlyoothesis. This
hypothesis states that there are no infinities between the Inatunaers and the real numbers.
Cantor came up with a number system for transfinite numbersaliéel ¢the smallest infinity

Nawith the next biggest on N1and so on. It is easy to prove that the cardinality of Nos
(Write any smaller infinity out as a list. Either the listminates, in which case it's finite, or it

goes on forever, in which case it's the same size as N) but is the cardihtidyeals V17
To put it another way, the hypotheses states that:

There are no infinite sets larger than the set of natural nsmbioeismaller than the set of real
numbers.

The hypothesis is interesting because it has been proved tl&tntt possible to prove the
hypothesis true or false, using the normal axioms of set theory"

Further reading

If you want to learn more about set theory or infinite sets teyajrthe many interesting pages
on our sister projean:wikipedia

e ordinal numbers

* Aleph numbers

» Set theory

o Hilbert's Hotel

Limits Infinity got rid of

The theory of infinite sets seems weird to us in the 21st certhutyin Cantor's day it was
downright unpalatable for most mathematicians. In those daysd#aeaf infinity was too
troublesome, they tried to avoid it wherever possible.
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Unfortunately the mathematical topic calleshalysis was found to be highly useful in
mathematics, physics, engineering. It was far too useful @ fieelsimply drop yet analysis
relies on infinity or at least infinite processes. To get arotrsdpgroblem the idea of lamit
was invented.

Consider the series
1 1 11 1

1'2'3'4"  'n
This series is called the harmonic series.

Note that the terms of the series get smaller and snaallgou go further and further along the

series. What happens if we let n become infinite? The term would b¢>C me

But this doesn't make sense. (Mathematicians consider it sloglyide by infinity. Infinity is
not a normal number, you can't divide by it). A better way to think albgthe way you
probably already do think about it, if you've ever considered the mnadteo take this
approach: Infinity is very big, bigger than any number you care to thioktaSo let's leh

become bigger and bigger and see if dpproaches some fixed number. In this case gets
bigger and bigger h/gets smaller and smaller. So it is reasonable to say thanhthes O.

In mathematics we write this as

1
lim — =10
n—o0 ]I"E_

and it reads:
the limit of 1h asn approaches infinity is zero

Note that we are not dividing 1 by infinity and getting the an€wé&W¥e are letting the number
n get bigger and bigger and so the reciprocal gets closer and tdasxo. Those 18th Century
mathematicians loved this idea because it got rid of the pdskyofdividing by infinity At all
timesn remains finite. Of course, no matter how huags, 1h will not beexactlyequal to zero,
there is always a small difference. This difference (or error) idlysienoted by Tu (epsilon).

info -- infinitely small

When we talk about infinity, we think of it as something big. But tiedso the infinitely

small, denoted by Tu (epsilon). This animal is closer to zero #mnother number.
Mathematicians also use the character Ty to represent apyghiall. For example, the
famous Hungarian mathematician Paul Erdos used to refer to small childrefiaseps
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Examples
Lets look at the function

24

T2

What is the limit as x approaches infinity ?

This is where the idea of limits really come into its own. deglacingx with infinity gives us
very little:

00’ 4+ 0o .
00?2

But by using limits we can solve it

P4 r 1
lim _I; =14+ lim — =1
E—+ 00 I"— E— 0 I"

For our second example consider this limit as x approaches infinity- af

Again lets look at thevrong way to do it. Substituting’ = ©C into the expression gives
3 2
©C — GO | Note that you cannot say that these two infinities just cancetoogive the

answer zero.

Now lets look at doing it theorrectway, using limits

. 2 . a
lim 2° —2* = lim 2*(z — 1) = 00

L0 L0

The last expression is two functions multiplied together. Both dfettianctions approach
infinity as x approaches infinity, so the product is infinity also. This meansthiedimit does
not exist, i.e. there is no finite number that the function approachegess bigger and bigger.

One more just to get you really familer with how it works. Calculate:

sinr

lim

00 I

To make things very clear we shall rewrite it as
1

lim —(sinx)

r—oo 1

Now to calculate this limit we need to look at the propertiesirgi). Sin(x)is a function that
you should already be familiar with (or you soon will be) its valseillates between 1 and -1
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depending on x. This means that the absolute value of sin(x) (the igatréng the plus or
minus sign) is always less than or equal to 1:

2] <1

So we have 1/x which we already know goes to zero as x goefnioyimultiplied by sin(x)
which always remains finite no matter how big x gets. This gives us

1

lim —(sinr)=0

r—oo 1

Exercises

Evaluate the following limits;

! 3r2 —4
1700222 41

' r?—1
5 #00 273 | 3

COsT

lim .
3. I—im I\_

lim (22° — z*

M Sl ]

Y

Infinite series

Consider the infinite sum 1/1 + 1/2 + 1/4 + 1/8 + 1/16 + .... Do you thinkthisasum will
equal infinity once all the terms have been added ? Let's sum the firstriesv ter

Sg =
Sy = % +

Can you guess wh Seo is ?

T i L

4+ ol 4 =
e el =

—+ i

ool

1
1.5
1.75
1.825

Here is another way of looking at it. Imagine a point on a numtemtioving along as the sum
progresses. In the first term the point jumps to the position 1. Jiali way from 0 to 2. In

the second stage the point jumps to position 1.5 - half way from 1 tb €ach stage in the
process (shown in a different colour on the diagram) the distarizésthalved. The point can

105



get as close to the point 2 as you like. You just need to do the appropmaber of jumps, but
the point will never actually reach 2 in a finite number of steps.s@éy that in the limit as n
approaches infinity, Sapproaches 2.

Zeno's Paradox

The ancient Greeks had a big problem with summing infinite s&iésmous paradox from
the philosopher Zeno is as follows:

In the paradox of Achilles and the tortoise, we imagine the Gresk Achilles in a footrace
with the plodding reptile. Because he is so fast a runner, Aslgiteciously allows the tortoise
a head start of a hundred feet. If we suppose that each rat¢errstaring at some constant
speed (one very fast and one very slow), then after some fmee Achilles will have run a
hundred feet, bringing him to the tortoise's starting point.

During this time, the tortoise has "run" a (much shorter) distaageone foot. It will then take
Achilles some further period of time to run that distance, during whiclotteese will advance
farther; and then another period of time to reach this third pointewhé tortoise moves
ahead. Thus, whenever Achilles reaches somewhere the torteibedra he still has farther to
go. Therefore, Zeno says, swift Achilles can never overtake the tortoise.

0 1 | 2
Feedback

What do you think? Too easy or too hard? Too much information or not enough? How can we
improve? Please let us know by leaving a comment in the discisesiban. Better still, edit it
yourself and make it better.
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Exercises

Infinity and infinite processes

At the moment, the main focus is on authoring the main contg of each chapter.
Therefore this exercise solutions section may be out of date and appearalganised.

If you have a question please leave a comment in the "discims section” or contact the
author or any of the major contributors.

These solutions were not written by the author of the rest didbk. They are simply the
answers | thought were correct while doing the exercises. | theige answers are usefull
for someone and that people will correct my work if | made some mistakes

How big is infinity? exercises

1.The number of even numbers is the same as the number of natural silretause both are
countably infinite. You can clearly see the one to one correspondé&ngeans even numbers
and is not an official set like N)

w N Rz

E
2
4
6
8 4

2. The number of square numbers is also equal to the number of natural numbers. Théy are bot
countably infinite and can be put in one to one correspondence. (S maans sumbers and
is not an official set like N)

SN
11
4 2
9 3
16 4

3. The cardinality of even numbers less than 100 is not equal to theatiéydof natural
numbers less than 100. You can simply write out both of them and count thersuiitiEn
you will see that cardinality of even numbers less than 100 isd%h& cardinality of natural
numbers less than 100 is 99. Thus the set of natural numbers less thabifyg@r than the set
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of even numbers less than 100. The big difference between inftitérate sets thus is that a
finite set can not be put into one to one correspondence with ang sllisets. While an
infinite set can be put into one to one correspondence with at deasof it's subsets.
4. Each part of the sum is answered below

infinity + 1 = infinity

You can prove this by taking a set with a cardinality of 1ef@ample a set consisting only of
the number 0. You simply add this set in front of the countably infieitéosput the infinite set
and the inifinite+1 set into one to one correspondence.

N+1
0
1

w N Rk Z

2
4 3
infinity + A = infinity (where A is a finite set)

You simply add the finite set in front of the infinite set like ahaway the finite set doesn't
need to have a cardinality of one anymore.

infinity + C = infinity (where C is a countably infinite set)

You take one item of each set (infinity or C) in turns, this milke the new list also countably
infinite.

Is the set of rational numbers bigger than N? exeises

1. To change the matrix from Q' to Q the first step you ne¢ak®is to remove the multiple
entries for the same number. You can do this by leaving an emptg spahe table when
gcd(topnr,bottomnr¥ 1 because when the gcd isn't 1 the fraction can be simplified/ioyng
the top and bottom number by the gcd. This will leave you with the following table.

1 1 1
1 2
2 2
1 3
i 3
1 2

Now we only need to add zero to the matrix and we're finished. Saldve vertical row for
zero and only write the topmost element in it (0/1) (taking gcdsmlbevork here because
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gcd(0,a)=a) This leaves us with the following table where ave lto count all fractions in the
diagonal rows to see that Q is countably infinite.

i1 11

1 1 2 3
2 2
1 3
i 3
1 32

2. To show tha®0 X ©0 = ©O you have to make a table where you put one infinity in the
horizontal row and one infinity in the vertical row. Now you cantstaunting the number of
place in the table diagonally just like Q" was counted. This wioeksiuse a table of size AxB
contains A*B places.

Are there even bigger infinities? exercises

1.You have to use a method to map the coordinates in a plain onto a pointlioe trel the other
way around, like the one described in the text. This method shows ydortleatery number
on the line there is a place on the plain and for every place ondihetlptre is a place on the
line. Thus the number of points on the line and the plain are the samts Iafinity got rid of
exercises

o 3rt-—14 , 32 4 , 32 3

lim — = lim |: 5 — 5 1] = lim — = =

1372+ Fmee 2rt4x 2xf4x’ Fmee2rit4r 2
-1

lim —— =0
2 #0273 f 3

. COST ,
lim —— = lim —cosx =10
3, r—eoo - r—oo e
IlEEO(QIE —zt) = rlE}gcrz x (2 —1°) = —c0
Problem set

HSE PS Infinity and infinite processes
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Counting and Generating functions

Before we begin:This chapter assumes knowledge of

11. Ordered selection (permutation) and unordered selection (combinatiered inBasic
counting

12. Method of Partial Fractionsnd,

13. Competence in manipulatifBummation Signs

Some Counting Problems

..more to come

Generating functions

..some motivation to be written

Generating functions, otherwise known as Formal Power Seriesysafel for solving
problems like:

X1+ X+ X3=m

where

Tn 2 0:n=123

how many unique solutions are therenif 55?

Before we tackle that problem, let's consider the infinite polynomial:
S=1+x+X+xX+ .. +X"+x"" L

We want to obtain alosed fornof this infinite polynomial. Thelosed forms simply a way of
expressing the polynomial so that it involves only a finite number of operations.

S = 14+ 42242+ ..

xS = r4+ x4+t 4+
(1—2x)5 = 1

S - li.r

So the closed form of

1+X+X+XC+ ...
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1
l—1x

We can equate them (actually, we can't. Refer to info).

1—|—r—|—rg—|—r3—|—...= -1l <r <1

1l —r
info - Infinite sums

The two expressions are requal It's just that for certain values »f(-1 < x < 1), we can
approximate the right hand side closely as possibley adding up a large number of terms

on the left hand side. For example, supposel/2, RHS = 2; we approximate the LHS
using only 5 terms we get LHS equals 1 + 1/2 + 1/4 + 1/8 + 1/16 = 1.9375, which is close to
2, as you can imagine by adding more and more terms, we witlagslr and closer to 2.

For a more detailed discussion of the above, headitoty and infinite processes

Anyway we really only care about its nice algebraic progeniot its numerical value. From
now on we will omit the condition for equality to be true when wgitiout generating
functions.

Consider a more general case:
S=A+ABx+ABY + ABSC + ...
whereA andB are constants.

We can derive thelosed-formas follows:

S = A+ ABr 4+ AB?r* 4+ AB2° + ...
BzrS ABr + AB?x? 1+ AB3r® 1+ ..

(1-Br)S = A
g A

1-Ex
The following identity as derived above is worth investing time and effort msimgr

A

A4+ ABr + AB’2* 4+ ABx* + ... = ——
1—Br

Exercises

1. Find the closed-form:
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(@)1-z+Z-2+2 -2+ ...

(b)l+2Z+47 + 8+ 16" + 322 + ...

(Cz+Z+Z+7+2 + ...

(d)3-&+47- 42+ 4" - 47 + ...

(el-Z+2-2+2-7%+ ...

2. Given the closed-form, find a function f(n) for the coefficients"of x
1

(a)1 +z (Hint: note the plus sign in the denominator)

3

=

(b)1 — 22 (Hint: obtain the generating function for 1/(1 - z~2) first, thealtiply by the
appropriate expression)

2 -1
1+ 3=3 _— . .
(© (Hint: break into the sum of two distinct close forms)
Method of Substitution
We are given that:
1+z+72+...=11-2)

and we can obtain many other generating functions by substitution. &opk letting z = %
we have:

1+X+xX+...=1@1-%)

Similarly

A + ABx + A(Bx)? + ... = Al(1 - Bx)

is obtained by letting z = Bx then multiplying the whole expression by A.
Exercises

1. What are the coefficients of the powers of x:

1/(1 - 2¥)

2. What are the coefficients of the powers of x (Hint: take out a factor of 1/2):

1/(2 - X)
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Linear Recurrence Relations
The Fibonacci series
1,1,2, 3,5,8, 13, 21, 34, 55...

where each and every number, except the first two, is the sume oivd preceding numbers.
We say the numbers arelatedif the value a number takes depends on the values that come
before it in the sequence. The Fibonacci sequence is an exampteanfri@nce relation, it is
expressed as:

I, = ITn_1 + I,_5 forn=>2
Ip = 1
Ir = 1

where % is the (+ 1)th number in the sequence. Note that the first number in the segsgen
denoted ¥ Given this recurrence relation, the question we want to ask s Weafind a
formula for the K+1)th number in the sequence?". The answer is yes, but before waaome
that, let's look at some examples.

Example 1

The expressions

r, = 21,3 + 31,5 forn>=2
Ip = 1
Iy = 1

define a recurrence relation. The sequence is: 1, 1, 5, 13, 41, 121, 365..fdfindla for the
(n+1)th number in the sequence.

Solution Let G(z) be generating function of the sequence, meaning thécmgfof each
power (in ascending order) is the corresponding number in the sequ&smdhe generating
functions looks like this

G(2=1+z+57+ 13 + 41 + 1217 + ...

Now, by a series of algebraic manipulations, we can find theclmen of the generating
function and from that the formula for each coefficient

G(z) = xg+ ziz4+ 1327 + ;3 b agt boae® 4
2: x G(z) = Qrgz+ 21122 +
32 x G(z) = 3rgz 4
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G(z) —2:G(z) —32°G(z) = xg+ (11 —2x5)z  +
(ry9 — 221 — 3x9)2% +
(r3 — 229 — 321)2° +

by definition %, - 2%,-1- 3%,-2=0
(1-2z-32%) x G(z) = xg+ (11 — 2xp)z

l1—=z
Glz) = 122322
G(z) = 1=

by themethod of partial fractionwe get:

1 1 1 1

G(z)= < x — X

2 2  1-3z + 2 14:z
each part of the sum is in a recognisable closed-form. We can conclude that:

1 1

r,=—-x3"+=-x(=-1)"

=5 X34 x (-1
the reader can easily check the accuracy of the formula.
Example 2
Tn = ITny + Tpy — Ipa;forn>3
Ip = 1
Ir = 1
I = 1

Find a non-recurrent formula fop.x
Solution Let G(z) be the generating function of the sequence described above.

G(2) =Xo + XaZ + XoZ + ...

3} = Ty + (ry —xglz+(r— 13 _IIII:];’E
)
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G(2) = ===
— 1—=

Gl2) = g

Glz) = 1=

Therefore x =1, for all n.
Example 3

A linear recurrence relation is defined by:

I, = Tp-1 + 6r,o+1 forn=>2
g = 1
I = 1

Find the general formula forx

Solution Let G(z) be the generating function of the recurrence relation.
G@)(L-2-62) =xo + (X1 - X0)Z+ (X2 - X1 - BX))Z + ...
G@(1-z-6A)=1+Z+2+7+ ..
G(1-z-6A)=1+Z1+z+Z+..)

.2

G(z)(1—z—62%) = L+ 1

—

G-z =TT
G(z) = _ .;1-:)%1?&?1-3:)
G(z) = aul—wj + 15{112:) + lIII{l?—S:j
Therefore
Tp=—-+ (=2)" + i3n
15 ’ 10
Exercises

1. Derive the formula for then¢1)th numbers in the sequence defined by the linear recurrence
relations:
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r, = 2r,_1 — 1;forn=>1
Ip = 1

2. Derive the formula for thea¢1)th numbers in the sequence defined by the linear recurrence
relations:

3r, = —4r,.1 + Ty forn>=2
Ip = 1
Iy = 1

3. (Optional) Derive the formula for the{1)th Fibonacci numbers.

Further Counting

Consider the equation
a+b=n; a, b0 are integers

For a fixed positive integer n, how many solutions are there? alecaunt the number of
solutions:

O+n=n
1+(n-1)=n
2+(n-2)=n
n+0=n

As you can see there are (n + 1) solutions. Another way to solydhkem is to consider the
generating function

G(z)=1l+z+2+..+72
Let H(z) = G(2)G(2), i.e.
HZ) =(L+z+2+..+2)?

| claim that the coefficient of"zn H(z) is the number of solutionsto a + b =n, a, b > 0. The
reason why lies in the fact thahen multiplying like terms, indices add

Consider
AZ)=1+z+2+2+..

Let
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B(z) = A%(z)
it follows

B3(z):(1+z+%+z3+...)+z(1+z+%+z3+...)+Z(1+z+f+z3+...)+2(1+z+£+
Z)+ ...

B(z) =1+2z + 32+ ...
Now the coefficient of z(for n> 0) is clearly the number of solutions to a+ b =n (a, b > 0).

We are ready now to derive a very important resultylbetthe number solutionsto a + b =n
(a, b > 0). Then the generating function for the sequense t

T@)=(L+z+2+.. . +2+. )l+z+2+ ... +72+.)

A=op = 14224324427 4+ .+ (n+1)2" + ..

Counting Solutionstog+ &+ ... + g =n
Consider the number of solutions to the following equation:
atat..+tadr=n

where @>0;i=1, 2, ... m. By applying the method discussed previously. If tx is the number of
solutions to the above equation when n = k. The generating functigndor t

but what is ¢? Unless you have learnt calculus, it's hard to derive a forjustldy looking the
equation of T(z). Without assuming knowledge of calculus, we considésliving counting
problem.

"You have three sisters, and you have & @) lollies. You decide to give each of your sisters
at least one lolly. In how many ways can this be done?"

One way to solve the problem is to put all the lollies on the faldestraightline. Since there
aren lollies there aren(- 1) gaps between them (just as you have 5 fingers on each hand and 4
gaps between them). Now get 2 dividers, from tine {) gaps availableshoose2 and put a
divider in each of the gaps you have chosen! There you have it, youivaled then lollies
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(n — 1)

into three parts, one for each sister. There 2 ways to do it! If you have 4 sisters,
(n — 1) ( n— 1)

then there ar._ 3 ways to do it. If you have m sisters there AT — 1 ways to do

it.

Now consider: "You have three sisters, and you have n lollies. Youediecglve each of your
sisters some lollies (with no restriction as to how much you tgiveach sister). In how many
ways can this be done?"

Please note that you are just solving:
aqtata=n
where a>0;i=1, 2, 3.

You can solve the problem by putting n + 3 lollies on the table itragglstline. Get two
dividers andchoose2 gaps from the n + 2 gaps available. Now that you have divided n + 3
lollies into 3 parts, with each part having 1 or more lollies. Nake back 1 lollies from each

(n + 2)
part, and you have solved the problem! So the number of solutic 2 . More

generally, if you have m sisters and n lollies the number of ways to shardidseisol

n+m-—1 _ n+m-—1
m — 1 B n .

Now to the important result, as discussed above the number of solutions to
atat..+tadr=n

where @>0;i=1,2,3...mis

i.e.

1 = (m4+i—-1\ ;
(1—::3”1_;( i )“
Example 1

The closed form of a generating function T(z) is
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T(2) = ——

and t in the coefficient of zis T(z). Find an explicit formula fo.t

Solution
T = Lasoli+1)7
T = P im(f+ 1)

= T+ 1)
Therefore t = k
Example 2
Find the number of solutions to:
at+b+c+d=n
for all positive integers n (including zero) with the restriction a, b >c0,d

Solution By the formula
1 _ oo /m43Yy i
Tt = iz (73)2

SO

(n + 3)
the number of solutions 3

More Counting

We turn to a sligthly harder problem of the same kind. Suppose wie eoeint the number of
solutions to:

2a+3p+c=n

for some intege’® > D, with a, b, alsoc greater than or equal zero. We can write down the
closed form straight away, we note the coefficient"aif:
1

T4+ 22427 1+ 4254 (1 )=
A+’ + o+ )42+ ) (142427 + ) (1-22)(1-2)(1-1x)
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is the required solution. This is due to, again, the fact that whenpiyiunlg powers, indices
add.

To obtain the number of solutions, we break the expression into recognisaded-forms by
method of partial fraction.

Example 1

Let s be the number of solutions to the following equation:
2a+2b=n;a,bo0

Find the generating function fog, $hen find an explicit formula for, $n terms ofn.
Solution

Let T(z) be the generating functions pf t

T2)=(Q1+Z2+2+ ...+ + .Y

1

T(z)= ——
l‘( # {1 . 32::]2

It's not hard to see that
s, =0 if nis odd

Sp = (?1/2 * 1) = (?1,2 + 1) =n/2+ 11if nis even
n/2 1

Example 2

Let & be the number of solutions to the following equation:
a+2b=n;a,bo0

Find the generating function fqg, then find an explicit formula foy, in terms ofn.
Solution

Let T(z) be the generating functions pf t

T@)=AQ+z+2+.. +2+. )A+Z2+2+ .. +7"+.)
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1 » 1
(1—2)2 1+4:=

Az+ E C
T(z)=
() {1—zj2+1+z

A=-1/4,B=3/4,C=1/4

T(z) =

] & ., 3= A ;i
T(z)= == S (4 DA £ 25 (4 Dzt 4 = S (=1)2
4 i=0 4 1= 4 1=

13 1,
i = _z_lk—l_:_l(k_l_ 1)+ E(_lj

Exercises
1. Let
1
Tiz) = —
(2 (1+2)2

be the generating functions fer(k = 0, 1, 2 ...). Find an explicit formula fqrib terms ofk.
2. How many solutions are there the following equationsig a given constant
atb+2c=m

where a, b andz0

Problem Set

1. A new Company has borrowed $250,000 initial capital. The monthly inier&8%. The
company plans to repay $efore the end of each month. Interest is added to the debt on the
last day of the month (compounded monthly).

Let D, be the remaining debt aftemonths.

a) Define O recursively.

b) Find the minimum values af

c¢) Find out the general formula forD

d) Hence, determine how many months are need to repay the xlett 2,000.

2. A partion ofn is a sequence of positive integers (A1,A1,..,Ar) such that A1 > A2 > .. > Ar and
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Al + A2 + .. + Ar = n. For example, let n = 5, then (5), (4,1), (3,2), (3,1,1), (2,2,1), (2,1,1,1),
(1,1,1,1,1) are all the partions of 5. So we say the number of partions of 5 is 7. Derive a formula
for the number of partions of a genemal
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3. A binary tree is a tree where each node can have up to twanolés. The figure below is
an example of a binary tree.

Root node

Parent node of A

o’ N 7N
A AA

of A
AL AL A/
Bl Used nodes
An example of a binary tree [] Potential nodes

a) Let G be the number of unique arrangements of a binary tree with tatalbdes. Let C(z)
be a generating function of.c

(i) Define C(z) using recursion.

(i) Hence find the closed form of C(z).
T 2 3
b) et Flz) =V1+ar =py+p17+pox” + par . pe a power series.

(i) By considering the n-th derivative of P(x), find a formula far p
(ii) Using results from a) and b)(i) , or otherwise, derive a formula.for ¢

Hint: Instead of doing recursion of finding the changenimvben adding nodes at the buttom,
try to think in the opposite way, and direction.(And no, not deleting nodes)
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Project - Exponential generating function
This project assumes knowledge of differentiation.
(Optional)0.

(a)

(i) Differentiate log x by first principle.

(i*** Show that the remaining limit in last part that can® levaluated indeed converges.
Hence finish the differentiation by assigning this number as a constant.

(b) Hence differentiata”.
1. ConsideE(x) =€
(a) Find out the n-th derivative of E(x).

(b) By considering the value of threth derivative of EX) at x = 0, express K| in power
series/infinite polynomial form.

(Optional)2.

(a) Find out the condition for the geometric progression(that isrtheary generating function
introduced at the begining of this chapter) to converges. (Hint: Find out the partial sum)

(b) Hence show that E(x) in the last question converges foeallvalues of x. (Hint: For any
fixed X, the numerator of the general term is exponential, whildg¢heminator of the general
term is factorial. Then what?)

3. The function E(x) is the most fundamental and important exponentiaiatjagefunction, it
is similar to the ordinary generating function, but with some difiege most obviously having
a fractorial fraction attached to each term.

(a) Similar to ordinary generating function, each term of thgnawhial expansion of E(x) can

have number attached to it as coefficient. Now consider
2 3
r r

T
Alr)=a, + ﬂ-zﬁ + ﬂ-aﬁ + ﬂq:ﬁ + ...

Find A'(x) and compare it with A(x). What do you discover?

(b) Substitute nz, where n is a real number and z is a fresblggrinto E(x), i.e. E(nz). What
have you found?
2 3
T T T
Blz)="b + bz—l -|-'53—| + b-L_l + ..
4. Apart from A(x) defined in question 2, 1! 2! 3!
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(a) What is A(x) multiplied by B(x)? Compare this with ordyngenerating function, what is
the difference?

(b) What if we blindly multiply A(x) with x(or Xin general)? Will it shift coefficient like what
happened in ordinary generating function?

Notes: Question with *** are difficult questions, although you're not etqueto be able to
answer those, feel free to try your best.

Feedback

What do you think? Too easy or too hard? Too much information or not enough? How can we
improve? Please let us know by leaving a comment in the discisesiban. Better still, edit it
yourself and make it better.
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Exercises

Counting and Generating functions

At the moment, the main focus is on authoring the main contg of each chapter.
Therefore this exercise solutions section may be out of date and appearalganised.

If you have a question please leave a comment in the "discims section” or contact the
author or any of the major contributors.

These solutions were not written by the author of the rest dfdbk. They are simply the answers
| thought were correct while doing the exercises. | hope theseess are useful for someone and
that people will correct my work if | made some mistakes

Generating functions exercises
1.
(@S=1-z+Z-2+7 -2+ ...
72S=z-Z+2-7+7- ..
1+2s=1

1

14z

(b)S=1+2+47+8° + 16"+ 327 + ...

S —

27S=2+47+ 82 + 16 + 322 + ...
(1-29S=1
1
1 —2z
(C)S=z+Z+Z2++27+ ...
1S=Z+Z7+7'+2+ ...
1-2S5=z

g —

=

l—=
(A)S=3-&+4F-42 + 4 - 42 + ...

9 —

2S+1)=&-42+ 47 -4+ 42 - ...
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S+zS+1)=3

S+zS5+z=3

(1+2S=3-z
33—z

S —
1+ =

S

T -
S=1-Xx+¥-X+xX-X+ ...

f(n) = (- 1)

1-A)s=7

S=Z+7+7 +2 + ...

f(n)=1;for n > 2 and even

f(n) = O;for n is odd

2c only contains the exercise and not the answer for the moment
2 -1

)1 + 3z

Linear Recurrence Relations exercises

This section only contains the incomplete answers because | cdigidrétout where to go
from here.

1.
r, = 2r,_1 — 1l;forn>1
Ip = 1
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Let G(z) be the generating function of the sequence described above.
G(2) =Xo + XaZ + XoZ + ...

(1-2)G(2) =%+ (X2 - 2X0)Z + (X2 - 2)Z + ...
1-2G(2=1-z-Z-2-7'- ...

1-2G(2)=1-z21+z+7+..)

=

(1—-22)G(z)=1-—

1l —=z
1—2z
(1 —22)G(z) = T
1

Glz) =

(2) 1l—=z
X =1
2.
3r, = —4r,1 4+ 1,5 forn=>2
I = 1

I = 1

Let G(z) be the generating function of the sequence described above.
G(2) = Xo + XaZ + X2 + ...
B+4-2)G(2) = 30+ (A + 40)Z + (B + 41 - X0)Z + (B + & - X)Z + ...
(3+&-2)G(2) = 30 + (3 + 4X0)Z
B+%-A)G@=3+%

3+ 7z

Glz) = —z2 44243

3. Let G(z) be the generating function of the sequence described above.
G(2) = Xo + XaZ + XoZ + ...

(1-2-2)G(2) =X + (X1 - X0)Z+ (X2 - X1 - X0)Z + (X3 - X2 - X0)Z + ...
1-z-AG(@) =1
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1

Glz) = [ —2
—1

Glz)= ————

(2) 241

We want to factoriz€(z) =Z* +z- 1 into(z- a)(z- B) , by the converse of factor theorem, if (z -
p) is a factor of f(z), f(p)=0.

Hence a and B are the roots of the quadratic equation Z+z-1=0

Using the quadratic formula to find the roots:

VE—1 VB +1

A R

In fact, these two numbers are the faomus golden ratio and to mage $nple, we use the
greek symbols for golden ratio from now on.

V5 —1 vB+1
Notee 2 isdenotedpand 2 is denotedD
—1
(z —@)(z 4+ D)

G(z) =

By the method of partial fraction:
1 1
VBz+®)  VB(z—¢)
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Further Counting exercises

1. We know that

T&jz(l1?P:=§:(P+1)izzzji+1ﬁi
— =) =0 i

1=0
therefore
1 =0 -
T(z) = = 1)(=1)z
B =15 ;(H =1
Thus

Te= (- 1f(k+ 1)
2.a+b+c=m

1 — (i+2)
-5 ()

=0

Thus

(1)
(4

*Differentiate from first principle* exercises
1.

o 1 1
T = T T mye =

, 1(1—3}2—(1—[34—;%}}2
lim — =

r—ih (1—z—h)*1-z)?

! 122-2:41—=(z4+h)P+2(z4+h) -1 B
et R (1—z—h)2(1—z)? -

122 -2z 4+1—-22—h>—2zh+ 22 —I—Zh—l

ELHDH (1—z—h)2(1-2z)?
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y 1 —h?®—2:h+2h
Fobh(1— 2z — h)2(1— 2)2

1, —h—2:42
Roo (1— 2z — h)2(1— 2)2

—2z4+2 _

(1—z)*
—2

(1—z)*
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Discrete Probability

Introduction

Probability theory is one of the most widely applicable mathiealatheories. It deals with
uncertainty and teaches you how to manage it. It is simply oriee ghost useful theories you
will ever learn.

Please do not misunderstand. We are not learning to predict thitigs, wee learn to utilise
predictedchancesand make them useful. Therefore, we don't cabet is the probability it
will rain tomorrow?, but given the probability is 60% we can make deductions, the eakiest
which isthe probability it will not rain tomorrow is 40%

As suggested above,probability is a percentage and it's between 0% and 100% (inclusive).
Mathematicians like to expresgeobability as gproportioni.e. as a number between 0 and 1.

info - Why discrete?

Probability comes in two flavours, discrete and continuous. The continumes isa
considered to be far more difficult to understand, and much less intuhi&e discrete
probability and it requires knowledge of calculus. But we will touch dittla bit of the
continuous case later on in the chapter.

Event and Probability

Roughly, aneventis something we can assigrpebability to. For exampleéhe probability it
will rain tomorrow is 0.6 in here the event i$ will rain tomorrow the assigned probability is
0.6. We can write

P(it will rain tomorrow) = 0.6

as mathematicians like to do we can use abstract letteeptesent events. In this case we
chooseA to represent the evemtwill rain tomorrow, so the above expression can be written as

P(A) = 0.6

Another examplea fair die will turn up 1, 2, 3, 4, 5 or 6 equally probably each time it is tossed
Let B be the event that it turns up 1 in the next toss, we write

P(B) = 1/6
Misconception

Please note that the probability 1/6 does mean that it will turns up 1 in at most six tries.
Its precise meaning will be discussed later on in the chappeigtRy, it just means that on
the long run (i.e. the die being tossed a large number of timegrdpertion of 1's will be
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very close to 1/6.

Impossible and Certain events

Two types of events are special. One type are the impessibhts (e.g., the sum of digits of a
two-digit number is greater than 18); the other type are netdanappen (e.g., a roll of a die
will turn up 1, 2, 3, 4, 5 or 6). The probability of an impossible event while that of a
certain event is 1. We write

P(Impossible event) =0
P(Certain event) = 1

The above reinforces a very important principle concerning proball#gmely, the range of
probability is between 0 and 1. You camever have a probability of 2.5! So remember the
following

0< P(E)<1
for all events E.

Complement of an event

A most useful concept is ttdmplementof an event. We us'E to represent theventthat
the die will NOT turn up 1 in the next tosSenerally, putting a bar over a variable (that
represents an event) means the opposite of that event. In the above case of a die:

P(B)=5/6

it meanghe die will turn up 2, 3, 4, 5 or 6 in the next toss has probabilityP#&ase note that
P(E)=1-P(E)

for any event E.

Combining independent probabilities

It is interesting howndependenprobabilities can be combined to yield probabilities for more
complex events. | stress the wandependenhere, because the following demonstrations will
not work without that requirement. The exact meaning of the woldbeidiscussed a little
later on in the chapter, and we will show whglependencés important in Exercise 10 of this
section.

Adding probabilities

Probabilities are added together whenever an event can occur iplentitays.” As this is a
rather loose concept, the following example may be helpful. Considiegralsingle die; if we
want to calculate the probability for, say, rolling an odd number, wst mmdd up the
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probabilities for all the "ways" in which this can happen -- roliind, 3, or 5. Consequently,
we come to the following calculation:

P(rolling an odd number) = P(rolling a 1) + P(rolling a 3) + H(rgla 5) = 1/6 + 1/6 + 1/6 =
3/6 = 1/2 = 50%

Note that the addition of probabilities is often associated withustee of the word "or" --
whenever we say that some event E is equivalent to any of these{eY,or Z occurring, we
use addition to combine their probabilities.

A general rule of thumb is that the probability of an event and the probability adritplement
must add up to 1. This makes sense, since we intuitively believeetkats, when well-
defined, must either happen or not happen.

Multiplying probabilities

Probabilities are multiplied together whenever an event occursliliipta "stages” or "steps.”
For example, consider rolling a single die twice; the probabidlityolling a 6 both times is
calculated by multiplying the probabilities for the individual steps involved.timdly, the first
step is simply the first roll, and the second step is the secohdTtwrefore, the final
probability for rolling a 6 twice is as follows:

1 1

- X
P(rolling a 6 twice) = P(rolling a 6 the first tin X P(rolling a 6 the second time) 6 6=
1/36 == 2.8%

Similarly, note that the multiplication of probabilities is oftassociated with the use of the
word "and" -- whenever we say that some event E is equivalafitof the events X, Yand Z
occurring, we use multiplication to combine their probabilities.

Also, it is important to recognize that the product of multiple prohigsiimust be less than or
equal to each of the individual probabilities, since probabilitiesesticted to the range 0
through 1. This agrees with our intuitive notion that relatively comelents are usually less
likely to occur.

Combining addition and multiplication

It is often necessary to use both of these operations simultaneOusly again, consider one
die being rolled twice in succession. In contrast with the previcsss, @& will now consider
the event of rolling two numbers that add up to 3. In this case, therelearly two steps
involved, and therefore multiplication will be used, but there are algdbpte ways in which
the event under consideration can occur, meaning addition must be involvedl. abhe die
could turn up 1 on the first roll and 2 on the second roll, or 2 on theriidst @n the second.
This leads to the following calculation:

P(rolling a sum of 3) = P(1 on 1st rc %X P(2 on 2nd roll) + P(2 on 1st rc % P(1 on 2nd roll)
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1 1 1 1
=6 6+6 6=1/18~55%

This is only a simple example, and the addition and multiplicationaifgtilities can be used
to calculate much more complex probabilities.

Exercises

Let A represent the number that turns up in a (fair) die rolC ketpresent the number that turns
up in a separate (fair) die roll, and Betepresent a card randomly picked out of a deck:

1. A die is rolled. What is the probability of rolling a 3 i.e. calculate P(A = 3)?

2. A die is rolled. What is the probability of rolling a 2,08,5 i.e. calculate P(A = 2) + P(A =
3) +P(A=5)?

3. What is the probability of choosing a card of the suit Diamo#ada™ie is rolled and a card
is randomly picked from a deck of cards. What is the probabilitplbhg a 4and picking the
Ace of spades, i.e. calculate P(A = 4)xP(B = Ace of spades).

5. Two dice are rolled. What is the probability of getting a 1 followed by a 3?

6. Two dice are rolled. What is the probability of getting a 1 and a 3, regardles®isf or
7. Calculate the probability of rolling two numbers that add up to 7.

8. (Optional) Show the probability @f is equal tA is 1/6.

9. What is the probability th& is greater thaA?

10. Gareth was told that in his class 50% of the pupils play football pd@¢«ideo games and
30% study mathematics. So if he was to choose a student from abe rendomly, he
calculated the probability that the student plays football, videegamstudies mathematics is
50% + 30% + 30% = 1/2 + 3/10 + 3/10 = 11/10. But all probabilities shouldtivedr® 0 and
1. What mistake did Gareth make?

Solutions
P(A=3)=1/6
PA=2)+P(A=3)+P(A=5)=1/6+1/6 +1/6 =1/2
P(B = Ace of Diamonds) + ... + P(B = King of Diamonds) = 13 x 1/52 = 1/4

P(A=1)x P(A=3)=1/36

1.

2.

3.

4. P(A =4) x P(B = Ace of Spades) = 1/6 x 1/52 = 1/312

S.

6. P(A=1)x P(A=3)+P(A=3)x P(A=1)=1/36 + 1/36 = 1/18
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7. Here are the possible combinations: 1 + 6 =2 + 5 = 3 + 4 = 7aliliobof getting each of
the combinations are 1/18 as in Q6. There are 3 such combinations,@okhbility is 3 x
1/18 = 1/6.

9. Since both dice are fair, C > Ais just as likely as C < A. So
P(C>A)=P(C<A)

and

P(C>A)+P(C<A)+P(A=C)=1

But

P(A=C)=1/6

so P(C > A) = 5/12.

10. For example, some of those 50% who play football may also stugmmtics. So we can
not simply add them.

Random Variables

A random experimensuch ashrowing a dieor tossing a coinis a process that produces some
uncertain outcome. We also require that a random experiments capdated easily. In this
section we shall start using a capital letter to reprebenbutcome of a random experiment.
For example, leD be the outcome of a die rab, could take the value 1, 2, 3, 4, 5 or 6, but it is
uncertain. We saP is arandom variable Suppose now | throw a die, and it turns up 5, we say
theobserved valuef D is 5.

A random variable is simply the outcome of a certain random emesti It is usually denoted
by a CAPITAL letter, but its observed value is not. For example let

D;,Da,...Dn

denote the outcome aofdie throws, then we usually use
dy,dy,...0n

to denoted the observed values of each;st D

From here on, random variable may be abbreviated as simply rv f@aom@bbreviation in
other probability literatures).

The Bernoulli
This section is optional and it assumes knowledge of binomial expansion.

A Bernoulli experiment is basically a "coin-toss". If we toss a comill expect to get a head
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or a tail equally probably. A Bernoulli experiment is slightly more vdestitan that, in that the
two possible outcomes need not have the same probability.

In a Bernoulli experiment you will either get a

successdenoted by 1, with proabilify (wherep is a number between 0 and 1)
ora

failure, denoted by 0, with probaility 1p-:

If the random variabldB is the outcome of a Bernoulli experiment, and the probability of
getting a 1 ig, we sayB comes from @ernoulli distributionwith success probability and
we write:

E ~ Ber(p)

For example, if

C ~ Ber(0.65)

then

P(C=1)=0.65

and
P(C=0)=1-0.65=0.35
Binomial Distribution

Suppose we want to repeat the Bernoulli experinterttmes, then we get a binomial
distribution. For example:

C; ~ Ber(p)

fori=1, 2, ..., n. That is, there anevariables &, C,, ... , G and they all come from the same
Bernoulli distribution. We consider:

B=C,+C,+ ... +C,

, thenB is simply the rv that counts the number of successagnals (experiments). Such a
variables is called a binomial variable, and we write

B ~ B(n,p)
Example 1

Aditya, Gareth, and John are equally able. Their probability of g£d®0 in an exam follows

137



a Bernoulli distribution with success probability 0.9. What is the probability of
i) One of them getting 100?

i) Two of them getting 1007

iii) All 3 getting 100?

iv) None getting 100?

Solution

We are dealing with a binomial variable, which we will &lAnd

B ~ Bin(3,0.9)

i) We want to calculate

P(B=1)

The probability of any of them getting 100 (success) and the btlteigetting below 100
(failure) is

0.9x0.1x0.1=0.009

but there are 3 possible candidates for getting 100 so
P(B=1)=3x0.009 =0.027
i) We want to calculate
P(B=2)
The probability is
0.9 x 09 x0.1=0.081
3

but there arc (2) combinations of candidates for getting 100, so
3
F(E=2)= (2) »x 0.081 = 0.243

iii) To calculate
P(BE=3)=09%x09x09=0.729
iv) The probability of "None getting 100" is getting O success, so
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P(E=0)=0.1x0.1x0.1=0.001

The above example strongly hints at the fact the binomial distibugi connected with the
binomial expansion. The following result regarding the binomial distribuisoprovided

without proof, the reader is encouraged to check its correctness.
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If
B ~ Bin(n,p)
then

T

P(B=k)= (k

)p‘;(l —p)*F

This is thekth term of the binomial expansion @f € g)", whereq =1 -p.

Exercises...

Distribution

Events

In the previous sections, we have slightly abused the use of theewemmtd An event should be
thought of as a collection of random outcomes of a certain rv.

Let us introduce some notations first. ledandB be two events, we define

ANnE

to be the event ok and B We also define

AUB

to be the event ok or B. As demonstrated in exercise 10 above,
P(AUB) # P(A) + P(B)
in general.

Let's see some examples. lfebe the event of getting a number less than or equal to 4 when
tossing a die, and |& be the event of getting an odd number. Now

PA) = 2/3
and
PB) =1/2

but the probability oA or Bdoes not equal to the sum of the probabilities, as below
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+

P(AUB)# P(A) + P(B) = g

B | =
| b2

as 7/6 is greater than 1.

It is not difficult to see that the event of throwing a 1 or Bi¢tuded in bothA andB. So if we
simply add PA) and PB), some events' probabilities are being added twice!

The Venn diagram below should clarify the situation a little more,

ANB

think of the blue square as the probabilityBoand the yellow square as the probabilityAof
These two probabilities overlap, and where they do is the probabfliy and B So the
probability of A or Bshould be:

P(AuB)= P(A)+ P(B) - P(ANnB)
The above formula is called tlmple Inclusion Exclusion Formula

If for eventsA andB, we have
P(ANB) =0

we sayA andB aredisjoint. The word mean® separateIf two events are disjoint we have
the following Venn diagram representing them:
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info -- Venn Diagram

Traditionally, Venn Diagrams are used to illustrate sets getafhi A set being simply a collection
of things, e.g. {1, 2, 3} is a set consisting of 1, 2 and 3. Note that Vegradia are usually drawn
round. It is generally very difficult to draw Venn diagrams farenthan 3 intersecting sets. E.g.
below is a Venn diagram showing four intersecting sets:

Expectation

The expectation of a random variable can be roughly thought of &nthérm average of the
outcome of a certain repeatable random experiment. By long tenmrage it is meant that if we
perform the underlying experiment many times and average thenoegc For example, |&

be as above, the observed valueB ¢1i,2 ... or 6) are equally likely to occur. So if you were to
toss the die a large number of times, you would expect each of theersita turn up roughly
an equal number of times. So the expectation is

1424+34+4454+6
o =

. We denote the expection Bfby ED), so

3.9

E(D) =3.5
We should now properly define the expectation.

Consider a random variabl® and suppose the possible values it can take arg r, ... , k.
We define the expectation to be

E(R)=riP(R=ry) +roP(R=rp) + ... +r,P(R=ry)

Think about it: Taking into account the expectation is the long term average aucomes.
Can you explain why is i) defined the way it is?

Example 1 In a fair coin toss, let 1 represent tossing a head and 0. &hailsame coin is
tossed 8 times. L&t be a random variable representing the number of heads in 8 td#isat?
is the expectation df, i.e. calculate Kf)?
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Solution 1...

Solution 2....

Areas as probability

The uniform distributions. ... ........ ...

Order Statistics

Estimate the x in U[O, x]. ...

Addition of the Uniform distribution
Adding U[0,1]'s and introduce the CLT. ....

to be continued ...

Feedback

What do you think? Too easy or too hard? Too much information or not enough? How can we
improve? Please let us know by leaving a comment in the discisesiban. Better still, edit it
yourself and make it better.
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Financial Options
Binary tree option pricing

Introduction

We have all heard of at least one stock exchange. NASDAQ, bBaes,JFTSE and Hang
Sheng. Less well-known, but more useful to many people, are the éxcinanges. A stock
exchange allows stock brokers to trade company stocks, while the éuttiranges allow more
exotic derivatives to be traded. For example, financial options, whialsd the focus of this
chapter.

An option is a contract that gives the holder the choice to buy l{paseertain good in some
time in the future for a certain price. What are options for?allyit they are used to protect
against risk. But they are also used to take advantage foresemadwrtunities, like what
Thales has dore

Thales, the great Greek philosopher, was credited with thedastded use of an option in the
western world. A popular anecdote suggests, in one particular yelr still in winter, he
forecasted a great harvest of olives in the coming year. Hen&&dto no money, so he
purchased the option for the use of all the olive presses in hisNawurally, when the time to
harvest came everyone wanted to use the presses he had optiordidsNEesay he made a
lot of money out of it.

Basics

An option is a contract of choice. You can choose whether to exercise the option or not.
If you own an option that states

You may purchase 1 kg of sugar from Shop A tomorrow for $2

suppose tomorrow the market price of sugar is $3, you would wanetoige the option i.e.
buy the sugar for $2. Then you would sell it for $3 on the market and $iakethe process.
But if the market price for 1 kg of sugar is $1, then you would choosdo exercise the
option, because it's cheaper on the market.

Let us be a little bit more formal about what an option is. Itiquéar there are two types of
option:

Call Option

A call option is a contract that gives the owner the optiobupan ‘underlying stock' at the
'strike price’, on the 'expiry date'.

Put Option
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A put option is a contract that gives the owner the optiosetban 'underlying stock' at the
'strike price’, on the 'expiry date'.

In the above example, the 'underlying stock' was sugar andrike fgice' $2 and 'expiry date'
IS tomorrow.

We shall represent an option like below
{C or P, $amount, # periods to expiry}

. For example

{C,$3,1}

represents a call option with strike price for some unspecifiedrlymly stock expiring in one
time-unit's time. A time-unit here may be a year, a month, op@dane hour. The important
point is the mathematics we will present later does not rdalhend on what this time-unit is.
Also, we need not specify the underlying stock either. Another example

{P,$100,2}

represents a put option with strike price $100 for some unspecified undestgck expiring in
2 time-units' time.

Now that we have a basic idea of what an option is, we cantstanagine a market place
where options are traded. We assume that sachrketexists. Also we assume that there is no
fee of any kind to participate in a trade. Such a market is caftedtianlessmarket. Of course,

a market place where the underlying stock is traded is also assumed.to exist

Info -- American or European

Actually there are two major types of options: American arogean. An European option
allows you to exercise the opti@mly on the ‘expiry date'; while the American version allows
you to exercise the option at any time prior to the 'expitg'd@&/e shall only discuss European
options in this chapter.

Arbitrage

Another very important conceptasbitrage In short, an arbitrage is a way to make money out
of nothing. We assume that there isfree-lunchin this world, in other words our market is
arbitrage-free. We will show an example of how to perform an arbitrage lateittom chapter.

The real meat of this chapter is the technique used to priceptians. In simple terms, we
have an option, how much should it be? From this angle, we will se¢htharbitrage-free

requirement is a very strong one, in that it basically distateat the price of the option should
be.
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Option's value on expiry

Pricing the option is about how much is it wonibw. Of course the present value of an option
depends on its possible future values. Therefore it is vital to uaddrebw much the option is
worth at expiry, when it is time to choose whether to exetbseption or not. For example,
consider the option

{C,$2,1}

it is the call (buy) option that expires in 1 week's time (or day ar gewhatever time period it
is suppose to be). How much should the option be if the market price of the underlyingnstock
expiry is $3? What if the market price is $17?

It is sensible to say the option has a value of $1 if the maricet (for the underlying stock) is
$3, and the option should be worthless ($0) if the market price is $1.

Why do we say it isensibleto price the option as above? It is because we assume the market is
arbitrage-free. Also in a market, we assume

there is a bank that's willing to lend you money
if you repay the bank in the same day you borrowed, no fee will be charged.

With those assumptions, we show that if you price the option anyatiffg, someone can
make money without using any of his/her own money. For example, supp@seioy) the
market price for the underlying stock is $3 and you decide toheebtion for $0.7 (not $1 as
is sensible). An intelligent buyer would do the following:

Action Money Balance
Borrow $2.7 +$2.7 $2.7
Purchase your option for $0.7 -$0.7 $2
Purchase sugar for $2 with option -$2 $0
Sell 1kg of sugar for $3 in market +$3 $3
Repay bank $2.7 -$2.7 $0.3

He/she made $0.3 and at no time did he/she use his/her own money (nee Inaeer less than
zero)! This is dree lunch which is contrary to the assumption of a arbitrage-free market!

Exercises

1. In anarbitrage-freemarket, consdier an option T = {C,$100,1}.

i) How much should the option be on expiry if the price of the underlying stock is $90.
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i) What if the underlying stock costs $110 on expiry.
iii} $1007?
2. Consdier an option T = {C,$10,1}.

i) On expiry, would you consider buying the option if it was fot &&l $2 if the underlying
stock costs $8?

i) What if the underlying stock costs $7.

3. Consider theut option T = {P,$2,1}. On expiry the underlying stock costs $1. Jenny owns
T, she decides on the following actions

Borrow $1

Purchase the underlying stock from the market for $1

Exercise the option i.e. sell the stock for $2

Repay $1

Did she do the right thing?

4. In anarbitrage-freemarket, consider thgut option T = {P,$2,1}.

i) On expiry, how much should the option cost if the underlying stock costs $1?
ii) $3?

5. Consider theout option T = {P,$2,1}. On expiry the underlying stock costs $1. And the
option T is on sale for $0.5. Jenny immediately sees an arbitrageioppotDetail the actions
she should take to capitalise on the arbitrage oppoturnity. (Hint: atarthe Action, Money,
Balance table )

Pricing an option

Consider this hypothetical situation where a company, MassiveSaft,negatiation to merge
with another company, Pears. The share price of MassiveSoéintyrstands at $7. If the
negotiation is successful, the share price will rise to $11; otbervwill fall to $5. Experts
predict the probability of a success is 90%. Consider a call ofi@driets you buy 1000 shares
of MassiveSoft at $8 when the negotiation is finalised. How much should the option be?

Since the market is arbitrage-free, the value of the optionpatyeis already determined. Of
course

if the negotiation is successful, the option is valued at (11 - 8) x 1000 = $3000

otherwise, the option should be worthless ($0)
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the above are the ontprrectvalues of the option at expiry or people can "rip you off".
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Let x be the price of the option at present, we can use the followaggaains to illustrate the
situation,

/| $3000

$r

N, | B0

the diagram shows that the current price of the option should,ten@ if the negotiation is
successful, it will be worth $3000, otherwise it is worthless. Irilainfashion, the following
diagram shows the value of the company stock now, and in the future

/| %11

§7

N | $5

You may have notice that we didn't put down the probability of sucrdssure. Interestingly
(and counter-intuitively), they don't matter! Again, the arbitriige- principle dictates that
what we have in the two diagrams above are sufficient for us to price the option!

How?

What is the option? It is the contract that gives you the optiboya.. Wait, wait, wait. Think
of it from another angle

it is a tradable object that is worth $2000 if the negotiation is successful, and $0 if otherwise

This is the main idea behind how to price the option. The option must lsaiie price as
anotherobjectthat goes up to $2000 or down to $0 depending on the success of the negotiation.
Hopefully, this object is something we know the price of. This ideaalled constructing a
replicating portfolia

A portfolio is a collection of tradablthings We want to construct a portfolio that behaves in
the same way as the option. It turns out that we can construstfaipdhat behaves in the
way as the option by using only two things. They are

12. MassiveSoft shares
13. andmoney

let's assume thahoneyis tradable in the sense that you can buy a dollar with a dollar. This
concept may seem very unintuitive at first. However let's ptbaeith the mathematics,
suppose this porfolio consists pfunits of MassiveSoft shares amdinits of money. If the
negotiation is successful, then each share will be worth $9, andhtble mortolio should be
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worth $2000, as it behaves in the same way as the option, so we have the following
11y + z = 3000

but if the negotiation is unsuccessful then the portfolio is wortli&sand MassiveSoft share
prices will fall to $5, giving

wy+z=10

we can easily solve the above simultaneous equations. We get
6y = 3000

and so

y =500 andz =— $2500

So this portolio consists of 500 MassiveSoft shares and -$2500. But wBab@)? This can
be understood as abligationto pay back some money (e.g. from borrowings) on the expiry
date of the option. So the porfolio we constructed can be thought of as

500 MassiveSoft shares and an obligation to pay $2500

Now, 500 MassiveSoft shares costs $7 x 500 = 3500, so the option should be 8860 a
2500 = $1000.

Let's price a few more options.

The famous mathematicain, John Nash, as portrayed in the movie "Afldeautd"”, did some
pioneering work in portfolio theory with equivalent functions.

Call-Put parity
...more to come

Reference

A Brief History of Options

Feedback

What do you think? Too easy or too hard? Too much information or not enough? How can we
improve? Please let us know by leaving a comment in the discisesiban. Better still, edit it
yourself and make it better.
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Matrices

Introduction

A matrix may be more popularly known as a giant computer siroaldbiut in mathematics it
is a totally different thing. To be more precise, a matriburgl matrices) is an array of
numbers. For example, below is a typical way to write a mattibh numbers arranged in rows
and column and with round brackets around the numbers

1 5 10 20
1 -3 -5 9
3 -1 -1 -1
3 2 4 =5

The above matrix has 4 rows and 4 columns, so we call it a 4 xyd4jatrix. Also, we can
have matrices of many different shapes. $hapeof a matrix is the name for the dimensions
of matrix (m by n, wherem is the number of rows andthe number of columns). Here are
some more examples of matrices

This is an example of a 3 x 3 matrix:

~3 e
[ T R ]
[ I e T

This is an example of a 5 x 4 matrix:

a b ¢ d
h g f e
i 5 k 1
p o n m
g r s 1t

This is an example of a 1 x 6 matrix:
(1 2 3 4 5 6)

The theory of matrices is intimately connected with that of (lingarultaneous equations. The
ancient Chinese had established a systematic way to solveasigauts equations. The theory
of simultaneous equations is furthered in the east by the Japangsmaiician, Seki and a

little later by Leibniz, Newton's greatest rival. LateauSs (1777 - 1855), one of the three
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pillars of modern mathematics popularised the use of Gaussianation, which is a simple
step by step algorithm for solving any number of linear simultaneous equatjotierBthe use
of matrices to represent simultaneous equation neatly on papelis(assed above) has
become quite comméh

Consider the simultaneous equations:
Xx+y=10
X-y=4

it has the solutiox = 7 andy = 3, and the usual way to solve it is to add the two equations
together to eliminate the Matrix theory offers us another way to solve the above simultaneous
equations via matrirultiplication (covered below). We will study the widely accepted way to
multiply two matrices together. In theory withatrix multiplicationwe can solve any number

of simultaneous equations, but we shall mainly restrict our attetatidrx 2 matrices. But even
with that restriction, we have opened up doors to topics simultaneouoagueould never
offer us. Two such examples are

9. using matrices to solve linear recurrence relations which caisdzeto model population
growth, and
10. encrypting messages wtih matrices.

We shall commence our study by learning some of the more fundalmentepts of matrices.
Once we have a firm grasp of the basics, we shall move on to stadyal meat of this
chapter, matrix multiplication.

Elements

An element of a matrix is a particular number inside the maind it is uniquely located with
a pair of numbers. E.qg. let the following matrix be denoted, by symbolically:

1 2 3
A=14 5
8

6
7 9

the (2,2)th entry oA is 5; the (1,1)th entry A is 1, the (3,3) entry oA is 9 and the (3,2)th
entry ofAis 8. The [, j)th entry of A is usually denoteal; and the(, j)th entry of a matrix8
is usually denoted bly;; and so on.

Summary

* A matrix is an array of numbers

« A mxn matrix hasm rows ancdh columns
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Theshapeof a matrix is determined by its number of rows and columns
The {,j)th element of a matrix is locatedith row andth column

Matrix addition & Multiplication by a scalar

Matrices can be added together. But only the matrices of thesdsmpecan be added. This is
very natural. E.g.

1 23
A=14 56
7T 89
2 9 8
B=1|0 -1 8
4 6 7
then
1 2 3 2 9 8 142 2+9 3+38
A+ B=1|4 5 6)+[0 -1 8]=1[4+0 54+(-1) 648
7 89 4 6 7 T+4 846 947
3 11 11
=14 4 14
11 14 16

Similarly matrices can be multiplied by a number, we call ibhenber ascalar, this is to
distinguish it from a matrix. The reader need not worry about the definitien jost remember
that ascalaris just a number.

1 2 3 o 10 13
SA=A4+ A+ A+ A4+ A=5(4 5 6] =120 25 30
789 39 40 45

in this case the scalar value is 5. In general, when we>dé , wheres is a scalar ané a
matrix, we multiply each entry & bys.

Matrix Multiplication

The widely accepted way to multiply two matrices together fnitiely non-intuitive. As
mentioned above, multiplication can help with solving simultaneous equai@svill now
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give a brief outline of how this can be done. Firstly, any systéninear simultaneous
equations can be written as a matrix of coefficients multipbigda matrix of unknowns
equaling a matrix of results. This description may sound a dittheplicated, but in symbolic
form it is quite clear. The previous statement simply says t@akindb are matrices, thefix
=D, can be used to represent some system of simultaneous equatiobsaiitifel thing about
matrix multiplications is that some matrices can have plidétive inverses, that is we can
multiply both sides of the equation W' to getx = A'h, which effectively solves the
simultaneous equations.

The reader will surely come to understand matrix multiplicato@tter as this chapter
progresses. For now we should consider the simplest case of maltiplication, multiplying
vectors We will see a few examples and then we will explain process of multipficat

2 .
Ayy = (9) , Biuo= [\3 5)

then

leg * Agxl = (3 5) b (2) ({3 Pt 2‘] + |[ * 9‘]) ( 1)

9
Similarly if:
1
Ajyi=1[2] , Bixa=(4 5 6
3
then

—

Biyax Asyi=(4 5 6) x | 2] =((4x1)+(5%x2)+ (6x3)) =(32)

o

A matrix with just one row is called w vector similarly a matrix with just one column is
called acolumn vectarWhen we multiply a row vectdk, with a column vectoB, we multiply

the element in the first column &f by the element in the first row & and add to that the
product of the second column Afand second row d@ and so on. More generally we multiply

ai by b1 (wherei ranges from 1 to n, the number of rows/columns) and sum up all of the
products. Symbolically:

A X By = (Z ;X bi,l}

1=1 (for information on th(zsign, se&summation_Sigh
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wheren is the number of rows/columns.

In words: the product of a column vector and a row vector is the stime product of item 1,
from the row vector angdl from the column vector wherdas from 1 to the width/height of

these vectors.

Note: The product of matrices is also a matrix. The product of avemtor and column vector
is a 1 by 1 matrix, not a scalar.

Exercises

Multiply:

o ()

(6+6b 3—b) (g)

(0 abo) (g)

Multiplication of non-vector matrices

Suppose‘qu“B“ xp = GmXP whereA, B andC are matrices. We multiply théh row of A
with the jth column ofB as if they are vector-matrices. The resulting number isith)éh (

element ofC. Symbolically:

n
Cig =D g X bi,
k=1

Example 1
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EvaluateAB = C andBA'= D, where

3 2
=5 0)

and

()

Solution
C11 = (3
€19 = (3
Coq = (5
Cyp = (5
ie.

o~ (2
dig = (2
dip= (2
dy1 = (8
dyr = (8

= (2x34+6x5)=236

— (2X24+6x6)=40

— (8Xx3+7x5)=59

— (8X2+7x6)=58
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i.e.

36 40
b= (59 53)

Example 2EvaluateAB andBA where

5 17
1= 7)

Solution

G )G
(% )G 7)o

Example 3EvaluateAB andBA where

2 6
- %)
5 —6
5o 3)

Solution

(656 )= %)
0 )6 - %)

Example 4 Evaluate the following multiplication:

(e

= = = =
e
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Solution

Note that:

()

is a 2 by 1 matrix and

is a 1 by 2 matrix. So the multiplication makes sense and the product should be a 2 by.2 matrix

() o= (5 5)

Example 5Evaluate the following multiplication:

(2)6 9

Solution

(e 9-(x3 -G )

Example 6 Evaluate the following multiplication:

(26 )
a0 8) G 0)= (5 2

Example 7Evaluate the following multiplication:
a b\ [z
c d}\y
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(a. b) (r) B (a.r + by)
Solution \° 4] \y cr + dy

Note Multiplication of matrices is generally not commutative, i.e. genefdl# BA.
Diagonal matrices

A diagonal matrix is a matrix with zero entries everywheteept possibly down the diagonal.
Multiplying diagonal matrices is really convenient, as you neey anmultiply the diagonal
entries together.

Examples

The following are all diagonal matrices
EOEOGE (e
0 6/\0 d/\0 2/\0 0O 00
(a. D) (e D) (h l]) _ (a.eh, 0 )
Example 1 0 6/\0 f/J\O i 0 bfi
6 8@ DE - 7)
Example 2 0 b b/\0 &) \0 P

The above examples show thabifs a diagonal matrix theB* is very easy to compute, all we
need to do is to take the diagonal entries tdthgower. This will be an extremely useful fact
later on, when we learn how to compute titie Fibonacci number using matrices.

i1
0
0

= 2

Exercises
1. State the dimensions Gf

a) C= Anxpoxm
O 10° 20 1 2 3 4
~ \5000 O 2 5 6 6
b)
2. Evaluate. Please note that in matrix multiplicati®B)C = A(BC) i.e. the order in which you

do the multiplications does not matter (proved later).

a)
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3. Performing the following multiplications:

=96 Y)
7= ) )

What do you notice?
The Identity & multiplication laws

[ G

The exercise above showed us that the matrix:

(o 7)

is a very special. It is called the 2 by 2 identity matrir. iBentity matrix is asquarematrix,
whose diagonal entries are 1's and all other entries are Zseoid@&ntity matrix,|, has the
following very special properties

10. AxI=A
11. IxA=A4

for all matricesA. We don't usually specify thehapeof the identity because it's obvious from
the context, and in this chapter we will only deal with the 2 ligehtity matrix. In the real
number system, the number 1 satisfies: r x 1 =r = 1 x rssde#r that the identity matrix is
analogous to "1".

Associativity, distributivity and (non)-commutativity

Matrix multiplication is a great deal different to the npligation we know from multiplying
real numbers. So it is comforting to know that many of the lawsehlenumbers satisfy also
carries over to the matrix world. But with obig exception, in gener@B # BA

Let A, B, andC be matricesAssociativitymeans
(AB)C =A(BC)

i.e. the order in which you multiply the matrices is unimportant, becduesfinal result you get
is the same regardless of the order which you do the multiplications.

On the other handlistributivity means

AB +C) =AB+AC
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and
(A+B)C=AC+BC

Note: The commutative property of the real numbers (i.e. ab = ba),radwesarry over to the
matrix world.

Convince yourself

For all 2 by 2 matrice8, B andC. And| the identity matrix.
1. Convince yourself that in the 2 by 2 case:
AB+C)=AB+AC

and

(A+B)C=AC+BC

2. Convince yourself that in the 2 by 2 case:

A(BC) = (AB)C

3. Convince yourself that:

AB + BA

in general. When doesB = BA? Name at least one case.

Note that all of the above are true for all matrices (of any dimension/shape)

Determinant and Inverses

We shall consider the simultaneous equations:
ax+by=a (1)

cx+dy=p(2)

wherea, b, ¢, d, a and B are constants. We want to determine the necessary conditions for (1)
and (2) to have aniquesolution forx andy. We proceed:

Let (1) = (1) xc
Let (2") = (2) xa
le.
acx+bcy=ca (1"
acx+ady=ap (2"
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Now
let (3) = (2) - (1)
(ad-boy=ap - ca (3)

Now y can be uniquely determined if and onlyafd(- bc) # 0. So the necessary condition for

(1) and (2) to have a unique solution depends on all four of the coet$i@éx andy. We call

this number &d - bc) thedeterminantbecause it tells us whether there is a unique solutions to
two simultaneous equations of 2 variables. In summary

if (ad - bc) = 0 then there iBO uniquesolution
if (ad - bc) # 0 then there is auniquesolution.

Note: Unique we can not emphasise this word enough. If the determinant isizdozsn't
necessarily mean that there is no solution to the simultaneous equations! Consider:

X+y=2
X+ 7hy=14

the above set of equations has determinant zero, but there is obvisosiyian, namelx =y
= 1. In fact there are infiinitely many solutions! On the other hand consider also:

Xx+y=1
X+y=2

this set of equations has determinant zero, and there is no soluéibnSa if determinant is
zero then there is either no solution or infinitely many solutions.

Determinant of a matrix

We define the determinant of a 2 x 2 matrix

=)

to be
det(A4) = ad — bc

Inverses

It is perhaps, at this stage, not very clear what's the useeoflet(A). But it's intimately
connected with the idea of an inverse. Consider in the real numbemsgstumbeb, it has
(multiplicative) inverse 1, i.e.b(1/b) = (1b)b = 1. We know that b/ does not exist wheln =
0.

163



In the world of matrices, a matr&k may or may not have an inverse depending on the value of
the determinant det(A)! How is this so? Let's suppdgknown) does have an inverBe(i.e.
AB=1 =BA). So we aim to findB. Let's suppose further that

4= (2 3)
5= (5 )

we need to solve four simultaneous equations to get the valwex,of andz in terms ofa, b,
¢, d and detd).

aw+by=1

cw+dy=0

ax+bz=0

cx+dz=1

the reader can try to solve the above by him/hersek required answer is

1 d -—b
b= etn{A}(—c a-)

In here we assumed thathas an inverse, but this doesn't make sense #)det(Q, as we can
not divide by zero. S (the inverse of) exists if and only if de#) # 0.

Summary

If AB=BA = I, then we saB is the inverse ofA. We denote the inverse é&f by A*. The
inverse of a 2 x 2 matrix

=)

L1 (d b
A _det(Aj(—c a-)

provided the determinant & det@) is zero.
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Solving simultaneous equations
Suppose we are to solve:

ax+hby=a

cx+dy=9

We let

=)

we can translate it into matrix form

(¢ 4)()- ()

i.e
Aw=vy

If A's determinant is not zero, then we can pre-multiply both sidég fhe inverse o)

A Aw = Aly
Iw = Ay
w = Aly

i.e.

()= 7))

which implies thak andy are unique.
Examples

Find the inverse oA, if it exists
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1 5
=5 5)

a)

10 2
A (27)

a b
C)AZ (3{1 Bb)

3 5
d)A: (5 3)
Solutions

. 1 {3 =5
P35 7)
2) —7\-2 1
1

: 7T =2
e-al )
b) 66\ —2 10

c) No solution, as det(A) =3ab -3ab =0

1 (3 =5
-1
S=T; (—5 3)

Exercises

d)

1. Find the determinant of

2 3
E 3
A=
3 3
3 3

. Using the determinant of A, decide whether there's a uniqugosoto the
following simultaneous equations

Pyt
37+ 3y =0
2. Suppose
C=AB
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show that

det(C) = det@®)detB)

for the 2 x 2 case. Note: it's true for all cases.
3. Show that if you swap the rows Afto getA', then de#) = -det@')
4. Using the result of 2

a) Prove that if:

A=P 'BP

then detd) = det®)

b) Prove that if:

A<=0

for some positive integds; then detd) = 0.

5. a) ComputeA®, i.e. multiplyA by itself 5 times, where

a=(59)

b) Find the inverse d? where

=4 7))

c) Verify that

(10
A=P (D 2);:

d) ComputeA® by using part (b) and (c).
f) ComputeA®™
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Other Sections
Exercises

Matrices

At the moment, the main focus is on authoring the main contgé of each chapter.
Therefore this exercise solutions section may be out of date and appearalganised.

If you have a question please leave a comment in the "disci@s section” or contact the

author or any of the major contributors.

Matrix Multiplication exercises

(1 2)@) = ((1x1)+(2x2) = (5)

() 2=(x0550)=067)

(1/8 9) (m) = ((1/8 x 16) + (9 x 2)) = (20)

2

(a b)(‘j) — ((axd)+(Bxe) = (axdtbxe)

(6 +6b 3—b) (g) = (((6+6b) x 0) 4+ ((3—b) x 0)) = (0)

(0 abe) (g) — ((0 x @) + (abe x 0)) = (0)

Multiplication of non-vector matrices exercises
1.

a)n X m
b) 2 X 4
2.
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()60
p-(o 9 5)-(3)

The important thing to notice here is that the 2x2 matrix renthmsame when multiplied
with the other matrix. The matrix with only 1s on the diagonal anel€isvhere is known as
theidentity matrix, calledl, and any matrix multiplied on either side of it stays the sarhat
isAxI=1IxA
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NB:The remaining exercises in this section are leftovers fromique exercises in the
'Multiplication of non-vector matrices' section

3.
1 2 3 1 0 0 1 2 3
C=14 56 01 0)=14 56
7 89 0 0 1 789
1 00 1 2 3 1 2 3
D=10 10 4 53 6)=14 56
0 0 1 7 89 8 9

The important thing to notice here is that the 1 to 9 matrix resrthie same when multiplied
with the other matrix. The matrix with only 1s on the diagonal andl€isvhere is known as
theidentity matrix, calledl, and any matrix multiplied on either side of it stays the sarhat
isAxI=IxA

4. a)

1 —2\/3 2\ [(1x3)+(-2x1) A1x2)+(=2x1)\ (1 0
~1 3 )\1 1) " \(m1x3)+(B3x1) (-1x2)+@Bx1)) \o 1
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a b\/f1 O (@x1)4+(bx0) (ax0)+(bx1)\ [a b
o \¢ d/\o 1 (ex D)+ (dxD) (ex0)+(dx1)) \ec d

10 (1xa)+(0xb) (0xa)+(1xb) [(a b
0 1 (1xe)+(0xd) (0xec)+(1xd)) \c d

= (D6 (4 F)-
(24 F)-
(2 )

e) As an example | will first calculate’A

A2 — 3 2 1 0 1 =-2\/3 2 1 0 1 =2\
S\l 1 0 2 -1 3 1 1 0 2 -1 3 )

3 2 0 1 0 1 0 1 =2\

1 1 0 2 -1 3 )

—
=
2
=

A T

= Cad
I 2
M e e
- = =

[
‘\-.____...:"’\-.____,_./

I

A
=g

L
—

= L
]
— e
e i N
= = l:ll—l:J
e =
/,,-l—\-.,“\\,‘__‘_—#,i"
|'_5/..-l—-..“\
= I
—t
—
I
WI}O |
— wm
I “‘T“’

A T
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G )-
(2 0)

Now lets do the same simplifications | have done above with A
o (3 2\t o (1 =2 _
1 1 0 2 -1 3
3 2 1% 0 1 =2\
1 1 o 2° -1 3 /)
3 2 1 0 1 =2\
1 1 0 32 -1 3 )
3 64 1 =2\
1 32 -1 3 /)

( 2) (o zwﬂ)( L3

0 1 -2
( 1) (u 126?6.30600228229401496?032053?’6) (—1 3)=

L

1267650600228229401496703205376 3

—t

2.33.33012004.364.38802993406410'?.32)( —2) B

—2535301200456458802993406410751 7605903601369376408980219232254
—1267650600228229401496703205373 3802951800684688204490109616122
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Determinant and Inverses exercises

1.
.
det{Ajzgxg—gxgzlJ
The simultaneous equation will be translated into the following
% % T 0
305 (y) - (U)
3 3

Because we already know that

22
E 3
det( ) =0
38
2 2

We can say that there is no unique solution to these simultaneous equations.

2. First calculate the value when you multiply the determinants

det( (3 z) )det( (; i)‘] _

(ad- bo)(eh-fg) =
adeh- bceh- adfg + bcfg

Now let's calculate C by doing the matrix multiplication first

06
det((a-eerQ ﬂ-f+bh),] _

ce +dg cf +dh )/’

(ae+ bg)(cf + dh) - (af + bh)(ce+dg) =
aecf+ bgcf+ aedh+ bgdh- afce- bgce- afdg- bhdg=
bgcf+ aedh- bgce- afdg

icestr

Which is equal to the value we calculated when we multiplied the determinants, thus
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det(C) = det(A)det(B)
for the 2A-2 case.

4= (2 2)

detd) =ad- bc

; c d
= (9)
det(A’) =cb-da
- det@A) =- (bc-ad) =ad-bc
Thus det(A) = -det(A) is true.
4. a)
A=P'BP
detd) = detP “Y)detB)detP) =
detP "YdetP)det®) =
det® "'P)det®) =
det()det@®) =
det@B) as det(l) = 1.

thus det(A) = det(B) b) iA“ = 0 for some k it means that d&lf{ = 0. But we can write del)
= det@)¥, thus detf)* = 0. This means that déi(= 0.

5.a)
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|
L o

)
ol

f“‘_“‘-\/“l‘_‘l“-\/"—‘*\
[ % Il ¢

—61 186
~31 o4
b)

1(3
—l__
d _1(1

—o 13
-3 10

—13 42
-7 22

)

—1
—1

)z
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f1° 0
—1 .
P ( g 25);: _
+f1 0
—1 .
P (l] 32) P =
3 2 1 0 1 =2\
1 1 0 32 -1 3 /)
3 64 1 =2\
1 32 -1 3 /)
—61 186
—31 W
We see that P and it's inverse disappear when you raise titve tmahe fifth power. Thus you
can see that we can calculatév&ry easily because you only have to raise the diagonal matrix

to the n-th power. Raising diagonal matrices to a certain poweryseasy because you only
have to raise the numbers on the diagonal to that power.

f) We use the method derived in the exercise above.

100 _
A =

I:_P_l (I:J[ g)leﬂﬂ —

)
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3 2101\ /1 2\
1 2100 -1 3/
3_2101 3)‘(21“’—6
1_21[”] 3:){2100_2
Problem set

Matrices Problem Set

At the moment, the main focus is on authoring the main contg of each chapter.
Therefore this exercise solutions section may be out of date and appearatganised.

If you have a question please leave a comment in the "disci@s section” or contact the
author or any of the major contributors.

1.

2 3\(?7 7 7 7\ _ (28 94 70 102

3 5/\? 77 7)) \44 153 112 163

2 3\7/2 3\/? 7 7 7\ (2 3\ (28 94 70 102
35/ \35)\7777)7\35) \44 153 112 163
7777\ (2 3\ /28 94 70 102

777 7)7\35) \44 153 112 163

B 1 5 —3\(28 94 70 102
2x5-3x3\-3 2 /\4#4 153 112 163

_((5x284(=3) x44) (5x 944 (=3)x 153) (5x 70+ (—3) x 112) (5 x 1024 (—3) x 163)
T\(-3)x2B+2x44) ((—=3)x94+2x153) ((=3)xT0+2x112) ((—3) x 10242 x 163)

(8 11 14 21
S \4 24 14 20

Therefore the message is "iloveyou"

2.

Combine the two matrices together, we have
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Therefore the inverse & is

(2 )
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Further Modular Arithmetic

In this chapter we assume the reader can find inverses and be abtdvéoassystem of
congruences (Chinese Remainder Theorem) B@@es and Modular Arithmetjc

Introduction

Mathematics is the queen of the sciences and number theory is theofjusathematics:-
Carl Friedrich Gaus$777 - 1855

In the Primes and Modular Arithmetisection, we discussed the elementary properties of a
prime and its connection to modular arithmetic. Our attention has bmethe most part,
restricted to arithmetic maal wherep is prime. But this need not be.

In this chapter, we will start by discussing some more eltang results in arithmetic modulo
p, and then we will move on to discuss those results moauleherem is composite. In
particular, we will take a closer look at the Chinese Remaifildeorem, and how it allows us
to break arithmetic modulon into components From that point of view, the CRT is an
extremely powerful tool that can help us unlock the many secfet®dulo arithmetic (with
relative ease).

Lastly, we will introduce the idea of aambelian groupthrough multiplication in modular
arithmetic and discuss the discrete log problem which underpins ote ahost important
cryptographic systems known today.

Wilson's Theorem

Wilson's theorem is a simple result that leads to a number efegting observations in
elementary number theory. It states thap,ig prime then

1:2-3---(p—1)=p—1 (mod p)

We know the inverse qf - 1 isp - 1, so each other number can be paired up by its inverse and
eliminated For example, lgb = 7, we consider

1x2x. . xB=Q2x4)x(3x5)x1x6=6

What we have done is that we paired up numbers that are inversashaftber, then we are
left with numbers whose inverse is itself. It this case, they are 1 and 6.

But there is a technical difficulty. For a general prime numtéhow do we know that 1 arm

- 1 are the only numbers in m@dwhich when squared give 1? Fornot a prime, there are
more than 2 solutions t& =1 (modm), for example, lem = 15, then x = 1, 14, 4, 11 are
solutions to =1 (modm).

We can not say Wilson's theorem is true, unless we show thatctre@nly be (at most) two
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solutions to X =1 (modp) whenp is prime. We shall overcome this final hurdle by a simple
proof by contradictiorargument. You may want to skip the following proof and come up with
your own justification of why Wilson's theorem is true.

Let p be a prime, and>&1 (modp). We aim to prove that there can only be 2 solutions,
namely x =1, -1

-1 =0
(r—1)x+1) =0

it obvious from the above that= 1, -1 Ep - 1) are solutions. Suppose there is another solution,
x =d, andd not equal to 1 or -1. Singeis prime, we knowd - 1 must have an inverse. We
substitutex with d and multiply both sides by the inverse, i.e.

(d—1)(d+1) =0
d+1 =0
d — -1

but we our initial assumption was thh# -1. This is a contradiction. Therefore there can only
be 2 solutions to3&1 (modp).

Fermat's little Theorem

There is a remarkable little theorem named after Fertmaprince of amateur mathematicians.
It states that ip is prime and givea # 0 then

e =1 (mod p)

This theorem hinges on the fact tpas prime. It won't work otherwise. How so? Recall that if
p is prime thera # 0 has an inverse. So for amyndc we must have

ab=ac (mod p) fb=c (mod p)

if and only i
A simple consequence of the above is that the following numbers must all be diffedgmt m
a 2a, 344, .., pla

and there arp - 1 of these numbers! Therefore the above list is just the numbers p,-2] in
a different order. Let's see an example, fakes, anda = 2:

1,2,3,4
multiply each of the above by 2 in mod 5, we get
2,4,1,3
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They are just the original numbers in a different order.

So for anyp and using Wilson's Theorem (recall: 1 x 2 x ... x (p-1)),

, we get

a-2a---(p—1la = 1-2---(p—1)
= -1

on the other hand we also get

a-2a---(p—1a = a'(1-2---(p—1)
= —at

Equating the two results, we get
_a_p_l = —1

which is essentially Fermat's little theorem.

Modular Arithmetic with a general m

*Chinese Remainder Theorem revisited*

This section is rather theoretical, and is aimed at justifimegarithmetic we will cover in the
next section. Therefore it is not necessary to fully understanchdkberial here, and the reader
may safely choose to skip the material below.

Recall the Chinese Remainder Theorem (CRT) we covered MdHalar Arithmeticsection.
In states that the following congruences

r=5b (modny)
r=c (modn;)
have a solution if and only if gaai(n,) divides p - ¢).

This deceptively simple theorem holds the key to arithmetic madulioot prime)! We shall
consider the case whamehas only two prime factors, and then the general case shall follow.

Supposem = p'd!, wherep andq are distinct primes, then every natural number beto(@, 1,
2, ..., m - 1) correspondsniquelyto a system of congruence mgcand mody. This is due to
the fact that gcqi{,d/) = 1, so it divides all numbers.

Consider a number, it corresponds to
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n=r, [(mod pij

n=vy, (modqg’ )

for some x and y. If r # n thenr corresponds to

r=r, (mod pij

r=y, (mod g’ )

Now sincer andn are different, we must have eithe# x, and/ory; # y,

2
For example tak?it = 12 =27 X 3 then we can construct the following table showing the
Xn, Yn for eachn (0, 1, 2 ... 11)

n n(mod2) n (mod 3)

© o0 N oo o~ w N P, O

[EEN
o

11

w N B O W N B O W N +» O
N P O N PP O N B O N O

Note that as predicted each number correspamtdguely to two different systems of
congruences mod 2and mod 3.
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Exercises

1. Considem = 45 = 3 A- 5. Complete the table below and verify that any two numbest m
differ in at least one place in the second and third column

n n(mod3) n (mod 5)
0 0 0

1 1 1

2 2 2

44 2 2

2. Supposen =p'd, n corresponds to
n=r, (mod pij

n=vy, (mod qj:]

andr corresponds to

r=r, (mod pij

r=y, (mod g’

Is it true that

n+r=r,+ 1 (mod pij
n+r=y.+y, (mod )
and that

nr = r,r, [(mod pij

nr = yay, (mod ¢’)
Arithmetic with CRT

Exercise 2 above gave the biggest indication yet as to how tfiec&iRhelp with arithmetic
modulom. It is not essential for the reader to fully understand the adotres stage. We will
proceed to describe how CRT can help with arithmetic moaulm simple terms, the CRT
helps to break a modulm-calculation into smaller calculations modulo prime factons.ofVe
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will see what we mean very soon.

2
As always, let's consider a simple example first. it = 63 =3" X Tand we see than
has two distinct prime factors. We should demonstrate multiplicafi@i and 13 modulo 63
in two ways. Firstly, the standard way

2l x 13 — 663
— 10x 63433
= 33 (mod 63)
Alternatively, we notice that
51=6 (mod 9)
and
51=2 (mod 7)
We can represent the two expressions above as a two-tuple (6,apuskethe notation a little
by writing 51 = (6,2). Similarly, we write 13 = (4,6). When we do iplitation with two-
tuples, we multipl)component-wisd.e. @,b) A- (c,d) = (ac,bd),
5l x13 — (6,2)x(4,6)
(24,12)
— (2x946,74+5)
(

6,5)

Now let's solve
r=6 (mod?9)
and

.

r=95 (mod?7)

we write x = 6 + 8, which is the first congruence equation, and then

64+9a = 5 (mod?7)
2a i
a = 3
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therefore we hava = 3 + b, substitute back to get
r=6493+7b) =334 63b =33 (mod 63)
which is the same answer we got from multiplying 51 and 13 (mod 63) the standard way!

Let's summarise what we did. By representing the two numbem@n(b13) as two two-tuples
and multiplying component-wisewe ended up with another two-tuple. And this two-tuple
corresponds to the product of the two numbers (mpda the Chinese Remainder Theorem.

3
We will do two more examples. LTl = 88 =27 X 11 and lets multiply 66 and 40 in two
ways. Firstly, the standard way

66 x 40 — 2640

— 30 x 38

= 0 (mod 88)
and now the second way, 40 = (0,7) and 66 = (4,0) and
66 x40 — (0,7)x (4,0)

— (0,0

= 0 (mod 88)

For the second example, we notice that there is no need to stop twqudistinct prime
2
factors. We let = 975 = 3 X 57 X 13 and multiply 900 and 647 (mod 975),

900 x 647 — 582300
= 225 (mod 975)

For the other way, we note that 98@ (mod 3) = 0 (mod 25) = 3 (mod 13), and for 647 =2
(mod 3)= 22 (mod 25) = 10 (mod 13),

900 x 647 — (0,0,3) % (2,22,10)
= (0,0,30)
= (0,0,4)

now if we solve the following congruences

r=0 (mod3)
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r=0 (mod 25)
r=4 (mod 13)
then we will getx = 225!

Why? If anything, breaking modular arithmeticnminto smaller components seems to be quite
a bit of work. Take the example of multiplications, firstly, ve=d to express each number as a
n-tuple f is the number of distinct prime factors mj, multiply component-wise and then
solve the resultamt congruences. Surely, it must be more complicated than just mulgphyén
two numbers and then reduce the result modul8o why bother studying it at all?

By breaking a numbem into prime factors, we have gained insight into how the aritltmeti
really works. More importantly, many problems in modutacan be difficult to solve, but
when broken into components it suddenly becomes quite easy, e.g. WilsoorentHer a
generaim (discussed below).

Exercises
1. Show that addition can also be done component-wise.

2. Multiply component-wise 32 and 84 (mod 134).

Euler totient

To discuss the more general form of Wilson's Theorem and Feroitie Theorem in moan
(not prime), it's nice to know a simple result from the famoushemaétician Euler. More
specifically, we want to discuss a function, called the Euleéertofunction (or Euler Phi),
denotedp.

The ¢ functions does a very simple thing. For any natural numbé{m) gives the number of

n <m, such that gcaym) = 1. In other words, it calculates how many numbers in mbéve

an inverse. We will discuss the valuegofm) for simple cases first and then derive the formula
for a generai from the basic results.

For example, lem = 5, thenp (m) = 4. As 5 is prime, all non-zero natural numbers below 5
(1,2,3 and 4) are coprimes to it. So there are 4 numbers in mod 5 thatverges. In fact, if
mis prime therd (m) =m- 1.

We can generalise the aboverto= p' wherep is prime. In this case, we try to employ a
counting argument to calculape(m). Note that there ang natural numbers belom (0, 1, 2 ...
p'- 1), and sa (m) =p" - (number ofh < m such that gcaym) # 1). We did that because it is
easier to count the numbermfs without an inverse mad.

An elementp, in modm does not have an inverse if and only if it shares a common fadtor wi
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m. But all factors ofm (not equal to 1) are a multiple pf So how many multiples gf are
there in modn? We can list them, they are

U,}J,Q}J‘, T _!pr — P
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.
where the last element can be written g8 ¢ 1)p, and so there ar?  multiples of p.

Therefore we can conclude
- -1

qt”lrpl"::l — p]" _p]"

We now have all the machinery necessary to derive the formgléngffor anym.

By the Fundamental Theorem of Arithmetic, any natural numbean be uniquely expressed
as the product of primes, that is

kg Es k-
M =p"Py” " Pr

where pfori=1, 2 ..r are distinct primes arid are positive integers. For example 1225275 =
3A-5°A-17A-31%. From here, the reader should try to derive the following réhgtCRT may
help).

Euler totient function ¢

Suppose m can be uni quely expressed as bel ow
I T I,-
m=p Py D
t hen
‘ k: k1—1 k fea—1 k.- k-—1
¢(m) = (py" —py' )Wy —p" ) — B )

Wilson's Theorem

Wilson's Theorem for a generalstates that the product of all the invertible element in mod
equals -1 ifn has only one prime factor, or= 2p* for some prime

equals 1 for all other cases

An invertible element of modh is a natural numbean < m such that gca, m) = 1. A self-
invertible element is an element whose inverse is itself.

In the proof of Wilson's Theorem for a prippethe numbers 1 tp- 1 all have inverses. This is
not true for a generah. In fact it is certain thaing - 1)! =0 (mod m), for this reason we instead
consider the product of all invertible elements in mod

For the case whera =p is prime we also appealed to the fact 1 pAd. are the only elements
when squared gives 1. In fact for= p*, 1 andm - 1 &-1)are the only self-invertible elements
(see exercise). But for a genemglthis is not true. Let's take for examphe= 21. In arithmetic
modulo 21 each of the following numbers has itself as an inverse

1, 20, 8, 13

so how can we say the product of all invertible elements equal to 1?

We use the CRT described above. Let us consider the case wke?s. By the CRT, each
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14.
15.
16.
17.
18.
19.
20.
21.

element in modn can be represented as a two tupl®)(wherea can take the value 0 or 1
while b can take the value 0, 1, ..., @"- 1. Each two tuple corresponds uniquely to a pair of
congruence equations and multiplication can be performed component-wise.

Using the above information, we can easily list all the selfrtithe elements, becausa,lf)®

=1 means (a°,b%) = (1,1), saa is an invertible element in mod 2 abds an invertible element in
mod pk, soa =l or -1, b =1 or -1. But in mod 2 1 =-1, so a = 1. Therefore, there are two
elements that are self invertible in maodk 2p%, they are (1,1) =1, and (1, -1) =m - 1. So in
this case, the result is the same as whéxas only a single prime factor.

For the case whenm has more than one prime factors an@ 2p*. Let saym hasn prime
factors therm can be represented as-#uple. Let sayn has 3 distinct prime factors, then all
the self-invertible elements af are

(1,1,2)

(1,1,-1)

(1,-1,1)

(1,-1,-1)

(-1,1,1)

(-1,1,-1)

(-1,-1,2)

(-1,-1,-1)
their product is (1,1,1) which corresponds to 1 in mmod
Exercise

1. Letp be a prime. Show that in arithmetic modpfp 1 andp” - 1 are the only self-invertible
elements.

...more to come
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Fermat's Little Theorem

As mentioned in the previous section, not every element is invefitldras an inverse) mod
m. A generalised version of Fermat's Last Theorem uses Euler's Totienbriitcstates

a®™ =1 (mod m)

for all a # 0 satisfying gcd{,m) = 1. This is easy to see from the generalised version of
Wilson's Theorem. We use a similar techique from the prove ofdtar Little Theorem. We
have

(aby)(aby) - - (abyim)) = biby -+ by(m) (mod m)

where they's are all the invertible elements mod By Wilson's theorem the product of all the
invertible elements equals to, sdy= 1 or -1). So we get

a®™d=d (modm)
whihc is essentially the statement of Fermat's Little Theorem.

Although the FLT is very neat, it imprecisein some sense. For example take 15 = 3 A- 5,
we know that ifa has an inverse mod 15 thatt'® = a® =1 (mod 15). But 8 is too large, all we
need is 4, by that we meaaf,=1 (mod 15) for all a with an inversethe reader can chegk

The Carmichael function Tn{) is the smallest number such tial™ =1 (mod m). A question
in theProblem Seteals with this function.

Exercises

...more to come

Two-torsion Factorisation

It it quite clear that factorising large number can be extremely difficult. For example, given
that 76372591715434667 is the product of two primes, can the reader factofisehaGt the
help of a good computer algebra software, the task is close to ingegsible. As of today,
there is no knowefficientall purpose algorithm for factorising a number into prime factors.

However, under certain special circumstances, factorising caate We shall consider the
two-torsion factorisation method. A 2-torsion element in modoia@rithmetic is a numbea
such thag? =1 (mod m).

Let's consider an example in arithmetic modulo 21. Note that usingRfAewe can represent
any number in mod 21 as a two-tuple. We note that the two-torsioemie are 1 = (1,1), 13 =
(1,-1), 8 =(-1,1) and 20 = (-1,-1). Of interest are the numbers 13 andaiseel3 + 1 = (1,-1)
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+ (1,1) = (2,0). Therefore 13 + 1 = 14 is an element sharing a coffaam with 21, as the
second component in the two-tuple representation of 14 is zero. TheB&@4,21) =7 is a
factor of 21.

The above example is very silly because anyone can factoriseuRwHat about 241317
Factorising it is not so easy. But, if we are given that 122@Inen-trivial (i.e# 1 or -1) two-

torsion element, then we can conclude that both gcd(12271 + 1,24131) and gcd(12271 -
1,24131) are factors of 24131. Indeed gcd(12272,24131) = 59 and gcd(12270,24131) = 409 are
both factors of 24131.

More generally, let be a composite, artdoe a non-trivial two-torsion element moti.e. t #
1,-1. Then

gcdg + 1m) dividesm, and
gdct - 1 m) dividesm
this can be explained using the CRT.

We shall explain the case whare= pg andp andq are primes. Givehis a non-trivial two-
torsion element, thenhas representaion (1,-1) or (-1,1). Supdos€-1,1) thert + 1 = (-1,1) +
(1,1) = (0,2), thereforé + 1 must be a multiple qf therefore gcd(m) = p. In the other case
wheret - 1 = (-1,1) - (1,1) = (-2,0) and so gtd(,m) =q.

So if we are given a non-trivial two-torsion element then we ldfeetively found one (and
possibly more) prime factors, which goes a long way in factorisinguhder. In most modern
public key cryptography applications, to break the system we negdaofdctorise a number
with two prime factors. In that regard two-torsion factorisatioethmd is frightening
effectively.

Of course, finding a non-trivial two-torsion element is not an eask either. So internet
banking is still safe for the moment. By the way 76372591715434667 = 224364191 A-
340395637.

Exercises
1. Given that 18815 is a two-torsion element mod 26176. Factorise 26176.

...more to come'
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Mathematical programming

Before we begin

This chapter will not attempt to teach you how to program rigoroustgrefore a basic
working knowledge of the C programming language is highly recemded. It is

recommended that you learn as much about the C programming langsiqapssible before
learning the materials in this chapter.

Please read the first 7 lessons of "C Programming Tutorial" by About.com

http://cplus.about.com/library/blctut.htm

if you are unfamiliar with programming or the C programming language.

Introduction to programming

Programming has many uses. Some areas where progranmdicgraputer science in general
are extremely important include artificial intelligence and stesisProgramming allows you to
use computers flexibly and process data very quickly.

When a program is written, it is written into a textual formt thghuman can understand.
However, a computer doesn't directly understand what a human .wititeeeds to be
transformed into a way that the computer can directly understand.

For example, a computer is like a person who reads and speaks Géounawite and speak
in English. The letter you write to the computer needs to be &tadsfor the computer to
speak. The program responsible for this work is referred to asthgiler.

You need tocompile your English-like instructions, so that the computer can understand it.
Once a program has been compiled, it is hard to "un-compilet iransform it back into
English again. A programmer writes the program (to use our anafognglish), callegource
code which is a human-readable definition of the program, and thesothpilertranslates this

into "machine code". We recommend using the widely available gcc compiler.

When we look at mathematical programming here, we will look atwewan write programs
that will solve some difficult mathematical problems that woaldetus normally a lot of time
to solve. For example, if we wanted to find an approximation to theofotite polynomial
X>+x+1 - this is very difficult for a human to solve. However a compeaerdo this no sweat --
how?

Programming language basics

We will be using the C programming language throughout the chabtase learn about the
basics of C by reading the first seven chapters of "C programming alutirAbout.com

http://cplus.about.com/library/blctut.htm
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Discrete Programming
Discrete programming deals with integers and how they are manipulatednesoantputer.

Understanding integral division
In C, the command

int number;

number =3/ 2;

will set aside some space in the computer memory, and we @ntoethat space by the
variable namenumber. In the computer's mind, number is an integer, nothing else. After

number =3/ 2;

numbers equals 1, not 1.5, this is due to that fact/ twaen applied to two integers will give
only the integral part of the result. For example:

5/2equals 2
353/ 3 equals 117
99/ 7 equals 14
-19/ 2 equals -9
78/ -3 equals -29
in C.
ExercisesEvaluatex
ayx=7/2
byx=-9/-4

c) x =1000 /999
d) x = 2500/ 2501

Modelling Recursively defined functions
The factorial function n! is recursively defined:
or=1

n! = nA-(n-1)! if nz¥ 1
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In C, if fact(n) is the functions as described above we want
fact(0) = 1;
factn) =n* fac(n &~ 1); if 7 = 1

we should note that all recursively defined functions hateerainating conditionit is the case
where the function can give a direct answer to, e.g. fact(0) = 1.

We can model the factorial functions easily with the following code and thentexé
int fact (int n)

{

if (n==0)

return 1,

if (n>=1)

return n * fact(n - 1);

}

The C function above models the factorial function very naturallyte$bthe results, we can
compile the following code:

#include <stdio.h> /* STanDard Input & Output Header file */
int fact (int n)

{

if (n ==0)

return 1,

if (n >= 1)

return n * fact(n - 1);

}

void main()
{

intn=25;

printf("%d", fact(n)); /* printf is defined in stdio.h */
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}

We can also model the Fibonacci number function. Let fib(n) returintkel)th Fibonacci
number, the following should be clear

fib(0) should return 1

fib(1) should return 1

fib(n) should return fib(n - 1) + fib(n - 2); for:xn2
we can model the above using C:

int fib (int n)

{
f(n==0]||n==1)/*ifn=0orifn=1%
return 1;

if (n>=2)

return fib(n - 1) + fib(n - 2);

}

Again, you shall see that modelling a recursive function is not ferdf only involves
translating the mathematics in C code.

Modelling non-recursive functions

There are functions that involve only integers, and they can be modeitednicely using
functionsin C. The factorial function

f(n)=n!=n(n-1)(n-2)..3A-2A-1

can be modelled quite simply using the following code

int n 10; [//get factorial for 10
int f 1, [lstart f at 1
while(n > 0) //keep looping if n bigger then O

f =n*f; //f is nowproduct of f and n
n=n-1 //nis one less (repeat |oop)
}
Feedback

What do you think? Too easy or too hard? Too much information or not enough? How can we
improve? Please let us know by leaving a comment in the discisesiban. Better still, edit it
yourself and make it better.
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Basic counting

Counting

All supplementary chapters contain materials that are partof the standard high school
mathematics curriculum, therefore the material is only povided for completeness and
should mostly serve as revision.

Ordered Selection

Suppose there are 20 songs in your mp3 collection. The computer is asked to raatiectdy
10 songs and play them in the order they are selected, how mgsyaieahere to select the 10
songs? This type of problems is called ordered selection couasniipe order in which the
things are selected is important. E.g. if one selection is

1,2,3,4,5,6,7,8,9and 10

then

2,1,3,4,5,6,7,8,9and 10

is considered a different selection.

There are 20 ways to choose the first song since there are g€ swen there are 19 ways to
choose the second song and 18 ways to choose the third song ... and so @oreTheréotal
number of ways can be calculated by considering the following product:

20 A-19 A- 18 A- 17 A- 16 A- 15 A- 14 A- 13 A- 12 A- 11
or denoted more compactly:

20!
10!

. . . | — |
Here we use théactorial function, defined by 0! = 1 an’® = (n—1lxn (In other
words,?! = 1 X 2 X 3 X ... X n)

In general, the number of ordered selections déms out oh items is:

n!
(n —m)!

The idea is that we cancel off all but the firstactors of then! product.
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Unordered Selection

Out of the 15 people in your mathematics class, five will be chimsegpresent the class in a
school wide mathematics competition. How many ways are thesieotse the five students?
This problem is called an unordered selection problem, i.e. the oraenich you select the

students ismotimportant. E.g. if one selection is

Joe, Lee, Sue, Britney, Justin

another selection is

Lee, Joe, Sue, Justin, Britney

the two selections are considered equivalent.
There are

15!

10!

ways to choose the 5 candidatesidered selectionbut there are Hhermutationsf the same
five candidates. (That is, 5! different permutations are actufidy same combination).
Therefore there are

15!
10!5!

ways of choosing 5 students to represent your class.

In general, tachoosg(unordered selectiom) candidates from, there are

n! _(n
mlin—m)  \m

ways. We took the formula for ordered selectionsnafandidates fromm, and then divided by
m! because each unordered selection was count@t@aslered selections.

(R)
Note: m is read h choosan".

Examples
Example 1How many different ways can the letters of the word BOOK be arranged?

Solution 1 4! ways if the letters are all distinct. Since O is repeawice, there are 2!
permutations. Therefore there are 4!/2! = 12 ways.
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Example 2How many ways are there to choose 5 diamonds from a deck of cards?

E

(13)
Solution 2 There are 13 diamonds in the deck. So ther. \ ways.

(13) 131 13 x12x11x10x 9

5] 8l 120

= 1287

Binomial expansion
The binomial expansion deals with the expansion of following expression
(@+h)
Take n = 3 for example, we shall try to expand the expression manually we get
(a+h)? = (aa+ab+ba+bb)(a+b)

= aaa+ aab+aba+abb+ baa+ bab+ bba+ bbb

= aaa+ aab+aba+ abb+ baa+ bab+ bba+ bbb

We deliberately did not simplify the expression at any point dutiegexpansion, we didn't
even use the well known (a +') & + 2ab + B. As you can see, the final expanded form has 8
terms. They are all the possible terms of poweesaidb with three factors!

Since there are 3 factors in each term and all the possibies &@re in the expanded

(3)
expressoin. How many terms are there with onlylwhd@he answer should | 1 , l.e. from

3 possible positions, choose 1 rSimilarly we can work out all the coefficient of like-terms
So

(a+b)®
And more generally
(@+Db)"

or more compactly using the summation sign (otherwise known as sigma notation)
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(a+b)"

Partial fractions

Method of Partial Fractions

All supplementary chapters contain materials that are partof the standard high school
mathematics curriculum, therefore the material is only povided for completeness and
should mostly serve as revision.

Introduction
1 1 1 1

+ -
Before we begin, consider the followirl X 2 = 2x3 = 3 x4 99 x 100

How do we calculate this sum? At first glance it may sdéfitult, but if you think carefully
1 o —4 5 4 1

youwillfing: 4 X5  4x5 4x5 4x5 4 5
Thus the original problem can be rewritten as follows,
11 1 1 1 1 1 1 1
"1 27273 371 "9 o9 100
So all terms except the first and the last cancelled out, and therefore
IR L
100 100

In fact, you've just done partial fractions! Partial fractiemisa method of breaking down
complex fractions that involve products into sums of simpler fractions.

Method

So, how do we do partial fractions? Look at the example below:

s —Dh

22 —-3242

Factorize the denominator.
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4= — 5

(z—1)(z —2)
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Then we suppose wean break it down into the fractions with denominator (z-1) and (z-2)

respectively. We let their numerators be a and b.
4z —5 _a N b
(z=1)(z—2)  z—-1" z-2
4z —5 _alz—2) N bz —1)
(z—=1)(z—=2) (z=1(z-=2) (z=1)(z-2)
4z — b _az—2a+bz—b
(z—1)(z=2) (z=1)(z-2)
4z —5 _la+bz—(2a+0b)

(z—=1)(z—=2) "  (z=1)(z—-2)

4z —5=(a+b)z —(2a+ b)

Therefore by matching coefficients of like power of z, we have:
a+b=4 ..(1)
2a+b=5 ..(2)

(2)-(1):a=1

Substitute a=1 into (1):b=3

Therefore
4z — D 1 3

z?—3z+2=z—1+3—2

(Need Exercises!)
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More on partial fraction

Repeated factors

On the last section we have talked about factorizing the denomiaatbhave each factor as
the denominators of each term. But what happens when there aa¢éinggactors? Can we
apply the same method? See the example below:

4r —1
(x4 2)%(x—1)
A B C
_I—|—2+I—|—2+I—1
_A+B C
=I—|—2 r—1

(A+ B)(x - 1) N C(r+2)
(x+2)(z—-1)  (r+2)(x—1)
(A+ B)(z=1)+C(z+2)
(x+2)(xr—1)
(A+B+C)ix+(2C-A-B)
(x+2)(xr—1)

Indeed, a factor is missing! Can we multiply both the denominatothendumerator by that
factor? No! Because the numerator is of degree 1, multiplyititgaMinear factor will make it
become degree 2! (You may think:can't we set A+B+C=07? Yes,\bstlistituting A+B=-C,

you will find out that this is impossible)

From the above failed example, we see that the old method dil geatition seems not to be
working. You may ask, can we actually break it down? Yes, but befofenally attack this
problem, let's look at the denominators at more detail.

Consider the following example:
1 1 22 N 7T 2247

S T TERD T AT e

We can see that the power of a prime factor in the product deatumis the maximum power

of that prime factor in all term's denominator.

Similarly, let there be factorP,P,,...P,, then we may have in general case:
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If we turn it into one big fraction, the denominator will be:
lear{ai,.ﬂi,...,g'i:l Pgmar{ag,.ﬂg,...,g'g:l. ..Pr:?’e.arl[c'tn,_ﬁn,...,l;'n:l

Back to our example, since the factor (x+2) has a power ofl@asttone of the term hgs +
2)? as the denominator's factor. You may then try as follows:

dr —1
(r42)%*xr—1)
_ A N B
S (z 422 -1
Az —1) B(x+2)*

S @+22z-10) " (z+22(z-1)

A(r — 1)+ B(r +2)?
(r+2)%(x — 1)

_ Ar— A4 Br*+4Br +4B

- (x4 2)2(x — 1)

_ Bz* +(A+4B)z+ (4B - A)
- (x4 2)2%(x — 1)

But again, we can't set B=0, since that would means the fattaris 0! What is missing? To
handle it properly, let's use a table to show all possible combinations of the denominator:

Possible combinations of denominator

Power of (x+2) Power of (x-1) Result Used?
0 0 1 Not useful
1 0 (x+2) Not used
2 0 (x+2)"2 Used
0 1 (x-1) Used
1 1 (x+2)(x-1) Not useful

205




(x+2)"2(x-1)

Not useful
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So, we now know that X/(x+2) is missing, we can finally happily get the answer:

dr —1
(r4+ 2%z -1)
__A B _C
(r+2)? 42 z-1
Alr = 1) B(r 4+2)(x —1) Clz +2)?

(2422 -1 (24+2%r-1) (r+27%(xr-1)

Alx = 1)+ B2+ -2)+ C(2? + 42+ 4)
(r 4 2)%(r —1)

(B+Ci* +(A+ B +4C)x — (A4 2B —4C)
(x4 2)%(zr —1)

Therefore by matching coefficient of like power of x, we have

As a conclusion, for a repeated factor of power n, we will havenmsteiith their denominator
being X*n, X*(n-1), ...,.X"2, X

Works continuing, don't distrub :)

Alternate method for repeated factors

Other than the method suggested above, we would like to use another approactle the
problem. We first leave out some factor to make it into non-regpdaten, do partial fraction
on it, then multiply the factor back, then apply partial fraction on the 2 fractions.

4r — 1
(r4+2)2%xr—-1)

1 iz —1
142 (z+2)(z -1
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Then we do partial fraction on the latter part:

4r —1 _ A N B
(z4+2)(x—1) z4+2 -1

4r —1 _ A(x-1) N B(r+2)
(z4+2)(z—-1) (z4+2)(z -1 " (z+2)(z—-1)

dr — 1 _Alz-1)+ B(x+2)
(r+2)(x—1) " (z4+2)(x—1)

4r—1  (A+Bix+(2B-A)
(z4+2)(z—-1)  (z4+2)(zx-1)

dr —1=(A+B)x+ (2B - A)

By matching coefficients of like powers of x, we have
A+B=4  .(1)
29B—A=-1 ..(2)

Substitute A=4-B into (2),
2B-(4-B)=—1

HenceB=1and A=3.

We carry on:

1 x(g N 1)
r+2 r+2 -1

R 1

S t2? T @x2-1
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Now we do partial fraction once more:

1 _ A . B
(z4+2)(x—1) z4+2 -1

1 _ A(x-1) N B(r+2)
(z4+2)(z—-1) (z4+2)(z -1 " (z+2)(z—-1)

1 Az -1+ B(z+2)
(r+2)(x—1) " (z4+2)(x—1)

1 _ (A+B)yr+ (2B - A)
(z4+2)(z—-1)  (z4+2)(zx-1)

Or+1=(A+B)r+ (2B — A)
By matching coefficients of like powers of x , we have:

ArB=0 ..(1)
9B - A=1 ..(2)

Substitute A=-B into (2), we have:
2B-(-B) =1
Hence B=1/3 and A=-1/3

So finally,

4r—1 3 Lo,
(z4+22%zx—-1) (z+2)? 3(z+2) ' 3(x-1)
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Summation sign

Summation Notation

All supplementary chapters contain materials that are partof the standard high school
mathematics curriculum, therefore the material is only povided for completeness and
should mostly serve as revision.

We normally use the "+" sign to represent a sum, but if the sum expressioredisotomplex
and long, it can be confusing.

1 1 1 1

Forexamp|61><2+2><3+3><4 ...... +1DD><1D].

Writing the above would be a tedious and messy task!

To represent expression of this kind more compactly and nicely, pealtheisummation
notation, a capital greek letter "Sigma". On the right of tlggnai sign people write the
expression of each term to sum, and write the upper and lowepfithié variable on top and
under the sigma sign.

10
Y 2k 41
Example 1 k=3

= (23)4+1) + 244D + 25)+1) 4 e + (2(10)+ 1)
=74+ 9+ 11 +......4+ 21
Misconception: From the above there is a common misconception thatrttieer on top of the Sigma

sign is the number of terms. This is wrong. The number on top is thieendmsubsitute back in the
last term.

1 1 1 1 1 1
Example 2. 179116 257 " 9301 T 10000
1 1 1 1 1 1
e TR TE R T 0 T e
_lIIIIZI{ :Hki

Tip:If the terms alternate between plus and minus, we can use s#guence
(=1 =-1,1, -1, 1...
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14.

o

11.

12.

Exercise

Use the summation notation to represent the expression in the first example.
Change the following into sum notation:

23 + 24 4+ 25 4+ 26 +......+ 1927

13 4+ 16 + 19 + 22 4 ...+ 301

*1 =2 -34+445 -6 -7+ 8..... + 400(Hintreorder  the
terms, or get more than one term in the expression)

*

3 5 7
1000 — — - ...
Ix (14345 (14+3)x(1+3+5+7) (14+43+5)x(14+34+54+7+9)

(Hint:You need to use more than one sigma sign)

Change the following sum notation into the normal representation:

T=4% -

;;z::n 2k + 1
: — 1\]& L2k
sin z_: QE—I— 1‘3'

(Need more exercise,especially "reading" sigma notation and charigmtoeite old form)

Operations of sum notation
Although most rules related to sum makes sense in the ordinaeynsys this new system of

sum notation, things may not be as clear as before and therefore peowharize some rules
related to sum notation (see if you can identify what they correspond to!)

g g
ZAiZI:C = *(g—p+1)c + ZAi

i=p

q q q
SAEB = S A+Y B
1 i=p i=p

i=p

q
ZCAi = CZ Ai
i=p i=p
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Zi: ZAU - _Zg:“lij

(Note:l suggest getting a visual aid on this one:showing thacgousum a two dimensional
array in either direction)

g g—k
Z“li - Z Ai+k
i=p

t=p—k (Index substutition)

r g
YA =D A+ ) A wherep<r <gq

i=p i=p i=r+1 (Decomposition)
q ] q &
doai | x| Db = D) aib;
1=p J=r =P J=T (Factorization/Expansion)
Exercise

(put up something here please)

Beyond
"To iterate is human; to recurse, divine."

When human repeated summing, they have decided to use a more advanegd, ¢bac
concept of product. And of course everyone knows we % ;eAnd when we repeat product,
we use exponential. Back to topic, we now have a notation for complex\What about
complex product? In fact, there is a notation for product also. Wehaseapital greek letter
"pi" to denote product, and basically everything else is exactly the sasuenanotation, except
that the terms are not summed, but . multiplied.

[] 2h -3
h=2 =

Example:
[(2x2)—3]x[(2x3)—=3] x[(2x4)—3 x[(2x5)—3]

Exercise

1.t has been known that the factorial is defined inductively by:
ol = 1

n! x (n+1) = (r+1)

Now try to define it by product notation.
(more to go...)
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Complex numbers

Introduction

All supplementary chapters contain materials that are partof the standard high school
mathematics curriculum, therefore the material is only povided for completeness and
should mostly serve as revision.

Although the real numbers can, in some sense, represent any matanaty, they are in
another sense incomplete. We can write certain types of equatibhsreal number
coefficients which we desire to solve, but which have no real nusdbetions. The simplest
example of this is the equation:

r»4+1 = 0
|

v = VI

Your high school math teacher may have told you that there is naosotot the above
equation. He/she may have even emphasised that theredalrsmlution. But we can, in fact,
extend our system of numbers to includedbmplexnumbers by declaring the solution to that
equation to exist, and giving it a name: timaginary uniti.

Let'simagine for this chapter tha = V —lexists. Hencex = i is a solution to the above
question, andf = - 1.

A valid question that one may ask is "Why?". Why is it importantwiabe able to solve these
guadratics with this seemingly artificial constructionslinteresting delve a little further into
the reason why this imaginary number was introduced in thepfase - it turns out that there
was a valid reason why mathematicians realized that such auminsas useful, and could
provide deeper insight.

The answer to the question lies not in the solution of quadratics, butirathersolution of the
intersection of a cubic and a line. The mathematician Cardano ethtagome up with an
ingenious method of solving cubics - much like the quadratic formag tis also a formula
that gives us the roots of cubic equations, although it is far noonglicated. Essentially, we
can express the solution of a cukic= 3px + 2q in the form

r=y\a+ @ -p+\a- &P
An unsightly expression, indeed!

You should be able to convince yourself that the yire3px + 29 must always hit the cubic=
x2. But try solving some equation whege< p*, and you run into a problem - the problem is
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12.
13.
14.

that we are forced to deal with the square root of a negative mnuBltewe know that in fact
there is a solution for x; for examplé,= 15¢ + 4 has the solution x = 4.

It became apparent to the mathematician Bombelli that thersomas piece of the puzzle that
was missing - something that explained how this seemingly fsenaperation of taking a
square root of a negative number would somehow simplify to a simpleahk&4. This was
in fact the motivation for considering imaginary numbers, and openedagegiaating area of
mathematics.

The topic ofComplex numbersis very much concerned with this numipe®ince this number
doesn't exist in this real world, and only lives in our imaginatiancall it theimaginary unit
(Note that is not typically chosen as a variable name for this reason.)

The imaginary unit
As mentioned above

2 = -1

Let's compute a few more powersiof

1

it o= 1
i? = -1
i? = —i
it = 1
i = i
i = -1

As you may see, there is a pattern to be found in this.
Exercises

Computei®

Computei*®

Computei*°%°

Exercise Solutions
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Complex numbers as solutions to quadratic equations

Consider the quadratic equation:

P —6r+13 = 0
. fit 36{}—4%:13
. . fit a—lﬁ
T _ fit ;1\!’1—6
T — 342,32

Thex we get as a solution is what we call a complex number. (To jpiekyif the solution set
of this equation actually has two complex numbers in it; either is a valid Y@l x.) It consists
of two parts: areal part of 3 and ammaginary part of £2  Let's call the real pad and the
imaginary parb; then the sun@ + bi=3=x2ijsa complex number.

Notice that by merely defining the square root of negative one, we have ajreadyurselves
the ability to assign a value to a much more complicated, and prgvimsolvable, quadratic
equation. It turns out that ‘any' polynomial equation of degréas exactlyn zeroes if we
allow complex numbers; this is called thendamental Theorem of Algebra

We denote theeal part byRe E.g.:
Re) =3

and thamaginarypart bylm. E.qg.:

Im(z) = +2
Let's check to see whether 3 + 2 really is solution to the equation:
T = 34 2t
z? = (3)%+2(3)(21) + (21)*
= o4+ 12z
r’ —6r+13 = 5+ 12i —6(3+2¢)+ 13
= 0
Exercises

8.Convince yourself that = 3 - 2iis also a solution to the equation.

9.Plot the points A(3, 2) and B(3, -2) on a XY plane. Draw a line for each point jahmang to the
origin.
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10.Compute the length of AO (the distance from point A to the Origid) BO. Denote them by
r 1 and p respectively. What do you observe?

11.Compute the angle between each line and the x-axis and denote\tifgnarid ¢,. What do
you observe?

12.Consider the complex numbers:

z = 7r1-(cos¢; +ising)
w = 7ry-(cosgy+isings)

Substitutez andw into the quadratic equation above using the values you have computed in
Exercise 3 and 4. What do you observe? What conclusion can you draw from this?

Arithmetic with complex numbers

Addition and multiplication

Adding and multiplying two complex number together turns out to be quémlstforward.
Let's illustrate with a few examples. bet 3 - 4 andy = 7 + 11, and we do addition first

r+y = (B+7)+(-2+11)
— 10492

and now multiplication

rXy — (3-—2¢)(7+ 117)

— 3.743.11i—-2i-7T—2-11¢"
— 434+ 1%
Let's summarise the results here.

*  When adding complex numbers we add the real parts with real paiitedd the imaginary
parts with imaginary parts.

* When multiplying two complex numbers together, we use normal expansienalker we see
iwe put in its place -1. We then collect like terms.

But how do we calculate:
34+ 2t
7 —/5i
Note that the square root is only above the 5 and nat Ties is a little bit tricky, and we shall
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cover it in the next section.

Exercises:

T = 3-%
y = 3+ %

Compute:

6.Xx+y

7.X-Yy

8.x°

9.y?

10.xy

11.(x +y)(X - Y)
Division

One way to calculate:

1
2342
is to rationalise the denominator:

1 2v3 -2 2v3 -2
2V/3+v2 (@V3+V2)(2v3-v2) 10

Utilising a similar idea, to calculate
3+ 2
7 — /5
we realise the denominator.
3+ 2
7 — \/bi
342 74++5i
7— V5 7+ /50

3]

Foo=
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The denominator is the sum of two squares. We get:

(34 2i) x (74 /5i)
4945
21 —2/F 14+ 3.5
—+ 1
54 54

If somehow we can always find a complex number whose product wittleti@minator is a
real number, then it's easy to do divisions.

=
e

z = a+1ib
and
w = a—1ib

Thenzwis a real number. This is true for any 'a' and 'b' (provided they are reatrsimb

Exercises

Convince yourself that the productafis always a real number.

Complex Conjugate

The exercise above leads to the idea of a complext conjugateoiiipéex congugate @t + ib

is a - ib. For example, the conjugate »f+ 3iis 2 - 3i. It is a simple fact that the product of a
complex number and its conjugate is always a real numbeis l& complex number then its
conjugate is denoted tZ . Symbolically if

z=a+ib

The conjugate 08 - 9iis 3 + 9i.
The conjugate 0100is 100

The conjugate 09i - 20is-20 - 9i
Conjugate laws

Here are a few simple rules regarding the complex congugate
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gl

I+w=

and

+_1

ZW = Zw

The above laws simply says that the sum of congugates equatanthegate of the sum; and
similarly, the congugate of the product equals the product of the congugates.

Consider this example:

(3+2)+ (894~ 100) =924~ 98

and we can see that

92 — 98¢ = 92 + 981

which equals to

3420489 — 1000 =3 — 27+ 89 + 100¢ = 92 + 93¢

This confirms the addition conjugate law.

Exercise

Convince yourself that the multiplication law is also true.

The complex root

Now that you are equipped with all the basics of complex numbers, yotadde the more
advanced topic of root finding.

Consider the question:

z = —344

w o= 4/z

Expressw in the form ofa + ib.

That is easy enough.
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w?r = z

w = a -+ ib

w? = a?— b 4+ 2abi

-3 = a? — b? (1)
4 = 2ab (2)

Solve (1) and (2) simultaneously to work aundb.

Observe that if, after solving farandb, we replace them witla-and b respectively, then they
would still satisfy the two simultaneous equations above, we cahae@s expected) W = a
+ ib satisfies the equation? = z, then so willw = -(a + ib). With real numbers, we always take

the non-negative answer and call the solu ’/E However, since there is no notion of
"greater than" or "less than" with complex numbers, ther®isuch choice c,"/E. In fact,
which square root to take as "the" value "/Edepends on the circumstances, and this choice
is very important to some calculations.

info -- Finding the square root

Finding the root of a real number is a very difficult problem ta stah. Most people have

no hope of finding a close estimate ﬁwithout the help of a calculator. The modern
method of approximating roots involves an easy to understand and ingeniusopiece
mathematics called the Taylor series expansion. The topic ilyusasered in first year
university maths as it requires an elementary understanding ahportant branch of
mathematics called calculus. The Newton-Raphson method of root filialgo used
extensively for this purpose.

Now consider the problem

: o= —242
w o= ~1/3
Expresswv in the form of & + ib".

Using the methodology developed above we proceed as follows,
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w o o= z
w? = z
w = (a+ ib)

w? (a® — b% 4 2abi) x (a + ib)
(a? — 3ab®) + i(3a’b — b*)

g
Il

-2 = a’ — 3ab? (1)
2 — 32— 5 (2)

It turns out that the simultaneous equations (1) & (2) are hardlte. SActually, there is an
easy way to calculate the roots of complex numbers calleDehdoivre's theorem, it allows

us to calculate thath root of any complex number with ease. But to set the method, wle nee

understand the geometric meaning of a complex number and learn \@ayetw representa
complex number.

Exercises
9.Find (3 + 3i}
10.Find (1 + 1i}
11.Find i3

The complex plane

Complex numbers as ordered pairs

It is worth noting, at this point, that every complex numhbe¥ bi, can be completely specified
with exactly two real numbers: thieal parta, and themaginary partb. This is true okevery
complex number; for example, the number 5 has real part 5 and inmyapgararO, while the
number 7 has real part 0 and imaginary part 7. We can take advantage &b thiopt an
alternative scheme for writing complex numbers: we can \hgen as ordered pairs, in the
form (a, b)instead of+bi.

Instead of We could write

54 44 (5,4)
3 (0,3)
1452 (é E\:I
3 '3

42 (

V2V

e

Q] =Y
m o
o
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These should look familiar: they are exactly like the ordere$ pa use to represent poins in
the plane. In fact, we can use them that way; the plane whighlisrés called thecomplex
plane We refer to its x axis as tieal axis and to its y axis as theaginary axis
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The complex plane

We can see from the above that a single complex number is arptiet complex plane. We
can also represenetsof complex numbers; these will forragionson the plane. For example,
the set

{a-—l—bt'|—1£a£1,—1¢_ib£1}

is a square of edge length 2 centered at the origin (See ijowdiagram).
II‘I‘[I.|
3

2i

i

Complex-valued functions

Just as we can make functions which teda values and outpueal values, so we can create
functions from complex numbers to real numbers, or from complex numbersntplex
numbers. These latter functions are often referred tomplex-valuedunctions, because they
evaluate to (output) a complex number; it is implicit that thegument (input) is complex as
well.

Since complex-valued functions map complex numbers to other complex nurabérsve
have already seen that complex numbers correspond to points on the complexelzaresee
that a complex-valued function can turn regions on the complex plane o regions. A
simple example: the function

f(2) =z + (0 + 1)

takes a point in the complex plane and shifts it up by 1. If we appdythe set of points
making up the square above, it will move the entire square up one, so"tkats" on the x-
axis.

{To make more complicated examples, | will first have to go ket introduce the polar
representation of complex numbers. Makes for much more interdstinions, :-) You can
use the diagrams below or modify them to make new diagrams!| make links to these
diagrams in other places in Wikibooks:math. In the 2nd diagram showingpthe r=4 and
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theta= 50 degrees. These types of diagrams can be used to intpithsmes, which are
notations for complex numbers used in electrical engineering.}

ose G

1200 &0

150°
je5e 15°
180 -0=0
195° 345°
210® kkITy

120°

135°

150°

165°

1508

1953°

210t

r2g”
240"

a1

de Moivre's Theorem

If R
. _ rei® = r(cos(l) + isin(l,))

then
Z' =r"(cosfl.) + isin(nl)))
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Complex root of unity

The complex roots of unity to the nth degree is the set of solutiotietequation x*n = 1.
Clearly they all have magnitude 1. They form a cyclic group undétiptication. For any
given n, there are exactly n many of them, and they formwdareg-gon in the complex plane
over the unit circle.

A closed form solution can be given for them, by use of Eulersdiar u™n =
{cos(2*pi*j/n)+i*sin(2*pi*j/n) | 0 <=j < n}

The sum of the nth roots of unity is equal to 0, except for n=1, where it is equal to 1.

The product of the nth roots of unity alternates between -1 and 1.
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Problem set
Simplify: (1-))”' Ans: 26™

The imaginary unit

22. Compute®® =i

23. Computei'®=1

24, Computei'®°=1
i = x it =1

The pattern of*,i%,i3,... shows thaf" = 1 where n is any integer. This case applies to questions
2 and 3. For question 1, .

Complex numbers as solutions to quadratic equations

15. Convince yourself that = 3 - 2iis also a solution to the equation.
T = 3— 2z
22 = (3)2 4+ 2(3)(—2:) + (—2i)?
1C = 5—12% 2) on a XY plane. Draw a line foh gmint joining
2 —6z+13 = 5-—12i —6(3—2i)+13
= 0

1171 ﬂnd.f.?]pute the length of AO (the distance from point A to the Origit) BO. Denote
them by respectively. What do you observe?

e 11 = V32 4+ 22 =413
* g =4/3%2+(—2)2 =v13

. ryand 790

vIv Ut

12¢1 and ﬁi'?,)ute the angle between each line and the x-axis and denoteythémhiat do you
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observe?

¢) = tan”'(3/2) ~ 56

¢p = tan ' (3/ — 2) ~ —56

¢1 and ¢y
» differ only in the sign of the number

=

ry - (cos @y + isingy )
w = 7ry-(cosgy+isings)
13. Consider the complex numbers:

Substitutez andw into the quadratic equation above using the values you have computed in
Exercise 3 and 4. What do you observe? What conclusion can you draw from this?

z = V13 - (costan™(3/2) + isintan~'(3/2)) = 243
w = V13- (costan™(3/ — 2) + isintan™'(3/ - 2)) = 2-3i

Thus the quadratic equation will equal 0 since z and w are equal soliitens we found
when solving the equation.

Addition and multiplication

r = 3-—2i

= 34+ 2
compute:
13. X+y

e (83-2)+(@3+2)=6
14. X-Yy
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e 3-2i-(3+2i)=-4i

15. X2

e (3-2)(38-2)=9+(2)3)(-2)+4i=5-12i

16. y?

e (3+2)(B+2)=9+(2B)2i)+4i=5+12i

17. Xy

e (3-2)(B8+2))=9+6i-6i+4i=5

18. xX+y)x-vy)

e ((3-2i)+ (3 +20)((3-2i) - (3 + 2i)) = (6)(-4i) = -24i

Division Convincezyourself that the product of zw is always a real nummber (a + bi)(a - bi)
=a®-abi+abi-bi°=a’-b

Complex ConjugateConvince yourself that the multiplication law is also true.

z = a+bi
wo o= c—di
z = zZXw
= (a + bi)(c — di) = ac+bei —adi — bdi®> = ac—bd+ (be —ad)i
I = ac—bd— (bc—ad)i
ZX W (a — bi)(e + di)

ac — bic + adi — bdi?
ac — bd — (be+ ad)i

T
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The complex root

1. Find (3 + 3i}?
z = 3+ 3
w = vz
w = z
w = a+ib
w? = a? — b + 2abi

Thus the solution for (3 + 3{f is:
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m:ﬂ‘/ﬁ(‘f* D + ‘/wa_ D i)

gl'og- P::\JE:- e,

.11

14 1i
NE

a4+ ib
a? — b? + 2abi
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Thus the solution for (1 + 1} is:

VIF i =+

V2(v2+1) N V2(v/2-1)
2 2

z = i

wo = JEVENE _
wo = (a +1ib)
w® = (a® — b +2abi) x (a + ib)

z = (a® —3ab®) +i(3a?b - b)

0 = a® — 3ab’ (1)

1 = 3a’b — b° (2)

3. Find 1°

Thus the solution forf is:

=
i) 'm':"_ll

=

[ S Y [ N U

Viet( L4

a2 C
R
3ab?
357

=)

=

3a’b — b |
3(3b%)b — b
o9b* — b
86
b3

[

V241

==

X

[

0
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Bases

15. The following numbers are written in base 2. Write them out in base 10:
1. 101011 (base 2) = 43 (base 10)°=+2° + 2! + = 32+8+2+1

2. 001101 =13

3. 10=2

4. 011 =3

16. Write those numbers out in base 10 as if they were originally in base 5.
1. 101011 (base 5) = 3256 (base 107=5 + 5" + 5° = 3125+125+5+1
2. 001101 =751

3. 10=25

4. 011 =26

17. How many numbers could | write out in base 5 with only the first 4 columns?

Answer: 625 = (each new column multiplies the number of possibilities by 5)

13. In computing, each 1 or O is callecbd. They are stored in groups of 8. Each group is
called abyte How many bytes are possible?

Answer: 256 = 2(values from 00000000 through 11111111 binary, or O through 255 base 10)

12. Question: When editing the bytes directly, writing out 10110001 is too &y
hexadecimal is used instead (in this case, B1). How many digitexadecimal are needed to
cover all possible bytes?

Answer: 2 digits (16= number of possible 2-digit hexadecimal numbers = 256 = number of
possible bytes)
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Differentiation

Differentiate from first principle

All supplementary chapters contain materials that are partof the standard high school
mathematics curriculum, therefore the material is only povided for completeness and
should mostly serve as revisionThis section and the *differentiation technique* section can
be skipped if you are already familiar with calculus/differentiation.

In calculus, differentiation is a very important operation appliedinations of real numbers.
To differentiate a function f(x), we simply evaluate the limit

_ flz+h)— f(x)
lim

h—0 h

lim
where thek—0means that we lét approach 0. However, for now, we can simply think of it as
puttingh to O, i.e., lettingh = 0 at an appropriate time. There are various notations foesé r
of differentiation (called the derivative), for example

flz+h) — flz)

f'(r) = lim

h—10 h
and
dy _ . fla+h) = ()
dr  hod h

mean the same thing. We say, f'(x) is the derivative of f(Kjei2ntiation is useful for many
purposes, but we shall not discuss why calculus was invented, but matherwe can apply
calculus to the study of generating functions.

It should be clear that if

g(x) = f(x)
then
g'(x) = f(x)

the above law is important. If g(x) a closed-form of f(x), thers ivalid to differentiate both
sides to obtain a new generating function.

Also if
h(x) = g(x) + f(x)
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then

h'(x) = g'(x) + f(x)

This can be verified by looking at the properties of limits.
Example 1

Differentiate from first principle f(x) where

f(x) =X

Firstly, we form thalifference quotient

f(z) = lim FFA =2

h—D h

We can't seh to 0 to evaluate the limit at this point. Can you see why? W toeexpand the
quadratic first.

12 +2xh 4+ % — 12

= lim h
_ 2rh + R?
Il h

We can now factor out theto obtain now

Fl}l_lﬁg 2r+ h

from where we can lét go to zero safely to obtain the derivative, 30
f'(x) = 2x

or equivalently:

(A =

Example 2

Differentiate from first principles, p(x) ="x

We start from the difference quotient:

(2) = 1 (r+h)™ — 2"
P = i =

By the binomial theorem, we have:
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1 .
= lim — (2" +nx" th4+ ...+ A" — ™)
h—0 h ’

The firstx" cancels with the last, to get

. 1 n—1 n
— ’111_1% Hl[n:r h+4+...+h")

Now, we bring the constantHlinside the brackets

= limnx" '+ .. 4+ Rp

h—10
and the result falls out:
=nX'?
Important Result

If

p(¥) =X
then
p(x) =nx'"*

As you can see, differentiate from first principle involves workag the derivative of a
function through algebraic manipulation, and for that reason this sestalgebraically very
difficult.

Example 3

Assume that if

h(x) =f(x) + g(x)

then
h'(x) = f(x) + g'(x)
Differentiatex’ + x°

Solution Leth(x) =% + X°
h'(x) = 2 + 5¢*
Example 4

Show that if g(x) = AA-f(x) then
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g'(x) = AA-F(x)

Solution

glr) = Af(x)

g(x) = limp_g2(f(r+h)— f(z))
= Alimpg+(f(x +h) = f(z))
= Af'(x)

Example 5

Differentiate from first principle

flx)= 1ir

Solution

f’(:ﬂ = limp_g %':1_(}:#1) o 1i1’}
B . L l_r—lzl—l::1'+h':l:]
= ]_llﬂh—ol] h':{]_—{r-l-hj:“:l_rj:]
— 1 J- h
= limp_.g —':,:1_|;r+h:|){1—33:]
B . 1
= limp_g (1—(z+h))(1—z)
B 1
frd (1—1':]2
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Exercises

1. Differentiate
f( =2

2. Differentiate
f(2) = (1 -2)°

3. Differentiate from first principle

4. Differentiate

f(2 = (1-2°

5. Prove the result assumed in example 3 above, i.e. if
f)=g(x)+h(x)

then

fFO)=g'(})+h'(x).

Hint: use limits

Differentiating f(z) = (1 - z)™n

We aim to derive a vital result in this section, namely, to derive the derivative of
f2 =1 -2)"

wheren> 1 and n an integer. We will show a number of ways to arrive at the result.
Derivation 1

Let's proceed:

f@=(1-2"

expand the right hand side using binomial expansion

n n\ , "
flz)=1- (1)z+ (2)3 + ...+ (1"
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differentiate both sides

fl(z)=— (?11) + (;) 2z 4 ..+ (—=1)"nz"t

(n) n!
T il e s
now we use \ ¢ il(n —1)!

n! n! .
2+ ..+ (=12t

Flz)= C1(n— 1) + 2l(n — 2)!

and there are some cancelling

n! n!

- = . n _fn—]_
n—1) + 1(n —2)!” +..+(-1)"nz

fl(z)=—

take out a common factor of -n, and recall that 1! = 0! = 1 we get

f"(z:] = —?1(1 —I— ﬁz _I_ _I_ (_1}11—1311—1:]

letj=1i-1, we get
n — 1!

n—1_n—1

fflfzj = —n(l+

but this is just the expansion of (1 22)

f(2)=-n1-2"*

Derivation 2

Similar to Derivation 1, we use instead the definition of a derivative:
l1—(z4+h))" —(1—2z)"

fFlfz:] = lim I: lf — ( :

h—10 h

expand using the binomial theorem

£102) — i 20 () CD 2 £ 1) = 5 (3) (1)

h— 1 h
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factorise

1o ()= (2 + k) - #)

i

f'(z) = lim

h—10 h

take the limit inside (recall that [Af(X)]' = Af'(X) )

o = m N )
flfJ—Z(.)lf—lj lim

i=o \

the inside is just the derivative df z
n

Fz) =3 () (~1yis

i=1 \?
exactly as derivation 1, we get
f2)=-n1-2"*
Example Differentiate (1 - 2
Solution 1
f(z)=(1-2zf=1-2z+72
f(z)=-2+2z
f(z)=-2(1-2)
Solution 2 By the result derived above we have
f(z)=-2(1 -z t=-2(1 - 2)
Exercises
Imitate the method used above or otherwise, differentiate:
1.(1 - z¥
2. (1+z¥
3. (1+Z}
4. (Harder) 1/(1 - Z)(Hint: Use definition of derivative)
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Differentiation technique
We will teach how to differentiate functions of this form:
1

1z) = g(z)

i.e. functions whose reciprocals are also functions. We proceed, byetimation of
differentiation:

1
(z) =
1z g(z)
M-y — ' 1 o
f {H:] ]-]-]-I'l-!'.',—J:I h{giz-i-hfj 9":3:':]
B . 1g(z)=g(z+h
= limp g hlf glz+h)g(z) j
L glzth)—g(z) -1
= limp_.q h g(z+h)g(z)
= limp_—pg lf”::lgl["-l-h),'?":::'
_ _g()
g(z)?
Example 1
2 = 14+ 42474
hi;jr - L+ 22432 4 .
by
1 _ r
() ="12
g g
whereg is a function ok, we get
1 _ z 22
Tp = EEASTA

which confirmed the result derived using a counting argument.
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Exercises

Differentiate

1. 1/(1-z¥

2. 1/(1-z§

3. 1/(1+Z}

4. Show that (1/(1 - 2) = n/(1-z)"**

Differentiation applied to generating functions

Now that we are familiar with differentiation from first principle, we skoconsider:

1
ﬂzj: 1 — 2
we know
s =ltr

differentiate both sides

(1_132)F = 2r —|—’-l:r3 —|—6:r5 4.

2r
(1 _ IE)E

=2r(1422" +32% + ...)
therefore we can conclude that

s 2 1
{1_1&}2 14+ 2"+ 3 + ...

Note that we can obtain the above result by the substituion method as well,

letting z = X gives you the require result.
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The above example demonstrated that we need not concern oursethedifficult
differentiations. Rather, to get the results the easy way, wkarde to differentiate the basic
forms and apply the substitution method. By basic forms we meanagjageiunctions of the
form:

1
(1—2z)m
forn> 1.
Let's consider the number of solutions to
ytaptazt..+ta,=m
forg> 0fori=1,2,..n.

We know that for anyn, the number of solutions is the coefficient to:

2 no__
l4+z4+2" 4. _—(1_3:111

as discussed before.

We start from:

=144+ 2"+

l—=
differentiate both sides (note that 1 = 1!)
1! 2 n—1

differentiate again

2' n—2
sz—I—ZXBI...—I—n(n—IJI +..
and so on for (n-1) times
(n—1)! _ m+1)! 5, (n+2)! ,
—(1_3:]” —{?1—1j.+ﬂr—|——2! T —|——3! r 4

divide both sides by (n-1)!
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1 n! m+1! 5, (n+2)
Ao oo "ot T st

the above confirms the result derived using a counting argument.

Differentiate from first principle

1. .f(2) = 32 (We know that ifp(x) = X" thenp'(x) =nx" ")

2.
fQ=(1-2°=72-2z+1
f2) = 22-2
3.
F 1 T 1 n
fflfz:] — ]_j_]_nh__,n I:l—z—h:l—h I:J.—z:l—
_ - 1 1 1
_ ‘ 1 —z)= . —z—h)~
= ]_llﬂh,—~|:l hl{l{l_:_h:ﬂéi_:;s " (1_;:}'&)2(1_3)9‘]
_ : 1 (1—z)2—{1—z—h)®
— hm;:—.an 51(1{_;—;)1 (-2 );f htt)
_ . 1 z-—Zdz41—iz"F2ha—2z4+R"—2h+-
= limpog (1—z—h)(1—2)"
. . ] 32—23+1—*9—Eh:-l—?:—hg—k?h—l:l
imp g 3 g~ 1;1—
— 1 —2hz—h>42h
Wm0 FT—e (12
= limp—o =Sy
— —2x412
e
- 1—z)
- 2(1—2)
I:l—ql;l'd'
i)
4,

f9=(1-2°=-2+3%-3z+1
f(2) =— 32 + 62— 3
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5. if
f()=9()+h(x)

then
fFl[‘T:] = ].]I.lILk_,U f':l"l'kk—f{.r
= lim;_.q (glztk)+h(z+k)]—(g(z)+hiz])
T k
= lim,,_q L&thkl=gz)+hz+k)—h(z)

i
limk_,n(if”‘i—sr'{r) n h(rti—hir)jh
limy. g ﬂh—lﬁl + limp_g ﬁg—il
- g'(z)+h'(z)

Differentiating f(z) = (1 - z)™n

1.
f(z):(1_2)3:—z3+322—3z+1
J'Fr{z:] = —3324—63_3
= —3(z* -2z +1)
= =3(z-1)
2.

f@=1+2°=Z+2+1

f"fff:] = 2z42
= 2(z+1)
3.
fQ=(1+2°=2+3F+3%x+1
F5) = 3246243
= 3':324—234—1)
= 3(z+17
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1 1
f - 1—=— kP [1—2)%
fiz) = limy,_q < e
— - 1 1 1
= ].llﬂ;;—.lil F.:lf (1—z—F)3 {1_33)3:3
/ 11—z —(1—2—k)
limy—o 5 (1=z—Fk)5(1-2)"
— lim 1 —2" 4328 =341 —(—23 —3kz4 32" -3k 24 Bkz—32 — K+ 3k —3k41)
- k=0 % (I—z—k)3(1—2)°
— lim 1 =243 de 14840k =32 4 3k e — Bl 3o kS =3k 243k —1
k=0 % (1—z—k)3(1—2)°
1 3kz? 43k —fkz+k% -3k +3k)
i (1—z—k)3(1—z)®
_ lim 3224 3kz — B2 k2—3k43)
k=0 (12— k)3 (1—2)3
3zl —Gz43
o 1—213(1—2}%
(1—z)(1—z)
Ir-—Gz+3

lim g

Differentiation technique

;

We use the result of the differentation of f(z)=(1-z)*n (f(z) = -n{1)z)

2.
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4.
O
fflf"‘] — _gl_;l—: " ;
A I:I:l—l:ln:]'_
. _—n{l—: n—1
- I:l_::lﬂn

-
(1_3)211—(11—1:|
— 71

- {1_3)2:1—:14-1
—_n
(1_;):1-]—1

We use the result of the differentation of f(z)=(1-z)*n (f(z) = -n{1)z)
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License

GNU Free Documentation License

Version 1.2, November 2002

Copyright (C 2000, 2001, 2002 Free Software Foundation, |nc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permtted to copy and distribute verbatim copies
of this |license docunent, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manusthdek, or other functional and useful documeneéfrin the sense of freedom: to assure
everyone the effective freedom to copy and redbiste it, with or without modifying it, either commugally or noncommercially. Secondarily,
this License preserves for the author and publiaheay to get credit for their work, while not bgiconsidered responsible for modifications
made by others.

This License is a kind of "copyleft”, which mearmstt derivative works of the document must themselve free in the same sense. It
complements the GNU General Public License, whsch d¢opyleft license designed for free software.

We have designed this License in order to use itfanuals for free software, because free softwaegls free documentation: a free program
should come with manuals providing the same freedtirat the software does. But this License is ingtdd to software manuals; it can be
used for any textual work, regardless of subjedtenar whether it is published as a printed badk. recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other wankamy medium, that contains a notice placed bycthgyright holder saying it can be
distributed under the terms of this License. Suaiptice grants a world-wide, royalty-free licensejimited in duration, to use that work
under the conditions stated herein. The "Documdmigw, refers to any such manual or work. Any mendf the public is a licensee, and is
addressed as "you". You accept the license if ymy,cmodify or distribute the work in a way reqaogipermission under copyright law.

A "Modified Version" of the Document means any war&ntaining the Document or a portion of it, eithmpied verbatim, or with
modifications and/or translated into another langua

A "Secondary Section" is a named appendix or atfnasiter section of the Document that deals exedigiwith the relationship of the

publishers or authors of the Document to the Docuim@verall subject (or to related matters) andtaios nothing that could fall directly

within that overall subject. (Thus, if the Documestin part a textbook of mathematics, a Secondsggtion may not explain any
mathematics.) The relationship could be a mattenistrical connection with the subject or withateld matters, or of legal, commercial,
philosophical, ethical or political position regarg them.

The "Invariant Sections" are certain SecondaryiGestwhose titles are designated, as being thobesafiant Sections, in the notice that says
that the Document is released under this Licerfsa.dection does not fit the above definition ot@mlary then it is not allowed to be
designated as Invariant. The Document may contia Invariant Sections. If the Document does nehiidy any Invariant Sections then
there are none.

The "Cover Texts" are certain short passages ofthex are listed, as Front-Cover Texts or Back€Takexts, in the notice that says that the
Document is released under this License. A Fronte€E@ext may be at most 5 words, and a Back-Coeat ay be at most 25 words.

A "Transparent” copy of the Document means a macteéadable copy, represented in a format whoséftagion is available to the general
public, that is suitable for revising the documstnaightforwardly with generic text editors or (fionages composed of pixels) generic paint
programs or (for drawings) some widely availablavdng editor, and that is suitable for input tottlxmatters or for automatic translation to
a variety of formats suitable for input to textrfatters. A copy made in an otherwise Transparénfdimat whose markup, or absence of
markup, has been arranged to thwart or discounalggegiuent modification by readers is not Transpafenimage format is not Transparent
if used for any substantial amount of text. A ctipgt is not "Transparent” is called "Opaque".

Examples of suitable formats for Transparent copielide plain ASCII without markup, Texinfo inpfdrmat, LaTeX input format, SGML
or XML using a publicly available DTD, and standa@hforming simple HTML, PostScript or PDF designfed human modification.
Examples of transparent image formats include PXIG; and JPG. Opaque formats include proprietamné&s that can be read and edited
only by proprietary word processors, SGML or XMLt fehich the DTD and/or processing tools are notegelty available, and the machine-
generated HTML, PostScript or PDF produced by s processors for output purposes only.

The "Title Page" means, for a printed book, thle fitage itself, plus such following pages as ardad to hold, legibly, the material this
License requires to appear in the title page. Farksvin formats which do not have any title pagsuch, "Title Page" means the text near the
most prominent appearance of the work’s title, guery the beginning of the body of the text.
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A section "Entitled XYZ" means a named subunit led Document whose title either is precisely XYZoomntains XYZ in parentheses
following text that translates XYZ in another laage. (Here XYZ stands for a specific section namentmaned below, such as
"Acknowledgements", "Dedications”, "Endorsements”;History".) To "Preserve the Title" of such aen when you modify the Document
means that it remains a section "Entitled XYZ" adam to this definition.

The Document may include Warranty Disclaimers niexhe notice which states that this License appliethe Document. These Warranty
Disclaimers are considered to be included by refaén this License, but only as regards disclagmimrranties: any other implication that
these Warranty Disclaimers may have is void anchisaaffect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any iomad either commercially or noncommercially, praatithat this License, the copyright
notices, and the license notice saying this Licexgaies to the Document are reproduced in allepnd that you add no other conditions
whatsoever to those of this License. You may nettashnical measures to obstruct or control théimgeor further copying of the copies you
make or distribute. However, you may accept comgms in exchange for copies. If you distributesge enough number of copies you must
also follow the conditions in section 3.

You may also lend copies, under the same condistaied above, and you may publicly display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in mediattcommonly have printed covers) of the Documeatbering more than 100, and the
Document's license notice requires Cover Texts, mosgt enclose the copies in covers that carryrlglead legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cdwexts on the back cover. Both covers must alearlt and legibly identify you as the
publisher of these copies. The front cover mustgmethe full title with all words of the title egjly prominent and visible. You may add other
material on the covers in addition. Copying wittaiges limited to the covers, as long as they pregée title of the Document and satisfy
these conditions, can be treated as verbatim cgpgiother respects.

If the required texts for either cover are too wolnous to fit legibly, you should put the first anksted (as many as fit reasonably) on the
actual cover, and continue the rest onto adjacageg

If you publish or distribute Opaque copies of thecBment numbering more than 100, you must eith@udie a machine-readable Transparent
copy along with each Opaque copy, or state in ¢t each Opaque copy a computer-network locatiom fndich the general network-using
public has access to download using public-standatdork protocols a complete Transparent copyefRocument, free of added material.
If you use the latter option, you must take reabbnprudent steps, when you begin distribution paGue copies in quantity, to ensure that
this Transparent copy will remain thus accessibiaa stated location until at least one year dfterlast time you distribute an Opague copy
(directly or through your agents or retailers)lwdttedition to the public.

It is requested, but not required, that you contiaetauthors of the Document well before redistiitgiany large number of copies, to give
them a chance to provide you with an updated versidghe Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version leé Document under the conditions of sections 23aablove, provided that you release the
Modified Version under precisely this License, witte Modified Version filling the role of the Docemt, thus licensing distribution and
modification of the Modified Version to whoever pesses a copy of it. In addition, you must do thigisgs in the Modified Version:

A. Use in the Title Page (and on the covers, if anyifle distinct from that of the Document, andnfréhose of previous versions (which
should, if there were any, be listed in the Histeegtion of the Document). You may use the sarteedt a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or moregue or entities responsible for authorship ofrttegifications in the Modified Version,
together with at least five of the principal authof the Document (all of its principal authorsitifias fewer than five), unless they release you
from this requirement.

C. State on the Title page the name of the publishére Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document

E. Add an appropriate copyright notice for your magdifions adjacent to the other copyright notices.

F. Include, immediately after the copyright noticadicense notice giving the public permission te ttee Modified Version under the terms
of this License, in the form shown in the Addendugtow.

G. Preserve in that license notice the full listdmfariant Sections and required Cover Texts givethé Document's license notice.
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H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Presétsditle, and add to it an item stating at ledst title, year, new authors, and publisher of
the Modified Version as given on the Title Pagethére is no section Entitled "History" in the Datent, create one stating the title, year,
authors, and publisher of the Document as giveitsofitle Page, then add an item describing the it Version as stated in the previous
sentence.

J. Preserve the network location, if any, given ie locument for public access to a Transparent obgiie Document, and likewise the
network locations given in the Document for pregmersions it was based on. These may be pladbe ifHistory" section. You may omit a
network location for a work that was publishedegtst four years before the Document itself, dnéf driginal publisher of the version it refers
to gives permission.

K. For any section Entitled "Acknowledgements" or didations”, Preserve the Title of the section, aneserve in the section all the
substance and tone of each of the contributor aletdyements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Documamaltered in their text and in their titles. S@e numbers or the equivalent are not
considered part of the section titles.

M. Delete any section Entitled "Endorsements". Susbciion may not be included in the Modified Vensio
N. Do not retitle any existing section to be Entittf&hdorsements" or to conflict in title with anywhriant Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-mattexcsions or appendices that qualify as Secondariid®scand contain no material copied
from the Document, you may at your option desigrsaee or all of these sections as invariant. Tahi® add their titles to the list of
Invariant Sections in the Modified Version's licemmtice. These titles must be distinct from armepsection titles.

You may add a section Entitled "Endorsements", iglex¥ it contains nothing but endorsements of yoadifled Version by various parties--
for example, statements of peer review or thatekehas been approved by an organization as therative definition of a standard.

You may add a passage of up to five words as atf@owmer Text, and a passage of up to 25 wordsBeck-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only onespage of Front-Cover Text and one of Back-Covett Tieeey be added by (or through
arrangements made by) any one entity. If the Doctiraeady includes a cover text for the same gowesviously added by you or by
arrangement made by the same entity you are aotinigehalf of, you may not add another; but you mepface the old one, on explicit
permission from the previous publisher that adéiedold one.

The author(s) and publisher(s) of the Documentatdy this License give permission to use their eafior publicity for or to assert or imply
endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documeelisased under this License, under the terms definedction 4 above for modified
versions, provided that you include in the comberatll of the Invariant Sections of all of theginal documents, unmodified, and list them
all as Invariant Sections of your combined worlitsgricense notice, and that you preserve all tiérranty Disclaimers.

The combined work need only contain one copy of thtense, and multiple identical Invariant Sectionay be replaced with a single copy.

If there are multiple Invariant Sections with ttere name but different contents, make the titleamh such section unique by adding at the
end of it, in parentheses, the name of the origimahor or publisher of that section if known, déseea uniqgue number. Make the same
adjustment to the section titles in the list ofdrant Sections in the license notice of the comtiwork.

In the combination, you must combine any sectionsitlEd "History" in the various original document®rming one section Entitled
"History"; likewise combine any sections Entitleicknowledgements”, and any sections Entitled "Datihnis”. You must delete all sections
Entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Docunaem other documents released under this Licemgkreplace the individual copies of
this License in the various documents with a sireglgy that is included in the collection, providkdt you follow the rules of this License for
verbatim copying of each of the documents in dleotespects.

You may extract a single document from such a ctidle, and distribute it individually under thisdense, provided you insert a copy of this
License into the extracted document, and follow thicense in all other respects regarding verbabtpying of that document.
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7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivativestwother separate and independent documents oiswiorlor on a volume of a storage or
distribution medium, is called an "aggregate" ié thopyright resulting from the compilation is nated to limit the legal rights of the
compilation's users beyond what the individual veaplermit. When the Document is included in an agmfes this License does not apply to
the other works in the aggregate which are not sieéres derivative works of the Document.

If the Cover Text requirement of section 3 is apgtble to these copies of the Document, then iDtbeument is less than one half of the entire
aggregate, the Document's Cover Texts may be placedvers that bracket the Document within thereggte, or the electronic equivalent
of covers if the Document is in electronic formh@wise they must appear on printed covers thakbtahe whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification,y®u may distribute translations of the Documerdar the terms of section 4. Replacing
Invariant Sections with translations requires sggoermission from their copyright holders, but yoay include translations of some or all
Invariant Sections in addition to the original vers of these Invariant Sections. You may includeaaslation of this License, and all the
license notices in the Document, and any WarramsglBimers, provided that you also include theinafEnglish version of this License and
the original versions of those notices and disataénin case of a disagreement between the traomskatd the original version of this License
or a notice or disclaimer, the original versionlwilevail.

If a section in the Document is Entitled "Acknowdetinents", "Dedications"”, or "History", the requilmh (section 4) to Preserve its Title
(section 1) will typically require changing the @attitle.

9. TERMINATION

You may not copy, modify, sublicense, or distribtite Document except as expressly provided for wtide License. Any other attempt to

copy, modify, sublicense or distribute the Docurisntoid, and will automatically terminate your liig under this License. However, parties
who have received copies, or rights, from you urbisr License will not have their licenses term@mhto long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, egVigersions of the GNU Free Documentation Licemem ftime to time. Such new

versions will be similar in spirit to the presenersion, but may differ in detail to address new bfgms or concerns. See
http://www.gnu.org/copyleft/

Each version of the License is given a distingmghiersion number. If the Document specifies thaggicular numbered version of this
License "or any later version" applies to it, yavé the option of following the terms and condisi@ither of that specified version or of any
later version that has been published (not as ) drathe Free Software Foundation. If the Docutwes not specify a version number of
this License, you may choose any version ever giédl (not as a draft) by the Free Software Founiati

External links

GNU Free Documentation Licen§#/ikipedia article on the license)

Official GNU FDL webpage
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