
 AN3992
 PIC32CM LS00/LS60 Security Reference Guide

Introduction
This document is intended to help the developer to use the PIC32CM LS00/LS60 security features for building secure
embedded applications.

The following application development aspects are covered in this document:

• Single and Dual-developer approach
• Secure solution development using the PIC32CM LS00/LS60 ecosystem
• Secure software protection using Arm® TrustZone® for ARMv8-M and Debug Access Levels
• System root of trust using Secure Boot with SHA256-based or HMAC-based authentication for PIC32CM LS00/

LS60
• Security standard support with Device Identity Composition Engine (DICE) based on Unique Device Secret

(UDS)
• Hardware/Software Cryptographic Accelerator (CRYA)
• System root of trust using Secure Boot with ATECC608B CryptoAuthentication™ Device for PIC32CM LS60

The use of key security features is illustrated using MPLAB Harmony v3 software examples on the following:

• Secure, Non-Secure, and Mix-Secure peripherals
• Data Flash and TrustRAM for storing and protecting application secrets using tamper detection, scrambling, and

silent accesses

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 1



Table of Contents

Introduction.....................................................................................................................................................1

1. Prerequisites........................................................................................................................................... 3

2. Introduction to PIC32CM LS00/LS60 Security Features.........................................................................4

2.1. TrustZone for ARMv8-M...............................................................................................................4
2.2. Peripherals Security Attribution..................................................................................................10
2.3. Security Configuration Lock Bit ................................................................................................. 14
2.4. Debug Access Level and Chip Erase.........................................................................................15
2.5. Secure Boot................................................................................................................................18
2.6. Secure Boot Using ATECC608B CryptoAuthentication™ Device (PIC32CM LS60 only)...........21
2.7. Device Identity Composition Engine...........................................................................................22
2.8. Cryptographic Accelerator..........................................................................................................24

3. PIC32CM LS00/LS60 Application Development................................................................................... 25

3.1. Single-Developer Approach....................................................................................................... 25
3.2. Dual-Developer Approach..........................................................................................................26
3.3. Develop a TrustZone Example (Developer A)............................................................................27
3.4. Develop a Non-Secure Project (Developer B)............................................................................39
3.5. Developing TrustZone Example with SHA256-based or HMAC-based Secure Boot (Developer

A)................................................................................................................................................47

4. Software Use Case Examples.............................................................................................................. 52

4.1. Non-Secure Peripheral (TC0).....................................................................................................52
4.2. Secure Peripheral (TC0)............................................................................................................ 55
4.3. Mix-Secure Peripheral (EIC)...................................................................................................... 57
4.4. TrustRAM................................................................................................................................... 59
4.5. Data Flash..................................................................................................................................61

5. Glossary................................................................................................................................................ 65

6. References............................................................................................................................................66

7. Revision History.................................................................................................................................... 67

The Microchip Website.................................................................................................................................68

Product Change Notification Service............................................................................................................68

Customer Support........................................................................................................................................ 68

Microchip Devices Code Protection Feature................................................................................................ 68

Legal Notice................................................................................................................................................. 69

Trademarks.................................................................................................................................................. 69

Quality Management System....................................................................................................................... 70

Worldwide Sales and Service.......................................................................................................................71

 AN3992

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 2



1. Prerequisites
Chapter 2 and Chapter 3 of this document describes how to develop or launch an MPLAB Harmony v3-based
TrustZone project for the PIC32CM LS00/LS60 Curiosity Pro board. The hardware and software requirements are
listed as follows:

Hardware Requirements:

• 1x PIC32CM LS00/LS60 Curiosity Pro board

Software Requirements:

• MPLAB X IDE most up-to-date version
• MPLAB Code Configurator (MCC) for MPLAB Harmony v3 up-to-date version

– csp package
– csp_apps_pic32cm_le_ls package (which contains the software examples mentioned in 4.  Software

Use Case Examples)
• Trust Platform Design Suite (TPDS) v2 (PIC32CM LS60 only)

 AN3992
Prerequisites

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 3



2. Introduction to PIC32CM LS00/LS60 Security Features

2.1 TrustZone for ARMv8-M
The central security element for the Microchip PIC32CM LS00/LS60 microcontrollers (MCUs) is the implementation
of the TrustZone for an ARMv8-M device. The TrustZone technology is a System-on-Chip (SoC) and MCU system-
wide approach to security that enables Secure and Non-Secure application code to run on a single MCU.

TrustZone for an ARMv8-M device is based on specific hardware that is implemented in the Cortex-M23 core,
which is combined with a dedicated Secure instruction set. It enables creating multiple software security domains
that restrict access to selected memory, peripherals, and I/O to trusted software without compromising system
performance.

The main goal of the TrustZone for an ARMv8-M device is to simplify the security assessment of a deeply embedded
device. The principle behind TrustZone for the ARMv8-M embedded software application is illustrated in the following
figure.

Figure 2-1. Standard Interactions Between Secure and Non-Secure States
DD-M1

In the PIC32CM LS00/LS60 Cortex-M23 core implementation, the security management is done using the
Implementation Defined Attribution Unit (IDAU). The IDAU interface controls the access to the execution of specific
instructions which are based on the current core security state and the address of the instruction. The following figure
illustrates the Core or Debugger access verification, performed by the system prior to allowing access to specific
memory region.

 AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 4



Figure 2-2. IDAU Interface and Memory Accesses

Core/Debugger
access

IDAU
Interface

Combine

Non‐Secure 
MPU

Non‐Secure 
MPU

IDAU
Responder

Cortex‐M23

Access to 
memory

Address

S / NS / NSC

PIC32CM LS00/LS60 

DD-M102

Thanks to this implementation, a simple function call or interrupt processing, results in a path to a specific security
state as illustrated in the following figure. This allows efficient calls by avoiding any code and execution overhead.

Figure 2-3. ARMv8-M with TrustZone States Transitions

Non‐Secure 
Handler
Mode

Secure
Handler
Mode

Non‐Secure 
Thread
Mode

Secure
Thread
Mode

Calls

Calls

ARMv8‐M with TrustZone

DD-M4

 AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 5



2.1.1 Memory Security Attribution
To differentiate and isolate Secure code from Non-Secure code, the PIC32CM LS00/LS60 device family is partitioned
with up to nine memory regions as illustrated in the following figure. Each region size is configurable using dedicated
NVM Configuration bit fields, such as BNSC, BOOTPROT, AS, ANSC, DS, and RS.

Figure 2-4. PIC32CM LS00/LS60 Memory Mapping

Secure Flash
(BOOT Region)

Non-Secure Callable Flash
(BOOT Region)

Secure Flash
(APPLICATION Region)

Non-Secure Callable Flash
(APPLICATION Region)

Non-Secure  Flash 
(APPLICATION Region)

Secure SRAM

Non-Secure SRAM

Secure Data Flash

Non-Secure Data Flash

0x0000 0000

BOOTPROT
(1)

0x100 – BNSC 0x20

BOOTPROT
(1)

0x100

(BOOTPROT
(1)

+ AS) 0x100 – ANSC 0x20

(BOOTPROT
(1)

+ AS) 0x100

0x0008 0000

0x0040 0000

0x40 0000 (DS 0x20) 

0x40 4000

0x2000 0000

0x2000 0000 (RS 0x80) 

0x2001 0000
SRAM (Up to 64 KB)

Data Flash (Up to 16 KB)

Flash (Up to 512 KB)

DD-M5

Notes: 
1. BOOTPROT = BS.
2. All the NVM Configuration bit field acronyms, shown in the figure above, are defined in the Glossary.

Each memory region is preconfigured in the hardware with one of the following attributes:

• Secure (S): Used for memory and peripherals, which are accessible only by secure software.
• Non-Secure Callable (NSC): A special type of secure memory location. It enables software transition from a

Non-Secure to a Secure state.
• Non-Secure (NS): Used for memory and peripherals, which are accessible by all software running on the

device.

The security attribute of each region will define the security state of the code stored in this region.

2.1.2 Secure and Non-Secure Function Call Mechanism
To prevent Secure code and data being accessed from a Non-Secure state, the Secure code must meet several
requirements. The responsibility for meeting these requirements is shared between the MCU architecture, software
architecture, and the toolchain configuration.

At the core level, a set of Secure instructions dedicated to ARMv8-M devices is used to preserve and protect the
Secure register values during the CPU security state transition.

• Secure Gateway (SG): Used for switching from a Non-Secure to a Secure state at the first instruction of a
Secure entry point

• Branch with eXchange to Non-Secure state (BXNS): Used by the Secure software to branch or return to the
Non-Secure program

• Branch with Link and eXchange to Non-Secure State (BLXNS): Used by the Secure software to call the
Non-Secure functions

At the toolchain level, a ‘C’ language extension (CMSE) provided by Arm must be used to ensure the use of
ARMv8-M Secure instruction.

At the software architecture level, specific Secure and Non-Secure function call mechanisms must be used to ensure
security, which are described in the following sections.

 AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 6



2.1.2.1 Non-Secure Callable APIs
When working with TrustZone for ARMv8-M, the application developer can define a set of Non-Secure Callable APIs
which can be used to access the Secure code from the Non-Secure world. These APIs, known as Secure Gateways
(SG) or veneers oversee the CPU security state switch, and allow the decoupling of Secure entry points from the
rest of the Secure code. Therefore, they limit the amount of code that can be potentially accessed by the non-secure
state.

SG are expected to be placed in the NSC memory regions, which are executable only when the CPU is in the
non-secure state. The rest of the secure code is expected to be placed in the Secure memory regions, which are not
accessible when the CPU is in the Non-Secure state as shown in the following figure:

Figure 2-5. Non-Secure Callable APIs Mechanism

Non-Secure Non-Secure Callable Secure

Non-Secure code Veneer Secure Function

SGBranch (BL L) Branch (BL)
1 2

Return (BXNS)
3

Using Non-Secure Callable APIs requires the use of specific Cortex-M23 instructions that ensure security during the
core security state switching. A direct API function call from the Non-Secure to the Secure software entry points is
allowed only if the first instruction of the entry points is an SG and is in a Non-Secure callable memory location. The
use of the special instructions (BXNS and BLXNS) are required to branch to Non-Secure code.

The following code illustrates a Secure function and its SG API declaration and definition using an XC32 toolchain
with a ‘C’ language extension (CMSE):

Nonsecure_entry.h

/* Non-secure callable functions */
extern int nsc_func1(int x);

Nonsecure_entry.c (linked in the NSC memory region of the device):

/* Non-secure callable (entry) functions */
int __attribute__((cmse_nonsecure_entry)) nsc_func1 (int x)
{
    return secure_func1 (x);
}

Secure_function.c (linked in the secure memory region of the device):

int secure_func1 (int x)
{
    return x + 3;
}

 AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 7



2.1.2.2 Non-Secure Software Callbacks
The Secure code can define and use software callbacks to execute functions from the Non-Secure world. This is a
consequence of separating Secure and Non-Secure code into separate executable files. The following figure shows
the software callback approach:

Figure 2-6. Non-Secure Software Callbacks Flow Chart

Secure world Non‐Secure world

Secure 
Driver/Handler

Return

Secure peripheral 
management or 
secure algorithm

Secure peripheral 
management or 
secure algorithm

Non‐Secure 
Callback

DD-M7

The management of callback functions can be performed using the BLXNS instruction. The following figure illustrates
the Non-Secure callback mechanism:

Figure 2-7. Non-Secure Software Callback Mechanism

Non-Secure Non-Secure Callable Secure

Non-Secure code Secure API Secure Function

Branch (BX)
2

Branch (BLXNS)
1

Note: The definition of Non-Secure software callback is done through a pointer to a Non-Secure code location. If not
correctly checked in the Secure application, a wrong use of pointers can lead to a security weakness that enables
the execution of any Secure functions by the Non-Secure code. To overcome these disadvantages, a set of CMSE
functions based on the new Cortex-M23 Test Target (TT) instructions is provided.

 AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 8



2.1.2.3 Security State and Call Mismatch
Any attempts to access Secure regions from the Non-Secure code, or a mismatch between the code that is executed
and the security state of the system results in a Hard Fault exception, as shown in the following figure:

Figure 2-8. Security State and Call Mismatch

2.1.3 Secure and Non-Secure Interrupts Handling
The Cortex-M23 (ARMv8-M architecture) uses the same exception stacking mechanism as the ARMv7-M
architecture, where a subset of core registers is stored automatically into the stack (hardware context saving). This
permits immediate execution of the interrupt handler without the need to perform a context save in the software. The
ARMv8-M extends this mechanism to provide enhanced security based on two different stack pointers: a Secure
stack pointer and a Non-Secure stack pointer.

According to the priority settings configured in the Nested Vector Interrupt Controller (NVIC), the Secure code can
interrupt the Non-Secure code execution, and the Non-Secure code can interrupt the Secure code execution. The
NVIC registers at the core level are duplicated. This allows two vector table definitions: one for Secure, and another
for Non-Secure.

At product start-up, all interrupts are mapped by default to the Secure world (Secure vector table). Specific CMSIS
functions accessible in the Secure world, allocate each interrupt vector to a Non-Secure handler (declared in the
Non-Secure vector table).

As illustrated in the following figure, if the Secure code is running when a higher priority Non-Secure interrupt arrives,
the core pushes all its register content into a dedicated Secure stack. Registers are then zeroed automatically to
prevent any information from being read, and the core executes the Non-Secure exception handler. When the Non-
Secure handler execution is finished, the hardware recovers all the registers from the Secure stack automatically.
This mechanism is managed in hardware and does not require any software intervention. This allows a Secure
handover from running Secure code to a Non-Secure interrupt handler, and returning to running Secure code.

Figure 2-9. Cortex-M23 Interrupt Mechanism

Return from Handler

Run Secure code

Run Non‐Secure Handler

Push Core registers

Zero Core registers

Switch to Non‐SecurePop Core registers

Switch to Secure

DD-M

 AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 9



2.2 Peripherals Security Attribution
The PIC32CM LS00/LS60 family of devices extends the concept of TrustZone to its integrated peripherals and offers
the possibility to allocate a specific peripheral to the Secure and Non-Secure world. The PIC32CM LS00/LS60 also
embeds peripherals that can share their resources between Secure and Non-Secure applications called Mix-Secure
peripherals. The management of each peripheral security attribution is done through the Peripheral Access Controller
(PAC).

Note:  The IDAU peripheral is always Secure and the DSU (Device Service Unit) peripheral is always Non-Secure.
Refer to the “PIC32CM LE00/LS00/LS60 Family Data Sheet” for additional information.

2.2.1 Secure and Non-Secure Peripherals
In the following figure, the PAC controller embeds a set of registers that define the security attribution of each
integrated peripheral of the system. These registers are configured at device startup by the ROM code which sets the
PAC.NONSECx registers according to the user configuration stored in the User Row (UROW) fuses.

Figure 2-10. PAC NONSECx Registers Description

DD-M11

Important: The peripherals security attribution cannot be changed by accessing the PAC.NONSECx
registers during application run-time unless the SECCFGLOCK bit is cleared before exiting the Boot ROM.
Refer to Security Configuration Lock Bit (SECCFGLOCK) for more information. Any changes must be
done using the User Row fuses and require a reset of the PIC32CM LS00/LS60 device. The application
can read the PAC.NONSECx register to get the current attribution of integrated peripherals.

Peripherals can be categorized into two groups depending on their PAC security attribution and their internal secure
partitioning capabilities (standard/mix-secure):

• Secure peripheral: A standard peripheral is configured as Secure in the PAC. The security attribution of the
whole peripheral is defined by the associated NONSECx fuse set to zero. Secure accesses to the peripheral are
granted. Non-Secure accesses are discarded (Write is ignored, Read 0x0) and a PAC error is triggered.

• Non-Secure peripheral: A standard peripheral is configured as Non-Secure in the PAC. The security attribution
of the whole peripheral is defined by the associated NONSECx fuse set to one. Secure and Non-Secure
accesses to the peripheral are granted.

When a peripheral is allocated to the Secure world, only secure accesses to its registers are granted, and interrupt
handling must be managed in the Secure world only.

 AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 10



2.2.2 Mix-Secure Integrated Peripherals
The PIC32CM LS00/LS60 family of devices embed five Mix-Secure peripherals, which allow part of their internal
resources to be shared between the Secure and Non-Secure applications:

• Peripheral Access Controller (PAC): Manages the peripherals security attribution (Secure or Non-Secure).
• Non-Volatile Memory Controller (NVMCTRL): Handles the Secure and Non-Secure Flash regions

programming.
• I/O Controller (PORT): Supports individual allocation of each I/O to the Secure or Non-Secure applications.
• External Interrupt Controller (EIC): Supports individual assignment of each external interrupt to the Secure or

Non-Secure applications.
• Event System (EVSYS): Supports individual assignment of each event channel to the Secure or Non-Secure

applications.

The capability for a Mix-Secure peripheral to share its internal resources depends on the security attribution of that
peripheral in the PAC peripheral (PAC Secured or PAC Non-Secured):

• When a Mix-Secure peripheral is secured (NONSECx fuse set to zero), the Secure application can allocate
internal peripheral resources to the Non-Secure application using dedicated registers

• When a Mix-Secure peripheral is Non-Secured (NONSECx fuse set to one), the peripheral behaves as a
standard Non-Secure peripheral. Secure and Non-Secure accesses to the peripheral register are granted.

2.2.2.1 Mix-Secure Peripheral (PAC Secured)
When a Mix-Secure peripheral is PAC Secured (associated PAC NONSECx fuses set to zero), the peripheral is
banked and accessible through two different memory aliases, as shown in the following figure:

Figure 2-11. PAC Secured Mix-Secure Peripheral Registers Addressing

…

Non‐Secure Alias

Secure Alias

…

Peripheral Registers

Peripheral Base Address
(PERIPH‐>xxx)

Peripheral Base Address + Offset
(PERIPH_SEC‐>xxx)

Logical addressing Physical addressing

DD-M12

The Secure world can then independently enable non-secure access to the internal peripheral resources using the
NONSEC register, as shown in the following figure for the External Interrupt Controller:

 AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 11



Figure 2-12. External Interrupt Controller NONSEC Register

DD-M13

The NONSEC register content can only be modified by the Secure world through the peripheral register secure alias
(PERIPH_SEC.NONSEC).

Setting a specific internal feature bitfield in the NONSEC register, enables access to the different bitfields associated
to this feature in the peripheral non-secure alias.

 AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 12



2.2.2.2 Mix-Secure Peripheral (PAC Non-Secured)
When a Mix-Secure peripheral is PAC Non-Secured (associated NONSECx fuses set to one), the peripheral behaves
as a standard Non-Secure peripheral.

Secure and Non-Secure accesses to the peripheral register are granted. The peripheral register mapping is shown in
the following figure:

Figure 2-13. PAC Non-Secured Mix-Secure Peripheral Registers Addressing

…

Non‐Secure Alias

Reserved

…

Peripheral Registers

Peripheral Base Address
(PERIPH‐>xxx)

Logical addressing Physical addressing

DD-M14

Managing PAC Non-Secured (Mix-Secured) peripherals at the application level is like managing a standard Non-
Secure peripheral.

 AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 13



2.3 Security Configuration Lock Bit
The Security Configuration Lock (SECCFGLOCK) bit is a bit from the BOCOR row that allows the modification of
the security configurations during the application execution by programming the different IDAU, PAC, and NVMCTRL
peripheral registers. The SECCFGLOCK bit brings an added value to the secure software code running out of the
Flash Boot region that gains this security feature (locking security configuration) compared to the one running out of
the Flash application region.

After exiting the Boot ROM:

• If SECCFGLOCK = 1:
– The security configurations are locked so that no code (even Secure) can change them before next reset

sequence.
– The only way to update the security configurations is to reprogram the NVM Configuration rows, and then

reset the device.
• If SECCFGLOCK = 0:

– The security configurations can be modified by the secure code during the application execution.
– It remains possible to update the security configurations by reprogramming the NVM Configuration rows,

and then resetting the device.

Therefore, the Secure software code of the Flash Boot region will have the responsibility to lock the security
configuration before passing control to the Secure software code of the Flash application region.

CAUTION
If BOCOR.SECCFGLOCK = 0, to guarantee the security of the overall application, it is critical that the
Secure software code of the Flash Boot region locks all the IDAU/PAC/NVMCTRL security configuration
registers and restores the Debug Access Level configuration:

• IDAU.SECCTRL.SCFGWEN = 0
• NVMCTRL.SECCTRL.SCFGWEN = 0
• PAC.WRCTRL = SECLOCK command for each peripheral (excluding IDAU/DSU which are always

locked)
• NVMCTRL.SECCTRL.DALUN =1 which restores DAL configuration

For additional information, refer to the Boot ROM, IDAU, NVMCTRL, and PAC sections in the “PIC32CM LE00/LS00/
LS60 Family Data Sheet”.

 AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 14



2.4 Debug Access Level and Chip Erase
The PIC32CM LS00/LS60 family of devices have the following configurable Debug Access Levels (DAL), which
restrict programming and debug access to the Secure and Non-Secure resources in the system.

• DAL2: Highest debug access level with no restrictions in terms of memory and peripheral accesses.
• DAL1: Access is limited to the Non-Secure memory regions. Secure memory region accesses are forbidden.
• DAL0: No access is authorized except with a debugger using the Boot ROM Interactive mode.

Note: For additional information on Boot ROM Interactive mode, refer to the chapter “Boot ROM”’ in the PIC32CM
LE00/LS00/LS60 Family Data Sheet.

The DAL is combined with three key protected ChipErase commands. These commands provide three levels of
Non-Volatile Memory erase granularity as shown in the following figure:

• ChipErase_ALL (CE2)
• ChipErase_S (CE1)
• ChipErase_NS (CE0)

Figure 2-14. ChipErase Commands

Secure Flash
(BOOT Region)

Non‐Secure Callable Flash
(BOOT Region)
Secure Flash

(APPLICATION Region)
Non‐Secure Callable Flash
(APPLICATION Region)

Non‐Secure Flash
(APPLICATION Region)

Secure Data Flash

Non‐Secure Data Flash

CMD CEx : 

CMD CEx : 

0 1 2

0 1 2

Ch
ip
Er
as
e_
N
S

Ch
ip
Er
as
e_
S

Ch
ip
Er
as
e_
AL
L

DD-M15

 AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 15



The configuration of the ChipErase command protection key is done through the BOCOR bit field configuration, as
shown in the following tables:

Table 2-1. PIC32CM LS00 BOCOR Mapping

Offset Bit
Pos.

Name

0x00-0x1 15:0 Reserved

0x02 23:16 BNSC Reserved

0x03 31:24 Reserved BNSC

0x04 39:32 BOOTOPT

0x05 47:40 BOOTPROT

0x06 55:48 Reserved DICEEN SECCFGLOCK BOOTPROT

0x07 63:56 Reserved BCREN BCWEN

0x08-0x0B 95:64 BOCORCRC

0x0C-0x0F 127:96 Reserved

0x10-0x1F 255:128 CEKEY0

0x20-0x2F 383:256 CEKEY1

0x30-0x3F 511:384 CEKEY2

0x40-0x4F 639:512 CRCKEY

0x50-0x6F 895:640 BOOTKEY

0x70-0x8F 1151:896 UDS

0x90-0xDF 1791:1152 Reserved

0xE0-0xFF 2047:1792 BOCORHASH

Table 2-2. PIC32CM LS60 BOCOR Mapping

Offset Bit
Pos.

Name

0x00-0x1 15:0 Reserved

0x02 23:16 BNSC Reserved

0x03 31:24 Reserved BNSC

0x04 39:32 BOOTOPT

0x05 47:40 BOOTPROT

0x06 55:48 Reserved DICEEN SECCFGLOCK BOOTPROT

0x07 63:56 Reserved BCREN BCWEN

0x08-0x0B 95:64 BOCORCRC

0x0C-0x0F 127:96 Reserved

0x10-0x1F 255:128 CEKEY0

0x20-0x2F 383:256 CEKEY1

0x30-0x3F 511:384 CEKEY2

0x40-0x4F 639:512 CRCKEY

0x50-0x6F 895:640 BOOTKEY

0x70-0x8F 1151:896 UDS

0x90-0xAF 1407:1152 IOPROTKEY

0xB0-0xDF 1791:1408 Reserved

0xE0-0xFF 2047:1792 BOCORHASH

 AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 16



The different ChipErase commands are used to increase the DAL level without compromising the code security.
Therefore, erase the code before changing to a higher DAL level as illustrated in the following figure:

Figure 2-15. PIC32CM LS00/LS60 DAL and ChipErase Mechanism

Note: 
1. BS = BOOTPROT for PIC32CM LS00/LS60 family of devices.

The MPLAB® X IDE provides an easy method to set the DAL and ChipErase commands.

Figure 2-16. ChipErase Commands Under MPLAB X IDE Project Tree

Note: This feature is available when the PIC32CM LS00/LS60 project is opened in MPLAB X IDE.

The PIC32CM LS00/LS60 ChipErase key fuses are also available in the Configuration Bits window of the MPLAB X
IDE: from the Toolbar, select Window > Target Memory Views > Configuration Bits.

 AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 17



Figure 2-17. ChipErase Key Fuses Setting in MPLAB X IDE Configuration Bits Window

DD-M72

2.5 Secure Boot
The PIC32CM LS00/LS60 Boot ROM is always executed at product startup. This software is ROM coded into the
device and cannot be bypassed by the user. Depending on the Boot Configuration Row (BOCOR) fuse setting, the
Boot ROM knows if a Secure Boot region is defined in the system.

The Boot ROM can perform an integrity check (SHA-256) or authenticate (SHA-256 + BOOTKEY or HMAC +
BOOTKEY) the firmware stored in the Secure Boot region prior to executing it. This verification mechanism is a key
element to consider for ensuring the system root of trust during deployment and execution of the Secure firmware.
The following figure illustrates the Secure Boot process with BOOTPROT verification:

Figure 2-18. Secure Boot Process with BOOTPROT Verification

Secure Flash
(BOOT Region)

Non‐Secure Callable Flash
(BOOT Region)
Secure Flash

(APPLICATION Region)
Non‐Secure Callable Flash
(APPLICATION Region)

Non‐Secure Flash
(APPLICATION Region)

0x0000 0000

BOOTPROT 1 0x100 – BNSC 0x20 

BOOTPROT 1 0x100

BOOTPROT 1  AS 0x100 – ANSC 0x20 

BOOTPROT 1  AS 0x100

0x0008 0000

Boot ROM

‐ Verify Secure Boot 
Region (optional)
‐ Jump at address 
0x00000000

ROM

Flash (Up to 512 KB)
(1) : BOOTPROT = BS

Note: The PIC32CM LS60 family of devices embeds an ATECC608B secure element allowing Secure Boot with
ATECC608B. Refer to the chapter ‘PIC32CM LS60 Secure Boot with ATECC608B CryptoAuthencitation™ Device’ for
more details

To validate the Secure Bootloader code stored in the device Flash BOOTPROT memory section, the ROM code
computes the digest/MAC of the Flash BOOTPROT using the Crypto Accelerator (CRYA) and compares it to a
reference digest/MAC (256 bits/32 bytes) stored in the device Secure Flash (BOOT region) memory section. This
reference digest/MAC is stored in the last 256 bits of the Secure Flash (BOOT region) as shown in the following
figure:

 AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 18



Figure 2-19. Reference Digest/MAC Location

DD-M20

If the verification result is equal to the reference digest/MAC, the Boot ROM starts the bootloader execution. Any
mismatch in the value puts the device in an endless loop preventing Flash code execution. Only a ChipErase_ALL
command allows the recovery from this device state. This command erases the full memory content and resets the
fuses to their factory settings.

The following fuses are used in the Secure Boot process configuration:

• BOOTPROT and BNSC: Defines the configuration of the boot section in the product Flash. The size of
the Secure and Non-Secure Callable boot sections can be customized according to the application needs.
These fuses are used for security memory allocation in the product IDAU, and for integrity and authentication
mechanisms when configured in the BOOTOPT fuse. Any change of the fuse setting requires a reset to be
considered by the device, as only the Boot ROM can change the IDAU setting.

• BOOTOPT: Defines the type of verification to be performed.
• BOOTKEY: A 256-bit key used for the authentication mechanism.

Table 2-3. PIC32CM LS00/LS60 BootKey Fuse Address

BOCOR Offset Bit Position Name

0x50-0x6F 895:640 BOOTKEY

Table 2-4. PIC32CM LS00 Secure Boot Verification Methods

BOOTOPT
BOOTPROT Region
Verification Method

BOCOR Row
Verification Method

0 Secure Boot Disabled

1 SHA-256

2 SHA-256 with BOOTKEY (1)

3 HMAC with BOOTKEY (1)

Others Reserved

 AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 19



Table 2-5. PIC32CM LS60 Secure Boot Verification Methods

BOOTOPT BOOTPROT region
Verification Method

NVM Boot
Configuration Row

(BOCOR)

0 Secure Boot Disabled

1 SHA-based Secure Boot

2 SHA-based Secure Boot with BOOTKEY(1)

3 HMAC-based Secure Boot with BOOTKEY(1)

4 ATECC608B-based Secure Boot SHA

5 ATECC608B-based Secure Boot SHA with BOOTKEY(1)

6-255 ATECC608B-based Secure Boot HMAC with BOOTKEY(1)

Notes: 
1. BOOTKEY is defined in the BOCOR row.
2. The PIC32CM LS60 family of devices embeds an ATECC608B secure element, allowing more BOOTPROT

verification methods. Refer to the PIC32CM LS60 Secure Boot with ATECC608B CryptoAuthentication™

Device for more details
3. Refer to the PIC32CM LE00/LS00/LS60 Family Data Sheet for additional information on the Secure Boot

process and the verification methods.

 AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 20



2.6 Secure Boot Using ATECC608B CryptoAuthentication™ Device (PIC32CM LS60
only)
The PIC32CM LS60 family of device embeds a provisioned variant of ATECC608B. The ATECC608B configuration of
the PIC32CM LS60 family is nearly identical to the TrustFLEX secure element known as ATECC608B-TFLXTLS.

The PIC32CM LS60 Boot ROM provides support for Secure Boot using ATECC608B. The general approach consists
in the Boot ROM using the ATECC608B to assist in authenticating and checking the integrity of an application code
that must be subsequently executed.

Note: Refer to the PIC32CM LE00/LS00/LS60 Family Data Sheet for additional information on the embedded
ATECC608B CryptoAuthentication device.

To ease the ATECC608B configuration and provisioning for the customer, Microchip has developed the Trust Platform
Design Suite (TPDS) v2: a dedicated software tool that helps to select the desired predefined use cases, test secure
element setup leveraging python executable tutorials, accelerate embedded prototype with the ‘C’ code examples,
and be autonomous during secret exchange.

To benefit from the ATECC608B-TFLXTLS secure element using a PIC32CM LS60 Curiosity Pro board for Secure
Boot, it is possible to run the PIC32CM LS60 Secure Boot use case under TPDS v2.

For additional information on TPDS v2 and its use cases, refer to the dedicated Trust Platform Design Suite v2 web
page on the Microchip website: www.microchip.com/en-us/product/SW-TPDSV2.

 AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 21

https://www.microchip.com/en-us/product/SW-TPDSV2


2.7 Device Identity Composition Engine
The Device Identifier Composition Engine (DICE) is a standard developed by the Trusted Computing Group (TCG) for
implementing attestation in low-cost IoT devices.

When enabled using the BOCOR.DICEEN fuse, the DICE engine generates the Compound Device Identifier (CDI) at
boot time that is based on a stored Unique Device Secret (UDS) key and the digest/MAC of the boot Flash image
(BOOTPROT region).

The CDI is written in the SRAM at the offset specified by the UROW.CDIROFFSET fuse, making it available for the
Boot Flash code for the attestation purpose. The Boot Flash code optionally can use the CDI to derive other keys for
attestation and encryption.

The Boot ROM will check if CDIROFFSET is within the maximum SRAM range, if not the CDI is not written.

Important: It is up to the user to ensure the CDI is written in the Secure SRAM region.

Figure 2-20. DICE CDI SRAM Location

Secure SRAM

CDI

Non‐Secure SRAM

0x2000 0000

0x2000 0000  UROW.CDIROFFSET

RS

DD-M24

 AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 22



2.7.1 Unique Device Secret
The Unique Device Secret (UDS) is a 256-bit symmetric key used to generate the CDI. The UDS key is only
accessible by the DICE engine and is only used for calculating the CDI at boot time.

Important:  The UDS must be accessible only during Boot ROM execution: BOCOR.BCWEN and
BOCOR.BCREN must be set both to ‘0’ and BOCOR.CECFGLOCK must be set to ‘1’ to follow DICE
standard.

The Unique Device Secret must be provisioned on the BOCOR.UDS fuse. It must be unique for each device and
have a strong entropy. If DICE is enabled but the UDS key is not provisioned (BOCOR.UDS is all 1’s), all zeros are
written to the CDI output.

Important:  Devices can be factory programmed with securely key provisioned software. Refer to the
“PIC32CM LE00/LS00/LS60 Family Data Sheet” for additional information.

CAUTION
A ChipErase_ALL (CE2) will reset the whole BOCOR including the provisioned UDS.

 AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 23



2.7.2 Compound Device Identifier
The Compound Device Identifier (CDI) is the output of the DICE module that is passed to the boot Flash code at a
specified memory location in the SRAM. The CDI can be used by the boot Flash code directly for attestation or to
derive other keys. For additional information, refer to the PIC32CM LE00/LS00/LS60 Family Data Sheet.

Figure 2-21. DICE CDI Key Generation Flow

DD-M25

2.8 Cryptographic Accelerator
The PIC32CM LS00/LS60 products embed a hardware or software cryptographic accelerator (CRYA) which supports
Advanced Encryption Standard (AES) encryption and decryption, Secure Hash Algorithm 2 (SHA-256) authentication,
Galois Counter Mode (GCM) encryption, and authentication through a set of APIs.

The following are key features of CRYA:

• Advanced Encryption Standard (AES) compliant with FIPS Publication 197
– Encryption with 128-bit, 192-bit, and 256-bit cryptographic key
– Decryption with 128-bit, 192-bit, and 256-bit cryptographic key

• Secure Hash Algorithm 2 (SHA-256), compliant with FIPS Pub 180-4
– Accelerates message schedule and inner compression loop

• Galois Counter Mode (GCM) encryption using AES engine and authentication
– Accelerates the GF(2128) multiplication for AES-GCM hash function

Refer to the PIC32CM LE00/LS00/LS60 Family Data Sheet for additional information on this feature.

 AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 24



3. PIC32CM LS00/LS60 Application Development
The combination of the system DAL and ChipErase commands with the TrustZone for Cortex®-M architecture
enables the developer to handle the following development and deployment approaches:

• Single-developer approach (Developer A)
• Dual-developer approach (Developer A + Developer B)

MPLAB Harmony v3 development tool coupled with MPLAB X IDE provides a full set of advanced features to
accelerate the development of a PIC32CM LS00/LS60 application. The following sections illustrate the approaches to
be followed by Developer A and Developer B to create and customize their application.

3.1 Single-Developer Approach
In a single-developer approach, the developer (Developer A) oversees the development and deployment of the
Secure and Non-Secure code. The Developer A’s application can be protected using DAL0. The following figure
illustrates a single-developer approach on the PIC32CM LS00/LS60 devices:

Figure 3-1. Single Developer Approach

Microchip Developer 
A End‐User

Blank PIC32CM 
LS00/LS60

DAL : 2 DAL : 0

Final 
Application

DD-M26

 AN3992
PIC32CM LS00/LS60 Application Development

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 25



3.2 Dual-Developer Approach
In a dual-developer approach, the first developer (Developer A) is in charge of developing the Secure application
and its associated Non-Secure callable library (.lib/.h), and providing a prebuilt Non-Secure project to the second
developer (Developer B). This Secure application is then loaded in the PIC32CM LS00/LS60 Flash and protected
using the set DAL1 command to prevent further access to the Secure memory region of the device.

A second developer (Developer B) will then start its development on a programmed PIC32CM LS00/LS60 with limited
access to Secure resources (call to Non-Secure API only). To achieve this, Developer B will use the Non-Secure
project and the NSC library provided by Developer A. The following figure illustrates the dual-developer approach on
the PIC32CM LS00/LS60 devices:

Figure 3-2. Dual-Developer Approach

Microchip Developer 
A

Blank PIC32CM 
LS00/LS60

DAL : 2 DAL : 1

Secure programmed 
PIC32CM LS00/LS60 

modules

DAL : 0

End‐User
Developer 

B

Final 
Application

Secure Project
+ NSC library 

(.lib/.h)

DD-M27

The following sections describe the application development and deployment process to be implemented for
Developer A and Developer B.

 AN3992
PIC32CM LS00/LS60 Application Development

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 26



3.3 Develop a TrustZone Example (Developer A)
To help Customer A to start with the PIC32CM LS00/LS60 (regardless of single or dual developer approaches),
MPLAB Harmony v3 provides pre-configured trustZone_basic_ls00 and trustZone_basic_ls60 examples
that illustrate the basic Secure and Non-Secure application execution as shown in the following figure. This template
can be used to evaluate and understand the TrustZone for ARMv8-M implementation in the device, or as a start-up
point for custom solution development.

Note: In the rest of the document, the generic name trustZone_basic will be used and refers to both PIC32CM
LS00/LS60 MPLAB Harmony v3 examples.

Figure 3-3. TrustZone_basic Example Overview
DD-M28

3.3.1 Opening a PIC32CM LS00/LS60 TrustZone Example from MPLAB Harmony v3
The trustZone_basic example is available in the MPLAB Harmony v3 framework.

Note: The user must ensure that the MPLAB Harmony v3 framework is installed. This folder can be downloaded
using the MPLAB Code Configurator (MCC) Content Manager. If the MPLAB Harmony framework is not installed
while opening an MCC project, the user can download the required package to the following path: C:\HF as an
example.

Follow these steps to open the software project:

1. Open MPLAB X IDE.
2. Select Toolbar > File > Open Project (Ctrl + Shift + O).
3. Navigate to C:\<Harmony3_Framework_Path>\csp_apps_pic32cm_le_ls\apps\trustZone.
4. Open the appropriate trustZone_basic example (depending on connected board).

When opened, the trustZone_basic example must appear in the MPLAB X IDE project tree as shown in the
following figure:

Figure 3-4. TrustZone_basic_ls00 Example Under MPLAB X IDE

 AN3992
PIC32CM LS00/LS60 Application Development

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 27



5. Set the Non-Secure project as the main project and then Flash the application.

3.3.2 TrustZone_basic Example Description
The PIC32CM LS00/LS60 trustZone_basic example provided with MPLAB Harmony v3 is composed of pre-
configured Non-Secure and Secure projects.

All the configuration aspects related to TrustZone for ARMv8-M implementation are already implemented to facilitate
the development process. The following sections describe the content of the example, and the key elements to be
modified to customize the solution according to the application needs.

3.3.2.1 Secure Project Description
The goal of the Secure project included in the PIC32CM LS00/LS60 trustZone_basic example is to provide
a configured development base for Secure code development. The Secure project is configured to illustrate the
following aspects of a standard Secure application on the PIC32CM LS00/LS60:

• Device resources attribution for the Secure and Non-Secure applications (fuse settings).
• Initialization of system security.
• Declaration of secure gateways with the Non-Secure application (veneers).
• Secure call to the Non-Secure application.

The following figure describes the file architecture of the configured Secure project:

Figure 3-5. TrustZone_basic Example: Secure Project Architecture

Nonsecure_entry.c: Contains the 
definition of the Non‐Secure Callable 
(NSC) gateway.

Config/packs folder: Contains the 
device configuration from MPLAB 
Harmony v3 development tool, the 
product DFP and the CMSIS header files.

Secure Main.c file: Contains the Secure 
application main routine

DD-M30

The following figure describes the main routine of the configured Secure project:

 AN3992
PIC32CM LS00/LS60 Application Development

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 28



Figure 3-6. TrustZone_basic Example: Secure Project Main Flowchart

DD-M31

The Secure main.c file must be used as a starting point for any secure application development.

3.3.2.2 Non-Secure Project Description
The Non-Secure project provided within the PIC32CM LS00/LS60 trustZone_basic example is a standard
application that runs in a Non-Secure world. This application can use all system resources allocated to the Non-
Secure world. It uses a programmed Non-Secure Callable (NSC) function using the nonsecure_entry.h provided
by Developer A. The Non-Secure project architecture is shown in the following figure:

 AN3992
PIC32CM LS00/LS60 Application Development

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 29



Figure 3-7. TrustZone_basic Example: Non-Secure Project Architecture

Config/packs folder: Contains the device 
configuration from MPLAB Harmony v3 
development tool, the product DFP and 
the CMSIS header files.

Nonsecure_entry.h: Contains the NSC 
gateway to the Secure project

Non‐Secure Main.c: Contains the Non‐
Secure application main routine

Secure loadable project: Contains the 
Secure application project that is loaded 
before the Non‐Secure project

DD-M32

The following flowchart describes the main routine of the configured Non-Secure project:

 AN3992
PIC32CM LS00/LS60 Application Development

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 30



Figure 3-8. TrustZone_basic Example: Non-Secure Project Main Flowchart
DD-M33

The Non-Secure main function illustrates the call of specific Secure code through gateways declared in the
nonsecure_entry.h file provided by the Secure application.

This Non-Secure main.c file can be used as a starting point for any Non-Secure applications development.

3.3.2.3 Memory Configuration with Arm® TrustZone® for Armv8-M Manager
The Arm® TrustZone® for Armv8-M Manager is a tool that allows the Memory Configuration and the Peripheral
Configuration to be set with a GUI for the PIC32CM LS00/LS60 devices. To access this window, the MPLAB
Harmony v3 development tool must be opened.

The following figure shows the PIC32CM LS00/LS60 memory configuration for the trustZone_basic example:

 AN3992
PIC32CM LS00/LS60 Application Development

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 31



Figure 3-9. TrustZone_basic Example: Memory Configuration DD-M34

Users can configure the Memory Configuration of the PIC32CM LS00/LS60 by accessing the System block in the
Project Graph view. Once selected, the following information will be displayed in the Configuration Options window.

Figure 3-10. Configuration Options Window
DD-M

Under System, expand Device & Project Configuration > PIC32CM5164LSXX100 Device Configuration > Memory
Configurator.

 AN3992
PIC32CM LS00/LS60 Application Development

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 32



Figure 3-11. TrustZone_basic Example: Memory Configuration Through System Block DD-M

3.3.2.4 NVM Configuration Rows Settings
To ease the definition and modification of application fuses, MPLAB Harmony v3 development tool allows the manual
configuration of all the NVM Configuration rows by accessing the Configuration Options window.

Important: The fuses used to partition the memory sections are directly computed and defined by the
MPLAB Harmony v3 development tool regarding the memory configuration of the device while generating
the project. These values are then set as preprocessed macros as shown in the next chapter.

Under System, expand Device & Project Configuration > PIC32CM5164LSXX100 Device Configuration > Fuse
Settings.

 AN3992
PIC32CM LS00/LS60 Application Development

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 33



Figure 3-12. NVM Configuration Bit fields Settings
DD-M

These fuses define the configuration of Boot modes, ChipErase, system peripherals (BOD and watchdog), IDAU
(Memory security attribution), and PAC (Peripheral security attribution), and must be modified according to the
application needs.

Note: To get more information concerning the description of the different NVM Configuration rows and bit fields, refer
to the NVM Configuration Rows chapter of the PIC32CM LE00/LS00/LS60 Family Data Sheet.

Any change to the fuse configuration requires a restart of the device, as fuses are handled by the Boot ROM
executed at device start-up. The Boot ROM is responsible for copying the configuration of the fuses in the different
peripheral registers, and then locking the configuration to any users (including Developer A) until the next boot.

Note: Refer to the Boot ROM chapter of the “PIC32CM LE00/LS00/LS60 Family Data Sheet” for additional
information on the Boot ROM.

3.3.2.5 Secure and Non-Secure Projects Linker Files
The Secure and Non-Secure projects share the same configured linker file which is available in the PIC32CM-
LS_DFP folder. This linker file is built to fit with the project configuration available in project Properties > XC32 (Global
Options) > xc32-ld > Symbols & Macros > Preprocessor macro definitions.

The following settings are generated by the MPLAB Harmony v3 development tool, which are based on the memory
configuration of the Arm® TrustZone® for Armv8-M Manager as shown in the following figure.

 AN3992
PIC32CM LS00/LS60 Application Development

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 34



Figure 3-13. Preprocessor Macro Definitions DD-M3

CAUTION
The preprocessor macros reflect the size of the memory space and not the fuse value that explains the
_SIZE suffix after the fuse name.

To ensure that the memory section definitions are in line with the fuse settings, the configured linker file is built as
follows:

#if defined(SECURE_BOOTLOADER)
#  define _SECURE
#  define TZ_ROM_ORIGIN (ROM_ORIGIN)
#  define TZ_ROM_LENGTH (BOOTPROT_SIZE)
#  define TZ_ROM_NSC_ORIGIN ((ROM_ORIGIN + BOOTPROT_SIZE) - BNSC_SIZE)
#  define TZ_ROM_NSC_LENGTH (BNSC_SIZE)
#  define TZ_RAM_ORIGIN (RAM_ORIGIN)
#  define TZ_RAM_LENGTH (RS_SIZE)
#elif defined(SECURE)
#  define _SECURE
#  define TZ_ROM_ORIGIN (ROM_ORIGIN + BOOTPROT_SIZE)
#  define TZ_ROM_LENGTH (AS_SIZE)
#  define TZ_ROM_NSC_ORIGIN (ROM_ORIGIN + ((BOOTPROT_SIZE + AS_SIZE) - ANSC_SIZE))
#  define TZ_ROM_NSC_LENGTH (ANSC_SIZE)
#  define TZ_RAM_ORIGIN (RAM_ORIGIN)
#  define TZ_RAM_LENGTH (RS_SIZE)
#elif defined(NONSECURE)
#  define TZ_ROM_ORIGIN (ROM_ORIGIN + (BOOTPROT_SIZE + AS_SIZE))
#  define TZ_ROM_LENGTH (ROM_LENGTH - (BOOTPROT_SIZE + AS_SIZE))
#  define TZ_RAM_ORIGIN (RAM_ORIGIN + RS_SIZE)
#  define TZ_RAM_LENGTH (RAM_LENGTH - RS_SIZE)
#endif

Depending on the project tag (SECURE, NONSECURE or SECURE_BOOTLOADER), the appropriate memory
space will be defined that allows for the modification of the project settings to fit with the application needs, without
modifying the linker file.

CAUTION
The preprocessor macro values can be modified manually in MPLAB X IDE project properties. However,
the MPLAB Harmony v3 and MPLAB X IDE projects configurations will not be aligned. Configure the
memory configuration in Arm® TrustZone® for Armv8-M Manager from the MHC Harmony v3 development
tool regarding the project needs, to ensure both MPLAB Harmony v3, and MPLAB X IDE project memory
configurations are aligned.

3.3.3 Debugging the trustZone_basic Example
When the device is in DAL = 2, the debugging of the full example (Secure + Non-Secure project) is allowed. The
following steps provide the capabilities of the MPLAB X IDE for debugging the TrustZone application:

 AN3992
PIC32CM LS00/LS60 Application Development

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 35



1. To build the example in MPLAB X IDE, click the  icon.
Note: The Non-Secure project must be set as the main project to re-build and load the full example.

2. Ensure that the PIC32CM LS00/LS60 debugger I/O is connected to a computer and is recognized.
3. Add a breakpoint on the result = secure_add(x,y) line in the Non-Secure project main.c file.

Figure 3-14. Adding a Breakpoint Line
DD-M88

4. Add a breakpoint on the return line of the secure_add in the Secure project nonsecure_entry.c file.
Figure 3-15. Adding a Breakpoint Line to secure_addDD-M89

CAUTION
When debugging the Secure application veneers, only hardware breakpoints must be used to stop
code execution on an SG instruction. Using software breakpoints implies the addition of a BKP
instruction before SG instruction, which triggers a Secure fault during the code execution. This
behavior is normal, as the first instruction to be executed when accessing the NSC region must be
an SG instruction.

 AN3992
PIC32CM LS00/LS60 Application Development

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 36



5. Start the debugging session by clicking the  button, and continue the debugging by clicking the

 button.
As a result, the debugger will stop successively on:

– The result = secure_add(x,y) function call (Non-Secure project).
– The secure_add return (Secure project).

3.3.4 Protecting the Secure Project Using Debug Access Levels
In a dual-developer deployment approach, it is important to protect the Secure memory regions (Secure application)
from further debugger accesses prior to delivering the programmed devices to Developer B. This can be done by
changing the DAL to DAL = 1 using the Device Actions commands as shown in the projects tree.

1. Close the debug session (if running).
2. Expand the Device Actions commands in the project tree (Secure or Non-Secure).

Figure 3-16. Device Actions Commands

DD-M

3. Double-click on the Set DAL 1 command.
4. After the following confirmation message is displayed, click OK.

Figure 3-17. DAL 1 Set Prompt Message
DD-M73

As a result, setting DAL = 1 prevents any future debug access to the Secure memory region of the device, as shown
in the following figure:

 AN3992
PIC32CM LS00/LS60 Application Development

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 37



Figure 3-18. DAL Protected Device Memory Region

Not accessible

Not accessible

Not accessible

Not accessible

Non‐Secure Flash
(APPLICATION Region)

Not accessible

Non‐Secure SRAM

Not accessible
Non‐Secure Data 

Flash

0x0000 0000

BOOTPROT
1

0x100 – BNSC 0x20 

BOOTPROT
1

0x100

BOOTPROT
1

 AS 0x100 – ANSC 0x20 

BOOTPROT
1

 AS 0x100

0x0008 0000

0x0040 0000

0x40 0000 DS 0x20  

0x40 4000

0x2000 0000

0x2000 0000 RS 0x80  

0x2001 0000
SRAM (Up to 64 KB)

Data Flash (Up to 16 KB)

Flash (Up to 512 KB)
(1) : BOOTPROT = BS

Note: 
1. BOOTPROT = BS.

Any future debug access to the Secure memory region will be refused by the device and reported as follows by
MPLAB X IDE.

Figure 3-19. The MPLAB X IDE Error Message at Runtime on DAL Protected Area

DD-M74

Important: Further development with the device may require the use of a standalone Non-Secure project.
Refer to Develop a Non-Secure Project (Developer B). To re-enable debug access on the Secure memory
regions, a ChipErase_ALL command (CE2) must be issued using the Device Actions commands. The
whole device memory and fuse settings are erased, and the Secure application must be reprogrammed in
the device.

 AN3992
PIC32CM LS00/LS60 Application Development

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 38



3.4 Develop a Non-Secure Project (Developer B)
In the Developer B context, the development starts with a programmed PIC32CM LS00/LS60 device that contains a
DAL1 protected Secure project with predefined veneers.

Figure 3-20. Develop a Non-Secure Project (Developer B)

Microchip Developer 
A

Blank PIC32CM 
LS00/LS60

DAL : 2 DAL : 1

Secure programmed 
PIC32CM LS00/LS60 

modules

DAL : 0

End‐User
Developer 

B

Final 
Application

Secure Project
+ NSC library 

(.lib/.h)

DD-M27

In this context, it is mandatory for Developer A to provide Non-Secure resource attribution descriptions, and a
Non-Secure callable function API library to Developer B.

Ideally, Developer A provides a preconfigured MPLAB Harmony v3 Non-Secure project to Developer B. The following
sections describe how to create and configure a Non-Secure project for a PIC32CM LS00/LS60 device embedding a
programmed DAL1 protected Secure application.

3.4.1 Creating a Non-Secure Project from MPLAB X IDE
Follow these steps to create a Non-Secure project using MPLAB X IDE:

1. Open MPLAB X IDE.

2. Select File > New Project (Ctrl + Shift + N), or from the Toolbar click the 

DD-M104

 button.
3. In the New Project Window, under Steps, select Choose Project.
4. In the right pane, under Categories, select Microchip Embedded, and then under Projects select Standalone

Project.
5. Click Next.

 AN3992
PIC32CM LS00/LS60 Application Development

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 39



Figure 3-21. MPLAB X IDE Standalone Project Creation: Choose Project Window
DD-M43

6. Select the option Select Device, and in the right pane select the PIC32CM LS00/LS60 device and the
appropriate tool, if available.

7. Click Next.
Figure 3-22. MPLAB X IDE Standalone Project Creation: Select Device Window DD-M4

8. Select the option Select Compiler, and in the right pane choose the latest XC32 Compiler Toolchain installed,
and then click Next.
Figure 3-23. MPLAB X IDE Standalone Project Creation: Select Compiler WindowDD-M79

 AN3992
PIC32CM LS00/LS60 Application Development

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 40



9. Select the option Select Project Name and Folder, and in the right pane enter details for Project Name and
Project Location, and then click Finish.
Figure 3-24. MPLAB X IDE Standalone Project Creation: Select Project Name and Folder Window

DD-M46

The following Non-Secure project details will be displayed.
Figure 3-25. MPLAB X IDE Standalone Project Creation: Non-Secure PIC32CMLS00 Project Tree

DD-M75

3.4.2 Project Configuration
After creating a Non-Secure project, follow these steps to configure it according to the preprogrammed Secure
project mapping and Secure gateway APIs:

1. Configure the project by aligning its linker file (using the pre-processor macros) to the Secure and Non-Secure
memories attribution predefined by Developer A.

2. Link the secure gateway library to the project.
3. Add the nonsecure_entry.h file to the project.

3.4.2.1 Aligning Pre-processor Macros for Linker File to the PIC32CM LS00/LS60 Non-Secure Memories
Attributions
Follow these steps to align the project preprocessor macros to the linker file according to the Secure and Non-Secure
memory space allocation as illustrated in the following figure:

 AN3992
PIC32CM LS00/LS60 Application Development

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 41



Figure 3-26. TrustZone Example Memory Attribution

Secure Flash
(APPLICATION Region)

Non‐Secure Callable Flash
(APPLICATION Region)

Non‐Secure Flash
(APPLICATION Region)

Secure SRAM

Non‐Secure SRAM

Secure Data Flash

0x0000 0000

0x0003 FE00

0x0004 0000

0x0008 0000

0x0040 0000

0x0040 4000

0x2000 0000

0x2000 8000

0x2001 0000
SRAM (Up to 64 KB)

Data Flash (Up to 16 KB)

Flash (Up to 512 KB)

(1) : BOOTPROT = BS

DD-M47

1. Open the Project Properties window and go to XC32 (Global Options) > xc32-ld > Symbols & Macros.

2. Click the  icon to the right of the ‘Preprocessor macro definitions’ as shown below.
Figure 3-27. Symbols and Macros

DD-M80

3. Enter the macros to fit with the TrustZone example memory attribution, and then click OK.

 AN3992
PIC32CM LS00/LS60 Application Development

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 42



Figure 3-28. Preprocessor Macro Definitions DD-M4

CAUTION
The preprocessor macros reflect the size of the memory space and not the value of the fuse.

3.4.2.2 Adding and Linking Secure Gateway Library to Non-Secure Project
Follow these steps to add and link the secure gateway library that is generated during secure application
development provided by Developer A:

1. Copy the provided secure gateway library into the Non-Secure folder.
Figure 3-29. Adding Secure Gateway Library to the Non-Secure Project

DD-M105

2. Link the secure gateway library to the Non-Secure project.
a. Open the Project Properties.
b. Under Categories, expand Conf (default) > XC32 (Global Options), and select xc32-ld.
c. For Option Categories, choose Libraries.

d. For Library directories, click the  icon and manually add the relative path "..\".
Figure 3-30. Adding Secure Gateway Library Directory to the Non-Secure Project

e. For Additional options, enter the library name and apply the modifications, and then click OK.

 AN3992
PIC32CM LS00/LS60 Application Development

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 43



Figure 3-31. Link Secure Gateway to the Non-Secure Project

DD-M81

3.4.2.3 Adding and Including Secure Gateway Header File
To add and include the secure gateway header file, perform these actions:

1. Copy the provided secure gateway header file into the Non-Secure folder.
Figure 3-32. Adding Secure Gateway Header File into the Non-Secure Folder

DD-M53

2. Right-click on the Non-Secure project in the project explorer, and then select Add Existing Item.
3. Select the secure gateway header file.

Figure 3-33. Select Secure Gateway Header File

DD-M

4. Add the secure gateway header at the beginning of the nonsecure_main.c file.

 AN3992
PIC32CM LS00/LS60 Application Development

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 44



Figure 3-34. Include nonsecure_entry Header File
DD-M

Important: Prior to loading the project on the target PIC32CM LS00/LS60 device, ensure that the
Erase All Before Programming check box is cleared ( under Program Options). This will prevent
the process from executing a ChipErase_ALL command and erase the programmed PIC32CM
LS00/LS60.

Figure 3-35. Uncheck Erase All Before Programming DD-M56

 AN3992
PIC32CM LS00/LS60 Application Development

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 45



5. Build the project by clicking the  icon, and verify no error is reported by the build process.
6. Launch the debug session and verify whether the project is working.

Important: Debugging the Non-Secure project requires a compatible programmed Secure application that
configures and starts the Non-Secure execution. If this Secure application is not available on the chip, the
debug process will hang.

 AN3992
PIC32CM LS00/LS60 Application Development

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 46



3.5 Developing TrustZone Example with SHA256-based or HMAC-based Secure Boot
(Developer A)
The PIC32CM LS00/LS60 devices offer two configurable memory sections for storing the Secure boot program.
These two sections are protected against ChipErase_S and ChipErase_NS offering possibilities to store the
Secure bootloader code as shown in the following figure.

Figure 3-36. Application with Secure Boot Program

Secure Flash
(BOOT Region)

Non‐Secure Callable Flash
(BOOT Region)

Secure Flash
(APPLICATION Region)

Non‐Secure Callable Flash
(APPLICATION Region)

Non‐Secure Flash
(APPLICATION Region)

CMD CEx :  0 1 2

Ch
ip
Er
as
e_
N
S

Ch
ip
Er
as
e_
S

Ch
ip
Er
as
e_
AL
L

0x0000 0000

BOOTPROT 0x100 – BNSC 0x20 

BOOTPROT 0x100

BOOTPROT  AS 0x100 – ANSC 0x20 

BOOTPROT  AS 0x100

0x0008 0000
Flash (Up to 512 KB)

DD-M57

In addition to ChipErase protection, the product Boot ROM offers the possibility to perform an integrity check or
authenticate the firmware stored in the Secure Boot section prior to executing it. This verification mechanism is a key
element to consider for ensuring the system root of trust during deployment and execution of the Secure firmware.

3.5.1 Opening a PIC32CM LS00/LS60 TrustZone Example with SHA256-based or HMAC-based Secure
Boot from MPLAB Harmony v3
To ease the development of an application with the Secure Boot program, MPLAB Harmony v3 provides predefined
trustZone_basic_with_SBoot_ls00 and trustZone_basic_with_SBoot_ls60 examples. These examples
can be used to evaluate and understand the solution architecture and to start the development of a custom
application featuring a Secure Boot project.

Note: In the rest of the document, the generic name trustZone_basic_with_SBoot will be used and refers to
both PIC32CM LS00/LS60 MPLAB Harmony v3 examples.

 AN3992
PIC32CM LS00/LS60 Application Development

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 47



Figure 3-37. TrustZone_basic_with_SBoot Example Overview

Secure Boot Project

bnsc_add

Non‐Secure Project

User application

TrustZone 
for Cortex‐M

Secure Project

bnsc_multiply

System start

ansc_add

ansc_multiply

System start

Function Call

Function Call

Function Call

Function Call

Start

Start

To open the pre-configured trustZone_basic_with_SBoot example, follow these steps:

1. Open MPLAB X IDE.
2. Select Toolbar > File > Open Project (Ctrl + Shift + O).
3. Navigate to C:\<Harmony3_Framework_Path>\csp_apps_pic32cm_le_ls\apps\trustZone.
4. Open the App and BS_App projects within the trustZone_basic_with_SBoot example (depending on

connected board).
When opened, the trustZone_basic_with_SBoot example must appear in the MPLAB X IDE project tree
as shown in the following figure:

Figure 3-38. TrustZone_basic_with_SBoot_ls00 Example: Project Tree

DD-M60

5. Run the application.
a. Set the BootSecure project as main then run the example.
b. Set the NonSecure project as main then run the example.

 AN3992
PIC32CM LS00/LS60 Application Development

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 48



3.5.2 TrustZone_basic_with_SBoot Example Description
PIC32CM LS00/LS60 trustZone_basic_with_SBoot example provided with MPLAB Harmony v3 is similar to
the trustZone_basic example described in the previous chapters; however, it embeds a Secure Boot program
(stored in the BOOTPROT memory region of the device).

3.5.2.1 Secure Boot Project Description
The goal of the Secure Boot project included in the trustZone_basic_with_SBoot example is to provide a
preconfigured development base for Secure boot code development on the PIC32CM LS00/LS60. The Secure
project is preconfigured to illustrate the following aspects of a standard Secure application on the PIC32CM LS00/
LS60:

• Definition and declaration of Secure Boot gateways with the Non-Secure world (veneers)
• Secure call to the Secure application

The following figure illustrates the file architecture of the pre-configured BootSecure project:

Figure 3-39. TrustZone_basic_with_SBoot Example: BootSecure Project Architecture

Config/packs folder: Contains the device 

configuration from MPLAB Harmony v3

development tool, the product DFP and 

the CMSIS header files.

Secure Main.c file: Contains the Boot Secure 

application main routine.

Nonsecure_entry.c: Contains the 

definition of the Non-Secure Callable 

(NSC) gateway.

Note: 
1. The Non-Secure project provided in the PIC32CM LS00/LS60 trustZone_basic_with_SBoot example

has the same architecture than the one presented for the trustZone_basic example. But it also includes
the BootSecure loadable project and the nonsecure_entry_bnsc.h file containing the boot secure
functions.

3.5.2.2 Memory Configuration with Arm® TrustZone® for Armv8-M Manager
The following figure shows the PIC32CM LS00/LS60 memory configuration for the
trustZone_basic_with_SBoot example:

 AN3992
PIC32CM LS00/LS60 Application Development

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 49



Figure 3-40. TrustZone_basic_with_SBoot Example: Memory Configuration
DD-M62

3.5.2.3 NVM Configuration Bit Fields Configuration
The following fuse sizes are defined in the preprocessor macros for the project:

Figure 3-41. Preprocessor Macros Configuration

DD-M

Note: The other fuses are set with their default value.

3.5.2.4 Enabling Secure Boot Process with BS Verification
Follow these steps to enable the Secure Boot process verification when working on an MPLAB Harmony v3
TrustZone project:

1. Perform a ChipErase_ALL command in Device Actions.
2. Run the trustZone_basic_with_SBoot application using MPLAB X IDE.
3. Change BOOTOPT fuse to 0x01, 0x02 or 0x03 using the Configuration Bits tool:

 AN3992
PIC32CM LS00/LS60 Application Development

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 50



Figure 3-42. Secure Boot Process with BOOTPROT Verification

DD-M63

Note: Setting the BOOTOPT fuse to 0x04, 0x05 or 0x06 on PIC32CM LS60 allows it to benefit from Secure Boot
with the ATECC608B. Refer to the PIC32CM LS60 Secure Boot with ATECC608B CryptoAuthentication™ Device
chapter for more details on this feature.

The reference hash will then be computed and written in memory automatically once BOOTOPT fuse is set as shown
in the following figure:

Figure 3-43. Secure Boot Application Reference Hash

Reference Hash

BNSC

DD-M77

 AN3992
PIC32CM LS00/LS60 Application Development

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 51



4. Software Use Case Examples

4.1 Non-Secure Peripheral (TC0)
This use case example describes how to configure a PIC32CM LS00/LS60 integrated peripheral (TC0) as a Non-
Secure peripheral using MPLAB Harmony v3. In this example, the Secure project allocates the PORT and TC
peripherals to the Non-Secure world, sets the system clocks and peripherals, and then jumps to the Non-Secure
application.

The Non-Secure application uses the TC0 to generate a PWM signal on PC19 (LED0). The following figure illustrates
the execution flow of the Secure main routine:

Figure 4-1. Non-Secure TC0 MPLAB Harmony v3 Use Case: Secure Application FlowchartDD-M64

The following figure illustrates the execution flow of the Non-Secure main routine:

 AN3992
Software Use Case Examples

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 52



Figure 4-2. Non-Secure TC0 MPLAB Harmony v3 Use Case: Non-Secure Application FlowchartDD-M65

To ease the secure state configuration of a peripheral, MPLAB Harmony v3 development tool provides the Peripheral
Configuration tool in the Arm® TrustZone® for Armv8-M Manager.

For this example, TC0 is set as Non-Secure and the appropriate box is highlighted in red in the Peripheral
Configuration window of the Arm® TrustZone® for Armv8-M Manager tool:

 AN3992
Software Use Case Examples

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 53



Figure 4-3. Non-Secure TC0 MPLAB Harmony v3 Use Case: Peripheral Configuration DD-M

The following pictures show the code generated by the MPLAB Harmony v3 development tool to allocate the TC0
peripheral to the Non-Secure world:

• TC0 allocation to the Non-Secure world in the fuses definition (Secure initialization.c file).
Figure 4-4. Non-Secure TC0 MPLAB Harmony v3 Use Case: TC0 Defined as Non-Secure

DD-M78

• TC0 peripheral interrupt allocation to the Non-Secure world (plib_nvic.c).
Figure 4-5. Non-Secure TC0 MPLAB Harmony v3 Use Case: TC0 Interrupt Defined as Non-Secure

DD-M82

 AN3992
Software Use Case Examples

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 54



4.2 Secure Peripheral (TC0)
This use case example demonstrates how to configure a PIC32CM LS00/LS60 integrated peripheral (TC0) as a
Secure peripheral. In this use case, the Secure project is in charge of configuring system resources and managing
the TC peripheral. It also provides specific TC0 APIs and Non-Secure callbacks to the Non-Secure world.

Note: This use case secure main routine is the same as the Non-Secure TC0 use case, but the SYS_Initialize
() content is different. Refer to the Non-Secure TC0 MPLAB Harmony v3 Use Case for more details.

The following figure illustrates the Non-Secure main flowchart of this application:

Figure 4-6. Secure TC0 MPLAB Harmony v3 Use Case: Non-Secure Main Routine Flowchart

Non‐secure 
callable

SecureNon‐secure

DD-M83

The following flowchart illustrates the TC0 interrupt handler routine for this use case:

 AN3992
Software Use Case Examples

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 55



Figure 4-7. Secure TC0 MPLAB Harmony v3 Use Case: TC Handler Flowchart

Non‐secure Secure

DD-M84

 AN3992
Software Use Case Examples

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 56



4.3 Mix-Secure Peripheral (EIC)
This use case example describes how to configure and use the PIC32CM LS00/LS60 Mix-Secure peripheral (EIC).
Using this example, the user can configure two interrupt lines, EXTINT2 and EXTINT12, and then allocate them to
the Non-Secure and Secure world.

The following figure illustrates the execution flow of the Secure main routine:

Figure 4-8. Mix-Secure EIC MPLAB Harmony v3 Use Case: Secure Application FlowchartDD-M85

The following figure illustrates the execution flow of the Non-Secure main routine:

 AN3992
Software Use Case Examples

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 57



Figure 4-9. Mix-Secure EIC MPLAB Harmony v3 Use Case: Non-Secure Application FlowchartDD-M86

 AN3992
Software Use Case Examples

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 58



4.4 TrustRAM
The TrustRAM (TRAM) embedded in the PIC32CM LS00/LS60 offers the following advanced security features for
secure information storage:

• Address and data scrambling
• Silent access
• Data remanence
• Active shielding and tamper detection
• Full erasure of scramble key and RAM data on tamper detection from PA08 (using a jumper)

In this example, the TrustRAM content is displayed and refreshed every second on a console (USART 3), allowing
users to experiment with static and dynamic tamper detections coupled with a TrustRAM full erase.

Figure 4-10. TrustRAM MPLAB Harmony v3 Use Case: Output
DD-M67

Figure 4-11. TrustRAM MPLAB Harmony v3 Use Case: TRAM Physical Content (Not Erased)

DD-M9

Note: This use case secure main routine is the same as the Non-Secure TC0 use case but the SYS_Initialize
() content is different. Refer to the TrustRAM MPLAB Harmony v3 Use Case for more details.

The following figure illustrates the execution flow of the Non-Secure main routine:

 AN3992
Software Use Case Examples

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 59



Figure 4-12. TrustRAM MPLAB Harmony v3 Use Case: Non-Secure Application Flowchart

Non‐secure Non‐secure 
callable

Secure
DD-M69

 AN3992
Software Use Case Examples

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 60



4.5 Data Flash
The Data Flash embedded in the PIC32CM LS00 offers the following advanced security features for secure
information storage:

• Data Flash Scramble
• Silent access to selected row
• Tamper erase of selected row (TEROW) on tamper detection from PA08 (using a jumper)

Two Data Flash use cases are explained below, that illustrate the configuration of the NVMCTRL for Secure Data
Flash management:

• Data Flash Scrambling activated with key: 0x123456.
• Silent access enabled on the first Data Flash ROW.

In these examples, the Secure Data Flash row 0 is erased and its content is displayed. Then the Secure Data Flash
security features are enabled, the row 0 is filled with a 0xCAFEDECA pattern, and the row 0 content is displayed on
the console.

4.5.1 Secure Data Flash with Data Flash Scrambling
Figure 4-13. Secure Data Flash with Data Flash Scramble MPLAB Harmony v3 Use Case: Output

DD-M98

 AN3992
Software Use Case Examples

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 61



Figure 4-14. Secure Data Flash with Data Flash Scramble MPLAB Harmony v3 Use Case: Data Flash Physical
Content (Not Erased)

DD-M99

4.5.2 Secure Data Flash with Silent Access
Figure 4-15. Secure Data Flash with Silent Access MPLAB Harmony v3 Use Case: Output

DD-M100

 AN3992
Software Use Case Examples

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 62



Figure 4-16. Secure Data Flash with Silent Access MPLAB Harmony v3 Use Case: Data Flash Physical
Content (Not Erased)

DD-M101

Note: 
The secure main routine for both examples is the same as the Non-Secure TC0 use case but the SYS_Initialize
() content is different. Refer to the Secure Data Flash with Silent Access MPLAB Harmony v3 Use Case: Non-
Secure Application Flowchart use case for additional information.

The following figure illustrates the execution flow of the Non-Secure main routine for Secure Data Flash with Silent
Access use case:

 AN3992
Software Use Case Examples

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 63



Figure 4-17. Secure Data Flash with Silent Access MPLAB Harmony v3 Use Case: Non-Secure Application
Flowchart

Non‐secure Non‐secure 
callable

Secure

DD-M87

 AN3992
Software Use Case Examples

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 64



5. Glossary
The following table provides a list of NVM Configuration bit field acronyms used throughout this document and their
definitions:

Acronyms
NVM Configuration

Row
Definition

BOOTPROT (BOOT Protection) BOCOR Defines the size of the (S) + (NSC) sub-regions of the BOOT region

BOOTOPT (BOOT Option) BOCOR Defines the Secure Boot check applied to the BOOTPROT sub-region

BNSC (BOOT Non-Secure Callable) BOCOR Defines the size of the (NSC) sub-region of the BOOT region

AS (APPLICATION Secure) UROW Defines the size of the (S) + (NSC) sub-regions of the APPLICATION region

ANSC (APPLICATION Non-Secure
Callable)

UROW Defines the size of the (NSC) sub-region of the APPLICATION region

RS (SRAM Secure) UROW Defines the size of the (S) region of the SRAM region

DS (Data Flash Secure) UROW Defines the size of the (S) region of the Data Flash region

 AN3992
Glossary

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 65



6. References
• PIC32CM LE00/LS00/LS60 Family Data Sheet (DS60001615)
• PIC32CM LE00/LS00/LS60 Family Silicon Errata and Data Sheet Clarifications (DS80000906)
• PIC32CM LE00/LS00/LS60 Curiosity Pro User Guide (DS70005443)

 AN3992
References

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 66



7. Revision History

Revision C - 08/2022
The following updates were incorporated for this revision:

• Added all new content to Security Configuration Lock Bit (SECCFGLOCK)
• Updated the description for the figure with bulleted line items in Debug Access Level (DAL) and Chip Erase
• Replaced the content of the second half of the topic with all new content in Secure Boot Using ATECC608B

CryptoAuthentication Device (PIC32CM LS60 only)
• Updated Figure 3-37 with a new image in Opening a PIC32CM LS00/LS60 TrustZone Example with SHA256-

based or HMAC-based Secure Boot from MPLAB Harmony v3

Revision B - 01/2022
The following updates were incorporated for this revision:

• Updated the product naming throughout the document to add in the PIC32CM LS60
• Updated all references of TrustZone-M Manager to Arm® TrustZone® for Armv8-M Manager throughout the

document
• Added content for the CRYA and ATECC608B to the Introduction
• Updated Prerequisites to include the PIC32CM LS60 Curiosity Pro Board and Trust Platform Design Suite
• Introduced new figures to include the PIC32CM LS60 in the following sections:

– TrustZone for ARMv8-M
– Single Developer Approach
– Dual Developer Approach
– Opening a PIC32CM LS00 TrustZone Example from MPLAB Harmony v3
– Develop a Non-Secure Project (Developer B)
– Creating a Non-Secure Project from MPLAB X IDE
– Align Pre-processor Macros for Linker File to the PIC32CM LS00/LS60 Non-Secure Memories Attributions
– Adding and Linking Secure Gateway Library to Non-Secure Project
– Adding and Including Secure Gateway Header File
– Opening a PIC32CM LS00 TrustZone Example with SHA256-based or HMAC-based Secure Boot from

MPLAB Harmony v3
– Non-Secure Peripheral (TC0)

• Added a PIC32CM LS60 BOCOR Mapping table to Debug Access Level (DAL) and Chip Erase
• Added new notes and a table to Secure Boot
• Added a new note to Develop a TrustZone Example (Developer A)
• Added a new note to Enabling Secure Boot Process with BS Verification
• Added the following NEW sections:

– Crypto Accelerator (CRYA)
– PIC32CM LS60 Secure Boot with ATECC608B CryptoAuthentication™ Device

Revision A - 04/2021
This is the initial release of this document.

 AN3992
Revision History

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 67



The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specifications contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is secure when used in the intended manner and under normal

conditions.
• There are dishonest and possibly illegal methods being used in attempts to breach the code protection features

of the Microchip devices. We believe that these methods require using the Microchip products in a manner
outside the operating specifications contained in Microchip’s Data Sheets. Attempts to breach these code
protection features, most likely, cannot be accomplished without violating Microchip’s intellectual property rights.

• Microchip is willing to work with any customer who is concerned about the integrity of its code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code

protection does not mean that we are guaranteeing the product is “unbreakable.” Code protection is constantly
evolving. We at Microchip are committed to continuously improving the code protection features of our products.
Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act.
If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue
for relief under that Act.

 AN3992

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 68

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support


Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip
products. Information regarding device applications and the like is provided only for your convenience and may be
superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP “AS IS”. MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE
OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR
CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE
WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR
THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk,
and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or
expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo,
MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip
Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer,
Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed
Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC,
ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra,
TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching,
BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge,
In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto,
maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE,
Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad,
SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense,
VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2022, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-6683-1091-5

 AN3992

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 69



Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

 AN3992

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 70

http://www.microchip.com/quality


AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS00003992C-page 71

http://www.microchip.com/support
http://www.microchip.com

	Introduction
	Table of Contents
	1. Prerequisites
	2. Introduction to PIC32CM LS00/LS60 Security Features
	2.1. TrustZone for ARMv8-M
	2.1.1. Memory Security Attribution
	2.1.2. Secure and Non-Secure Function Call Mechanism
	2.1.2.1. Non-Secure Callable APIs
	2.1.2.2. Non-Secure Software Callbacks
	2.1.2.3. Security State and Call Mismatch

	2.1.3. Secure and Non-Secure Interrupts Handling

	2.2. Peripherals Security Attribution
	2.2.1. Secure and Non-Secure Peripherals
	2.2.2. Mix-Secure Integrated Peripherals
	2.2.2.1. Mix-Secure Peripheral (PAC Secured)
	2.2.2.2. Mix-Secure Peripheral (PAC Non-Secured)


	2.3. Security Configuration Lock Bit
	2.4. Debug Access Level and Chip Erase
	2.5. Secure Boot
	2.6. Secure Boot Using ATECC608B CryptoAuthentication™ Device (PIC32CM LS60 only)
	2.7. Device Identity Composition Engine
	2.7.1. Unique Device Secret
	2.7.2. Compound Device Identifier

	2.8. Cryptographic Accelerator

	3. PIC32CM LS00/LS60 Application Development
	3.1. Single-Developer Approach
	3.2. Dual-Developer Approach
	3.3. Develop a TrustZone Example (Developer A)
	3.3.1. Opening a PIC32CM LS00/LS60 TrustZone Example from MPLAB Harmony v3
	3.3.2. TrustZone_basic Example Description
	3.3.2.1. Secure Project Description
	3.3.2.2. Non-Secure Project Description
	3.3.2.3. Memory Configuration with Arm® TrustZone® for Armv8-M Manager
	3.3.2.4. NVM Configuration Rows Settings
	3.3.2.5. Secure and Non-Secure Projects Linker Files

	3.3.3. Debugging the trustZone_basic Example
	3.3.4. Protecting the Secure Project Using Debug Access Levels

	3.4. Develop a Non-Secure Project (Developer B)
	3.4.1. Creating a Non-Secure Project from MPLAB X IDE
	3.4.2. Project Configuration
	3.4.2.1. Aligning Pre-processor Macros for Linker File to the PIC32CM LS00/LS60 Non-Secure Memories Attributions
	3.4.2.2. Adding and Linking Secure Gateway Library to Non-Secure Project
	3.4.2.3. Adding and Including Secure Gateway Header File


	3.5. Developing TrustZone Example with SHA256-based or HMAC-based Secure Boot (Developer A)
	3.5.1. Opening a PIC32CM LS00/LS60 TrustZone Example with SHA256-based or HMAC-based Secure Boot from MPLAB Harmony v3
	3.5.2. TrustZone_basic_with_SBoot Example Description
	3.5.2.1. Secure Boot Project Description
	3.5.2.2. Memory Configuration with Arm® TrustZone® for Armv8-M Manager
	3.5.2.3. NVM Configuration Bit Fields Configuration
	3.5.2.4. Enabling Secure Boot Process with BS Verification



	4. Software Use Case Examples
	4.1. Non-Secure Peripheral (TC0)
	4.2. Secure Peripheral (TC0)
	4.3. Mix-Secure Peripheral (EIC)
	4.4. TrustRAM
	4.5. Data Flash
	4.5.1. Secure Data Flash with Data Flash Scrambling
	4.5.2. Secure Data Flash with Silent Access


	5. Glossary
	6. References
	7. Revision History
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

