
 2019 Microchip Technology Inc. DS50002895A

MPLAB® XC32 C/C++ Compiler
User’s Guide for

PIC32C/SAM MCUs

DS50002895A-page 2  2019 Microchip Technology Inc.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Trademarks
The Microchip name and logo, the Microchip logo, Adaptec,
AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT,
chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex,
flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck,
LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi,
Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer,
PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire,
Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST,
SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA
are registered trademarks of Microchip Technology Incorporated in
the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company,
EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load,
IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision
Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire,
SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub,
TimePictra, TimeProvider, Vite, WinPath, and ZL are registered
trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard,
CryptoAuthentication, CryptoAutomotive, CryptoCompanion,
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker,
KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,
PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and
ZENA are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.
The Adaptec logo, Frequency on Demand, Silicon Storage
Technology, and Symmcom are registered trademarks of Microchip
Technology Inc. in other countries.
GestIC is a registered trademark of Microchip Technology Germany
II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in
other countries.
All other trademarks mentioned herein are property of their
respective companies.

© 2019, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-4735-1For information regarding Microchip’s Quality Management Systems,
please visit www.microchip.com/quality.

www.microchip.com/quality
www.microchip.com/quality

 2019 Microchip Technology Inc. DS50002895A-page 3

MPLAB® XC32 C/C++ COMPILER
USER’S GUIDE FOR
PIC32C/SAM MCUs

Table of Contents

Preface .. 7

Chapter 1. Compiler Overview
1.1 Compiler Description and Documentation ... 13
1.2 Device Support .. 14
1.3 Compiler and Other Development Tools ... 15

Chapter 2. Common C Interface
2.1 Background – The Desire for Portable Code .. 17
2.2 Using the CCI .. 19
2.3 ANSI Standard Refinement ... 20
2.4 ANSI Standard Extensions .. 27
2.5 Compiler Features ... 34

Chapter 3. How To’s
3.1 Installing and Activating the Compiler ... 35
3.2 Invoking the Compiler .. 36
3.3 Writing Source Code ... 38
3.4 Getting My Application to Do What I Want .. 46
3.5 Understanding the Compilation Process ... 49
3.6 Fixing Code That Does Not Work .. 56

Chapter 4. XC32 Toolchain and MPLAB X IDE
4.1 MPLAB X IDE and Tools Installation ... 59
4.2 MPLAB X IDE Setup ... 60
4.3 MPLAB X IDE Projects .. 61
4.4 Project Setup ... 62
4.5 Project Example .. 70

Chapter 5. Compiler Command Line Driver
5.1 Invoking the Compiler .. 73
5.2 The C Compilation Sequence ... 76
5.3 The C++ Compilation Sequence ... 78
5.4 Runtime Files .. 80
5.5 Start-Up and Initialization .. 82
5.6 Compiler Output .. 82
5.7 Compiler Messages ... 84
5.8 Driver Option Descriptions .. 84

Chapter 6. ANSI C Standard Issues
6.1 Divergence from the ANSI C Standard ... 105
6.2 Extensions to the ANSI C Standard .. 105
6.3 Implementation-Defined Behavior ... 106

Chapter 7. Device-Related Features

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 4  2019 Microchip Technology Inc.

7.1 Device Support ..107
7.2 Device Header Files ...107
7.3 Stack ..107
7.4 Configuration Bit Access ..108
7.5 Using SFRs From C Code ...109
7.6 Tightly-Coupled Memories ...111

Chapter 8. Supported Data Types and Variables
8.1 Identifiers ...113
8.2 Data Representation ..113
8.3 Integer Data Types ..113
8.4 Floating-Point Data Types ...115
8.5 Structures and Unions ...117
8.6 Pointer Types ...119
8.7 Complex Data Types ...121
8.8 Constant Types and Formats ...121
8.9 Standard Type Qualifiers ...123
8.10 Compiler-Specific Qualifiers ...124
8.11 Variable Attributes ..124

Chapter 9. Memory Allocation and Access
9.1 Address Spaces ...127
9.2 Variables in Data Memory ..127
9.3 Auto Variable Allocation and Access ...129
9.4 Variables in Program Memory ...130
9.5 Variables in Registers ..131
9.6 Dynamic Memory Allocation ..132

Chapter 10. Operators and Statements
10.1 Integral Promotion ..133
10.2 Type References ..134
10.3 Labels as Values ..135
10.4 Conditional Operator Operands ...135
10.5 Case Ranges ...136

Chapter 11. Fixed-Point Arithmetic Support
11.1 Enabling Fixed-Point Arithmetic Support ...137
11.2 Data Types ...137
11.3 External Definitions ..138
11.4 C Operators ...139
11.5 Unsupported Features ...139

Chapter 12. Register Usage
12.1 Register Usage ..141
12.2 Register Conventions ...141

Chapter 13. Functions
13.1 Writing Functions ...143
13.2 Function Attributes and Specifiers ...143
13.3 Allocation of Function Code ...147
13.4 Changing the Default Function Allocation ..147
13.5 Function Size Limits ...147
13.6 Function Parameters ..147
13.7 Function Return Values ...150
13.8 Calling Functions ...150
13.9 Inline Functions ..150

 2019 Microchip Technology Inc. DS50002895A-page 5

Chapter 14. Interrupts
14.1 Interrupt Operation .. 153
14.2 Writing an Interrupt Service Routine ... 153
14.3 Associating a Handler Function with an Exception ... 154
14.4 Exception Handlers ... 157
14.5 Interrupt Service Routine Context Switching ... 158
14.6 Latency .. 158
14.7 Enabling/Disabling Interrupts .. 159
14.8 ISR Considerations ... 159

Chapter 15. Main, Runtime Start-up and Reset
15.1 The Main Function ... 161
15.2 Runtime Start-up Code .. 161

Chapter 16. Library Routines
16.1 Using Library Routines .. 165

Chapter 17. Mixing C/C++ and Assembly Language
17.1 Mixing Assembly Language and C Variables and Functions 167
17.2 Using Inline Assembly Language .. 170
17.3 Predefined Macro .. 173

Chapter 18. Optimizations

Chapter 19. Preprocessing
19.1 Preprocessor Directives .. 177
19.2 C/C++ Language Comments ... 178
19.3 Pragma Directives ... 179
19.4 Predefined Macros .. 180

Chapter 20. Linking Programs
20.1 Replacing Library Symbols .. 183
20.2 Linker-Defined Symbols .. 183

Appendix A. Embedded Compiler Compatibility Mode
A.1 Compiling in Compatibility Mode ... 185
A.2 Syntax Compatibility ... 185
A.3 Data Type ... 186
A.4 Operator .. 186
A.5 Extended Keywords .. 187
A.6 Intrinsic Functions ... 188
A.7 Pragmas .. 188

Appendix B. Implementation-Defined Behavior
B.1 Overview ... 191
B.2 Translation .. 191
B.3 Environment .. 191
B.4 Identifiers .. 192
B.5 Characters .. 192
B.6 Integers ... 193
B.7 Floating-Point .. 194
B.8 Arrays and Pointers .. 195
B.9 Hints .. 195
B.10 Structures, Unions, Enumerations, and Bit Fields .. 195
B.11 Qualifiers ... 196
B.12 Declarators .. 196
B.13 Statements .. 196

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 6  2019 Microchip Technology Inc.

B.14 Pre-Processing Directives ...197
B.15 Library Functions ...198
B.16 Architecture ...201

Appendix C. Built-In Functions
C.1 Built-In Function Descriptions (PIC32C) ..204

Appendix D. ASCII Character Set

Appendix E. Document Revision History

Support ... 209

Glossary ... 211

Index ... 231

Worldwide Sales and Service ... 241

MPLAB® XC32 C/C++ COMPILER
USER’S GUIDE FOR

PIC32C/SAM MCUs

Preface
MPLAB® XC32 C/C++ Compiler for PIC32C/SAM documentation and support informa-
tion is discussed here:

DOCUMENT LAYOUT

This document describes how to use GNU language tools to write code for 32-bit
applications. The document layout is as follows:

• Chapter 1. Compiler Overview – describes the compiler, development tools and
feature set.

• Chapter 2. Common C Interface – explains what you need to know about making
code portable.

• Chapter 3. How To’s – contains help and references for frequently encountered
situations when building projects.

• Chapter 4. XC32 Toolchain and MPLAB X IDE – guides you through the toolchain
and IDE setup.

• Chapter 5. Compiler Command Line Driver – describes how to use the compiler
from the command line.

• Chapter 6. ANSI C Standard Issues – describes the differences between the
C/C++ language supported by the compiler syntax and the standard ANSI-89 C.

• Chapter 7. Device-Related Features – describes the compiler header and register
definition files, as well as how to use them with the SFRs.

• Chapter 8. Supported Data Types and Variables – describes the compiler integer
and pointer data types.

• Chapter 9. Memory Allocation and Access – describes the compiler run-time
model, including information on sections, initialization, memory models, the
software stack and much more.

• Chapter 10. Operators and Statements – discusses operators and statements.

• Chapter 11. Fixed-Point Arithmetic Support – describes the fixed-point types and
operations supported.

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and documenta-
tion are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions
may differ from those in this document.

For the most up-to-date information on development tools, see the MPLAB® IDE or MPLAB X IDE
Help. Select the Help menu and then “Topics” or “Help Contents” to open a list of available Help files.

For the most current PDFs, please refer to our web site (http://www.microchip.com). Documents are
identified by “DSXXXXXA,” where “XXXXX” is the document number and “A” is the revision level of
the document. This number is located on the bottom of each page, in front of the page number.
 2019 Microchip Technology Inc. DS50002895A-page 7

Compiler User’s Guide for PIC32C/SAM MCUs
• Chapter 12. Register Usage – explains how to access and use SFRs.

• Chapter 13. Functions – details available functions.

• Chapter 14. Interrupts – describes how to use interrupts.

• Chapter 15. Main, Runtime Start-up and Reset – describes important elements of
C/C++ code.

• Chapter 16. Library Routines – explains how to use libraries.

• Chapter 17. Mixing C/C++ and Assembly Language – provides guidelines for
using the compiler with 32-bit assembly language modules.

• Chapter 18. Optimizations – describes optimization options.

• Chapter 19. Preprocessing – details the preprocessing operation.

• Chapter 20. Linking Programs – explains how linking works.

• Appendix A. Embedded Compiler Compatibility Mode – discusses using the
compiler in compatibility mode.

• Appendix B. Implementation-Defined Behavior – details compiler-specific
parameters described as implementation-defined in the ANSI standard.

• Appendix C. Built-In Functions – lists the built-in functions of the C compiler.

• Appendix D. ASCII Character Set – contains the ASCII character set.

• Appendix E. Document Revision History – information on previous and current
revisions of this document.
DS50002895A-page 8  2019 Microchip Technology Inc.

Preface
CONVENTIONS USED

The following conventions may appear in this documentation:

DOCUMENTATION CONVENTIONS

Description Represents Examples

Arial font:

Italic characters Referenced books MPLAB® X IDE User’s Guide

Emphasized text ...is the only compiler...

Initial caps A window the Output window

A dialog the Settings dialog

A menu selection select Enable Programmer

Quotes A field name in a window or dia-
log

“Save project before build”

Underlined, italic text with
right angle bracket

A menu path File>Save

Bold characters A dialog button Click OK

A tab Click the Power tab

Text in angle brackets < > A key on the keyboard Press <Enter>, <F1>

Courier font:

Plain Courier Sample source code #define START

Filenames autoexec.bat

File paths c:\mcc18\h

Keywords _asm, _endasm, static

Command-line options -Opa+, -Opa-

Bit values 0, 1

Constants 0xFF, ’A’

Italic Courier A variable argument file.o, where file can be
any valid filename

Square brackets [] Optional arguments mpasmwin [options] file
[options]

Curly brackets and pipe
character: { | }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0|1}

Ellipses... Replaces repeated text var_name [,
var_name...]

Represents code supplied by
user

void main (void)
{ ...
}

 2019 Microchip Technology Inc. DS50002895A-page 9

Compiler User’s Guide for PIC32C/SAM MCUs
RECOMMENDED READING

The MPLAB® XC32 language toolsuite for PIC32 MCUs consists of a C compilation
driver (xc32-gcc), a C++ compilation driver (xc32-g++), an assembler (xc32-as), a
linker (xc32-ld), and an archiver/librarian (xc32-ar). This document describes how to
use the MPLAB XC32 C/C++ Compiler. Other useful documents are listed below. The
following Microchip documents are available and recommended as supplemental ref-
erence resources.

Release Notes (Readme Files)

For the latest information on Microchip tools, read the associated Release Notes
(HTML files) included with the software.

MPLAB® XC32 Assembler, Linker and Utilities User’s Guide
(DS50002186)

A guide to using the 32-bit assembler, object linker, object archiver/librarian and various
utilities.

32-Bit Language Tools Libraries (DS50001685)

Lists all library functions provided with the MPLAB XC32 C/C++ Compiler with detailed
descriptions of their use.

Dinkum Compleat Libraries

The Dinkum Compleat Libraries are organized into a number of headers – files that you
include in your program to declare or define library facilities. A link to the Dinkum Com-
pleat Libraries is available on the My MPLAB X IDE tab, References & Featured Links
section of the MPLAB X IDE application.

PIC32 Configuration Settings

Lists the Configuration Bit settings for the Microchip PIC32 devices supported by the
#pragma config of the MPLAB XC32 C/C++ Compiler.

Device-Specific Documentation

The Microchip website contains many documents that describe 32-bit device functions
and features. Among these are:

• Individual and family data sheets

• Family reference manuals

• Programmer’s reference manuals

C Standards Information

American National Standard for Information Systems – Programming Language – C.
American National Standards Institute (ANSI), 11 West 42nd. Street, New York,
New York, 10036.

This standard specifies the form and establishes the interpretation of programs
expressed in the programming language C. Its purpose is to promote portability,
reliability, maintainability and efficient execution of C language programs on a
variety of computing systems.

C++ Standards Information

Stroustrup, Bjarne, C++ Programming Language: Special Edition, 3rd Edition.
Addison-Wesley Professional; Indianapolis, Indiana, 46240.
DS50002895A-page 10  2019 Microchip Technology Inc.

Preface
ISO/IEC 14882 C++ Standard. The ISO C++ Standard is standardized by ISO (The
International Standards Organization) in collaboration with ANSI (The American
National Standards Institute), BSI (The British Standards Institute) and DIN (The
German national standards organization).

This standard specifies the form and establishes the interpretation of programs
expressed in the programming language C++. Its purpose is to promote portability,
reliability, maintainability and efficient execution of C++ language programs on a
variety of computing systems.

C Reference Manuals

Harbison, Samuel P. and Steele, Guy L., C A Reference Manual, Fourth Edition,
Prentice-Hall, Englewood Cliffs, N.J. 07632.

Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language, Second
Edition. Prentice Hall, Englewood Cliffs, N.J. 07632.

Kochan, Steven G., Programming In ANSI C, Revised Edition. Hayden Books,
Indianapolis, Indiana 46268.

Plauger, P.J., The Standard C Library, Prentice-Hall, Englewood Cliffs, N.J. 07632.

Van Sickle, Ted., Programming Microcontrollers in C, First Edition. LLH Technology
Publishing, Eagle Rock, Virginia 24085.

GCC Documents

http://gcc.gnu.org/onlinedocs/

http://sourceware.org/binutils/

Arm Reference Document

Arm® C Language Extensions, Release 1.1, Document number IHI 0053B, Date of
Issue 12/11/13.

This document specifies the Arm C Language Extensions to enable C/C++
programmers to exploit the Arm architecture with minimal restrictions on source
code portability.
 2019 Microchip Technology Inc. DS50002895A-page 11

http://gcc.gnu.org/onlinedocs/
http://sourceware.org/binutils/

Compiler User’s Guide for PIC32C/SAM MCUs
NOTES:
DS50002895A-page 12  2019 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
USER’S GUIDE FOR
PIC32C/SAM MCUs

 2019 Microchip Technology Inc. DS50002895A-page 13

Chapter 1. Compiler Overview

1.1 COMPILER DESCRIPTION AND DOCUMENTATION

The MPLAB XC32 C/C++ Compiler is a full-featured, optimizing compiler that trans-
lates standard ANSI C programs into 32-bit device assembly language source. The
toolchain supports the PIC32C and SAM microcontroller families using an Arm®
Cortex®-Mx cores. The compiler also supports many command-line options and lan-
guage extensions that allow full access to the 32-bit device hardware capabilities, and
affords fine control of the compiler code generator.

The compiler is a port of the GCC compiler from the Free Software Foundation.

The compiler is available for several popular operating systems, including Windows®,
Linux® and Mac OS® X.

The compiler can run in Free or PRO operating mode. The PRO operating mode is a
licensed mode and requires an activation key and Internet connectivity to enable it.
Free mode is available for unlicensed customers. The basic compiler operation, sup-
ported devices and available memory are identical across all modes. The modes only
differ in the level of optimization employed by the compiler.

1.1.1 Conventions

Throughout this manual, the term “the compiler” is often used. It can refer to either all,
or some subset of, the collection of applications that form the MPLAB XC32 C/C++
Compiler. Often it is not important to know, for example, whether an action is performed
by the parser or code generator application, and it is sufficient to say it was performed
by “the compiler”.

It is also reasonable for “the compiler” to refer to the command-line driver (or just driver)
as this is the application that is always executed to invoke the compilation process. The
driver for the MPLAB XC32 C/C++ Compiler package is called xc32-gcc. The driver for
the C/ASM projects is also xc32-gcc. The driver for C/C++/ASM projects is xc32-g++.
The drivers and their options are discussed in Section 5.8 “Driver Option Descriptions”.
Following this view, “compiler options” should be considered command-line driver
options, unless otherwise specified in this manual.

Similarly “compilation” refers to all, or some part of, the steps involved in generating
source code into an executable binary image.

1.1.2 ANSI C Standards

The compiler is a fully validated compiler that conforms to the ANSI C standard as
defined by the ANSI specification (ANSI x3.159-1989) and described in Kernighan and
Ritchie’s The C Programming Language (second edition). The ANSI standard includes
extensions to the original C definition that are now standard features of the language.
These extensions enhance portability and offer increased capability. In addition,
language extensions for PIC32 MCU embedded-control applications are included.

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 14  2019 Microchip Technology Inc.

1.1.3 Optimization

The compiler uses a set of sophisticated optimization passes that employ many
advanced techniques for generating efficient, compact code from C/C++ source. The
optimization passes include high-level optimizations that are applicable to any C/C++
code, as well as PIC32 MCU-specific optimizations that take advantage of the particu-
lar features of the device architecture.

For more on optimizations, see Chapter 18. “Optimizations”.

1.1.4 ANSI Standard Library Support

The compiler is distributed with a complete ANSI C standard library. All library functions
have been validated and conform to the ANSI C library standard. The library includes
functions for string manipulation, dynamic memory allocation, data conversion, time-
keeping and math functions (trigonometric, exponential and hyperbolic). The standard
I/O functions for file handling are also included, and, as distributed, they support full
access to the host file system using the command-line simulator. The fully functional
source code for the low-level file I/O functions is provided in the compiler distribution,
and may be used as a starting point for applications that require this capability.

1.1.5 ISO/IEC C++ Standard

The compiler is distributed with the 2003 Standard C++ Library.

1.1.6 Compiler Driver

The compiler includes a powerful command-line driver program. Using the driver
program, application programs can be compiled, assembled and linked in a single step.

1.1.7 Documentation

This version of the C compiler is supported under MPLAB X IDE v5.20 or higher is
required.

1.2 DEVICE SUPPORT

The MPLAB XC32 C/C++ Compiler fully supports most Microchip PIC32C, SAM,
CEC17, MEC15 and MEC17 devices.

Note: Do not specify an MPLAB XC32 system include directory (e.g.,
/pic32c/include/) in your project properties.The xc32-gcc compilation
drivers automatically select the XC libc and their respective include-file
directory for you. The xc32-g++ compilation drivers automatically select the
Dinkumware libc and their respective include-file directory for you. The Din-
kum C libraries can only be used with the C++ compiler. Manually adding a
system include file path may disrupt this mechanism and cause the incor-
rect libc include files to be compiled into your project, causing a conflict
between the include files and the library. Note that adding a system include
path to your project properties has never been a recommended practice.

Compiler Overview

 2019 Microchip Technology Inc. DS50002895A-page 15

1.3 COMPILER AND OTHER DEVELOPMENT TOOLS

The compiler works with many other Microchip tools including:

• MPLAB XC32 assembler and linker - see the “MPLAB® XC32 Assembler, Linker
and Utilities User’s Guide” (DS50002186).

• MPLAB X IDE (v5.20 or higher).

• The MPLAB Simulator.

• All Microchip debug tools and programmers.

• Demo boards and starter kits that support 32-bit devices.

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 16  2019 Microchip Technology Inc.

NOTES:

MPLAB® XC32 C/C++ COMPILER
USER’S GUIDE FOR

PIC32C/SAM MCUs

Chapter 2. Common C Interface
The Common C Interface (CCI) is available with all MPLAB XC C compilers and is
designed to enhance code portability between these compilers. For example,
CCI-conforming code would make it easier to port from a PIC18 MCU using the MPLAB
XC8 C compiler to a PIC32 MCU using the MPLAB XC32 C/C++ Compiler.

The CCI assumes that your source code already conforms to the ANSI Standard. If you
intend to use the CCI, it is your responsibility to write code that conforms. Legacy proj-
ects will need to be migrated to achieve conformance. A compiler option must also be
set to ensure that the operation of the compiler is consistent with the interface when the
project is built.

2.1 BACKGROUND – THE DESIRE FOR PORTABLE CODE

All programmers want to write portable source code.

Portability means that the same source code can be compiled and run in a different
execution environment than that for which it was written. Rarely can code be one hun-
dred percent portable, but the more tolerant it is to change, the less time and effort it
takes to have it running in a new environment.

Embedded engineers typically think of code portability as being across target devices,
but this is only part of the situation. The same code could be compiled for the same
target but with a different compiler. Differences between those compilers might lead to
the code failing at compile time or runtime, so this must be considered as well.

You can only write code for one target device and only use one brand of compiler; but
if there is no regulation of the compiler’s operation, simply updating your compiler
version can change your code’s behavior.

Code must be portable across targets, tools, and time to be truly flexible.

Clearly, this portability cannot be achieved by the programmer alone, since the com-
piler vendors can base their products on different technologies, implement different fea-
tures and code syntax, or improve the way their product works. Many a great compiler
optimization has broken many an unsuspecting project.

Standards for the C language have been developed to ensure that change is managed
and code is more portable. The American National Standards Institute (ANSI) pub-
lishes standards for many disciplines, including programming languages. The ANSI C
Standard is a universally adopted standard for the C programming language.

2.1.1 The ANSI Standard

The ANSI C Standard has to reconcile two opposing goals: freedom for compilers ven-
dors to target new devices and improve code generation, with the known functional
operation of source code for programmers. If both goals can be met, source code can
be made portable.

The standard is implemented as a set of rules which detail not only the syntax that a
conforming C program must follow, but the semantic rules by which that program will
be interpreted. Thus, for a compiler to conform to the standard, it must ensure that a
conforming C program functions as described by the standard.
 2019 Microchip Technology Inc. DS50002895A-page 17

Compiler User’s Guide for PIC32C/SAM MCUs
The standard describes implementation, the set of tools and the runtime environment
on which the code will run. If any of these change, for example, you build for, and run
on, a different target device, or if you update the version of the compiler you use to
build, then you are using a different implementation.

The standard uses the term behavior to mean the external appearance or action of the
program. It has nothing to do with how a program is encoded.

Since the standard is trying to achieve goals that could be construed as conflicting,
some specifications appear somewhat vague. For example, the standard states that an
int type must be able to hold at least a 16-bit value, but it does not go as far as saying
what the size of an int actually is; and the action of right-shifting a signed integer can
produce different results on different implementations; yet, these different results are
still ANSI C compliant.

If the standard is too strict, device architectures cannot allow the compiler to conform.1
But, if it is too weak, programmers would see wildly differing results within different
compilers and architectures, and the standard would lose its effectiveness.

The standard organizes source code whose behavior is not fully defined into groups
that include the following behaviors:

Code that strictly conforms to the standard does not produce output that is dependent
on any unspecified, undefined, or implementation-defined behavior. The size of an int,
which was used as an example earlier, falls into the category of behavior that is defined
by implementation. That is to say, the size of an int is defined by which compiler is
being used, how that compiler is being used, and the device that is being targeted.

All the MPLAB XC compilers conform to the ANSI X3.159-1989 Standard for program-
ming languages (with the exception of the MPLAB XC8 compiler’s inability to allow
recursion, as mentioned in the footnote). This is commonly called the C89 Standard.
Some features from the later standard, C99, are also supported.

For freestanding implementations (or for what are typically called embedded applica-
tions), the standard allows non-standard extensions to the language, but obviously
does not enforce how they are specified or how they work. When working so closely to
the device hardware, a programmer needs a means of specifying device setup and
interrupts, as well as utilizing the often complex world of small-device memory
architectures. This cannot be offered by the standard in a consistent way.

While the ANSI C Standard provides a mutual understanding for programmers and
compiler vendors, programmers need to consider the implementation-defined behavior
of their tools and the probability that they may need to use extensions to the C language
that are non-standard. Both of these circumstances can have an impact on code
portability.

1. For example, the mid-range PIC® microcontrollers do not have a data stack. Because a compiler
targeting this device cannot implement recursion, it (strictly speaking) cannot conform to the ANSI
C Standard. This example illustrates a situation in which the standard is too strict for mid-range
devices and tools.

Implementation-defined
behavior

This is unspecified behavior in which each
implementation documents how the choice is made.

Unspecified behavior The standard provides two or more possibilities and
imposes no further requirements on which possibility is
chosen in any particular instance.

Undefined behavior This is behavior for which the standard imposes no
requirements.
DS50002895A-page 18  2019 Microchip Technology Inc.

Common C Interface
2.1.2 The Common C Interface

The Common C Interface (CCI) supplements the ANSI C Standard and makes it easier
for programmers to achieve consistent outcomes on all Microchip devices when using
any of the MPLAB XC C compilers.

It delivers the following improvements, all designed with portability in mind.

2.2 USING THE CCI

The CCI allows enhanced portability by refining implementation-defined behavior and
standardizing the syntax for extensions to the language.

The CCI is something you choose to follow and put into effect, thus it is relevant for new
projects, although you can choose to modify existing projects so they conform.

For your project to conform to the CCI, you must do the following things.

• Enable the CCI

Select the MPLAB X IDE option Use CCI Syntax in your project, or use the
command-line option that is equivalent (See Section 2.5.1 “Enabling the CCI”).

• Include <xc.h> in every module

Some CCI features are only enabled if this header is seen by the compiler.

• Ensure ANSI compliance

Code that does not conform to the ANSI C Standard does not confirm to the CCI.

• Observe refinements to ANSI by the CCI

Some ANSI implementation-defined behavior is defined explicitly by the CCI.

• Use the CCI extensions to the language

Use the CCI extensions rather than the native language extensions.

The next sections detail specific items associated with the CCI. These items are seg-
regated into those that refine the standard, those that deal with the ANSI C Standard
extensions, and other miscellaneous compiler options and usage. Guidelines are
indicated with these items.

Refinement of the
ANSI C Standard

The CCI documents specific behavior for some code in which
actions are implementation-defined behavior under the ANSI
C Standard. For example, the result of right-shifting a signed
integer is fully defined by the CCI. Note that many
implementation-defined items that closely couple with device
characteristics, such as the size of an int, are not defined by
the CCI.

Consistent syntax
for non-standard
extensions

The CCI non-standard extensions are mostly implemented
using keywords with a uniform syntax. They replace keywords,
macros and attributes that are the native compiler implementa-
tion. The interpretation of the keyword can differ across each
compiler, and any arguments to the keywords can be device
specific.

Coding guidelines The CCI can indicate advice on how code should be written so
that it can be ported to other devices or compilers. While you
may choose not to follow the advice, it will not conform to the
CCI.
 2019 Microchip Technology Inc. DS50002895A-page 19

Compiler User’s Guide for PIC32C/SAM MCUs
If any implementation-defined behavior or any non-standard extension is not discussed
in this document, then it is not part of the CCI. For example, GCC case ranges, label
addresses are not part of the CCI. Programs which use these features do not conform
to the CCI. The compiler may issue a warning or error to indicate a non-CCI feature has
been used and the CCI is enabled.

2.3 ANSI STANDARD REFINEMENT

The following topics describe how the CCI refines the implementation-defined
behaviors outlined in the ANSI C Standard.

2.3.1 Source File Encoding

Under the CCI, a source file must be written using characters from the 7-bit ASCII set.
Lines can be terminated using a line feed ('\n') or carriage return ('\r') that is immediately
followed by a line feed. Escaped characters can be used in character constants or
string literals to represent extended characters that are not in the basic character set.

2.3.1.1 EXAMPLE

The following shows a string constant being defined that uses escaped characters.

const char myName[] = "Bj\370rk\n";

2.3.1.2 DIFFERENCES

All compilers have used this character set.

2.3.1.3 MIGRATION TO THE CCI

No action required.

2.3.2 The Prototype for main

The prototype for the main() function is:

int main(void);

2.3.2.1 EXAMPLE

The following shows an example of how main() might be defined

int main(void)
{

while(1)
process();

}

2.3.2.2 DIFFERENCES

The 8-bit compilers used a void return type for this function.

2.3.2.3 MIGRATION TO THE CCI

Each program has one definition for the main() function. Confirm the return type for
main() in all projects previously compiled for 8-bit targets.
DS50002895A-page 20  2019 Microchip Technology Inc.

Common C Interface
2.3.3 Header File Specification

Header file specifications that use directory separators do not conform to the CCI.

2.3.3.1 EXAMPLE

The following example shows two conforming include directives.

#include <usb_main.h>
#include "global.h"

2.3.3.2 DIFFERENCES

Header file specifications that use directory separators have been allowed in previous
versions of all compilers. Compatibility problems arose when Windows-style separa-
tors “\” were used and the code was compiled under other host operating systems.
Under the CCI, no directory separators should be used.

2.3.3.3 MIGRATION TO THE CCI

Any #include directives that use directory separators in the header file specifications
should be changed. Remove all but the header file name in the directive. Add the direc-
tory path to the compiler’s include search path or MPLAB X IDE equivalent. This will
force the compiler to search the directories specified with this option.

For example, the following code:

#include <inc/lcd.h>

should be changed to:

#include <lcd.h>

and the path to the inc directory added to the compiler’s header search path in your
MPLAB X IDE project properties, or on the command-line as follows:

-Ilcd

2.3.4 Include Search Paths

When you include a header file under the CCI, the file should be discoverable in the
paths searched by the compiler that are detailed below.

Header files specified in angle bracket delimiters (< >) should be discoverable in the
search paths that are specified by -I options (or the equivalent MPLAB X IDE option),
or in the standard compiler include directories. The -I options are searched in the
order in which they are specified.

Header files specified in quote characters (" ") should be discoverable in the current
working directory or in the same directories that are searched when the header files are
specified in angle bracket delimiters (as above). In the case of an MPLAB X project, the
current working directory is the directory in which the C source file is located. If unsuc-
cessful, the search paths should point to the same directories searched when the
header file is specified in angle bracket delimiters.

Any other options to specify search paths for header files do not conform to the CCI.

2.3.4.1 EXAMPLE

If including a header file, as in the following directive:

#include "myGlobals.h"

The header file should be locatable in the current working directory, or the paths spec-
ified by any -I options, or the standard compiler directories. A header file being located
elsewhere does not conform to the CCI.
 2019 Microchip Technology Inc. DS50002895A-page 21

Compiler User’s Guide for PIC32C/SAM MCUs
2.3.4.2 DIFFERENCES

The compiler operation under the CCI is not changed. This is purely a coding guideline.

2.3.4.3 MIGRATION TO THE CCI

Remove any option that specifies header file search paths other than the -I option (or
the equivalent MPLAB X IDE option) and use the -I option in place of this. Ensure the
header file can be found in the directories specified in this section.

2.3.5 The Number of Significant Initial Characters in an Identifier

At least the first 255 characters in an identifier (internal and external) are significant.
This extends upon the requirement of the ANSI C Standard that states a lower number
of significant characters are used to identify an object.

2.3.5.1 EXAMPLE

The following example shows two poorly named variables, but names which are
considered unique under the CCI.

int stateOfPortBWhenTheOperatorHasSelectedAutomaticModeAndMotorIsRunningFast;
int stateOfPortBWhenTheOperatorHasSelectedAutomaticModeAndMotorIsRunningSlow;

2.3.5.2 DIFFERENCES

The XC32 compilers did not impose a limit on the number of significant characters.

2.3.5.3 MIGRATION TO THE CCI

No action required. You can take advantage of the less restrictive naming scheme.

2.3.6 Sizes of Types

The sizes of the basic C types, for example char, int and long, are not fully defined
by the CCI. These types, by design, reflect the size of registers and other architectural
features in the target device. They allow the device to efficiently access objects of this
type. The ANSI C Standard does, however, indicate minimum requirements for these
types, as specified in <limits.h>.

If you need fixed-size types in your project, use the types defined in <stdint.h>, for
example, uint8_t or int16_t. These types are consistently defined across all XC
compilers, even outside of the CCI.

Essentially, the C language offers a choice of two groups of types: those that offer sizes
and formats that are tailored to the device you are using; or those that have a fixed size,
regardless of the target.

2.3.6.1 EXAMPLE

The following example shows the definition of a variable, native, whose size will allow
efficient access on the target device; and a variable, fixed, whose size is clearly
indicated and remains fixed, even though it may not allow efficient access on every
device.

int native;
int16_t fixed;

2.3.6.2 DIFFERENCES

This is consistent with previous types implemented by the compiler.
DS50002895A-page 22  2019 Microchip Technology Inc.

Common C Interface
2.3.6.3 MIGRATION TO THE CCI

If you require a C type that has a fixed size, regardless of the target device, use one of
the types defined by <stdint.h>.

2.3.7 Plain char Types

The type of a plain char is unsigned char. It is generally recommended that all
definitions for the char type explicitly state the signedness of the object.

2.3.7.1 EXAMPLE

The following example

char foobar;

defines an unsigned char object called foobar.

2.3.7.2 DIFFERENCES

None.

2.3.7.3 MIGRATION TO THE CCI

Any definition of an object defined as a plain char needs review. Any plain char that
was intended to be a signed quantity should be replaced with an explicit definition, for
example:

signed char foobar;

You can use the -funsigned-char option on MPLAB XC32 to change the type of plain
char, but the code is not strictly conforming.

2.3.8 Signed Integer Representation

The value of a signed integer is determined by taking the two’s complement of the
integer.

2.3.8.1 EXAMPLE

The following shows a variable, test, that is assigned the value -28 decimal.

signed char test = 0xE4;

2.3.8.2 DIFFERENCES

The XC32 compilers have represented signed integers in the way described in this sec-
tion.

2.3.8.3 MIGRATION TO THE CCI

No action required.

2.3.9 Integer Conversion

When converting an integer type to a signed integer of insufficient size, the original
value is truncated from the most-significant bit to accommodate the target size.

2.3.9.1 EXAMPLE

The following shows an assignment of a value that is truncated.

signed char destination;
unsigned int source = 0x12FE;
destination = source;

Under the CCI, the value of destination after the alignment is -2 (that is, the bit pat-
tern 0xFE).
 2019 Microchip Technology Inc. DS50002895A-page 23

Compiler User’s Guide for PIC32C/SAM MCUs
2.3.9.2 DIFFERENCES

The XC32 compiler has performed integer conversion in an identical fashion to that
described in this section.

2.3.9.3 MIGRATION TO THE CCI

No action required.

2.3.10 Bitwise Operations on Signed Values

Bitwise operations on signed values act on the two’s complement representation,
including the sign bit (see also Section 2.3.11 “Right-shifting Signed Values”).

2.3.10.1 EXAMPLE

The following shows an example of a negative quantity involved in a bitwise AND
operation.

signed char output, input = -13;
output = input & 0x7E;

Under the CCI, the value of output after the assignment is 0x72.

2.3.10.2 DIFFERENCES

The XC32 compiler has performed bitwise operations in an identical fashion to that
described in this section.

2.3.10.3 MIGRATION TO THE CCI

No action required.

2.3.11 Right-shifting Signed Values

Right-shifting a signed value will involve sign extension. This will preserve the sign of
the original value.

2.3.11.1 EXAMPLE

The following example shows a negative quantity involved in a right-shift operation.

signed char output, input = -13;
output = input >> 3;

Under the CCI, the value of output after the assignment is -2 (that is, the bit pattern
0xFE).

2.3.11.2 DIFFERENCES

The XC32 compiler has performed right-shifting as described in this section.

2.3.11.3 MIGRATION TO THE CCI

No action required.
DS50002895A-page 24  2019 Microchip Technology Inc.

Common C Interface
2.3.12 Conversion of Union Member Accessed Using Member With
Different Type

If a union defines several members of different types and you use one member identi-
fier to try to access the contents of another (whether any conversion is applied to the
result) is implementation-defined behavior in the standard. In the CCI, no conversion is
applied and the bytes of the union object are interpreted as an object of the type of the
member being accessed, without regard for alignment or other possible invalid
conditions.

2.3.12.1 EXAMPLE

The following shows an example of a union defining several members.

union {
signed char code;
unsigned int data;
float offset;

} foobar;

Code that attempts to extract offset by reading data is not guaranteed to read the cor-
rect value.

float result;
result = foobbar.data;

2.3.12.2 DIFFERENCES

The XC32 compiler has not converted union members accessed via other members.

2.3.12.3 MIGRATION TO THE CCI

No action required.

2.3.13 Default Bit-field int Type

The type of a bit-field specified as a plain int is identical to that of one defined using
unsigned int. This is quite different from other objects where the types int, signed
and signed int are synonymous. It is recommended that the signedness of the
bit-field be explicitly stated in all bit-field definitions.

2.3.13.1 EXAMPLE

The following shows an example of a structure tag containing bit-fields that are
unsigned integers and with the size specified.

struct OUTPUTS {
int direction :1;
int parity :3;
int value :4;

};

2.3.13.2 DIFFERENCES

The XC32 compilers have implemented bit-fields defined using int as having a signed
int type, unless the option -funsigned-bitfields was specified.
 2019 Microchip Technology Inc. DS50002895A-page 25

Compiler User’s Guide for PIC32C/SAM MCUs
2.3.13.3 MIGRATION TO THE CCI

Any code that defines a bit-field with the plain int type should be reviewed. If the
intention was for these to be signed quantities, then the type of these should be
changed to signed int. In the following example:

struct WAYPT {
int log :3;
int direction :4;

};

the bit-field type should be changed to signed int, as in:

struct WAYPT {
signed int log :3;
signed int direction :4;

};

2.3.14 Bit-Fields Straddling a Storage Unit Boundary

The standard indicates that implementations can determine whether bit-fields cross a
storage unit boundary. In the CCI, bit-fields do not straddle a storage unit boundary; a
new storage unit is allocated to the structure, and padding bits fill the gap.

Note that the size of a storage unit differs with each compiler, as this is based on the
size of the base data type (for example, int) from which the bit-field type is derived.
For the XC32 compiler, it is 32 bits in size.

2.3.14.1 EXAMPLE

The following shows a structure containing bit-fields being defined.

struct {
 unsigned first : 30;
 unsigned second :6;
} order;

Under the CCI and using MPLAB XC32, the storage allocation unit is (32-bit) word
sized. The bit-field, second, is allocated a new storage unit since there are only 2 bits
remaining in the first storage unit in which first is allocated. The size of this structure,
order, is 2 32-bit words (8 bytes).

2.3.14.2 DIFFERENCES

This allocation is identical with that used by the XC32 compilers.

2.3.14.3 MIGRATION TO THE CCI

No action required.

2.3.15 The Allocation Order of Bit-Field

The memory ordering of bit-fields into their storage unit is not specified by the ANSI C
Standard. In the CCI, the first bit defined is the least significant bit (LSb) of the storage
unit in which it is allocated.

2.3.15.1 EXAMPLE

The following shows a structure containing bit-fields being defined.

struct {
 unsigned lo : 1;
 unsigned mid :6;
 unsigned hi : 1;
} foo;
DS50002895A-page 26  2019 Microchip Technology Inc.

Common C Interface
The bit-field lo is assigned the least significant bit of the storage unit assigned to the
structure foo. The bit-field mid is assigned the next 6 least significant bits; and hi, the
most significant bit of that same storage unit byte.

2.3.15.2 DIFFERENCES

This is identical with the previous operation of the XC32 compilers.

2.3.15.3 MIGRATION TO THE CCI

No action required.

2.3.16 The NULL Macro

The NULL macro is defined by <stddef.h>; however, its definition is
implementation-defined behavior. Under the CCI, the definition of NULL is the
expression (0).

2.3.16.1 EXAMPLE

The following shows a pointer being assigned a null pointer constant via the NULL
macro.

int * ip = NULL;

The value of NULL, (0), is implicitly converted to the destination type.

2.3.16.2 DIFFERENCES

The XC32 compilers previously assigned NULL the expression ((void *)0).

2.3.16.3 MIGRATION TO THE CCI

No action required.

2.3.17 Floating-Point Sizes

Under the CCI, floating-point types must not be smaller than 32 bits in size.

2.3.17.1 EXAMPLE

The following shows the definition for outY, which is at least 32-bit in size.

float outY;

2.3.17.2 MIGRATION TO THE CCI

No migration is required for the XC32 compiler.

2.4 ANSI STANDARD EXTENSIONS

The following topics describe how the CCI provides device-specific extensions to the
standard.

2.4.1 Generic Header File

A single header file <xc.h> must be used to declare all compiler- and device-specific
types and SFRs. You must include this file into every module to conform with the CCI.
Some CCI definitions depend on this header being seen.

2.4.1.1 EXAMPLE

The following shows this header file being included, thus allowing conformance with the
CCI, as well as allowing access to SFRs.

#include <xc.h>
 2019 Microchip Technology Inc. DS50002895A-page 27

Compiler User’s Guide for PIC32C/SAM MCUs
2.4.1.2 MIGRATION TO THE CCI

No changes required.

2.4.2 Absolute Addressing

Variables and functions can be placed at an absolute address by using the __at() con-
struct. Stack-based (auto and parameter) variables cannot use the __at() specifier.

2.4.2.1 EXAMPLE

The following shows two variables and a function being made absolute.

int scanMode __at(0x200);
const char keys[] __at(124) = { ’r’, ’s’, ’u’, ’d’};

__at(0x1000) int modify(int x) {
return x * 2 + 3;

}

2.4.2.2 DIFFERENCES

The XC32 compilers have used the address attribute to specify an object’s address.

2.4.2.3 MIGRATION TO THE CCI

Avoid making objects and functions absolute if possible.

I

In MPLAB XC32, change code, for example, from:

int scanMode __attribute__((address(0x200)));

to:

int scanMode __at(0x200);

2.4.3 Persistent Objects

The __persistent qualifier can be used to indicate that variables should not be
cleared by the runtime startup code.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this qualifier.

2.4.3.1 EXAMPLE

The following shows a variable qualified using __persistent.

__persistent int serialNo;

2.4.3.2 DIFFERENCES

The XC32 compilers have used the persistent attribute with variables to indicate they
were not to be cleared.

2.4.3.3 MIGRATION TO THE CCI

Change any occurrence of the persistent attribute to __persistent, for example,
from:

int tblIdx __attribute__ ((persistent));

to:

int __persistent tblIdx;

Note: PIC32C supports only 4-byte aligned absolute addresses.
DS50002895A-page 28  2019 Microchip Technology Inc.

Common C Interface
2.4.3.4 CAVEATS

None.

2.4.4 Alignment of Objects

The __align(alignment) specifier can be used to indicate that variables must be
aligned on a memory address that is a multiple of the alignment specified. The align-
ment term must be a power of 2. Positive values request that the object’s start address
be aligned.

2.4.4.1 EXAMPLE

The following shows variables qualified using __align() to ensure they end on an
address that is a multiple of 8, and start on an address that is a multiple of 2,
respectively.

__align(-8) int spacer;
__align(2) char coeffs[6];

2.4.4.2 DIFFERENCES

The XC32 compilers used the aligned attribute with variables.

2.4.4.3 MIGRATION TO THE CCI

Change any occurrence of the aligned attribute to __align, for example, from:

char __attribute__((aligned(4)))mode;

to:

__align(4) char mode;

2.4.5 Interrupt Functions

The __interrupt(type) specifier can be used to indicate that a function is to act as
an interrupt service routine. The type is a comma-separated list of keywords that
indicate information about the interrupt function.

For details on the interrupt types supported by this compiler, see Chapter
14. “Interrupts”.

Some devices may not implement interrupts. Use of this qualifier for such devices
generates a warning. If the argument to the __interrupt specifier does not make
sense for the target device, a warning or error is issued by the compiler.

2.4.5.1 EXAMPLE

The following shows a function qualified using __interrupt.

static unsigned long tick_counter;

void __interrupt()
SysTick_Handler(void) {
 tick_counter += 1;
}

Note: The compiler supports only positive alignment values for PIC32C/SAM
MCUs.
 2019 Microchip Technology Inc. DS50002895A-page 29

Compiler User’s Guide for PIC32C/SAM MCUs
2.4.5.2 DIFFERENCES

The XC32 compilers have used the interrupt attribute to define interrupt functions.

For PIC32C compilers, the __interrupt() keyword takes an optional parameter, the
kind of interrupt to be handled. Change code that uses the interrupt attribute, similar
to these examples:

void __attribute__ ((interrupt ("IRQ")))
irq_handler (void)
{
 /* ... */
}

to:

void __interrupt ("IRQ")
irq_handler (void)
{
 /* ... */
}

2.4.5.3 CAVEATS

None.

2.4.6 Packing Objects

The __pack specifier can be used to indicate that structures should not use memory
gaps to align structure members, or that individual structure members should not be
aligned.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this specifier.

2.4.6.1 EXAMPLE

The following shows a structure qualified using __pack, as well as a structure where
one member has been explicitly packed.

__pack struct DATAPOINT {
unsigned char type;
int value;

} x-point;
struct LINETYPE {

unsigned char type;
__pack int start;
long total;

} line;

2.4.6.2 DIFFERENCES

 The XC32 compilers have used the packed attribute to indicate that a structure mem-
ber was not aligned with a memory gap.
DS50002895A-page 30  2019 Microchip Technology Inc.

Common C Interface
2.4.6.3 MIGRATION TO THE CCI

Change any occurrence of the packed attribute, for example, from:

struct DOT
{

char a;
int x[2] __attribute__ ((packed));

};

to:

struct DOT
{

char a;
__pack int x[2];

};

Alternatively, you can pack the entire structure, if required.

2.4.6.4 CAVEATS

None.

2.4.7 Indicating Antiquated Objects

The __deprecate specifier can be used to indicate that an object has limited longevity
and should not be used in new designs. It is commonly used by the compiler vendor to
indicate that compiler extensions or features can become obsolete, or that better
features have been developed and should be used in preference.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this specifier.

2.4.7.1 EXAMPLE

The following shows a function that uses the __deprecate keyword.

void __deprecate getValue(int mode)
{
//...
}

2.4.7.2 DIFFERENCES

The XC32 compilers have used the deprecated attribute (note the different spelling)
to indicate that objects should be avoided, if possible.

2.4.7.3 MIGRATION TO THE CCI

Change any occurrence of the deprecated attribute to __deprecate, for example,
from:

int __attribute__(deprecated) intMask;

to:

int __deprecate intMask;

2.4.7.4 CAVEATS

None.
 2019 Microchip Technology Inc. DS50002895A-page 31

Compiler User’s Guide for PIC32C/SAM MCUs
2.4.8 Assigning Objects to Sections

The __section() specifier can be used to indicate that an object should be located in
the named section. This is typically used when the object has special and unique link-
ing requirements that cannot be addressed by existing compiler features.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this specifier.

2.4.8.1 EXAMPLE

The following shows a variable which uses the __section keyword.

int __section("comSec") commonFlag;

2.4.8.2 DIFFERENCES

The XC32 compilers have used the section attribute to indicate a different destination
section name. The __section() specifier works in a similar way to the attribute.

2.4.8.3 MIGRATION TO THE CCI

Change any occurrence of the section attribute, for example, from:

int __attribute__((section("myVars"))) intMask;

to:

int __section("myVars") intMask;

2.4.8.4 CAVEATS

None.

2.4.9 Specifying Configuration Bits

The #pragma config directive can be used to program the Configuration bits for a
device. The pragma has the form:

#pragma config setting = state|value

where setting is a configuration setting descriptor (for example, WDT), state is a
descriptive value (for example, ON) and value is a numerical value.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this directive.

2.4.9.1 EXAMPLE

The following shows Configuration bits being specified using this pragma.

// ATSAME70Q21B Configuration Bit Settings

#pragma config SECURITY_BIT = CLEAR

#pragma config BOOT_MODE = CLEAR

#pragma config TCM_CONFIGURATION = 0x0 // Enter Hexadecimal value

2.4.9.2 DIFFERENCES

The XC32 compilers supported the use of #pragma config.

2.4.9.3 MIGRATION TO THE CCI

No migration is required.

2.4.9.4 CAVEATS

None.
DS50002895A-page 32  2019 Microchip Technology Inc.

Common C Interface
2.4.10 Manifest Macros

The CCI defines the general form for macros that manifest the compiler and target
device characteristics. These macros can be used to conditionally compile alternate
source code based on the compiler or the target device.

The macros and macro families are details in Table 2-1.

2.4.10.1 EXAMPLE

Code conditionally compiled for a particular device family:

#ifdef __SAME70__

void E70_specific_func (void);

#else

void general_func (void);

#endif

2.4.10.2 DIFFERENCES

Some of these CCI macros are new (for example, __CCI__) and others have different
names to previous symbols with identical meaning (for example, __SAME70J19B is now
__SAME70J19B__).

2.4.10.3 MIGRATION TO THE CCI

Any code that uses compiler-defined macros needs review. Old macros will continue to
work as expected, but they are not compliant with the CCI.

2.4.10.4 CAVEATS

None.

2.4.11 In-line Assembly

The asm() statement can be used to insert assembly code in-line with C code. The
argument is a C string literal that represents a single assembly instruction. Obviously,
the instructions contained in the argument are device specific.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this statement.

2.4.11.1 EXAMPLE

The following shows a NOP instruction being inserted in-line.

asm("NOP");

2.4.11.2 DIFFERENCES

This is the same syntax used by the XC32 compilers.

TABLE 2-1: MANIFEST MACROS DEFINED BY THE CCI

Name Meaning if defined Example

__XC__ Compiled with an MPLAB XC compiler __XC__

__CCI__ Compiler is CCI compliant and CCI enforcement
is enabled

__CCI__

__XC##__ The specific XC compiler used (## can be 8, 16
or 32)

__XC32__

__DEVICEFAMILY__ The family of the selected target device __SAME70__

__DEVICENAME__ The selected target device name __SAME70J19B__
 2019 Microchip Technology Inc. DS50002895A-page 33

Compiler User’s Guide for PIC32C/SAM MCUs
2.4.11.3 MIGRATION TO THE CCI

No migration is required.

2.4.11.4 CAVEATS

None.

2.5 COMPILER FEATURES

The following item details the compiler options used to control the CCI.

2.5.1 Enabling the CCI

It is assumed that you are using the MPLAB X IDE to build projects that use the CCI.
The option in the MPLAB X IDE Project Properties to enable CCI conformance is Use
CCI Syntax, which can be found under XC32 > xc132-gcc > Preprocessing and mes-
sages, if you are using the MPLAB XC32 compiler.

If you are not using this IDE, then the command-line options are -mcci for MPLAB
XC32.

2.5.1.1 DIFFERENCES

This option has never been implemented previously.

2.5.1.2 MIGRATION TO THE CCI

Enable the option.

2.5.1.3 CAVEATS

None.
DS50002895A-page 34  2019 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
USER’S GUIDE FOR

PIC32C/SAM MCUs

Chapter 3. How To’s
This section contains help and reference for situations that are frequently encountered
when building projects for Microchip 32-bit devices. Click the links at the beginning of
each section to assist in finding the topic relevant to your question. Some topics are
indexed in multiple sections.

Start here:

• Installing and Activating the Compiler

• Invoking the Compiler

• Writing Source Code

• Getting My Application to Do What I Want

• Understanding the Compilation Process

• Fixing Code That Does Not Work

3.1 INSTALLING AND ACTIVATING THE COMPILER

This section details questions that might arise when installing or activating the compiler.

• How Do I Install and Activate My Compiler?

• How Can I Tell if the Compiler has Activated Successfully?

• Can I Install More Than One Version of the Same Compiler?

3.1.1 How Do I Install and Activate My Compiler?

Installation and activation of the license are performed simultaneously by the XC com-
piler installer. The guide Installing and Licensing MPLAB XC C Compilers (DS52059)
is available on www.microchip.com. It provides details on single-user and network
licenses, as well as how to activate a compiler for evaluation purposes.

3.1.2 How Can I Tell if the Compiler has Activated Successfully?

If you think the compiler may not have installed correctly or is not working, it is best to
verify its operation outside of MPLAB X IDE to isolate possible problems. Try running
the compiler from the command line to check for correct operation. You do not actually
have to compile code.

From your terminal or command-line prompt, run the license manager xclm with the
option -status. This option instructs the license manager to print all MPLAB XC licenses
installed on your system and exit. So, under 32-bit Windows, for example, type the fol-
lowing line, replacing the path information with a path that is relevant to your installa-
tion.

"C:\Program Files\Microchip\xc32\v1.00\bin\xclm" -status

The license manager should run, print all of the MPLAB XC compiler license available
on your machine, and quit. Confirm that the license is listed as activated (e.g., Prod-
uct:swxc32-pro). Note: if it is not activated properly, the compiler will continue to oper-
ate, but only in the Free mode. If an error is displayed, or the compiler indicates Free
mode, then activation was not successful.
 2019 Microchip Technology Inc. DS50002895A-page 35

Compiler User’s Guide for PIC32C/SAM MCUs
3.1.3 Can I Install More Than One Version of the Same Compiler?

Yes, the compilers and installation process has been designed to allow you to have
more than one version of the same compiler installed. For MPLAB X IDE, you can eas-
ily swap between version by changing options in the IDE (see Section 3.2.4 “How Can
I Select Which Compiler I Want to Build With?”).

Compilers should be installed into a directory whose name is related to the compiler
version. This is reflected in the default directory specified by the installer. For example,
the MPLAB XC32 compilers v1.00 and v1.10 would typically be placed in separate
directories.

C:\Program Files\Microchip\xc32\v1.00\
C:\Program Files\Microchip\xc32\v1.10\

3.2 INVOKING THE COMPILER

This section discusses how the compiler is run, both on the command-line and from the
IDE. It includes information about how to get the compiler to do what you want in terms
of options and the build process itself.

• How Do I Compile from Within MPLAB X IDE?

• How Do I Compile on the Command-line?

• How Do I Compile Using a Make Utility?

• How Can I Select Which Compiler I Want to Build With?

• How Can I Change the Compiler's Operating Mode?

• How Do I Build Libraries?

• How Do I Know What Compiler Options Are Available and What They Do?

• How Do I Know What the Build Options in MPLAB X IDE do?

• What is Different About an MPLAB X IDE Debug Build?

• See also How Do I Stop the Compiler Using Certain Memory Locations?

• See also What Do I Need to Do When Compiling to Use a Debugger?

• See also How Do I Use Library Files In My Project?

• See also What Optimizations Are Employed By The Compiler?

3.2.1 How Do I Compile from Within MPLAB X IDE?

See the following documentation for information on how to set up a project:

Section 4.4 “Project Setup” - MPLAB X IDE

3.2.2 How Do I Compile on the Command-line?

The compiler driver is called xc32-gcc for all 32-bit devices; e.g., in Windows, it is
named xc32-gcc.exe. This application should be invoked for all aspects of compila-
tion. It is located in the bin directory of the compiler distribution. Avoid running the indi-
vidual compiler applications (such as the assembler or linker) explicitly. You can
compile and link in the one command, even if your project is spread among multiple
source files.

The driver is introduced in Section 5.1 “Invoking the Compiler”. See
Section 3.2.4 “How Can I Select Which Compiler I Want to Build With?” to ensure you
are running the correct driver if you have more than one installed. The command-line
options to the driver are detailed in Section 5.8 “Driver Option Descriptions”. The files
that can be passed to the driver are listed and described in Section 5.1.3 “Input File
Types”.
DS50002895A-page 36  2019 Microchip Technology Inc.

How To’s
3.2.3 How Do I Compile Using a Make Utility?

When compiling using a make utility (such as make), the compilation is usually per-
formed as a two-step process: first generating the intermediate files and then the final
compilation and link step to produce one binary output. This is described in
Section 5.2.2 “Multi-step C Compilation”.

3.2.4 How Can I Select Which Compiler I Want to Build With?

The compilation and installation process has been designed to allow you to have more
than one compiler installed at the same time For MPLAB X IDE, you can create a proj-
ect and then build this project with different compilers by simply changing a setting in
the project properties.

In MPLAB X IDE, you select which compiler to use when building a project by opening
the Project Properties window (File>Project Properties) and selecting the Configuration
category (Conf: [default]). A list of MPLAB XC32 compiler versions is shown in the
Compiler Toolchain, on the far right. Select the MPLAB XC32 compiler you require.

Once selected, the controls for that compiler are then shown by selecting the XC32
global options, XC32 Compiler and XC32 Linker categories. These reveal a pane of
options on the right; each category has several panes which can be selected from a
pull-down menu that is near the top of the pane.

3.2.5 How Can I Change the Compiler's Operating Mode?

The compiler’s operating mode (Free, Evaluation or PRO) is based on its level of opti-
mizations (see Chapter 18. “Optimizations”) which can be specified as a command line
option (see Section 5.8.7 “Options for Controlling Optimization”). If you are building
under MPLAB X IDE, go to the Project Properties window, click on the compiler name
(xc32-gcc for C language projects or xc32-g++ for C++ language projects), and select
the Optimization option category to set optimization levels - see
Section 4.4.3 “xc32-gcc (32-bit C Compiler)”.

When building your project, the compiler will emit a warning message if you have
selected an option that is not available for your licensed operating mode. The compiler
will continue compilation with the option disabled.

3.2.6 How Do I Build Libraries?

When you have functions and data that are commonly used in applications, you can
make all the C source and header files available so other developers can copy these
into their projects. Alternatively, you can build these modules into object files and pack-
age them into library archives, which along with the accompanying header files, can
then be built into an application.

Libraries can be more convenient because there are fewer files to manage. However,
libraries do need to be maintained. MPLAB XC32 uses *.a library archives. Be sure to
rebuild your library objects when you move your project to a new release of the com-
piler toolchain.

Using the compiler driver, libraries can begin to be built by listing all the files that are to
be included into the library on the command line. None of these files should contain a
main() function, nor settings for configuration bits or any other such data.

For information on how to create your own libraries, see Section 5.4.1.2 “User-defined
Libraries”.
 2019 Microchip Technology Inc. DS50002895A-page 37

Compiler User’s Guide for PIC32C/SAM MCUs
3.2.7 How Do I Know What Compiler Options Are Available and What
They Do?

A list of all compiler options can be obtained by using the --help option on the com-
mand line. Alternatively, all options are listed in Section 5.8 “Driver Option Descrip-
tions” in this user’s guide. If you are compiling in MPLAB X IDE, see
Section 4.4 “Project Setup”.

3.2.8 How Do I Know What the Build Options in MPLAB X IDE do?

Most of the widgets and controls in the MPLAB X IDE Project Properties window, XC32
options, map directly to one command-line driver option or suboption. See
Section 4.4 “Project Setup” for a list of options and any corresponding command-line
options.

3.2.9 What is Different About an MPLAB X IDE Debug Build?

The main difference between a command-line debug build and an MPLAB X IDE debug
build is the setting of a preprocessor macro called __DEBUG to be 1 when a debug is
selected. This macro is not defined if it is not a debug build.

You may make code in your source conditional on this macro using #ifdef directives,
(see Section 5.8.8 “Options for Controlling the Preprocessor”) so that you can have
your program behave differently when you are still in a development cycle. Some com-
piler errors are easier to track down after performing a debug build.

In MPLAB X IDE, memory will be reserved for your debugger only when you perform a
debug build. See Section 3.4.3 “What Do I Need to Do When Compiling to Use a
Debugger?”.

3.3 WRITING SOURCE CODE

This section presents issues pertaining to the source code you write. It has been
subdivided into the following sections.

• C Language Specifics

• Device-Specific Features

• Memory Allocation

• Variables

• Functions

• Interrupts

• Assembly Code

3.3.1 C Language Specifics

This section discusses source code issues that directly relate to the C language itself
but which are commonly asked.

• When Should I Cast Expressions?

• Can Implicit Type Conversions Change the Expected Results of My Expressions?

• How Do I Enter Non-English Characters Into My Program?

• How Can I Use a Variable Defined in Another Source File?

• How Do I Port My Code to Different Device Architectures?
DS50002895A-page 38  2019 Microchip Technology Inc.

How To’s
3.3.1.1 WHEN SHOULD I CAST EXPRESSIONS?

Expressions can be explicitly cast using the cast operator -- a type in round brackets,
e.g., (int). In all cases, conversion of one type to another must be done with caution
and only when absolutely necessary.

Consider the example:

unsigned long l;
unsigned short s;

s = l;

Here, a long type is being assigned to a int type and the assignment will truncate the
value in l. The compiler will automatically perform a type conversion from the type of
the expression on the right of the assignment operator (long) to the type of the lvalue
on the left of the operator (short).This is called an implicit type conversion. The com-
piler will typically produce a warning concerning the potential loss of data by the
truncation.

A cast to type short is not required and should not be used in the above example if a
long to short conversion was intended. The compiler knows the types of both oper-
ands and will perform the conversion accordingly. If you did use a cast, there is the
potential for mistakes if the code is later changed. For example, if you had:

s = (short)l;

the code will work the in the same way; but if in the future, the type of s is changed to
a long (for example), then you must remember to either adjust the cast or remove it,
otherwise the contents of l will continue to be truncated by the assignment, which may
not be correct. Most importantly, the warning issued by the compiler will not be
produced if the cast is in place.

Use a cast only in situations where the types used by the compiler are not the types
that you require. For example consider the result of a division assigned to a
floating-point variable:

int i, j;
float fl;

fl = i/j;

In this case integer division is performed, then the rounded integer result is converted
to a float format. So if i contained 7 and j contained 2, the division will yield 3 and
this will be implicitly converted to a float type (3.0) and then assigned to fl. If you
wanted the division to be performed in a float format, then a cast is necessary:

fl = (float)i/j;

(Casting either i or j will force the compiler to encode a floating-point division). The
result assigned to fl now be 3.5.

An explicit cast may suppress warnings that might otherwise have been produced. This
can also be the source of many problems. The more warnings the compiler produces,
the better chance you have of finding potential bugs in your code.
 2019 Microchip Technology Inc. DS50002895A-page 39

Compiler User’s Guide for PIC32C/SAM MCUs
3.3.1.2 CAN IMPLICIT TYPE CONVERSIONS CHANGE THE EXPECTED
RESULTS OF MY EXPRESSIONS?

Yes! The compiler will always use integral promotion and there is no way to disable this
(see Section 10.1 “Integral Promotion”). In addition, the types of operands to binary
operators are usually changed so that they have a common type as specified by the C
Standard. Changing the type of an operand can change the value of the final expres-
sion so it is very important that you understand the type C Standard conversion rules
that apply when dealing with binary operators. You can manually change the type of an
operand by casting (see Section 3.3.1.1 “When Should I Cast Expressions?”).

3.3.1.3 HOW DO I ENTER NON-ENGLISH CHARACTERS INTO MY PROGRAM?

The ANSI standard and MPLAB XC C do not support extended characters set in char-
acter and string literals in the source character set. See Section 8.8 “Constant Types
and Formats” to see how these characters can be entered using escape sequences.

3.3.1.4 HOW CAN I USE A VARIABLE DEFINED IN ANOTHER SOURCE FILE?

Provided the variable defined in the other source file is not static (see
Section 9.2.2 “Static Variables”) or auto (see Section 9.3 “Auto Variable Allocation and
Access”), adding a declaration for that variable in the current file will allow you to
access it. A declaration consists of the keyword extern in addition to the type and
name of the variable as specified in its definition, for example:

extern int systemStatus;

This is part of the C language and your favorite C text will give you more information.

The position of the declaration in the current file determines the scope of the variable,
i.e., if you place the declaration inside a function, it will limit the scope of the variable to
that function and if placed outside of a function, it allows access to the variable in all
functions for the remainder of the current file.

Often, declarations are placed in header files and these are then #included into the C
source code (see Section 19.3 “Pragma Directives”).

3.3.1.5 HOW DO I PORT MY CODE TO DIFFERENT DEVICE
ARCHITECTURES?

Microchip devices have three basic architectures: 8-bit, which is a Harvard architecture
with a separate program and data memory bus; 16-bit, which is a modified Harvard
architecture also with a separate program and data memory bus; and 32-bit, which is
a MIPS and Arm architecture. Porting code to different devices within an architectural
family requires a minimum update to application code. However, porting between archi-
tectural families can require significant rewrite.

In an attempt to reduce the work to port between architectures, a Common C Interface,
or CCI, has been developed. If you use these coding styles, your code will more easily
migrate upward. For more on CCI, see Chapter 2. “Common C Interface”.

3.3.2 Device-Specific Features

This section discusses the code that needs to be written to set up or control a feature
that is specific to Microchip PIC devices.

• How Do I Set the Configuration Bits?

• How Do I Determine the Cause of Reset?

• How Do I Access SFRs?

• How Do I Stop the Compiler Using Certain Memory Locations?

Also, see the following linked information in other sections.

What Do I Need to Do When Compiling to Use a Debugger?
DS50002895A-page 40  2019 Microchip Technology Inc.

How To’s
3.3.2.1 HOW DO I SET THE CONFIGURATION BITS?

These should be set in your code using either a macro or pragma. Earlier versions of
MPLAB X IDE allowed you to set these bits in a dialog, but MPLAB X IDE requires that
they be specified in your source code. Config bits are set in source code using the con-
fig pragma. See Section 7.4 “Configuration Bit Access” for more information on the
config pragma.

3.3.2.2 HOW DO I DETERMINE THE CAUSE OF RESET?

The bits in the Reset Control (RCON) Register allow you to determine the cause of a
Reset. Most MCUs have a peripheral register that you can use to determine the cause
of a reset. The exact register name and functionality varies by device but is often called
RCON, RCAUSE, or RSTC_SR. Check the data sheet for your target device for more
information.

3.3.2.3 HOW DO I ACCESS SFRS?

The compiler ships with header files that define variables which are mapped over the
top of memory-mapped SFRs. Since these are C variables, they can be used like any
other C variable and no new syntax is required to access these registers.

The name assigned to the variable is usually the same as the name specified in the
device data sheet. See Section 3.3.2.4 “How Do I Find The Names Used to Represent
SFRs and Bits?” if these names are not recognized.

3.3.2.4 HOW DO I FIND THE NAMES USED TO REPRESENT SFRS AND BITS?

Special function registers and the bits within those are accessed via special variables
that map over the register, Section 3.3.2.3 “How Do I Access SFRs?”; however, the
names of these variables sometimes differ from those indicated in the data sheet for
the device you are using.

View the device-specific header file which allows access to these special variables.
Begin by searching for the data sheet SFR name. If that is not found, search on what
the SFR represents, as comments in the header often spell out what the macros under
the comment do.

3.3.3 Memory Allocation

Here are questions relating to how your source code affects memory allocation.

• How Do I Position Variables at an Address I Nominate?

• How Do I Position Functions at an Address I Nominate?

• How Do I Place Variables in Program Memory?

• How Do I Stop the Compiler Using Certain Memory Locations?

• Why are Some Objects Positioned into Memory that I Reserved?

3.3.3.1 HOW DO I POSITION VARIABLES AT AN ADDRESS I NOMINATE?

The easiest way to do this is to make the variable absolute by using the address attri-
bute (see Section 8.11 “Variable Attributes”) or the __at() CCI construct (see
Section 2.4.2 “Absolute Addressing”). This means that the address you specify is used
in preference to the variable’s symbol in generated code. Since you nominate the
address, you have full control over where objects are positioned, but you must also
ensure that absolute variables do not overlap.

See also Section 9.3 “Auto Variable Allocation and Access” for information on moving
auto variables, Section 9.2.1 “Non-auto Variable Allocation” for moving non-auto vari-
ables and Section “The source code for this is found in the pic32c-libs.zip file located
at:” for moving program-space variables.
 2019 Microchip Technology Inc. DS50002895A-page 41

Compiler User’s Guide for PIC32C/SAM MCUs
3.3.3.2 HOW DO I POSITION FUNCTIONS AT AN ADDRESS I NOMINATE?

The easiest way to do this is to make the functions absolute, by using the address attri-
bute (see Section 13.2.1 “Function Attributes”). This means that the address you spec-
ify is used in preference to the function’s symbol in generated code. Since you
nominate the address, you have full control over where functions are positioned, but
must also ensure that absolute functions do not overlap.

3.3.3.3 HOW DO I PLACE VARIABLES IN PROGRAM MEMORY?

The const qualifier implies that the qualified variable is read only. As a consequence
of this, any variables (except auto variables or function parameters) qualified const are
placed in program memory, thus freeing valuable data RAM (see Section “The source
code for this is found in the pic32c-libs.zip file located at:”). Variables qualified const
can also be made absolute, so that they can be positioned at an address you nominate.

3.3.3.4 HOW DO I STOP THE COMPILER USING CERTAIN MEMORY
LOCATIONS?

Concatenating an address attribute with the noload attribute can be used to block out
sections of memory. For more on variable attributes and options, see the following sec-
tions in this user’s guide:

Section 8.11 “Variable Attributes”

Section 5.8.1 “Options Specific to PIC32C/SAM Devices”

See the MPLAB® XC32 Assembler, Linker and Utilities User’s Guide (DS50002186) for
details on linker scripts.

3.3.4 Variables

This examines questions that relate to the definition and usage of variables and types
within a program.

• Why Are My Floating-point Results Not Quite What I Am Expecting?

• How Can I Access Individual Bits of a Variable?

• How Long Can I Make My Variable and Macro Names?

• How Do I Share Data Between Interrupt and Main-line Code?

• How Do I Position Variables at an Address I Nominate?

• How Do I Place Variables in Program Memory?

• How Can I Rotate a Variable?

• How Do I Find Out Where Variables and Functions Have Been Positioned?

3.3.4.1 WHY ARE MY FLOATING-POINT RESULTS NOT QUITE WHAT I AM
EXPECTING?

First, make sure that if you are watching floating-point variables in MPLAB X IDE that
the type and size of these match how they are defined. In MPLAB XC32 for
PIC32C/SAM targets, the float type is a 32-bit floating-point type. The double and long
double types are 64-bit floating-point types.

Since floating-point variables only have a finite number of bits to represent the values
they are assigned, they will hold an approximation of their assigned value. A float-
ing-point variable can only hold one of a set of discrete real number values. If you
attempt to assign a value that is not in this set, it is rounded to the nearest value. The
more bits used by the mantissa in the floating-point variable, the more values can be
exactly represented in the set and the average error due to the rounding is reduced.

Whenever floating-point arithmetic is performed, rounding also occurs. This can also
lead to results that do not appear to be correct.
DS50002895A-page 42  2019 Microchip Technology Inc.

How To’s
3.3.4.2 HOW CAN I ACCESS INDIVIDUAL BITS OF A VARIABLE?

There are several ways of doing this. The simplest and most portable way is to define
an integer variable and use macros to read, set, or clear the bits within the variable
using a mask value and logical operations, such as the following.

#define testbit(var, bit) ((var) & (1 <<(bit)))
#define setbit(var, bit) ((var) |= (1 << (bit)))
#define clrbit(var, bit) ((var) &= ~(1 << (bit)))

These test to see if the bit number (bit) in the integer (var) is set; as well as set the
corresponding bit in var; and clear the corresponding bit in var. Alternatively, a union
of an integer variable and a structure with bit-fields (see Section 8.5.2 “Bit Fields in
Structures”) can be defined, for example:

union both {
unsigned char byte;
struct {

unsigned b0:1, b1:1, b2:1, b3:1, b4:1, b5:1, b6:1, b7:1;
} bitv;

} var;

This allows you to access byte as a whole (using var.byte), or any bit within that vari-
able independently (using var.bitv.b0 through var.bitv.b7).

3.3.4.3 HOW LONG CAN I MAKE MY VARIABLE AND MACRO NAMES?

The C Standard indicates that only a number of initial characters in an identifier are sig-
nificant, but it does not actually state what the number is and how it varies from com-
piler to compiler. For MPLAB XC32, no limit is imposed, but for CCI there is a limit (see
Section 2.3.5 “The Number of Significant Initial Characters in an Identifier”). CCI Com-
pliant names are more portable across Microchip architectures.

If two identifiers only differ in the non-significant part of the name, they are considered
to represent the same object, which will almost certainly lead to code failure.

3.3.5 Functions

This section examines questions that relate to functions.

• What is the Optimum Size For Functions?

• How Can I Tell How Big a Function Is?

• How Do I Know What Resources Are Being Used by Each Function?

• How Do I Find Out Where Variables and Functions Have Been Positioned?

• How Do I Use Interrupts in C?

• How Do I Stop An Unused Function Being Removed?

• How Do I Make a Function Inline?

3.3.5.1 WHAT IS THE OPTIMUM SIZE FOR FUNCTIONS?

Generally speaking, the source code for functions should be kept small as this aids in
readability and debugging. It is much easier to describe and debug the operation of a
function which performs a small number of tasks. Also smaller-sized functions typically
have less side effects, which can be the source of coding errors. On the other hand, in
the embedded programming world, a large number of small functions and the calls nec-
essary to execute them, may result in excessive memory and stack usage. Therefore
a compromise is often necessary.

Function size can cause issues with memory paging, as addressed in
Section 13.5 “Function Size Limits”. The smaller the functions, the easier it is for the
linker to allocate them to memory without errors.
 2019 Microchip Technology Inc. DS50002895A-page 43

Compiler User’s Guide for PIC32C/SAM MCUs
3.3.5.2 HOW DO I STOP AN UNUSED FUNCTION BEING REMOVED?

The __attribute__((keep)) may be applied to a function. The keep attribute will pre-
vent the linker from removing the function with --gc-sections, even if it is unused. See
the “MPLAB® XC32 Assembler, Linker and Utilities User’s Guide” (DS50002186) for
more information on section garbage collection using the --gc-sections option.

3.3.5.3 HOW DO I MAKE A FUNCTION INLINE?

The XC32 compiler does not inline any functions when not optimizing.

By declaring a function inline, you can direct the XC32 compiler to make calls to that
function faster. One way XC32 can achieve this is to integrate that function's code into
the code for its callers. This makes execution faster by eliminating the function-call
overhead; in addition, if any of the actual argument values are constant, their known
values may permit simplifications at compile time so that not all of the inline function's
code needs to be included. The effect on code size is less predictable; as the object
code may be larger or smaller with function inlining, depending on the particular case.

To declare a function inline, use the inline keyword in its declaration, like this:

 static inline int
 inc (int *a)
 {
 return (*a)++;
 }

When a function is both inline and static, if all calls to the function are integrated into
the caller and the function's address is never used, then the function's own assembler
code is never referenced. In this case, XC32 does not actually output assembler code
for the function. Some calls cannot be integrated for various reasons (in particular, calls
that precede the function's definition, nor recursive calls within the definition). If there
is a non-integrated call, then the function is compiled to assembler code as usual. The
function must also be compiled as usual if the program refers to its address, because
that can't be inlined. Enable optimization level -O1 or greater to enable function inlining.

3.3.6 Interrupts

Interrupt and interrupt service routine questions are discussed in this section.

• How Do I Use Interrupts in C?

• How Can I Make My Interrupt Routine Faster?

• How Do I Share Data Between Interrupt and Main-line Code?

3.3.6.1 HOW DO I USE INTERRUPTS IN C?

First, be aware of what interrupt hardware is available on your target device. 32-bit
devices implement several separate interrupt vector locations and use a priority
scheme. For more information, see Section 14.1 “Interrupt Operation”.

Prior to any interrupt occurring, your program must ensure that peripherals are cor-
rectly configured and that interrupts are enabled. For details, see
Section 14.7 “Enabling/Disabling Interrupts”.

For all other interrupt related tasks, including specifying the interrupt vector, context
saving, nesting and other considerations, consult Chapter 14. “Interrupts”.
DS50002895A-page 44  2019 Microchip Technology Inc.

How To’s
3.3.7 Assembly Code

This section examines questions that arise when writing assembly code as part of a C
project.

• How Should I Combine Assembly and C Code?

• What do I need Other than Instructions in an Assembly Source File?

• How Do I Access C Objects from Assembly Code?

• How Can I Access SFRs From Within Assembly Code?

• What Things Must I Manage When Writing Assembly Code?

3.3.7.1 HOW SHOULD I COMBINE ASSEMBLY AND C CODE?

Ideally, any hand-written assembly should be written as separate routines that can be
called. This offers some degree of protection from interaction between
compiler-generated and hand-written assembly code. Such code can be placed into a
separate assembly module that can be added to your project, as specified in
Section 17.1 “Mixing Assembly Language and C Variables and Functions”.

If necessary, assembly code can be added in-line with C code by using either of two
forms of the asm instruction; simple or extended. An explanation of these forms, and
some examples, are shown in Section 17.2 “Using Inline Assembly Language”.

Macros are provided which in-line several simple instructions, as discussed in
Section 17.3 “Predefined Macro”. More complex inline assembly that changes register
contents and the device state should be used with caution.

See Chapter 12. “Register Usage” for those registers used by the compiler.

3.3.7.2 WHAT DO I NEED OTHER THAN INSTRUCTIONS IN AN ASSEMBLY
SOURCE FILE?

Assembly code typically needs assembler directives as well as the instructions them-
selves. The operation of all the directives is described in the “MPLAB® XC32 Assem-
bler, Linker and Utilities User’s Guide” (DS50002186). Two common directives are
discussed below.

All assembly code must be placed in a section, using the .section directive, so it can
be manipulated as a whole by the linker and placed in memory. See the “Linker Pro-
cessing” chapter of the MPLAB® XC32 Assembler, Linker and Utilities User’s Guide
(DS50002186) for more information.

Another commonly used directive is .global which is used to make symbols accessi-
ble across multiple source files. Find more on this directive in the afore-mentioned
user’s guide.

3.3.7.3 HOW DO I ACCESS C OBJECTS FROM ASSEMBLY CODE?

Most C objects are accessible from assembly code. There is a mapping between the
symbols used in the C source and those used in the assembly code generated from
this source. Your assembly should access the assembly-equivalent symbols which are
detailed in Section 17.1 “Mixing Assembly Language and C Variables and Functions”.

Instruct the assembler that the symbol is defined elsewhere by using the .global
assembler directive. This is the assembly equivalent of a C declaration, although no
type information is present. This directive is not needed and should not be used if the
symbol is defined in the same module as your assembly code.

Any C variable accessed from assembly code will be treated as if it were qualified
volatile (see Section 8.9.2 “Volatile Type Qualifier”). Specifying the volatile
qualifier in C code is preferred as it makes it clear that external code may access the
object.
 2019 Microchip Technology Inc. DS50002895A-page 45

Compiler User’s Guide for PIC32C/SAM MCUs
3.3.7.4 HOW CAN I ACCESS SFRS FROM WITHIN ASSEMBLY CODE?

The safest way to gain access to SFRs in assembly code is to have symbols defined
in your assembly code that equate to the corresponding SFR address. For the XC32
compiler, the xc.h include file can be used from either preprocessed assembly code or
C/C++ code.

There is no guarantee that you will be able to access symbols generated by the
compilation of C code, even code that accesses the SFR you require.

3.3.7.5 WHAT THINGS MUST I MANAGE WHEN WRITING ASSEMBLY CODE?

There are several things that you must manage if you are hand-writing assembly code.

• You must place any assembly code you write into a section. See the “Linker Pro-
cessing” chapter of the MPLAB® XC32 Assembler, Linker and Utilities User’s
Guide” (DS50002186) for more information.
Assembly code that is placed inline with C code will be placed in the same section
as the compiler-generated assembly and you should not place this into a separate
section.

• You must ensure that any registers you write to in assembly code are not already
in use by compiler-generated code. If you write assembly in a separate module,
then this is less of an issue as the compiler will, by default, assume that all regis-
ters are used by these routines (see Chapter 12. “Register Usage”, registers). No
assumptions are made for inline assembly (see Section 17.1 “Mixing Assembly
Language and C Variables and Functions”) and you must be careful to save and
restore any resources that you use (write) and which are already in use by the
surrounding compiler-generated code.

3.4 GETTING MY APPLICATION TO DO WHAT I WANT

This section provides programming techniques, applications and examples. It also
examines questions that relate to making an application perform a specific task.

• What Can Cause Glitches on Output Ports?

• How Do I Link Bootloaders and Downloadable Applications?

• What Do I Need to Do When Compiling to Use a Debugger?

• How Do I Share Data Between Interrupt and Main-line Code?

• How Can I Prevent Misuse of My Code?

• How Do I Use Printf to Send Text to a Peripheral?

• How Can I Implement a Delay in My Code?

• How Can I Rotate a Variable?

3.4.1 What Can Cause Glitches on Output Ports?

In most cases, this is caused by using ordinary variables to access port bits or the entire
port itself. These variables should be qualified volatile (see Section 8.9.2 “Volatile
Type Qualifier”).

The value stored in a variable mapped over a port (hence the actual value written to
the port) directly translates to an electrical signal. It is vital that the values held by these
variables only change when the code intends them to, and that they change from their
current state to their new value in a single transition. The compiler attempts to write to
volatile variables in one operation.
DS50002895A-page 46  2019 Microchip Technology Inc.

How To’s
3.4.2 How Do I Link Bootloaders and Downloadable Applications?

Exactly how this is done depends on the device you are using and your project require-
ments, but the general approach when compiling applications that use a bootloader is
to allocate discrete program memory space to the bootloader and application so they
have their own dedicated memory. In this way, the operation of one cannot affect the
other. This will require that either the bootloader or the application is offset in memory.
That is, the Reset and interrupt location are offset from address 0 and all program code
is offset by the same amount.

Typically the application code is offset, and the bootloader is linked with no offset so
that it populates the Reset and interrupt code locations. The bootloader Reset and
interrupt code merely contains code which redirects control to the real Reset and
interrupt code defined by the application and which is offset.

The contents of the Hex file for the bootloader can be merged with the code of the appli-
cation by using loadable projects in MPLAB X IDE (see MPLAB X IDE documentation
for details). This results in a single Hex file that contains the bootloader and application
code in the one image. Check for warnings from this application about overlap, which
may indicate that memory is in use by both bootloader and the downloadable
application.

3.4.3 What Do I Need to Do When Compiling to Use a Debugger?

You can use debuggers, such as the PICkit™ 4 in-circuit debugger or the MPLAB ICD
4 in-circuit debugger, to debug code built with the MPLAB XC32 compiler. These
debuggers use some of the data and program memory of the device for its own use, so
it is important that your code does not also use these resources.

The command-line option -g (see Section 5.8.6 “Options for Debugging”) is used to tell
the compiler to generate debugging information. The compiler can then reserve the
memory used by the debugger so that your code will not be placed in these locations.

In the MPLAB X IDE, the appropriate debugger option is specified if you perform a
Debug Run. It will not be specified if you perform a regular Run, Build Project, or Clean
and Build.

Since some device memory is being reserved for use by the debugger, there is less
available for your program and it is possible that your code or data may no longer fit in
the device when a debugger is selected. For 32-bit devices, some boot flash memory
is required for debugging. In addition, some data memory (RAM) is used by the debug
tool and may impact the variable allocation in your application.

The specific memory locations used by the debuggers are attributes of MPLAB X, the
debug tool in use, and the target device. If you move a project to a new version of the
IDE, the resources required may change. For this reason, you should not manually
reserve memory for the debugger, or make any assumptions in your code as to what
memory is used. A summary of the debugger requirements is available in the MPLAB
X IDE help files.

To verify that the resources reserved by the compiler match those required by the
debugger, you may view the boot-flash, application-flash, and data-memory usage in
the map file or memory-usage report.

To create a map file in MPLAB X IDE, open the Project Properties window (File>Project
Properties) and click on the linker category (xc32-ld). Under “Option Categories,” select
“Diagnostics.” Next to “Generate map file,” enter a path and name for the map file. The
logical place to put the map file is in the project folder.

Debug Run your code to generate the map file. View in your favorite text viewer.

See also Section 3.5.14 “Why are Some Objects Positioned into Memory that I
Reserved?”.
 2019 Microchip Technology Inc. DS50002895A-page 47

Compiler User’s Guide for PIC32C/SAM MCUs
3.4.4 How Do I Share Data Between Interrupt and Main-line Code?

Variables accessed from both interrupt and main-line code can easily become cor-
rupted or misread by the program. The volatile qualifier (see Section 8.9.2 “Volatile
Type Qualifier”) tells the compiler to avoid performing optimizations on such variables.
This will fix some of the issues associated with this problem.

The other issues relates to whether the compiler/device can access the data atomically.
With 32-bit PIC devices, this is rarely the case. An atomic access is one where the
entire variable is accessed in only one instruction. Such access is uninterruptible. You
can determine if a variable is being accessed atomically by looking at the assembler
list file (see the MPLAB® XC32 Assembler, Linker and Utilities User’s Guide,
DS50002186, for more information). If the variable is accessed in one instruction, it is
atomic. Since the way variables are accessed can vary from statement to statement it
is usually best to avoid these issues entirely by disabling interrupts prior to the variable
being accessed in main-line code, then re-enable the interrupts afterwards (see
Section 14.7 “Enabling/Disabling Interrupts” for more information).

3.4.5 How Can I Prevent Misuse of My Code?

First, many devices with flash program memory allow all or part of this memory to be
write protected. The device configuration bits need to be set correctly for this to take
place (see Section 7.4 “Configuration Bit Access”, Section 2.4.9 “Specifying Configu-
ration Bits” for CCI and your device data sheet).

Second, you can prevent third-party code being programmed at unused locations in the
program memory, by filling these locations with a value rather than leaving them in their
default unprogrammed state. You can chose a fill value that corresponds to an instruc-
tion or set all the bits so as the values cannot be further modified.

Consider what will happen if your program somehow reaches and starts executing from
these filled values. What instruction will be executed?

The fill-memory feature is not yet available for the PIC32C/SAM compiler.

3.4.6 How Do I Use Printf to Send Text to a Peripheral?

The printf function does two things: it formats text based on the format string (along
with placeholders) you specify and sends (prints) this formatted text to a destination (or
stream). You may choose the printf output go to an LCD, SPI module or USART, for
example.

For more on the ANSI C function printf, see the 32-bit Language Tool Libraries
manual (DS51685).

To check what is passed to the printf function, you may attempt to statically analyze
format strings passed to the function by using the -msmart-io option
(Section 5.8.1 “Options Specific to PIC32C/SAM Devices”). You may also use the
-Wformat option to specify a warning when the arguments supplied to the function do
not have types appropriate to the format string specified (see Section 5.8.5 “Options for
Controlling Warnings and Errors”).

If you wish to create your own printf-type function, you will need to use the attributes
format and format_arg (as discussed in Section 13.2.1 “Function Attributes”).
DS50002895A-page 48  2019 Microchip Technology Inc.

How To’s
3.4.7 How Can I Implement a Delay in My Code?

If an accurate delay is required, or if there are other tasks that can be performed during
the delay, then using a timer to generate an interrupt is the best way to proceed.

Microchip does not recommend using a software delay on PIC32/SAM devices as there
are many variables that can affect timing, such as the configuration of the L1 cache,
prefetch cache, & Flash wait states. On these devices, you may choose to use a hard-
ware timer for timing purposes.

3.4.8 How Can I Rotate a Variable?

The C language does not have a rotate operator, but rotations can be performed using
the shift and bitwise OR operators. Since the 32-bit devices have a rotate instruction,
the compiler will look for code expressions that implement rotates (using shifts and
ORs) and use the rotate instruction in the generated output wherever possible.

If you are using CCI, you should consult Section 2.3.10 “Bitwise Operations on Signed
Values” and Section 2.3.11 “Right-shifting Signed Values” if you will be using signed
variables.

For the following example C code:

int rotate_left (unsigned a, unsigned s)
{
 return (a << s) | (a >> (32 - s));
}

the compiler may generate assembly instructions similar to the following:

rotate_left:
 subu $2,$0,$5
 jr $31
 ror $2,$4,$2

3.5 UNDERSTANDING THE COMPILATION PROCESS

This section tells you how to find out what the compiler did during the build process,
how it encoded output code, where it placed objects, etc. It also discusses the features
that are supported by the compiler.

• What’s the Difference Between the Free and PRO Modes?

• How Can I Make My Code Smaller?

• How Can I Reduce RAM Usage?

• How Can I Make My Code Faster?

• How Does the Compiler Place Everything in Memory?

• How Can I Make My Interrupt Routine Faster?

• How Big Can C Variables Be?

• What Optimizations Will Be Applied to My Code?

• What Devices are Supported by the Compiler?

• How Do I Know What Code the Compiler Is Producing?

• How Can I Tell How Big a Function Is?

• How Do I Know What Resources Are Being Used by Each Function?

• How Do I Find Out Where Variables and Functions Have Been Positioned?

• Why are Some Objects Positioned into Memory that I Reserved?

• How Do I Know How Much Memory Is Still Available?

• How Do I Use Library Files In My Project?
 2019 Microchip Technology Inc. DS50002895A-page 49

Compiler User’s Guide for PIC32C/SAM MCUs
• How Do I Customize the C Runtime Startup Code?

• What Optimizations Are Employed By The Compiler?

• How Do I Set Up Warning/Error Messages?

• How Do I Find the Code that Caused Compiler Errors Or Warnings in My Program?

• How Can I Stop Spurious Warnings from Being Produced?

• Why Can’t I Even Blink an LED?

• What Can Cause Corrupted Variables and Code Failure When Using Interrupts?

• How Do I Build Libraries?

• What is Different About an MPLAB X IDE Debug Build?

• How Do I Stop An Unused Function Being Removed?

• How Do I Use Library Files In My Project?

3.5.1 What’s the Difference Between the Free and PRO Modes?

These modes, or editions, mainly differ in the optimizations that are performed when
compiling (see Chapter 18. “Optimizations”). Compilers operating in Free mode can
compile for all the same devices as supported by the Pro mode. The code compiled in
Free or PRO modes can use all the available memory for the selected device. What will
be different is the size and speed of the generated compiler output. Free mode output
will be less efficient when compared to that produced in Pro mode.

3.5.2 How Can I Make My Code Smaller?

There are a number of ways that this can be done, but results vary from one project to
the next. Use the assembly list file to observe the assembly code produced by the com-
piler to verify that the following tips are relevant to your code.For information on the list
file, see the MPLAB® XC32 Assembler, Linker and Utilities User’s Guide
(DS50002186).

Use the smallest data types possible as less code is needed to access these. This also
reduces RAM usage. For example, a short integer type exists for this compiler (see
Chapter 8. “Supported Data Types and Variables” for all data types and sizes).

There are two sizes of floating-point type as well, and these are discussed in the same
section. Replace floating-point variables with integer variables wherever possible. For
many applications, scaling a variable's value makes eliminating floating-point opera-
tions possible.

Use unsigned types, if possible, instead of signed types, particularly if they are used in
expressions with a mix of types and sizes. Try to avoid an operator acting on operands
with mixed sizes whenever possible.

Whenever you have a loop or condition code, use a “strong” stop condition, for exam-
ple:

for(i=0; i!=10; i++)

is preferable to:

for(i=0; i<10; i++)

A check for equality (== or !=) is usually more efficient to implement than the weaker <
comparison.

In some situations, using a loop counter that decrements to zero is more efficient than
one that starts at zero and counts up by the same number of iterations. So you might
be able to rewrite the above as:

for(i=10; i!=0; i--)
DS50002895A-page 50  2019 Microchip Technology Inc.

How To’s
Ensure that you enable all the optimizations allowed for the edition of your compiler
(see Chapter 18. “Optimizations”). If you have a Pro edition, you can use the -Os option
(see Section 5.8.7 “Options for Controlling Optimization”) to optimize for size. Other-
wise, pick the highest optimization available.

Be aware of what optimizations the compiler performs so you can take advantage of
them and don’t waste your time manually performing optimizations in C code that the
compiler already handles, e.g., don’t turn a multiply-by-4 operation into a shift-by-2
operation as this sort of optimization is already detected.

3.5.3 How Can I Reduce RAM Usage?

Consider using auto variables rather than global or static variables as there is the
potential that these may share memory allocated to other auto variables that are not
active at the same time. Memory allocation of auto variables is made on a stack,
described in Section 9.3 “Auto Variable Allocation and Access”.

Rather than pass large objects to, or from, functions, pass pointers which reference
these objects. This is particularly true when larger structures are being passed.

Objects that do not need to change throughout the program can be located in program
memory using the const qualifier (see Section “The source code for this is found in
the pic32c-libs.zip file located at:”). This frees up precious RAM, but slows execution.

3.5.4 How Can I Make My Code Faster?

To a large degree, smaller code is faster code, so efforts to reduce code size often
decrease execution time (to accomplish this, see Section 3.5.2 “How Can I Make My
Code Smaller?” and Section 3.5.6 “How Can I Make My Interrupt Routine Faster?”).
However, there are ways some sequences can be sped up at the expense of increased
code size.

Depending on your compiler edition (see Chapter 18. “Optimizations”), you may be
able to use the -O3 option (see Section 5.8.7 “Options for Controlling Optimization”) to
optimize for speed. This will use alternate output in some instances that is faster, but
larger.

Generally, the biggest gains to be made in terms of speed of execution come from the
algorithm used in a project. Identify which sections of your program need to be fast.
Look for loops that might be linearly searching arrays and choose an alternate search
method such as a hash table and function. Where results are being recalculated,
consider if they can be cached.

3.5.5 How Does the Compiler Place Everything in Memory?

In most situations, assembly instructions and directives associated with both code and
data are grouped into sections, and these are then positioned into containers which
represent the device memory. To see what sections objects are placed in, use the
option -ai to view this information in the assembler listing file.

The exception is for absolute variables, which are placed at a specific address when
they are defined and which are not placed in a section. For setting absolute variables,
use the address() attribute (specified in Section 8.11 “Variable Attributes”).
 2019 Microchip Technology Inc. DS50002895A-page 51

Compiler User’s Guide for PIC32C/SAM MCUs
3.5.6 How Can I Make My Interrupt Routine Faster?

Consider suggestions made in Section 3.5.2 “How Can I Make My Code Smaller?”
(code size) for any interrupt code. Smaller code is often faster code.

In addition to the code you write in the ISR, there is the code the compiler produces to
switch context. Because this is executed immediately after an interrupt occurs and
immediately before the interrupt returns, it must be included in the time taken to pro-
cess an interrupt. This code is optimal, in that only registers used in the ISR will be
saved by this code. Thus, the fewer registers used in your ISR will mean potentially less
context switch code to be executed.

Generally simpler code will require fewer resources than more complicated expres-
sions. Use the assembly list file to see which registers are being used by the compiler
in the interrupt code. For information on the list file, see the MPLAB® XC32 Assembler,
Linker and Utilities User’s Guide (DS50002186).

Avoid calling other functions from the ISR. In addition to the extra overhead of the func-
tion call, the compiler also saves all general purpose registers that may or may not be
used by the called function. Consider having the ISR simply set a flag and return. The
flag can then be checked in main-line code to handle the interrupt. This has the advan-
tage of moving the complicated interrupt-processing code out of the ISR so that it no
longer contributes to its register usage. Always use the volatile qualifier (see
Section 8.9.2 “Volatile Type Qualifier”) for variables shared by the interrupt and
main-line code (see Section 3.4.4 “How Do I Share Data Between Interrupt and
Main-line Code?”).

3.5.7 How Big Can C Variables Be?

This question specifically relates to the size of individual C objects, such as arrays or
structures. The total size of all variables is another matter.

To answer this question you need to know in which memory space the variable will be
located. Objects qualified const will be located in program memory; other objects will
be placed in data memory. Program memory object sizes are discussed in
Section 9.4.1 “Size Limitations of const Variables”. Objects in data memory are
broadly grouped into autos and non-autos, with the size limitations of these objects,
respectively, discussed in Section 9.2.1 “Non-auto Variable Allocation” and
Section 9.2.3 “Non-auto Variable Size Limits”.

3.5.8 What Optimizations Will Be Applied to My Code?

Code optimizations available depend on the edition of your compiler (see Chapter
18. “Optimizations”). A description of optimization options can be found under
Section 5.8.7 “Options for Controlling Optimization”.

3.5.9 What Devices are Supported by the Compiler?

New devices are usually added with each compiler release. Check the readme
document for a full list of devices supported by a compiler release.
DS50002895A-page 52  2019 Microchip Technology Inc.

How To’s
3.5.10 How Do I Know What Code the Compiler Is Producing?

The assembly list file may be set up using assembler listing file options, to contain a
great deal of information about the code, such as the assembly output for almost the
entire program, including library routines linked in to your program; section information;
symbol listings; and more.

The list file may be produced as follows:

• On the command line, create a basic list file using the option:
-Wa, -a=projectname.lst.

• For MPLAB X IDE, right click on your project and select “Properties.” In the Proj-
ect Properties window, click on “xc32-as” under “Categories.” From “Option cate-
gories,” select “Listing file options” and ensure “List to file” is checked.

By default, the assembly list file will have a .lst extension.

For information on the list file, see the “MPLAB® XC32 Assembler, Linker and Utilities
User’s Guide” (DS50002186).

3.5.11 How Can I Tell How Big a Function Is?

This size of a function (the amount of assembly code generated for that function) can
be determined from the assembly list file. See Section 3.5.10 “How Do I Know What
Code the Compiler Is Producing?” for more on creating an assembly listing file.

3.5.12 How Do I Know What Resources Are Being Used by Each
Function?

In the assembly list file there is information printed for every C function, including library
functions. See Section 3.5.10 “How Do I Know What Code the Compiler Is Producing?”
for more on creating an assembly listing file.

To see information on functions calls, you can view the Call Graph in MPLAB X IDE
(Window>Output>Call Graph). You must be in debug mode to see this graph. Right
click on a function and select “Show Call Graph” to see what calls this function and what
it calls.

Auto, parameter, and temporary variables used by a function may overlap with those
from other functions as these are placed in a compiled stack by the compiler (see
Section 9.3 “Auto Variable Allocation and Access”).

3.5.13 How Do I Find Out Where Variables and Functions Have Been
Positioned?

You can determine where variables and functions have been positioned from either the
assembly list file (generated by the assembler) or the map file (generated by the linker).
Only global symbols are shown in the map file; all symbols (including locals) are listed
in the assembly list file.

There is a mapping between C identifiers and the symbols used in assembly code,
which are the symbols shown in both of these files. The symbol associated with a vari-
able is assigned the address of the lowest byte of the variable; for functions it is the
address of the first instruction generated for that function.

For more on assembly list files and linker map files, see the MPLAB® XC32 Assembler,
Linker and Utilities User’s Guide (DS50002186).
 2019 Microchip Technology Inc. DS50002895A-page 53

Compiler User’s Guide for PIC32C/SAM MCUs
3.5.14 Why are Some Objects Positioned into Memory that I
Reserved?

Most variables and functions are placed into sections that are defined in the linker
script. See the “MPLAB® XC32 Assembler, Linker and Utilities User’s Guide”
(DS50002186) for details on linker scripts. However, some variables and function are
explicitly placed at an address rather than being linked anywhere in an address range,
as described in 3.3.3.1 “How Do I Position Variables at an Address I Nominate?” and
3.3.3.2 “How Do I Position Functions at an Address I Nominate?”.

Check the assembly list file to determine the names of sections that hold objects and
code. Check the linker options in the map file to see if sections have been linked explic-
itly or if they are linked anywhere in a class. See the “MPLAB® XC32 Assembler, Linker
and Utilities User’s Guide” (DS50002186) for information on each of these files.

3.5.15 How Do I Know How Much Memory Is Still Available?

A memory usage summary is available from the compiler after compilation
(--report-mem option), from MPLAB X IDE in the Dashboard window. All of these sum-
maries indicate the amount of memory used and the amount still available, but none
indicate whether this memory is one contiguous block or broken into many small
chunks. Small blocks of free memory cannot be used for larger objects and so
out-of-memory errors may be produced even though the total amount of memory free
is apparently sufficient for the objects to be positioned.

Consult the linker map file to determine exactly what memory is still available in each
linker class. This file also indicates the largest contiguous block in that class if there are
memory page divisions. See the MPLAB® XC32 Assembler, Linker and Utilities User’s
Guide (DS50002186) for information on the map file.

3.5.16 How Do I Use Library Files In My Project?

See Section 3.2.6 “How Do I Build Libraries?” for information on how you build your
own library files. The compiler will automatically include any applicable standard library
into the build process when you compile, so you never need to control these files.

To use one or more library files that were built by yourself or a colleague, include them
in the list of files being compiled on the command line. The library files can be specified
in any position in the file list relative to the source files, but if there is more than one
library file, they will be searched in the order specified in the command line.

For example:

xc32-gcc -mprocessor=ATSAME70J19B main.c int.c mylib.a

If you are using MPLAB X IDE to build a project, add the library file(s) to the Libraries
folder that will shown in your project, in the order in which they should be searched. The
IDE will ensure that they are passed to the compiler at the appropriate point in the build
sequence.
DS50002895A-page 54  2019 Microchip Technology Inc.

How To’s
3.5.17 How Do I Customize the C Runtime Startup Code?

Some applications may require an application-specific version of the C runtime startup
code. For instance, you may want to modify the startup code for an application loaded
by a bootloader.

To customize the startup code for your application:

1. Start with the default startup code, a copy of which is located in
<install-directory>/pic32c/lib/proc/<device>/start-
up_<device>.c
You may also choose to get this file from the Device Family Pack (DFP).
Make a copy of this .c file, rename it, and add it to your project.

2. Change your MPLAB X project to exclude the default startup code by passing the
-mno-device-startup-code option to the xc32-gcc driver at link time. This
option is available as “Do not link device startup code” in the MPLAB X project
properties under Options for xc32-ld in the Libraries category. When you build
your project, the MPLAB X will build your new application-specific copy of the
startup code rather than linking in the default code.

FIGURE 3-1: STARTUP CODE PROPERTIES SETTING

3.5.18 What Optimizations Are Employed By The Compiler?

Code optimizations available depend on the edition of your compiler (see Chapter
18. “Optimizations”). A description of optimization options can be found under
Section 5.8.7 “Options for Controlling Optimization”.
 2019 Microchip Technology Inc. DS50002895A-page 55

Compiler User’s Guide for PIC32C/SAM MCUs
3.6 FIXING CODE THAT DOES NOT WORK

This section examines issues relating to projects that do not build due to compiler
errors, or which build but do not work as expected.

• How Do I Set Up Warning/Error Messages?

• How Do I Find the Code that Caused Compiler Errors Or Warnings in My Program?

• How Can I Stop Spurious Warnings from Being Produced?

• Why Can’t I Even Blink an LED?

• What Can Cause Corrupted Variables and Code Failure When Using Interrupts?

• Invoking the Compiler

• What Can Cause Corrupted Variables and Code Failure When Using Interrupts?

• Why are Some Objects Positioned into Memory that I Reserved?

3.6.1 How Do I Set Up Warning/Error Messages?

To control message output, see Section 5.8.5 “Options for Controlling Warnings and
Errors”.

3.6.2 How Do I Find the Code that Caused Compiler Errors Or
Warnings in My Program?

In most instances, where the error is a syntax error relating to the source code, the
message produced by the compiler indicates the offending line of code. If you are com-
piling in MPLAB X IDE, then you can double-click the message and have the editor take
you to the offending line. But identifying the offending code is not always so easy.

In some instances, the error is reported on the line of code following the line that needs
attention. This is because a C statement is allowed to extend over multiple lines of the
source file. It is possible that the compiler may not be able to determine that there is an
error until it has started to scan the next statement. Consider the following code:

input = PORTB // oops - forgot the semicolon
if(input>6)
 // ...

The missing semicolon on the assignment statement will be flagged on the following
line that contains the if() statement.

In other cases, the error might come from the assembler, not the code generator. If the
assembly code was derived from a C source file, then the compiler will try to indicate
the line in the C source file that corresponds to the assembly that is at fault. If the
source being compiled is an assembly module, the error directly indicates the line of
assembly that triggered the error. In either case, remember that the information in the
error relates to some problem is the assembly code, not the C code.

Finally, there are errors that do not relate to any particular line of code at all. An error
in a compiler option or a linker error are examples of these. If the program defines too
many variables, there is no one particular line of code that is at fault; the program as a
whole uses too much data. Note that the name and line number of the last processed
file and source may be printed even though code is not the direct source of the error.

At the top of each message description, on the right in brackets, is the name of the
application that produced this message. Knowing the application that produced the
error makes it easier to track down the problem. The compiler application names are
indicated in Chapter 4. “XC32 Toolchain and MPLAB X IDE”.

If you need to see the assembly code generated by the compiler, look in the assembly
list file. For information on where the linker attempted to position objects, see the map
file. See the MPLAB® XC32 Assembler, Linker and Utilities User’s Guide
(DS50002186) for information about the list and map files.
DS50002895A-page 56  2019 Microchip Technology Inc.

How To’s
3.6.3 How Can I Stop Spurious Warnings from Being Produced?

Warnings indicate situations that could possibly lead to code failure. Always check your
code to confirm that it is not a possible source of error. In many situations the code is
valid and the warning is superfluous. In this case, you may:

• Inhibit specific warnings by using the -Wno- version of the option.

• Inhibit all warnings with the -w option.

• In MPLAB X IDE, inhibit warnings in the Project Properties window under each
tool category. Also look in the Tool Options window, Embedded button,
Suppressible Messages tab.

See Section 5.8.5 “Options for Controlling Warnings and Errors” for details.

3.6.4 Why Can’t I Even Blink an LED?

Even if you have set up the port register and written a value to the port, there are
several things that can prevent such a seemingly simple program from working.

• Make sure that the device’s configuration registers are set up correctly, as dis-
cussed in Section 7.4 “Configuration Bit Access”. Make sure that you explicitly
specify every bit in these registers and don’t just leave them in their default state.
All the configuration features are described in your device data sheet. If the con-
figuration bits that specify the oscillator source are wrong, for example, the device
clock may not even be running.

• If the internal oscillator is being used, in addition to configuration bits there may be
SFRs you need to initialize to set the oscillator frequency and modes. See
Section 7.4 “Configuration Bit Access” and your device data sheet.

• To ensure that the device is not resetting because of the watchdog time, either
turn off the timer in the configuration bits or clear the timer in your code. There are
library functions you can use to handle the watchdog timer, described in the 32-bit
Language Tool Libraries manual (DS51685). If the device is resetting, it may
never reach the lines of code in your program that blink the LED. Turn off any
other features that may cause device Reset until your test program is working.

• The device pins used by the port bits are often multiplexed with other peripherals.
A pin might be connected to a bit in a port, or it might be an analog input, or it
might be the output of a comparator, for example. If the pin connected to your LED
is not internally connected to the port you are using, then your LED will never
operate as expected. The port function tables in your device data sheets will show
other uses for each pin which will help you identify peripherals to investigate.

3.6.5 What Can Cause Corrupted Variables and Code Failure When
Using Interrupts?

This is usually caused by having variables used by both interrupt and main-line code.
If the compiler optimizes access to a variable or access is interrupted by an interrupt
routine, then corruption can occur. See Section 3.4.4 “How Do I Share Data Between
Interrupt and Main-line Code?” for more information.
 2019 Microchip Technology Inc. DS50002895A-page 57

Compiler User’s Guide for PIC32C/SAM MCUs
NOTES:
DS50002895A-page 58  2019 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
USER’S GUIDE FOR

PIC32C/SAM MCUs

Chapter 4. XC32 Toolchain and MPLAB X IDE
The 32-bit language tools may be used together under MPLAB X IDE to provide GUI
development of application code for the PIC32 MCU families of devices. The tools are:

• MPLAB XC32 C/C++ Compiler

• MPLAB XC32 Assembler

• MPLAB XC32 Object Linker

• MPLAB XC32 Object Archiver/Librarian and other 32-bit utilities

4.1 MPLAB X IDE AND TOOLS INSTALLATION

In order to use the 32-bit language tools with MPLAB X IDE, you must install:

• MPLAB X IDE, which is available for free on the Microchip website.

• MPLAB XC32 C/C++ Compiler, which includes all of the 32-bit language tools.
The compiler is available for free (Free and Evaluation editions) or for purchase
(Pro edition) on the Microchip website.

The 32-bit language tools will be installed, by default, in the directory:

• Windows OS - C:\Program Files\Microchip\xc32\x.xx
• Mac OS - Applications/microchip/xc32/x.xx
• Linux OS - /opt/microchip/xc32/x.xx

where x.xx is the version number.

The executables for each tool will be in the bin subdirectory:

• C Compiler - xc32-gcc.exe

• Assembler - xc32-as.exe

• Object Linker - xc32-ld.exe

• Object Archiver/Librarian - xc32-ar.exe

• Other Utilities

All device include (header) files are located in the /pic32c/include/proc subdirec-
tory. These files are automatically incorporated when you #include the xc.h header
file.

Code examples are located in the examples directory.
 2019 Microchip Technology Inc. DS50002895A-page 59

Compiler User’s Guide for PIC32C/SAM MCUs
4.2 MPLAB X IDE SETUP

Once MPLAB X IDE is installed on your PC, launch the application and check the
settings below to ensure that the 32-bit language tools are properly recognized.

1. From the MPLAB X IDE menu bar, select Tools>Options to open the Options dia-
log. Click on the Embedded button and select the “Build Tools” tab.

2. Click on “XC32” under “Toolchain.” Ensure that the paths are correct for your
installation.

3. Click OK.

FIGURE 4-1: XC32 TOOLSUITE LOCATIONS IN WINDOWS® OS
DS50002895A-page 60  2019 Microchip Technology Inc.

XC32 Toolchain and MPLAB X IDE
4.3 MPLAB X IDE PROJECTS

A project in MPLAB X IDE is a group of files needed to build an application, along with
their associations to various build tools. Below is a generic MPLAB X IDE project.

FIGURE 4-2: COMPILER PROJECT RELATIONSHIPS

In this MPLAB X IDE project, C source files are shown as input to the compiler. The
compiler will generate source files for input into the assembler. For more information on
the compiler, see the compiler documentation.

Assembly source files are shown as input to the C preprocessor. The resulting source
files are input to the assembler. The assembler will generate object files for input into
the linker or archiver. For more information on the assembler, see the assembler
documentation.

Object File Libraries
(*.a)

Assembler

Linker

C Source Files (*.c)
C++ Source Files (*.cpp, *.C)

C CompilerAssembly Source
Files (*.S)

Debug File
(*.elf)

Archiver (Librarian)

Compiler
Driver
Program

MPLAB® X IDE
Debug Tool

Source Files (*.s)

Object Files
(*.o)

Command-Line
Simulator

Linker Script File(1)

(*.ld)

Executable File
(*.hex)

MPLAB® X IDE
Programmer

bin2hex Utility

Output File

Note 1: The linker can choose the correct linker script file for your project.
 2019 Microchip Technology Inc. DS50002895A-page 61

Compiler User’s Guide for PIC32C/SAM MCUs
Object files can be archived into a library using the archiver/librarian. For more
information on the archiver, see the archiver/librarian documentation.

The object files and any library files, as well as a linker script file (generic linker scripts
are added automatically), are used to generate the project output files via the linker.
The output file that may be generated by the linker is a debug file (.elf) used by the
simulator and debug tools which may be input into the bin2hex utility to produce an
executable file (.hex). For more information on linker script files and using the object
linker, see the linker documentation.

For more on projects, and related workspaces, see MPLAB X IDE documentation.

4.4 PROJECT SETUP

To set up an MPLAB X IDE project for the first time, use the built-in Project Wizard
(File>New Project.) In this wizard, you will be able to select a language toolsuite that
uses the 32-bit language tools. For more on the wizard, and MPLAB X IDE projects,
see MPLAB X IDE documentation.

Once you have a project set up, you may then set up properties of the tools in MPLAB
X IDE.

1. From the MPLAB X IDE menu bar, select File>Project Properties to open a
window to set/check project build options.

2. Under “Conf:[default]”, select a tool from the tool collection to set up.

4.4.1 XC32 (Global Options)

Set up global options for all 32-bit language tools (see also Section 4.4.6 “Options
Page Features”).

TABLE 4-1: XC32 (GLOBAL OPTIONS) ALL OPTIONS CATEGORY

Option Description Command Line

Don’t delete intermediate
files

Don’t delete intermediate Files. Place them in the object directory
and name them based on the source file.

-save-temps=obj

Use Whole-Program and
Link-Time Optimizations

When this feature is enabled, the build will be constrained in the
following ways:
- The per-file build settings will be ignored
- The build will no longer be an incremental one (full build only)

-fwhole-program
-flto

Common include dirs Directory paths entered here will be appended to the already
existing include paths of the compiler.
Relative paths are from the MPLAB X IDE project directory.

-I"dir"
DS50002895A-page 62  2019 Microchip Technology Inc.

XC32 Toolchain and MPLAB X IDE
4.4.2 xc32-as (32-bit Assembler)

A subset of command-line options may be specified in MPLAB X IDE. Select a category
and then set up assembler options. For additional options, see MPLAB XC32 Assem-
bler documentation (and Section 4.4.6 “Options Page Features”).

TABLE 4-2: XC32-AS GENERAL OPTIONS CATEGORY

Option Description Command Line

Have symbols in produc-
tion build

Generate debugging information for source-level debugging in
MPLAB X.

--gdwarf-2

Keep local symbols Check to keep local symbols, i.e., labels beginning with .L
(upper case only).
Uncheck to discard local symbols.

--keep-locals

Preprocessor macro defi-
nitions

Project-specific preprocessor macro defines passed via the
compiler's –D option.

Assembler symbols Define symbol 'sym' to a given 'value'. --defsym sym=value
Preprocessor Include
directories

Relative paths are from MPLAB X project directory.

Assembler Include direc-
tories

Relative paths are from MPLAB X project directory.
Add a directory to the list of directories the assembler
searches for files specified in .include directives.
You may add as many directories as necessary to include a
variety of paths. The current working directory is always
searched first and then -I directories in the order in which
they were specified (left to right) here.

-I

TABLE 4-3: XC32-AS OTHER OPTIONS CATEGORY

Option Description Command Line

Diagnostics level Select warnings to display in the Output window.
- Generate warnings
- Suppress warnings
- Fatal warnings

--warn
--no-warn
--fatal-warnings

Include source code Check for a high-level language listing. High-level listings
require that the assembly source code is generated by a com-
piler, a debugging option like -g is given to the compiler, and
assembly listings (-al) are requested.
Uncheck for a regular listing.

-ah

Expand macros Check to expand macros in a listing.
Uncheck to collapse macros.

-am

Include false conditionals Check to include false conditionals (.if, .ifdef) in a listing.
Uncheck to omit false conditionals.

-ac

Omit forms processing Check to turn off all forms processing that would be performed
by the listing directives .psize, .eject, .title and
.sbttl.
Uncheck to process by listing directives.

-an

Include assembly Check for an assembly listing. This -a suboption may be
used with other suboptions.
Uncheck to exclude an assembly listing.

-al

List symbols Check for a symbol table listing.
Uncheck to exclude the symbol table from the listing.

-as
 2019 Microchip Technology Inc. DS50002895A-page 63

Compiler User’s Guide for PIC32C/SAM MCUs
4.4.3 xc32-gcc (32-bit C Compiler)

Although the MPLAB XC32 C/C++ Compiler works with MPLAB X IDE, it must be
acquired separately. The full version may be purchased, or a student (limited-feature)
version may be downloaded for free. See the Microchip website (www.microchip.com)
for details.

A subset of command-line options may be specified in MPLAB X IDE. Select a cate-
gory, and then set up compiler options. For additional options, see the MPLAB X IDE
User’s Guide (DS50002027), also available on the Microchip website.

See also Section 4.4.6 “Options Page Features”.

Omit debugging
directives

Check to omit debugging directives from a listing. This can
make the listing cleaner.
Uncheck to included debugging directives.

-ad

List to file Use this option if you want the listing for a file. The list file will
have the same name as the asm file plus .lst.

-a=${CURRENT_QUOTE
D_IF_SPACED_OBJECT
_FILE_MINUS_EXTENS
ION}.lst

TABLE 4-3: XC32-AS OTHER OPTIONS CATEGORY (CONTINUED)

Option Description Command Line

TABLE 4-4: XC32-GCC GENERAL CATEGORY

Option Description Command Line

Have symbols in produc-
tion build

Build for debugging in a production build image. -g

Isolate each function in a
section

This option is often used with the linker's --gc-sec-
tions option to remove unreferenced functions.
Check to place each function into its own section in the
output file. The name of the function determines the sec-
tion’s name in the output file.
Note: When you specify this option, the assembler and
linker may create larger object and executable files and
will also be slower.
Uncheck to place multiple functions in a section.

-ffunction-sections

Place data into its own
section

This option is often used with the linker's --gc-sec-
tions option to remove unreferenced statically-allocated
variables.
Place each data item into its own section in the output file.
The name of the data item determines the name of the
section. When you specify this option, the assembler and
linker may create larger object and executable files and
will also be slower.

-fdata-sections

Use indirect calls Enable full-range calls. -mlong-calls
DS50002895A-page 64  2019 Microchip Technology Inc.

http://www.microchip.com

XC32 Toolchain and MPLAB X IDE
TABLE 4-5: XC32-GCC OPTIMIZATION CATEGORY

Option Description Command Line

Optimization Level Select an optimization level. Your compiler edition may
support only some optimizations. Equivalent to -On
option, where n is an option below:
• 0 - Do not optimize.The compiler’s goal is to reduce

the cost of compilation and to make debugging pro-
duce the expected results.

• 1 - Optimize. Optimizing compilation takes somewhat
longer, and a lot more host memory for a large func-
tion. The compiler tries to reduce code size and exe-
cution time.

• 2 - Optimize even more. The compiler performs
nearly all supported optimizations that do not involve
a space-speed trade-off.

• 3 - Optimize yet more favoring speed (superset of
O2).

• s - Optimize yet more favoring size (superset of O2).

-On

Unroll loops This option often increases execution speed at the
expense of larger code size.
Check to perform the optimization of loop unrolling. This
is only done for loops whose number of iterations can be
determined at compile time or run time.
Uncheck to not unroll loops.

-funroll-loops

Omit frame pointer Check to not keep the Frame Pointer in a register for
functions that don’t need one.
Uncheck to keep the Frame Pointer.

-fomit-frame-pointer

Pre-optimization instruc-
tion scheduling

Default for optimization level:

- Disable -fno-schedule-insns

- Enable -fschedule-insns

Post-optimization instruc-
tion scheduling

Default for optimization level:

- Disable -fno-schedule-insns2

- Enable -fschedule-insns2

TABLE 4-6: XC32-GCC PREPROCESSING AND MESSAGES CATEGORY

Option Description Command Line

Preprocessor macros Project-specific preprocessor macro defines passed via the
compiler's –D option.

Include directories Search these directories for project-specific include files.

Make warnings into
errors

Check to halt compilation based on warnings as well as
errors.
Uncheck to halt compilation based on errors only.

-Werror

Additional warnings Check to enable all warnings.
Uncheck to disable warnings.

-Wall

support-ansi Check to issue all warnings demanded by strict ANSI C.
Uncheck to issue all warnings.

-ansi

strict-ansi Issue all the warnings demanded by strict ISO C and ISO
C++; reject all programs that use forbidden extensions, and
some other programs that do not follow ISO C and ISO C++.

-pedantic

Use CCI syntax Enable support for the CCI syntax (see Chapter
2. “Common C Interface”).

-mcci
 2019 Microchip Technology Inc. DS50002895A-page 65

Compiler User’s Guide for PIC32C/SAM MCUs
4.4.4 xc32-g++(32-bit C++ Compiler)

A subset of command-line options may be specified in MPLAB X IDE. Select a cate-
gory, and then set up linker options. For additional options, see MPLAB Object Linker
for 32-bit Devices documentation (and Section 4.4.6 “Options Page Features”).

TABLE 4-7: XC32-G++ C++ SPECIFIC CATEGORY

Option Description Command Line

Generate run time type
descriptor information

Enable generation of information about every class with
virtual functions for use by the C++ runtime type identifi-
cation features ('dynamic_cast' and 'typeid'). If you don't
use those parts of the language, you can save some
space by disabling this option. Note that exception han-
dling uses the same information, but it will generate it as
needed. The 'dynamic_cast' operator can still be used for
casts that do not require runtime type information, i.e.,
casts to void * or to unambiguous base classes.

-frtti

Enable C++ exception
handling

Enable exception handling. Generates extra code needed
to propagate exceptions.

-fexceptions

Check that the pointer
returned by operator
'new' is non-null

Check that the pointer returned by operator new is
non-null before attempting to modify the storage allo-
cated.

-fcheck-new

Generate code to check
for violation of exception
specification

Generate code to check for violation of exception specifi-
cations at runtime. This option violates the C++ standard,
but may be useful for reducing code size in production
builds.

-fenforce-eh-specs

TABLE 4-8: XC32-G++ GENERAL CATEGORY

Option Description Command Line

Have symbols in produc-
tion build

Build for debugging in a production build image. -g

Isolate each function in a
section

Place each function into its own section in the output file if
the target supports arbitrary sections. The name of the
function or the name of the data item determines the sec-
tion's name in the output file. This option is useful when
combined with the linker’s --gc-sections option to
remove unreferenced functions.

-ffunction-sections

Place data into its own
section

Place each data item into its own section in the output file
if the target supports arbitrary sections. The name of the
function or the name of the data item determines the sec-
tion's name in the output file. This option is useful when
combined with the linker’s --gc-sections option to
remove unreferenced variables.

-fdata-sections

Use indirect calls Enable full-range calls. -mlong-calls
DS50002895A-page 66  2019 Microchip Technology Inc.

XC32 Toolchain and MPLAB X IDE
TABLE 4-9: XC32-G++ OPTIMIZATION CATEGORY

Option Description Command Line

Optimization Level Select an optimization level. Your compiler edition may
support only some optimizations. Equivalent to -On
option, where n is an option below:
• 0 - Do not optimize.The compiler’s goal is to reduce

the cost of compilation and to make debugging pro-
duce the expected results.

• 1 - Optimize. Optimizing compilation takes somewhat
longer, and a lot more host memory for a large func-
tion. The compiler tries to reduce code size and exe-
cution time.

• 2 - Optimize even more. The compiler performs
nearly all supported optimizations that do not involve
a space-speed trade-off.

• 3 - Optimize yet more favoring speed (superset of
O2).

• s - Optimize yet more favoring size (superset of O2).

-On

Unroll loops Check to perform the optimization of loop unrolling. This
is only done for loops whose number of iterations can be
determined at compile time or run time.
Uncheck to not unroll loops.

-funroll-loops

Omit frame pointer Check to not keep the Frame Pointer in a register for
functions that don’t need one.
Uncheck to keep the Frame Pointer.

-fomit-frame-pointer

Pre-optimization instruc-
tion scheduling

Default for optimization level:

- Disable -fno-schedule-insns

- Enable -fschedule-insns

Post-optimization instruc-
tion scheduling

Default for optimization level:

- Disable -fno-schedule-insns2

- Enable -fschedule-insns2

TABLE 4-10: XC32-G++ OPTIMIZATION CATEGORY

Option Description Command Line

Preprocessor macros Project-specific preprocessor macro defines passed via
the compiler’s –D option.

Include directories Search these directories for project-specific include files.

Make warnings into
errors

Check to halt compilation based on warnings as well as
errors.
Uncheck to halt compilation based on errors only.

-Werror

Additional warnings Check to enable all warnings.
Uncheck to disable warnings.

-Wall

support-ansi Check to issue all warnings demanded by strict ANSI C.
Uncheck to issue all warnings.

-ansi

strict-ansi Issue all the warnings demanded by strict ISO C and ISO
C++; reject all programs that use forbidden extensions,
and some other programs that do not follow ISO C and
ISO C++.

-pedantic

Use CCI syntax Enable support for the CCI syntax (Chapter
2. “Common C Interface”).

-mcci
 2019 Microchip Technology Inc. DS50002895A-page 67

Compiler User’s Guide for PIC32C/SAM MCUs
4.4.5 xc32-ld (32-Bit Linker)

A subset of command-line options may be specified in MPLAB X IDE. Select a cate-
gory, and then set up linker options. For additional options, see MPLAB Object Linker
for 32-bit Devices documentation (and Section 4.4.6 “Options Page Features”).

TABLE 4-11: XC32-LD GENERAL CATEGORY

Option Description Command Line

Heap Size (bytes) Specify the size of the heap in bytes. Allocate
a run-time heap of size bytes for use by C
programs. The heap is allocated from unused
data memory. If not enough memory is avail-
able, an error is reported.

--defsym=_min_heap_size=<size>

Minimum stack size
(bytes)

Specify the minimum size of the stack in
bytes. By default, the linker allocates all
unused data memory for the run-time stack.
Alternatively, the programmer may allocate
the stack by declaring two global symbols:
__SP_init and __SPLIM_init. Use this
option to ensure that at least a minimum
sized stack is available. The actual stack size
is reported in the link map output file. If the
minimum size is not available, an error is
reported.

--defsym=_min_stack_size=<size>

Allow overlapped
sections

Check to not check section addresses for
overlaps.
Uncheck to check for overlaps.

--check-sections
--no-check-sections

Remove unused sections Check to not enable garbage collection of
unused input sections (on some targets).
Uncheck to enable garbage collection.

--no-gc-sections
--gc-sections

Use response file to link Pass linker options in a file rather than on the
command line. On Windows systems, this
option allows you to properly link projects
with a large number of object files that would
normally overrun the command-line length
limitation of the Windows OS.

True

Additional driver options Enter any additional driver options not exist-
ing in this GUI otherwise. The string you
introduce here will be emitted as is in the
driver invocation command.
DS50002895A-page 68  2019 Microchip Technology Inc.

XC32 Toolchain and MPLAB X IDE
TABLE 4-12: XC32-LD LIBRARIES CATEGORY

Option Description Command Line

Optimization level of
Standard Libraries

Select an optimization level. Your compiler edition may
support only some optimizations. Equivalent to -On
option, where n is an option below:
• 0 - Do not optimize.The compiler’s goal is to

reduce the cost of compilation and to make debug-
ging produce the expected results.

• 1 - Optimize. Optimizing compilation takes some-
what longer, and a lot more host memory for a
large function. The compiler tries to reduce code
size and execution time.

• 2 - Optimize even more. The compiler performs
nearly all supported optimizations that do not
involve a space-speed trade-off.

• 3 - Optimize yet more favoring speed (superset of
O2).

• s - Optimize yet more favoring size (superset of
O2).

-On

System Libraries Add libraries to be linked with the project files. You may
add more than one.

--library=name

Library directories Add a library directory to the library search path. You
may add more than one.

--library-path="name"

Exclude Standard Librar-
ies

Check to not use the standard system startup files or
libraries when linking. Only use library directories spec-
ified on the command line.
Uncheck to use the standard system startup files and
libraries.

-nostdlib

Do not link startup code Exclude the default startup code because the project
provides application-specific startup code.

-nostartfiles

Do not link device startup
code

Do not link the default device-specific startup code (for
example, startup_,device>.c)

-mno-device-startup-code

TABLE 4-13: XC32-LD DIAGNOSTICS CATEGORY

Option Description Command Line

Generate map file Create a map file. -Map="file"
Display memory usage Check to print memory usage report.

Uncheck to not print a report.
--report-mem

Generate
cross-reference file

Check to create a cross-reference table.
Uncheck to not create this table.

--cref

Warn on section
realignment

Check to warn if start of section changes due to
alignment.
Uncheck to not warn.

--warn-section-align

Trace Symbols Add/remove trace symbols. --trace-symbol=symbol
 2019 Microchip Technology Inc. DS50002895A-page 69

Compiler User’s Guide for PIC32C/SAM MCUs
4.4.6 Options Page Features

The Options section of the Properties page has the following features for all tools:

4.5 PROJECT EXAMPLE

In this example, you will create an MPLAB X IDE project with two C code files.

4.5.1 Run the Project Wizard

In MPLAB X IDE, select File>New Project to launch the wizard.

1. Choose Project: Select “Microchip Embedded” for the category and “Stand-
alone Project” for the project. Click Next> to continue.

2. Select Device: Select the dsPIC30F6014. Click Next> to continue.

3. Select Header: There is no header for this device so this is skipped.

4. Select Tool: Choose a development tool from the list. Tool support for the
selected device is shown as a colored circle next to the tool. Mouse over the
circle to see the support as text. Click Next> to continue.

5. Select Compiler: Choose a version of the XC32 toolchain. Click Next> to
continue.

6. Select Project Name and Folder: Enter a project name, such as
MyXC32Project. Then select a location for the project folder. Click Finish to
complete the project creation and setup.

Once the Project Wizard has completed, the Project window should contain the project
tree. For more on projects, see the MPLAB X IDE documentation.

TABLE 4-14: XC32-LD SYMBOLS AND MACROS CATEGORY

Option Description Command Line

Linker symbols Create a global symbol in the output file containing the
absolute address (expr). You may use this option as
many times as necessary to define multiple symbols in
the command line. A limited form of arithmetic is sup-
ported for the expr in this context: you may give a hexa-
decimal constant or the name of an existing symbol, or
use + and - to add or subtract hexadecimal constants or
symbols.

--defsym=sym

Preprocessor macro defi-
nitions

Add linker macros. -Dmacro

Symbols Specify symbol information in the output.

- Keep all —

- Strip debugging info --strip-debug (-S)

- Strip all symbol info --strip-all (-s)

TABLE 4-15: PAGE FEATURES OPTIONS
Reset Reset the page to default values.

Additional options Enter options in a command-line (non-GUI) format.

Option Description Click on an option name to see information on the option in this window. Not all options
have information in this window.

Generated Command Line Click on an option name to see the command-line equivalent of the option in this win-
dow.
DS50002895A-page 70  2019 Microchip Technology Inc.

XC32 Toolchain and MPLAB X IDE
4.5.2 Set Build Options

Select File>Project Properties or right click on the project name and select “Properties”
to open the Project Properties dialog.

1. Under “Conf:[default]>XC32 (Global Options)”, select “xc32-gcc.”

2. Under “Conf:[default]>XC32 (Global Options)”, select “xc32-ld.”

3. Select “Diagnostics” from the “Option Categories”. Then enter a file name to
“Generate map file,” i.e., example.map.

4. Click OK on the bottom of the dialog to accept the build options and close the
dialog.

4.5.3 Build the Project

Right click on the project name, “MyXC32Project,” in the project tree and select “Build”
from the pop-up menu. The Output window displays the build results.

If the build did not complete successfully, check these items:

1. Review the previous steps in this example. Make sure you have set up the
language tools correctly and have all the correct project files and build options.

2. If you modified the sample source code, examine the Build tab of the Output win-
dow for syntax errors in the source code. If you find any, click on the error to go
to the source code line that contains that error. Correct the error, and then try to
build again.

4.5.4 Output Files

View the project output files by opening the files in MPLAB X IDE.

1. Select File>Open File. In the Open dialog, find the project directory.

2. Under “Files of type” select “All Files” to see all project files.

3. Select File>Open File. In the Open dialog, select “example.map.” Click Open to
view the linker map file in an MPLAB X IDE editor window. For more on this file,
see the linker documentation.

4. Select File>Open File. In the Open dialog, return to the project directory and then
go to the dist>default>production directory. Notice that there is only one hex file,
“MyXC32Project.X.production.hex.” This is the primary output file. Click Open to
view the hex file in an MPLAB X IDE editor window. For more on this file, see the
Utilities documentation.
There is also another file, “MyXC32Project.X.production.elf.” This file contains
debug information and is used by debug tools to debug your code. For informa-
tion on selecting the type of debug file, see Section 4.4.1 “XC32 (Global
Options)”.

4.5.5 Further Development

Usually, your application code will contain errors and not work the first time. Therefore,
you will need a debug tool to help you develop your code. Using the output files
previously discussed, several debug tools exist that work with MPLAB X IDE to help
you do this. You may choose from simulators, in-circuit emulators or in-circuit
debuggers, either manufactured by Microchip Technology or third-party developers.
Please see the documentation for these tools to learn how they can help you. When
debugging, you will use Debug>Debug Project to run and debug your code. Please see
MPLAB X IDE documentation for more information.
 2019 Microchip Technology Inc. DS50002895A-page 71

Compiler User’s Guide for PIC32C/SAM MCUs
Once you have developed your code, you will want to program it into a device. Again,
there are several programmers that work with MPLAB X IDE to help you do this. Please
see the documentation for these tools to see how they can help you. When
programming, you will use the Make and Program Device Project button on the
debug toolbar. Please see MPLAB X IDE documentation concerning this control.
DS50002895A-page 72  2019 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
USER’S GUIDE FOR
PIC32C/SAM MCUs

 2019 Microchip Technology Inc. DS50002895A-page 73

Chapter 5. Compiler Command Line Driver

The command line driver (xc32-gcc or xc32-g++) is the application that can be invoked
to perform all aspects of compilation, including C/C++ code generation, assembly and
link steps. Even if you use an IDE to assist with compilation, the IDE will ultimately call
xc32-gcc for C projects or xc32-g++ for C++ projects. MPLAB X IDE uses various heu-
ristics to determine the project language. In some cases, it will add the -x flag to select
the correct language, C or C++, and use any of the two drivers.

Although the internal compiler applications can be called explicitly from the command
line, using the xc32-gcc or xc32-g++ driver is the recommended way to use the com-
piler as it hides the complexity of all the internal applications used and provides a con-
sistent interface for all compilation steps.

This chapter describes the steps the driver takes during compilation, files that the driver
can accept and produce, as well as the command line options that control the com-
piler’s operation. It also shows the relationship between these command line options
and the controls in the MPLAB X IDE Project Properties dialog.

5.1 INVOKING THE COMPILER

The compiler is invoked and runs on the command line, as specified in the next section.
Additionally, environmental variables and input files used by the compiler are discussed
in the following sections.

5.1.1 Driver Command Line Format

The compilation driver program (xc32-gcc) compiles, assembles and links C and
assembly language modules and library archives. The xc32-g++ driver must be used
when the module source is written in C++. Most of the compiler command line options
are common to all implementations of the GCC toolset (MPLAB XC32 uses the GCC
toolset; XC8 does not). A few are specific to the compiler.

The basic form of the compiler command line is:

xc32-gcc [options] files
xc32-g++ [options] files

For example, to compile, assemble and link the C source file hello.c, creating the exe-
cutable file hello.elf,execute this command:

xc32-gcc -o hello.elf hello.c

Or, to compile, assemble and link the C++ source file hello.cpp, creating the
executable file hello.elf, execute:

xc32-g++ -o hello.elf hello.cpp

The available options are described in Section 5.8 “Driver Option Descriptions”. It is
conventional to supply options (identified by a leading dash “-” before the filenames),
although this is not mandatory.

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 74  2019 Microchip Technology Inc.

The files may be any mixture of C/C++ and assembler source files, relocatable
object files (.o) or archive files. The order of the files is important. It may affect the order
in which code or data appears in memory or the search order for symbols. Typically
archive files are specified after source files. The file types are described in
Section 5.1.3 “Input File Types”.

Libraries is a list of user-defined object code library files that will be searched by the
linker, in addition to the standard C libraries. The order of these files will determine the
order in which they are searched. They are typically placed after the source filenames,
but this is not mandatory.

It is assumed in this manual that the compiler applications are either in the console’s
search path, the appropriate environment variables have been specified, or the full path
is specified when executing any application.

5.1.2 Environment Variables

The variables in this section are optional, but if defined, they will be used by the
compiler. The compiler driver, or other subprogram, may choose to determine an
appropriate value for some of the following environment variables if they are not set.
The driver, or other subprogram, takes advantage of internal knowledge about the
installation of the compiler. As long as the installation structure remains intact, with all
subdirectories and executables remaining in the same relative position, the driver or
subprogram will be able to determine a usable value. The “XC32” variables should be
used for new projects; however, the “PIC32” variables may be used for legacy projects.

Note: Command line options and file names are case sensitive.

TABLE 5-1: COMPILER-RELATED ENVIRONMENT VARIABLES

Option Definition

XC32_C_INCLUDE_PATH
PIC32_C_INCLUDE_PATH

This variable’s value is a semicolon-separated list of directories, much like PATH. When
the compiler searches for header files, it tries the directories listed in the variable, after
the directories specified with -I but before the standard header file directories.
If the environment variable is undefined, the preprocessor chooses an appropriate
value based on the standard installation. By default, the following directories are
searched for include files:
<install-path>\xc32\include

XC32_COMPILER_PATH
PIC32_COMPILER_PATH

The value of XC32_COMPILER_PATH is a semicolon-separated list of directories, much
like PATH. The compiler tries the directories thus specified when searching for subpro-
grams, if it can’t find the subprograms using XC32_EXEC_PREFIX.

XC32_EXEC_PREFIX
PIC32_EXEC_PREFIX

If XC32_EXEC_PREFIX is set, it specifies a prefix to use in the names of subprograms
executed by the compiler. No directory delimiter is added when this prefix is combined
with the name of a subprogram, but you can specify a prefix that ends with a slash if you
wish. If the compiler cannot find the subprogram using the specified prefix, it tries
looking in your PATH environment variable.
If the XC32_EXEC_PREFIX environment variable is unset or set to an empty value, the
compiler driver chooses an appropriate value based on the standard installation. If the
installation has not been modified, this will result in the driver being able to locate the
required subprograms.
Other prefixes specified with the -B command line option take precedence over the
user- or driver-defined value of XC32_EXEC_PREFIX.
Under normal circumstances it is best to leave this value undefined and let the driver
locate subprograms itself.

XC32_LIBRARY_PATH
PIC32_LIBRARY_PATH

This variable’s value is a semicolon-separated list of directories, much like PATH. This
variable specifies a list of directories to be passed to the linker. The driver’s default eval-
uation of this variable is:
<install-path>\lib; <install-path>\xc32\lib.

Compiler Command Line Driver

 2019 Microchip Technology Inc. DS50002895A-page 75

5.1.3 Input File Types

The compilation driver recognizes the following file extensions, which are case
sensitive.

There are no compiler restrictions imposed on the names of source files, but be aware
of case, name-length and other restrictions imposed by your operating system. If you
are using an IDE, avoid assembly source files whose base name is the same as the
base name of any project in which the file is used. This may result in the source file
being overwritten by a temporary file during the build process.
The terms “source file” and “module” are often used when talking about computer
programs. They are often used interchangeably, but they refer to the source code at
different points in the compilation sequence.
A source file is a file that contains all or part of a program. They may contain C/C++
code, as well as preprocessor directives and commands. Source files are initially
passed to the preprocessor by the driver.

A module is the output of the preprocessor, for a given source file, after inclusion of any
header files (or other source files) which are specified by #include preprocessor
directives. All preprocessor directives and commands (with the possible exception of
some commands for debugging) have been removed from these files. These modules
are then passed to the remainder of the compiler applications. Thus, a module may be
the amalgamation of several source and header files. A module is also often referred
to as a translation unit. These terms can also be applied to assembly files, as they too
can include other header and source files.

TMPDIR If TMPDIR is set, it specifies the directory to use for temporary files. The compiler uses
temporary files to hold the output of one stage of compilation that is to be used as input
to the next stage: for example, the output of the preprocessor, which is the input to the
compiler proper.

TABLE 5-1: COMPILER-RELATED ENVIRONMENT VARIABLES (CONTINUED)

Option Definition

TABLE 5-2: FILE NAMES

Extensions Definition

file.c A C source file that must be preprocessed.

file.cpp A C++ source file that must be preprocessed.

file.h A header file (not to be compiled or linked).

file.i A C source file that has already been pre-processed.

file.o An object file.

file.ii A C++ source file that has already been pre-processed.

file.s An assembly language source file.

file.S An assembly language source file that must be preprocessed.

other A file to be passed to the linker.

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 76  2019 Microchip Technology Inc.

5.2 THE C COMPILATION SEQUENCE

5.2.1 Single-step C Compilation

A single command-line instruction can be used to compile one file or multiple files.

5.2.1.1 COMPILING A SINGLE C FILE

This section demonstrates how to compile and link a single file. For the purpose of this
discussion, it is assumed the compiler's <install-dir>/bin directory has been added
to your PATH variable. The following are other directories of note:

• <install-dir>/pic32c/include - the directory for standard C header files.

• <install-dir>/pic32c/include/proc - the directory for PIC32 device-specific
header files.

• <install-dir>/pic32c/include/peripheral - the directory for PIC32 periph-
eral library include files.

• <install-dir>/pic32c/lib - the directory structure for standard libraries and
start-up files.

• <install-dir>/pic32c/lib/proc - the directory for device-specific linker script
fragments, register definition files and configuration data may be found.

The following is a simple C program that adds two numbers. Create the following
program with any text editor and save it as ex1.c.

/* ex1.c*/
// ATSAME70N20B Configuration Bit Settings

// Config Source code for XC32 compiler.
// GPNVMBITS
#pragma config SECURITY_BIT = CLEAR
#pragma config BOOT_MODE = CLEAR
#pragma config TCM_CONFIGURATION = 0x0 // Enter Hexadecimal value

// ONLY Set LOCKBITS are generated.
// LOCKBIT_WORD0

// LOCKBIT_WORD1

// #pragma config statements should precede project file includes.
// Use project enums instead of #define for ON and OFF.

#include <xc.h>

unsigned int x, y, z;

unsigned int
add(unsigned int a, unsigned int b) {
 return (a + b);
}

int
main(void) {
 x = 2;
 y = 5;
 z = add(x, y);
 return 0;
}

The program includes the header file xc.h, which provides definitions for all Special
Function Registers (SFRs) on that part.

Compiler Command Line Driver

 2019 Microchip Technology Inc. DS50002895A-page 77

Compile the program by typing the following at the prompt:

xc32-gcc -mprocessor=ATSAME70N20B -o ex1.elf ex1.c

The command line option -o ex1.elf names the output executable file (if the -o
option is not specified, then the output file is named a.out). The executable file may
be imported into MPLAB X IDE with File-Import-Hex/Elf (prebuilt) File.

If a hex file is required to load in a device programmer, use the following command:

xc32-bin2hex ex1.elf

This creates an Intel® hex file named ex1.hex.

5.2.1.2 COMPILING MULTIPLE C FILES

This section demonstrates how to compile and link multiple files in a single step. Move
the Add() function into a file called add.c to demonstrate the use of multiple files in an
application. That is:

File 1

/* ex1.c*/
// ATSAME70N20B Configuration Bit Settings

// Config Source code for XC32 compiler.
// GPNVMBITS
#pragma config SECURITY_BIT = CLEAR
#pragma config BOOT_MODE = CLEAR
#pragma config TCM_CONFIGURATION = 0x0 // Enter Hexadecimal value
// ONLY Set LOCKBITS are generated.
// LOCKBIT_WORD0
// LOCKBIT_WORD1
// #pragma config statements should precede project file includes.
// Use project enums instead of #define for ON and OFF.

#include <xc.h>

int main(void);
unsigned int add(unsigned int a, unsigned int b);
unsigned int x, y, z;

int main(void) {
 x = 2;
 y = 5;
 z = add(x, y);
 return 0;
}

File 2

/* add.c */
#include <xc.h>
unsigned int
add(unsigned int a, unsigned int b)
{
 return(a+b);
}

Compile both files by typing the following at the prompt:

xc32-gcc -mprocessor=ATSAME70N20B -o ex1.elf ex1.c add.c

This command compiles the modules ex1.c and add.c. The compiled modules are
linked with the compiler libraries and the executable file ex1.elf is created.

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 78  2019 Microchip Technology Inc.

5.2.2 Multi-step C Compilation

Make utilities and IDEs, such as MPLAB X IDE, allow for an incremental build of proj-
ects that contain multiple source files. When building a project, they take note of which
source files have changed since the last build and use this information to speed up
compilation.

For example, if compiling two source files, but only one has changed since the last
build, the intermediate file corresponding to the unchanged source file need not be
regenerated.

If the compiler is being invoked using a make utility, the make file will need to be con-
figured to use the intermediate files (.o files) and the options used to generate the
intermediate files (-c, see Section 5.8.2 “Options for Controlling the Kind of Output”).
Make utilities typically call the compiler multiple times: once for each source file to
generate an intermediate file, and once to perform the second stage compilation.

For example, the files ex1.c and add.c listed in Section 5.2.1.2 “Compiling Multiple C
Files” can be compiled separately with:

xc32-gcc -mprocessor=ATSAME70N20B -c ex1.c
xc32-gcc -mprocessor=ATSAME70N20B -c add.c
xc32-gcc -mprocessor=ATSAME70N20B -o ex1.elf ex1.o add.o

5.3 THE C++ COMPILATION SEQUENCE

5.3.1 Single-step C++ Compilation

A single command-line instruction can be used to compile one file or multiple files.

5.3.1.1 COMPILING A SINGLE C++ FILE

This section demonstrates how to compile and link a single file. For the purpose of this
discussion, it is assumed the compiler's <install-dir>/bin directory has been added
to your PATH variable. The following are other directories of note:

• <install-dir>/pic32c/include/c++ - the directory for standard C++ header
files.

• <install-dir>/pic32c/include/proc - the directory for PIC32 device-specific
header files.

• <install-dir>/pic32c/include/peripheral - the directory for PIC32 periph-
eral library include files.

• <install-dir>/pic32c/lib - the directory structure for standard libraries and
start-up files.

• <install-dir>/pic32c/lib/proc - the directory for device-specific linker script
fragments, register definition files and configuration data.

Compiler Command Line Driver

 2019 Microchip Technology Inc. DS50002895A-page 79

The following is a simple C++ program. Create the following program with any
plain-text editor and save it as ex1.cpp.

File 1

/* ex1.cpp */

// ATSAME70Q21B Configuration Bit Settings
#pragma config SECURITY_BIT = CLEAR
#pragma config BOOT_MODE = CLEAR
#pragma config TCM_CONFIGURATION = 0x0 // Enter Hexadecimal value

#include <xc.h>
#include <iostream>
using namespace std;

unsigned int add(unsigned int a, unsigned int b)
{
 return (a + b);
}

int main(void)
{
 int myvalue = 6;

 std::cout << "original value: " << myvalue << endl;
 myvalue = add(myvalue, 3);
 std::cout << "new value: " << myvalue << endl;
 while (1);
}

The program includes the header file xc.h, which provides definitions for all Special
Function Registers (SFRs) on the target device and iostream header file, which pro-
vides the necessary prototypes for the peripheral library. For completion, the user must
provide actual implementations of functions _mon_getc and _mon_putc for file IO. By
default the XC32 compiler links do-nothing stubs for these functions.

Compile the program by typing the following at a command prompt.

xc32-g++ -mprocessor=ATSAME70Q21B -Wl,--defsym=_min_heap_size=0xF000
-o ex1.elf ex1.cpp

The option -o ex1.elf names the output executable file. This elf file may be imported
into MPLAB X IDE.

If a hex file is required, for example, to load into a device programmer, then use the
following command

xc32-bin2hex ex1.elf

This creates an Intel hex file named ex1.hex.

5.3.2 Compiling Multiple C++ files

This section demonstrates how to compile and link multiple C and C++ files in a single
step.

File 1

/* ex1.cpp */

// ATSAME70Q21B Configuration Bit Settings
#pragma config SECURITY_BIT = CLEAR
#pragma config BOOT_MODE = CLEAR
#pragma config TCM_CONFIGURATION = 0x0 // Enter Hexadecimal value

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 80  2019 Microchip Technology Inc.

#include <xc.h>
#include <iostream>
using namespace std;

extern unsigned int add(unsigned int a, unsigned int b);

int main(void)
{
 int myvalue = 6;

 std::cout << "original value: " << myvalue << endl;
 myvalue = add(myvalue, 3);
 std::cout << "new value: " << myvalue << endl;
 while (1);
}

File 2

/* add.cpp/
unsigned int
add(unsigned int a, unsigned int b)
{
 return(a+b);
}

Compile both files by typing the following at the prompt:

xc32-g++ -mprocessor=ATSAME70Q21B -Wl,--defsym=_min_heap_size=0xF000
-o ex1.elf ex1.cpp add.cpp

The command compiles the modules ex1.cpp and add.cpp. The compiled modules
are linked with the compiler libraries for C++ and the executable file ex1.elf is created.

5.4 RUNTIME FILES

In addition to the C/C++ and assembly source files specified on the command line,
there are also compiler-generated source files and pre-compiled library files which
might be compiled into the project by the driver. These files contain:

• C/C++ Standard library routines

• Implicitly called arithmetic routines

• User-defined library routines

• The runtime start-up code

5.4.1 Library Files

The names of the C/C++ standard library files appropriate for the selected target
device, and other driver options, are determined by the driver.

The target libraries, called multilibs, are built multiple times with a permuted set of
options. When the compiler driver is called to compile and link an application, the driver
chooses the version of the target library that has been built with the same options.

Note: Use the xc32-g++ driver (as opposed to the xc32-gcc driver) in order to link
the project with the C++ support libraries necessary for the C++ source file
in the project.

Compiler Command Line Driver

 2019 Microchip Technology Inc. DS50002895A-page 81

By default, the 32-bit language tools use the directory
<install-directory>/lib/gcc/pic32c/<gcc-version> to store the startup
libraries and the directory <install-directory>/pic32c/lib to store the
target-specific libraries. Both of these paths contain subdirectories for each of the
multilib combinations specified above.

The target libraries that are distributed with the compiler are built for the corresponding
command-line options:

• Alignment (-mno-unaligned-access)

• Floating-point application binary interface (-mfloat-abi softfp, hard)

The following examples provide details on which of the multilibs subdirectories are
chosen.

1. xc32-gcc foo.c
xc32-g++ foo.cpp

For this example, no command line options have been specified (i.e., the default
command line options are being used). In this case, the default directories men-
tioned above are used.

2. xc32-gcc -mfloat-abi=softfp foo.c
xc32-g++ -mfloat-abi=softfp foo.cpp

For this example, soft multilib subdirectories are used.

3. xc32-gcc -mfloat-abi=hard foo.c
xc32-g++ -mfloat-abi=hard foo.cpp

For this example, the hard multilib subdirectories are used.

5.4.1.1 STANDARD LIBRARIES

The C/C++ standard libraries contain a standardized collection of functions, such as
string, math and input/output routines. How to used these functions is described in
Chapter 16. “Library Routines”.

These libraries also contain C/C++ routines that are implicitly called by the output code
of the code generator. These are routines that perform tasks such as floating-point
operations and that may not directly correspond to a C/C++ function call in the source
code.

5.4.1.2 USER-DEFINED LIBRARIES

User-defined libraries may be created and linked in with programs as required. Library
files are more easy to manage and may result in faster compilation times, but must be
compatible with the target device and options for a particular project. Several versions
of a library may need to be created to allow it to be used for different projects.

User-created libraries that should be searched when building a project can be listed on
the command line along with the source files.

As with Standard C/C++ library functions, any functions contained in user-defined
libraries should have a declaration added to a header file. It is common practice to cre-
ate one or more header files that are packaged with the library file. These header files
can then be included into source code when required.

5.4.2 Peripheral Library Functions

For All PIC32 devices, see 16.1 “Using Library Routines”.

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 82  2019 Microchip Technology Inc.

5.5 START-UP AND INITIALIZATION
The C/C++ runtime startup code is device specific. The xc32-gcc and xc32-g++
compilation drivers select the appropriate startup code when linking using the
-mprocessor=device option.

• The startup code initializes the L1 cache when available.

• It enables the DSPr2 engine when available.

• It also initializes the Translation Lookaside Buffer (TLB) of the Memory Manage-
ment Unit (MMU) for the External Bus Interface (EBI) or Serial Quad Interface
(SQI) when available. The device-specific linker script creates a table of TLB
initialization values that the startup code uses to initialize the TLB at startup.

For C, C++:

The source code for the startup module, which initializes the runtime environment is
platform specific and can be found in the pic32c-libs.zip file located at:

 <install-directory>/pic32-libs/

Inside the zip archive, the source code can be found at:

pic32c-libs/proc/<DEVICENAME>/startup_<devicename>.c

The same files are found in: <install-directory>/pic32c/lib/proc/<DEVI-
CENAME>/startup_<devicename>.c

Prebuilt startup object files are found in architecture specific directories in:

<install_directory>/lib/gcc/pic32c/<gcc-version>/

The object files for startup and runtime are named: crti.o, crtn.o, crtbegin.o
and crtend.o. Other related libraries can be found there as well. Multilib versions of
these modules exist in order to support architectural differences between device fami-
lies.

For more information about what the code in these start-up modules actual does, see
Section 15.2 “Runtime Start-up Code”.

5.6 COMPILER OUTPUT

There are many files created by the compiler during the compilation. A large number of
these are intermediate files and some are deleted after compilation is complete, but
many remain and are used for programming the device, or for debugging purposes.

5.6.1 Output Files

The compilation driver can produce output files with the following extensions, which are
case-sensitive.

TABLE 5-3: FILE NAMES

Extensions Definition

file.hex Executable file

file.elf ELF debug file

file.o Object file (intermediate file)

file.s Assembly code file (intermediate file)

file.i Preprocessed C file (intermediate file)

file.ii Preprocessed C++ file (intermediate file)

file.map Map file

Compiler Command Line Driver

 2019 Microchip Technology Inc. DS50002895A-page 83

The names of many output files use the same base name as the source file from which
they were derived. For example the source file input.c will create an object file called
input.o.

The main output file is an ELF file called a.out, unless you override that name using
the -o option.

If you are using an IDE, such as MPLAB X IDE, to specify options to the compiler, there
is typically a project file that is created for each application. The name of this project is
used as the base name for project-wide output files, unless otherwise specified by the
user. However check the manual for the IDE you are using for more details.

The compiler is able to directly produce a number of the output file formats which are
used by Microchip development tools.

The default behavior of xc32-gcc and xc32-g++ is to produce an ELF output. To
make changes to the file’s output or the file names, see Section 5.8 “Driver Option
Descriptions”.

5.6.2 Diagnostic Files

Two valuable files produced by the compiler are the assembly list file (produced by the
assembler) and the map file (produced by the linker).

The assembly list file contains the mapping between the original source code and the
generated assembly code. It is useful for information such as how C source was
encoded, or how assembly source may have been optimized. It is essential when con-
firming if compiler-produced code that accesses objects is atomic, and shows the
region in which all objects and code are placed.

The option to create a listing file in the assembler is -a (or -Wa,-a if passed to the
driver). There are many variants to this option, which may be found in the “MPLAB®
XC32 Assembler, Linker and Utilities User’s Guide” (DS50002186). To pass the option
from the compiler, see Section 5.8.9 “Options for Assembling”.

There is one list file produced for each build. There is one assembler listing file for each
translation unit. This is a pre-link assembler listing so it will not show final addresses.
Thus, if you require a list file for each source file, these files must be compiled sepa-
rately, see Section 5.2.2 “Multi-step C Compilation”. This is the case if you build using
MPLAB X IDE. Each list file will be assigned the module name and extension .lst.

The map file shows information relating to where objects are positioned in memory. It
is useful for confirming that user-defined linker options were correctly processed, and
for determining the exact placement of objects and functions.

The linker option to create a map file is -Map file (or -Wl,-Map=file, if passed to
the driver), which can be found in the MPLAB® XC32 Assembler, Linker and Utilities
User’s Guide (DS50002186). To pass the option from the compiler driver, see
Section 5.8.10 “Options for Linking”.

There is one map file produced when you build a project, assuming the linker was
executed and ran to completion.

Note: Throughout this manual, the term project name will refer to the name of the
project created in the IDE.

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 84  2019 Microchip Technology Inc.

5.7 COMPILER MESSAGES

There are three types of messages. These are described below along with the
compiler’s behavior when encountering a message of each type.

• Warning Messages indicate source code or some other situation that can be
compiled, but is unusual and may lead to a runtime failure of the code. The code
or situation that triggered the warning should be investigated; however, compila-
tion of the current module will continue, as will compilation of any remaining
modules.

• Error Messages indicate source code that is illegal or that compilation of this
code cannot take place. Compilation will be attempted for the remaining source
code in the current module, but no additional modules will be compiled and the
compilation process will then conclude.

• Fatal Error Messages indicate a situation that cannot allow compilation to pro-
ceed and which requires the compilation process to stop immediately.

For information on options that control compiler output of errors, warnings or
comments, see Section 5.8.5 “Options for Controlling Warnings and Errors”.

5.8 DRIVER OPTION DESCRIPTIONS

All single letter options are identified by a leading dash character, “-”, e.g., -c. Some
single letter options specify an additional data field which follows the option name
immediately and without any whitespace, e.g., -Idir. Options are case sensitive, so
-c and -C are different options.

The compiler has many options for controlling compilation, all of which are case
sensitive.

• Options Specific to PIC32C/SAM Devices

• Options for Controlling the Kind of Output

• Options for Controlling the C Dialect

• Options for Controlling the C++ Dialect

• Options for Controlling Warnings and Errors

• Options for Debugging

• Options for Controlling Optimization

• Options for Controlling the Preprocessor

• Options for Assembling

• Options for Linking

• Options for Directory Search

• Options for Code Generation Conventions

Compiler Command Line Driver

 2019 Microchip Technology Inc. DS50002895A-page 85

5.8.1 Options Specific to PIC32C/SAM Devices

These driver options are specific to the PIC32C/SAM devices, not the compiler.

TABLE 5-4: PIC32C/SAM DEVICE-SPECIFIC OPTIONS

Option Definition

-mprocessor=device Selects the device for which to compile.
(e.g., -mprocessor=ATSAME70N20B)

-mprint-builtins Print a list of enabled builtin functions.

-msmart-io=[0|1|2] This option attempts to statically analyze format strings passed to printf, scanf,
and the 'f' and 'v' variations of these functions. Uses of nonfloating-point format
arguments will be converted to use an integer-only variation of the library function.
For many applications, this feature can reduce program-memory usage.
-msmart-io=0 disables this option, while -msmart-io=2 causes the compiler to
be optimistic and convert function calls with variable or unknown format arguments.
-msmart-io=1 is the default and will convert only when the compiler can prove that
floating-point support is not required.

-mfloat-abi=name Specifies which floating-point ABI to use. Permissible values are: 'soft', 'softfp'
and 'hard'.
Specifying 'soft' causes XC32 to generate output containing library calls for float-
ing-point operations. 'softfp' allows the generation of code using hardware float-
ing-point instructions, but still uses the soft-float calling conventions. 'hard' allows
generation of floating-point instructions and uses FPU-specific calling conventions.
The default depends on the specific target configuration. Note that the hard-float and
soft-float ABIs are not link-compatible; you must compile your entire program with the
same ABI, and link with a compatible set of libraries.

-mlong-calls
-mno-long-calls

Tells the compiler to perform function calls by first loading the address of the function
into a register and then performing a subroutine call on this register. This switch is
needed if the target function lies outside of the 64-megabyte addressing range of the
offset-based version of subroutine call instruction.
Even if this switch is enabled, not all function calls are turned into long calls. The
heuristic is that static functions, functions that have the short_call attribute,
functions that are inside the scope of a #pragma no_long_calls directive, and
functions whose definitions have already been compiled within the current
compilation unit are not turned into long calls. The exceptions to this rule are that
weak function definitions, functions with the long_call attribute or the section
attribute, and functions that are within the scope of a #pragma long_calls
directive are always turned into long calls.
This feature is not enabled by default. Specifying -mno-long-calls restores the
default behavior, as does placing the function calls within the scope of a #pragma
long_calls_off directive. Note these switches have no effect on how the
compiler generates code to handle function calls via function pointers.

-mthumb Generate code that executes in Thumb state.

-munaligned-access
-mno-unaligned-access

Enables (or disables) reading and writing of 16- and 32-bit values from addresses
that are not 16- or 32-bit aligned. By default, unaligned access is disabled for all
pre-Arm v6 and all Arm v6-M architectures, and enabled for all other architectures. If
unaligned access is not enabled then words in packed data structures are accessed
a byte at a time.

--nofallback Require an MPLAB XC32 Pro license and do not fall back to a lesser license.

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 86  2019 Microchip Technology Inc.

5.8.2 Options for Controlling the Kind of Output

The following options control the kind of output produced by the compiler.

TABLE 5-5: KIND-OF-OUTPUT CONTROL OPTIONS

Option Definition

-c Compile or assemble the source files, but do not link. The default file extension is .o.

-E Stop after the preprocessing stage (i.e., before running the compiler proper). The default output file
is stdout.

-fexceptions Enable exception handling. You may need to enable this option when compiling C code that needs
to interoperate properly with exception handlers written in C++.

-o file Place the output in file.

-S Stop after compilation proper (i.e., before invoking the assembler). The default output file extension
is .s.

-v Print the commands executed during each stage of compilation.

-x You can specify the input language explicitly with the -x option:
-x language
Specify explicitly the language for the following input files (rather than letting the compiler choose a
default based on the file name suffix). This option applies to all following input files until the next -x
option. The following values are supported by the compiler:
c
c++
c-header
cpp-output
assembler
assembler-with-cpp

-x none
Turn off any specification of a language, so that subsequent files are handled according to their file
name suffixes. This is the default behavior but is needed if another -x option has been used. For
example:
xc32-gcc -x assembler foo.asm bar.asm -x none main.c mabonga.s

Without the -x none, the compiler assumes all the input files are for the assembler.

--help Print a description of the command line options.

Compiler Command Line Driver

 2019 Microchip Technology Inc. DS50002895A-page 87

5.8.3 Options for Controlling the C Dialect

The following options define the kind of C dialect used by the compiler.

TABLE 5-6: C DIALECT CONTROL OPTIONS

Option Definition

-ansi Support all (and only) ANSI-standard C programs.

-aux-info filename Output to the given filename prototyped declarations for all functions declared
and/or defined in a translation unit, including those in header files. This option is
silently ignored in any language other than C. Besides declarations, the file
indicates, in comments, the origin of each declaration (source file and line), whether
the declaration was implicit, prototyped or unprototyped (I, N for new or O for old,
respectively, in the first character after the line number and the colon), and whether
it came from a declaration or a definition (C or F, respectively, in the following
character). In the case of function definitions, a K&R-style list of arguments followed
by their declarations is also provided, inside comments, after the declaration.

-fcheck-new /
-fno-check-new
(default)

Check that the pointer returned by operator new is non-null.

-fenforce-eh-specs
(default) /
-fno-enforce-eh-specs

Generate/Do not generate code to check for violation of exception specifications at
runtime. The -fno-enforce-eh-specs option violates the C++ standard, but
may be useful for reducing code size in production builds, much like defining
'NDEBUG'. This does not give user code permission to throw exceptions in violation
of the exception specifications; the compiler will still optimize based on the
specifications, so throwing an unexpected exception will result in undefined
behavior.

-ffreestanding Assert that compilation takes place in a freestanding environment. This implies
-fno-builtin. A freestanding environment is one in which the standard library
may not exist, and program start-up may not necessarily be at main. The most
obvious example is an OS kernel. This is equivalent to -fno-hosted.

-fno-asm Do not recognize asm, inline or typeof as a keyword, so that code can use
these words as identifiers. You can use the keywords __asm__, __inline__ and
__typeof__ instead.
-ansi implies -fno-asm.

-fno-builtin
-fno-builtin-function

Don’t recognize built-in functions that do not begin with __builtin_ as prefix.

-fno-exceptions Disable C++ exception handling. This option disables the generation of extra code
needed to propagate exceptions.

-fno-rtti Enable/Disable runtime type-identification features. The -fno-rtti option dis-
ables generation of information about every class with virtual functions for use by
the C++ runtime type identification features ('dynamic_cast' and 'typeid'). If you
don't use those parts of the language, you can save some space by using this flag.
Note that exception handling uses the same information, but it will generate it as
needed. The 'dynamic_cast' operator can still be used for casts that do not
require runtime type information, i.e., casts to void * or to unambiguous base
classes.

-fsigned-char Let the type char be signed, like signed char.

-fsigned-bitfields
-funsigned-bitfields
-fno-signed-bitfields
-fno-unsigned-bitfields

These options control whether a bit field is signed or unsigned, when the declaration
does not use either signed or unsigned. By default, such a bit field is signed, unless
-traditional is used, in which case bit fields are always unsigned.

-funsigned-char Let the type char be unsigned, like unsigned char.
(This is the default.)

-fwritable-strings Store strings in the writable data segment and do not make them unique.

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 88  2019 Microchip Technology Inc.

5.8.4 Options for Controlling the C++ Dialect

The following options define the kind of C++ dialect used by the compiler.

5.8.5 Options for Controlling Warnings and Errors

Warnings are diagnostic messages that report constructions that are not inherently erroneous, but that are
risky or suggest there may have been an error.

You can request many specific warnings with options beginning -W; for example, -Wimplicit, to request
warnings on implicit declarations. Each of these specific warning options also has a negative form beginning
-Wno- to turn off warnings; for example, -Wno-implicit. This manual lists only one of the two forms,
whichever is not the default.

The following options control the amount and kinds of warnings produced by the compiler.

TABLE 5-7: C++ DIALECT CONTROL OPTIONS

Option Definition

-ansi Support all (and only) ANSI-standard C++ programs.

-aux-info filename Output to the given filename prototyped declarations for all functions declared
and/or defined in a translation unit, including those in header files. This option is
silently ignored in any language other than C++. Besides declarations, the file
indicates, in comments, the origin of each declaration (source file and line), whether
the declaration was implicit, prototyped or unprototyped (I, N for new or O for old,
respectively, in the first character after the line number and the colon), and whether
it came from a declaration or a definition (C or F, respectively, in the following
character). In the case of function definitions, a K&R-style list of arguments followed
by their declarations is also provided, inside comments, after the declaration.

-ffreestanding Assert that compilation takes place in a freestanding environment. This implies
-fno-builtin. A freestanding environment is one in which the standard library
may not exist, and program start-up may not necessarily be at main. The most
obvious example is an OS kernel. This is equivalent to -fno-hosted.

-fno-asm Do not recognize asm, inline or typeof as a keyword, so that code can use
these words as identifiers. You can use the keywords __asm__, __inline__ and
__typeof__ instead.
-ansi implies -fno-asm.

-fno-builtin
-fno-builtin-function

Don’t recognize built-in functions that do not begin with __builtin_ as prefix.

-fsigned-char Let the type char be signed, like signed char.

-fsigned-bitfields
-funsigned-bitfields
-fno-signed-bitfields
-fno-unsigned-bitfields

These options control whether a bit field is signed or unsigned, when the declaration
does not use either signed or unsigned. By default, such a bit field is signed, unless
-traditional is used, in which case bit fields are always unsigned.

-funsigned-char Let the type char be unsigned, like unsigned char.
(This is the default.)

-fwritable-strings Store strings in the writable data segment and do not make them unique.

TABLE 5-8: WARNING AND ERROR OPTIONS IMPLIED BY ALL WARNINGS

Option Definition

-fsyntax-only Check the code for syntax, but don’t do anything beyond that.

-pedantic Issue all the warnings demanded by strict ANSI C. Reject all programs that use exten-
sions.

-pedantic-errors Like -pedantic, except that errors are produced rather than warnings.

-w Inhibit all warning messages.

Compiler Command Line Driver

 2019 Microchip Technology Inc. DS50002895A-page 89

-Wall This enables all the warnings about constructions that some users consider question-
able, and that are easy to avoid (or modify to prevent the warning), even in conjunction
with macros.
Note that some warning flags are not implied by -Wall. Some of them warn about con-
structions that users generally do not consider questionable, but which occasionally you
might wish to check for; others warn about constructions that are necessary or hard to
avoid in some cases, and there is no simple way to modify the code to suppress the
warning. Some of them are enabled by -Wextra but many of them must be enabled
individually.

-Waddress Warn about suspicious uses of memory addresses. These include using the address of
a function in a conditional expression, such as void func(void); if (func), and
comparisons against the memory address of a string literal, such as if (x == "abc").
Such uses typically indicate a programmer error: the address of a function always evalu-
ates to true, so their use in a conditional usually indicates that the programmer forgot the
parentheses in a function call; and comparisons against string literals result in unspeci-
fied behavior and are not portable in C, so they usually indicate that the programmer
intended to use strcmp.

-Wchar-subscripts Warn if an array subscript has type char.

-Wcomment Warn whenever a comment-start sequence /* appears in a /* comment, or whenever a
Backslash-Newline appears in a // comment.

-Wdiv-by-zero Warn about compile-time integer division by zero. To inhibit the warning messages, use
-Wno-div-by-zero. Floating-point division by zero is not warned about, as it can be a
legitimate way of obtaining infinities and NaNs.
(This is the default.)

-Wformat Check calls to printf and scanf, etc., to make sure that the arguments supplied have
types appropriate to the format string specified.

-Wimplicit Equivalent to specifying both -Wimplicit-int and
-Wimplicit-function-declaration.

-Wimplicit-function-
 declaration

Give a warning whenever a function is used before being declared.

-Wimplicit-int Warn when a declaration does not specify a type.

-Wmain Warn if the type of main is suspicious. main should be a function with external linkage,
returning int, taking either zero, two or three arguments of appropriate types.

-Wmissing-braces Warn if an aggregate or union initializer is not fully bracketed. In the following example,
the initializer for a is not fully bracketed, but that for b is fully bracketed.
int a[2][2] = { 0, 1, 2, 3 };
int b[2][2] = { { 0, 1 }, { 2, 3 } };

-Wno-multichar Warn if a multi-character character constant is used. Usually, such constants are
typographical errors. Since they have implementation-defined values, they should not be
used in portable code. The following example illustrates the use of a multi-character
character constant:
char
xx(void)
{
return('xx');
}

-Wparentheses Warn if parentheses are omitted in certain contexts, such as when there is an assign-
ment in a context where a truth value is expected, or when operators are nested whose
precedence people often find confusing.

-Wreturn-type Warn whenever a function is defined with a return-type that defaults to int. Also warn
about any return statement with no return-value in a function whose return-type is not
void.

TABLE 5-8: WARNING AND ERROR OPTIONS IMPLIED BY ALL WARNINGS (CONTINUED)

Option Definition

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 90  2019 Microchip Technology Inc.

-Wsequence-point Warn about code that may have undefined semantics because of violations of sequence
point rules in the C standard.
The C standard defines the order in which expressions in a C program are evaluated in
terms of sequence points, which represent a partial ordering between the execution of
parts of the program: those executed before the sequence point and those executed
after it. These occur after the evaluation of a full expression (one which is not part of a
larger expression), after the evaluation of the first operand of a &&, ||, ? : or ,
(comma) operator, before a function is called (but after the evaluation of its arguments
and the expression denoting the called function), and in certain other places. Other than
as expressed by the sequence point rules, the order of evaluation of subexpressions of
an expression is not specified. All these rules describe only a partial order rather than a
total order, since, for example, if two functions are called within one expression with no
sequence point between them, the order in which the functions are called is not
specified. However, the standards committee has ruled that function calls do not
overlap.
It is not specified when between sequence points modifications to the values of objects
take effect. Programs whose behavior depends on this have undefined behavior. The C
standard specifies that “Between the previous and next sequence point, an object shall
have its stored value modified, at most once, by the evaluation of an expression.
Furthermore, the prior value shall be read only to determine the value to be stored.” If a
program breaks these rules, the results on any particular implementation are entirely
unpredictable.
Examples of code with undefined behavior are a = a++;,
a[n] = b[n++] and a[i++] = i;. Some more complicated cases are not diagnosed
by this option, and it may give an occasional false positive result, but in general it has
been found fairly effective at detecting this sort of problem in programs.

-Wswitch Warn whenever a switch statement has an index of enumeral type and lacks a case for
one or more of the named codes of that enumeration. (The presence of a default label
prevents this warning.) case labels outside the enumeration range also provoke
warnings when this option is used.

-Wsystem-headers Print warning messages for constructs found in system header files. Warnings from
system headers are normally suppressed on the assumption that they usually do not
indicate real problems and would only make the compiler output harder to read. Using
this command line option tells the compiler to emit warnings from system headers as if
they occurred in user code. However, note that using -Wall in conjunction with this
option does not warn about unknown pragmas in system headers. For that,
-Wunknown-pragmas must also be used.

-Wtrigraphs Warn if any trigraphs are encountered (assuming they are enabled).

-Wuninitialized Warn if an automatic variable is used without first being initialized.
These warnings are possible only when optimization is enabled, because they require
data flow information that is computed only when optimizing.
These warnings occur only for variables that are candidates for register allocation.
Therefore, they do not occur for a variable that is declared volatile, or whose
address is taken, or whose size is other than 1, 2, 4 or 8 bytes. Also, they do not occur
for structures, unions or arrays, even when they are in registers.
Note that there may be no warning about a variable that is used only to compute a value
that itself is never used, because such computations may be deleted by data flow
analysis before the warnings are printed.

-Wunknown-pragmas Warn when a #pragma directive is encountered which is not understood by the
compiler. If this command line option is used, warnings will even be issued for unknown
pragmas in system header files. This is not the case if the warnings were only enabled
by the -Wall command line option.

TABLE 5-8: WARNING AND ERROR OPTIONS IMPLIED BY ALL WARNINGS (CONTINUED)

Option Definition

Compiler Command Line Driver

 2019 Microchip Technology Inc. DS50002895A-page 91

-Wunused Warn whenever a variable is unused aside from its declaration, whenever a function is
declared static but never defined, whenever a label is declared but not used, and
whenever a statement computes a result that is explicitly not used.
In order to get a warning about an unused function parameter, both -W and -Wunused
must be specified.
Casting an expression to void suppresses this warning for an expression. Similarly, the
unused attribute suppresses this warning for unused variables, parameters and labels.

-Wunused-function Warn whenever a static function is declared but not defined or a non-inline static function
is unused.

-Wunused-label Warn whenever a label is declared but not used. To suppress this warning, use the
unused attribute.

-Wunused-parameter Warn whenever a function parameter is unused aside from its declaration. To suppress
this warning, use the unused attribute.

-Wunused-variable Warn whenever a local variable or non-constant static variable is unused aside from its
declaration. To suppress this warning, use the unused attribute.

-Wunused-value Warn whenever a statement computes a result that is explicitly not used. To suppress
this warning, cast the expression to void.

TABLE 5-8: WARNING AND ERROR OPTIONS IMPLIED BY ALL WARNINGS (CONTINUED)

Option Definition

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 92  2019 Microchip Technology Inc.

The following -W options are not implied by -Wall. Some of them warn about constructions that users
generally do not consider questionable, but which you might occasionally wish to check for. Others warn
about constructions that are necessary or hard to avoid in some cases, and there is no simple way to modify
the code to suppress the warning.

TABLE 5-9: WARNING AND ERROR OPTIONS NOT IMPLIED BY ALL WARNINGS

Option Definition

-W, -Wextra Print extra warning messages for these events:
• A nonvolatile automatic variable might be changed by a call to longjmp. These

warnings are possible only in optimizing compilation. The compiler sees only the
calls to setjmp. It cannot know where longjmp will be called. In fact, a signal
handler could call it at any point in the code. As a result, a warning may be
generated even when there is in fact no problem, because longjmp cannot in
fact be called at the place that would cause a problem.

• A function could exit both via return value; and return;. Completing the
function body without passing any return statement is treated as return;.

• An expression-statement or the left-hand side of a comma expression contains
no side effects. To suppress the warning, cast the unused expression to void. For
example, an expression such as x[i,j] causes a warning, but x[(void)i,j]
does not.

• An unsigned value is compared against zero with < or <=.
• A comparison like x<=y<=z appears, This is equivalent to (x<=y ? 1 : 0)
<= z, which is a different interpretation from that of ordinary mathematical
notation.

• Storage-class specifiers like static are not the first things in a declaration.
According to the C Standard, this usage is obsolescent.

• If -Wall or -Wunused is also specified, warn about unused arguments.
• A comparison between signed and unsigned values could produce an incorrect

result when the signed value is converted to unsigned. (But don’t warn if
-Wno-sign-compare is also specified.)

• An aggregate has a partly bracketed initializer. For example, the following code
would evoke such a warning, because braces are missing around the initializer
for x.h:
struct s { int f, g; };
struct t { struct s h; int i; };
struct t x = { 1, 2, 3 };

• An aggregate has an initializer that does not initialize all members. For example,
the following code would cause such a warning, because x.h would be implicitly
initialized to zero:
struct s { int f, g, h; };
struct s x = { 3, 4 };

-Waggregate-return Warn if any functions that return structures or unions are defined or called.

-Wbad-function-cast Warn whenever a function call is cast to a non-matching type. For example, warn if
int foof() is cast to anything *.

-Wcast-align Warn whenever a pointer is cast, such that the required alignment of the target is
increased. For example, warn if a char * is cast to an int *.

-Wcast-qual Warn whenever a pointer is cast, so as to remove a type qualifier from the target type.
For example, warn if a const char * is cast to an ordinary char *.

-Wconversion Warn if a prototype causes a type conversion that is different from what would
happen to the same argument in the absence of a prototype. This includes
conversions of fixed point to floating and vice versa, as well as conversions that
change the width or signedness of a fixed point argument, except when the same as
the default promotion.
Also, warn if a negative integer constant expression is implicitly converted to an
unsigned type. For example, warn about the assignment x = -1 if x is unsigned. But
do not warn about explicit casts like (unsigned) -1.

-Werror Make all warnings into errors.

Compiler Command Line Driver

 2019 Microchip Technology Inc. DS50002895A-page 93

-Winline Warn if a function can not be inlined and it was either declared as inline, or else the
-finline-functions option was given.

-Wlarger-than-len Warn whenever an object of larger than len bytes is defined.

-Wlong-long
-Wno-long-long

Warn if long long type is used. This is default. To inhibit the warning messages,
use -Wno-long-long. Flags -Wlong-long and -Wno-long-long are taken into
account only when -pedantic flag is used.

-Wmissing-declarations Warn if a global function is defined without a previous declaration. Do so even if the
definition itself provides a prototype.

-Wmissing-
 format-attribute

If -Wformat is enabled, also warn about functions that might be candidates for
format attributes. Note these are only possible candidates, not absolute ones. This
option has no effect unless -Wformat is enabled.

-Wmissing-noreturn Warn about functions that might be candidates for attribute noreturn. These are
only possible candidates, not absolute ones. Care should be taken to manually verify
functions. In fact, do not ever return before adding the noreturn attribute, otherwise
subtle code generation bugs could be introduced.

-Wmissing-prototypes Warn if a global function is defined without a previous prototype declaration. This
warning is issued even if the definition itself provides a prototype. (This option can be
used to detect global functions that are not declared in header files.)

-Wnested-externs Warn if an extern declaration is encountered within a function.

-Wno-deprecated-
 declarations

Do not warn about uses of functions, variables and types marked as deprecated by
using the deprecated attribute.

-Wpadded Warn if padding is included in a structure, either to align an element of the structure or
to align the whole structure.

-Wpointer-arith Warn about anything that depends on the size of a function type or of void. The
compiler assigns these types a size of 1, for convenience in calculations with void *
pointers and pointers to functions.

-Wredundant-decls Warn if anything is declared more than once in the same scope, even in cases where
multiple declaration is valid and changes nothing.

-Wshadow Warn whenever a local variable shadows another local variable.

-Wsign-compare
-Wno-sign-compare

Warn when a comparison between signed and unsigned values could produce an
incorrect result when the signed value is converted to unsigned. This warning is also
enabled by -W. To get the other warnings of -W without this warning, use -W
-Wno-sign-compare.

-Wstrict-prototypes Warn if a function is declared or defined without specifying the argument types. (An
old-style function definition is permitted without a warning if preceded by a
declaration which specifies the argument types.)

-Wtraditional Warn about certain constructs that behave differently in traditional and ANSI C.
• Macro arguments occurring within string constants in the macro body. These

would substitute the argument in traditional C, but are part of the constant in
ANSI C.

• A function declared external in one block and then used after the end of the
block.

• A switch statement has an operand of type long.
• A nonstatic function declaration follows a static one. This construct is not

accepted by some traditional C compilers.

-Wundef Warn if an undefined identifier is evaluated in an #if directive.

TABLE 5-9: WARNING AND ERROR OPTIONS NOT IMPLIED BY ALL WARNINGS (CONTINUED)

Option Definition

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 94  2019 Microchip Technology Inc.

5.8.6 Options for Debugging

The following options are used for debugging.

-Wunreachable-code Warn if the compiler detects that code will never be executed.
It is possible for this option to produce a warning even though there are
circumstances under which part of the affected line can be executed, so care should
be taken when removing apparently unreachable code. For instance, when a function
is inlined, a warning may mean that the line is unreachable in only one inlined copy of
the function.

-Wwrite-strings Give string constants the type const char[length] so that copying the address of
one into a non-const char * pointer gets a warning. At compile time, these warnings
help you find code that you can try to write into a string constant, but only if you have
been very careful about using const in declarations and prototypes. Otherwise, it’s
just a nuisance, which is why -Wall does not request these warnings.

TABLE 5-10: DEBUGGING OPTIONS

Option Definition

-g Produce debugging information.
The compiler supports the use of -g with -O making it possible to debug optimized code. The
shortcuts taken by optimized code may occasionally produce surprising results:
• Some declared variables may not exist at all
• Flow of control may briefly move unexpectedly
• Some statements may not be executed because they compute constant results or their

values were already at hand
• Some statements may execute in different places because they were moved out of loops
Nevertheless it proves possible to debug optimized output. This makes it reasonable to use the
optimizer for programs that might have bugs.

-Q Makes the compiler print out each function name as it is compiled, and print some statistics
about each pass when it finishes.

-save-temps
-save-temps=cwd

Don’t delete intermediate files. Place them in the current directory and name them based on
the source file. Thus, compiling foo.c with -c -save-temps would produce the following
files:
foo.i (preprocessed file)
foo.s (assembly language file)
foo.o (object file)

-save-temps=obj Similar to -save-temps=cwd, but if the -o option is specified, the temporary files are based
on the object file. If the -o option is not specified, the -save-temps=obj switch behaves like
–save-temps.
For example:
 xc32-gcc -save-temps=obj -c foo.c
 xc32-gcc -save-temps=obj -c bar.c -o dir/xbar.o
 xc32-gcc -save-temps=obj foobar.c -o dir2/yfoobar
would create foo.i, foo.s, dir/xbar.i, dir/xbar.s, dir2/yfoobar.i,
dir2/yfoobar.s, and dir2/yfoobar.o.

TABLE 5-9: WARNING AND ERROR OPTIONS NOT IMPLIED BY ALL WARNINGS (CONTINUED)

Option Definition

Compiler Command Line Driver

 2019 Microchip Technology Inc. DS50002895A-page 95

5.8.7 Options for Controlling Optimization

The following options control compiler optimizations.

TABLE 5-11: GENERAL OPTIMIZATION OPTIONS

Option Edition Definition

-O0 All Do not optimize. (This is the default.)
Without -O, the compiler’s goal is to reduce the cost of compilation and to
make debugging produce the expected results. Statements are independent: if
you stop the program with a breakpoint between statements, you can then
assign a new value to any variable or change the program counter to any
other statement in the function and get exactly the results you would expect
from the source code.
The compiler only allocates variables declared register in registers.

-O
-O1

All Optimization level 1. Optimizing compilation takes somewhat longer and a lot
more host memory for a large function.
With -O, the compiler tries to reduce code size and execution time.
When -O is specified, the compiler turns on -fthread-jumps and
-fdefer-pop. The compiler turns on -fomit-frame-pointer.

-O2 PRO Optimization level 2. The compiler performs nearly all supported optimizations
that do not involve a space-speed trade-off. -O2 turns on all optional
optimizations except for loop unrolling (-funroll-loops), function inlining
(-finline-functions), and strict aliasing optimizations
(-fstrict-aliasing). It also turns on force copy of memory operands
(-fforce-mem) and Frame Pointer elimination (-fomit-frame-pointer).
As compared to -O, this option increases both compilation time and the
performance of the generated code.

-O3 PRO Optimization level 3. -O3 turns on all optimizations specified by -O2 and also
turns on the inline-functions option.

-Os PRO Optimize for size. -Os enables all -O2 optimizations that do not typically
increase code size. It also performs further optimizations designed to reduce
code size.

-flto PRO This option runs the standard link-time optimizer. When invoked with source
code, the compiler adds an internal bytecode representation of the code to
special sections in the object file. When the object files are linked together, all
the function bodies are read from these sections and instantiated as if they
had been part of the same translation unit.
To use the link-timer optimizer, specify -flto both at compile time and during
the final link. For example
xc32-gcc -c -O1 -flto -mprocessor=ATSAME70Q21B foo.c
xc32-gcc -c -O1 -flto -mprocessor=ATSAME70Q21B bar.c
xc32-gcc -o myprog.elf -flto -O3 -mprocessor=ATSAME70Q21B
foo.o bar.o

Another (simpler) way to enable link-time optimization is,
xc32-gcc -o myprog.elf -flto -O3 -mprocessor=ATSAME70Q21B
foo.c bar.c

Link time optimizations do not require the presence of the whole program to
operate. If the program does not require any symbols to be exported, it is
possible to combine -flto with -fwhole-program to allow the
interprocedural optimizers to use more aggressive assumptions which may
lead to improved optimization opportunities.
Regarding portability: The bytecode files are versioned and there is a strict
version check, so bytecode files generated in one version of XC32 may not
work with an older/newer version of the XC32 compiler.

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 96  2019 Microchip Technology Inc.

The following options control specific optimizations. The -O2 option turns on all of these optimizations
except -funroll-loops, -funroll-all-loops and -fstrict-aliasing.

You can use the following flags in the rare cases when “fine-tuning” of optimizations to be performed is
desired.

-ftoplevel-reorder All Allow reordering top-level functions, variables, and asm statements. They may
not be output in the same order that they appear in the input file. This option
also allows removal of unreferenced static variables. Use this options with
optimization level -01 or greater.

-fwhole-program PRO Assume that the current compilation unit represents the whole program being
compiled. All public functions and variables, with the exception of main and
those merged by attribute externally_visible, become static functions
and in effect are optimized more aggressively by interprocedural optimizers.
While this option is equivalent to proper use of the static keyword for programs
consisting of a single file, in combination with option -flto, this flag can be
used to compile many smaller scale programs since the functions and
variables become local for the whole combined compilation unit, not for the
single source file itself.

TABLE 5-12: SPECIFIC OPTIMIZATION OPTIONS

Option Definition

-falign-functions
-falign-functions=n

Align the start of functions to the next power-of-two greater than n, skipping up to n
bytes. For instance, -falign-functions=32 aligns functions to the next 32-byte
boundary, but -falign-functions=24 would align to the next 32-byte boundary only
if this can be done by skipping 23 bytes or less.
-fno-align-functions and -falign-functions=1 are equivalent and mean that
functions are not aligned.
The assembler only supports this flag when n is a power of two, so n is rounded up. If n
is not specified, use a machine-dependent default.

-falign-labels
-falign-labels=n

Align all branch targets to a power-of-two boundary, skipping up to n bytes like
-falign-functions. This option can easily make code slower, because it must insert
dummy operations for when the branch target is reached in the usual flow of the code.
If -falign-loops or -falign-jumps are applicable and are greater than this value,
then their values are used instead.
If n is not specified, use a machine-dependent default which is very likely to be 1,
meaning no alignment.

-falign-loops
-falign-loops=n

Align loops to a power-of-two boundary, skipping up to n bytes like
-falign-functions. The hope is that the loop is executed many times, which makes
up for any execution of the dummy operations.
If n is not specified, use a machine-dependent default.

-fcaller-saves Enable values to be allocated in registers that are clobbered by function calls, by
emitting extra instructions to save and restore the registers around such calls. Such
allocation is done only when it seems to result in better code than would otherwise be
produced.

-fcse-follow-jumps In common subexpression elimination, scan through jump instructions when the target of
the jump is not reached by any other path. For example, when CSE encounters an if
statement with an else clause, CSE follows the jump when the condition tested is false.

-fcse-skip-blocks This is similar to -fcse-follow-jumps, but causes CSE to follow jumps which
conditionally skip over blocks. When CSE encounters a simple if statement with no
else clause, -fcse-skip-blocks causes CSE to follow the jump around the body of
the if.

-fexpensive-
 optimizations

Perform a number of minor optimizations that are relatively expensive.

TABLE 5-11: GENERAL OPTIMIZATION OPTIONS (CONTINUED)

Option Edition Definition

Compiler Command Line Driver

 2019 Microchip Technology Inc. DS50002895A-page 97

-ffunction-sections
-fdata-sections

Place each function or data item into its own section in the output file. The name of the
function or the name of the data item determines the section's name in the output file.
Use these options when there are significant benefits for doing so. When you specify
these options, the assembler and linker may create larger object and executable files
and is also slower.

-fgcse Perform a global common subexpression elimination pass. This pass also performs
global constant and copy propagation.

-fgcse-lm When -fgcse-lm is enabled, global common subexpression elimination attempts to
move loads which are only killed by stores into themselves. This allows a loop containing
a load/store sequence to change to a load outside the loop, and a copy/store within the
loop.

-fgcse-sm When -fgcse-sm is enabled, a store motion pass is run after global common
subexpression elimination. This pass attempts to move stores out of loops. When used
in conjunction with -fgcse-lm, loops containing a load/store sequence can change to a
load before the loop and a store after the loop.

-fmove-all-movables Forces all invariant computations in loops to be moved outside the loop.

-fno-defer-pop Always pop the arguments to each function call as soon as that function returns. The
compiler normally lets arguments accumulate on the stack for several function calls and
pops them all at once.

-fno-peephole
-fno-peephole2

Disable machine specific peephole optimizations. Peephole optimizations occur at
various points during the compilation. -fno-peephole disables peephole optimization
on machine instructions, while -fno-peephole2 disables high level peephole
optimizations. To disable peephole entirely, use both options.

-foptimize-
 register-move
-fregmove

Attempt to reassign register numbers in move instructions and as operands of other
simple instructions in order to maximize the amount of register tying.
-fregmove and -foptimize-register-moves are the same optimization.

-freduce-all-givs Forces all general-induction variables in loops to be strength reduced.
These options may generate better or worse code. Results are highly dependent on the
structure of loops within the source code.

-frename-registers Attempt to avoid false dependencies in scheduled code by making use of registers left
over after register allocation. This optimization most benefits processors with lots of
registers. It can, however, make debugging impossible, since variables no longer stay in
a “home register”.

-frerun-cse-after-
 loop

Rerun common subexpression elimination after loop optimizations has been performed.

-frerun-loop-opt Run the loop optimizer twice.

-fschedule-insns Attempt to reorder instructions to eliminate instruction stalls due to required data being
unavailable.

-fschedule-insns2 Similar to -fschedule-insns, but requests an additional pass of instruction
scheduling after register allocation has been done.

-fstrength-reduce Perform the optimizations of loop strength reduction and elimination of iteration
variables.

TABLE 5-12: SPECIFIC OPTIMIZATION OPTIONS (CONTINUED)

Option Definition

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 98  2019 Microchip Technology Inc.

Options of the form -fflag specify machine-independent flags. Most flags have both positive and negative
forms. The negative form of -ffoo would be -fno-foo. In the table below, only one of the forms is listed
(the one that is not the default.)

-fstrict-aliasing Allows the compiler to assume the strictest aliasing rules applicable to the language
being compiled. For C, this activates optimizations based on the type of expressions. In
particular, an object of one type is assumed never to reside at the same address as an
object of a different type, unless the types are almost the same. For example, an
unsigned int can alias an int, but not a void* or a double. A character type may
alias any other type.
Pay special attention to code like this:
union a_union {
 int i;
 double d;
};

int f() {
 union a_union t;
 t.d = 3.0;
 return t.i;
}
The practice of reading from a different union member than the one most recently written
to (called “type-punning”) is common. Even with -fstrict-aliasing, type-punning is
allowed, provided the memory is accessed through the union type. So, the code above
works as expected. However, this code might not:
int f() {
 a_union t;
 int* ip;
 t.d = 3.0;
 ip = &t.i;
 return *ip;
}

-fthread-jumps Perform optimizations where a check is made to see if a jump branches to a location
where another comparison subsumed by the first is found. If so, the first branch is
redirected to either the destination of the second branch or a point immediately following
it, depending on whether the condition is known to be true or false.

-funroll-loops Perform the optimization of loop unrolling. This is only done for loops whose number of
iterations can be determined at compile time or run time. -funroll-loops implies
both -fstrength-reduce and -frerun-cse-after-loop.

-funroll-all-loops Perform the optimization of loop unrolling. This is done for all loops and usually makes
programs run more slowly. -funroll-all-loops implies -fstrength-reduce, as
well as -frerun-cse-after-loop.

-fuse-caller-save Allows the compiler to use the caller-save register model. When combined with inter-pro-
cedural optimizations, the compiler can generate more efficient code.

TABLE 5-13: MACHINE-INDEPENDENT OPTIMIZATION OPTIONS

Option Definition

-fforce-mem Force memory operands to be copied into registers before doing arithmetic on
them. This produces better code by making all memory references potential
common subexpressions. When they are not common subexpressions,
instruction combination should eliminate the separate register load. The -O2
option turns on this option.

-finline-functions Integrate all simple functions into their callers. The compiler heuristically decides
which functions are simple enough to be worth integrating in this way. If all calls
to a given function are integrated, and the function is declared static, then the
function is normally not output as assembler code in its own right.

TABLE 5-12: SPECIFIC OPTIMIZATION OPTIONS (CONTINUED)

Option Definition

Compiler Command Line Driver

 2019 Microchip Technology Inc. DS50002895A-page 99

5.8.8 Options for Controlling the Preprocessor

The following options control the compiler preprocessor.

-finline-limit=n By default, the compiler limits the size of functions that can be inlined. This flag
allows the control of this limit for functions that are explicitly marked as inline (i.e.,
marked with the inline keyword). n is the size of functions that can be inlined
in number of pseudo instructions (not counting parameter handling). The default
value of n is 10000. Increasing this value can result in more inlined code at the
cost of compilation time and memory consumption.
Decreasing usually makes the compilation faster and less code is inlined (which
presumably means slower programs). This option is particularly useful for
programs that use inlining.

Note: Pseudo instruction represents, in this particular context, an abstract
measurement of function's size. In no way does it represent a count of assembly
instructions and as such, its exact meaning might change from one release of the
compiler to an another.

-fkeep-inline-functions Even if all calls to a given function are integrated, and the function is declared
static, output a separate run time callable version of the function. This switch
does not affect extern inline functions.

-fkeep-static-consts Emit variables are declared static const when optimization isn't turned on, even if
the variables are not referenced.
The compiler enables this option by default. If you want to force the compiler to
check if the variable was referenced, regardless of whether or not optimization is
turned on, use the -fno-keep-static-consts option.

-fno-function-cse Do not put function addresses in registers. Make each instruction that calls a
constant function contain the function's address explicitly.
This option results in less efficient code, but some strange hacks that alter the
assembler output may be confused by the optimizations performed when this
option is not used.

-fno-inline Do not pay attention to the inline keyword. Normally this option is used to keep
the compiler from expanding any functions inline. If optimization is not enabled,
no functions can be expanded inline.

-fomit-frame-pointer Do not keep the Frame Pointer in a register for functions that don't need one.
This avoids the instructions to save, set up and restore Frame Pointers. It also
makes an extra register available in many functions.

-foptimize-sibling-calls Optimize sibling and tail recursive calls.

TABLE 5-14: PREPROCESSOR OPTIONS

Option Definition

-C Tell the preprocessor not to discard comments. Used with the -E option.

-dD Tell the preprocessor to not remove macro definitions into the output, in their proper
sequence.

-Dmacro Define macro macro with string 1 as its definition.

-Dmacro=defn Define macro macro as defn. All instances of -D on the command line are processed before
any -U options.

-dM Tell the preprocessor to output only a list of the macro definitions that are in effect at the end
of preprocessing. Used with the -E option.

-dN Like -dD except that the macro arguments and contents are omitted. Only #define name is
included in the output.

-fno-show-column Do not print column numbers in diagnostics. This may be necessary if diagnostics are being
scanned by a program that does not understand the column numbers, such as DejaGnu.

-H Print the name of each header file used, in addition to other normal activities.

TABLE 5-13: MACHINE-INDEPENDENT OPTIMIZATION OPTIONS (CONTINUED)

Option Definition

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 100  2019 Microchip Technology Inc.

-I- Any directories you specify with -I options before the -I- options are searched only for the
case of #include "file". They are not searched for #include <file>.
If additional directories are specified with -I options after the -I-, these directories are
searched for all #include directives. (Ordinarily all -I directories are used this way.)
In addition, the -I- option inhibits the use of the current directory (where the current input file
came from) as the first search directory for #include "file." There is no way to override
this effect of -I-. With -I. you can specify searching the directory that was current when the
compiler was invoked. That is not exactly the same as what the preprocessor does by default,
but it is often satisfactory.
-I- does not inhibit the use of the standard system directories for header files. Thus, -I- and
-nostdinc are independent.
NOTE: Do not specify an MPLAB XC32 system include directory (e.g., /pic32c/include/) in
your project properties. The xc32-gcc and xc32-g++ compilation drivers automatically select
the default C libc or the C++ libc and their respective include-file directory for you. Manually
adding a system include file path may disrupt this mechanism and cause the incorrect libc
include files to be compiled into your project, causing a conflict between the include files and
the library. Note that adding a system include path to your project properties has never been a
recommended practice.

-Idir Add the directory dir to the head of the list of directories to be searched for header files. This
can be used to override a system header file, substituting your own version, since these
directories are searched before the system header file directories. If you use more than one
-I option, the directories are scanned in left-to-right order. The standard system directories
come after.

-idirafter dir Add the directory dir to the second include path. The directories on the second include path
are searched when a header file is not found in any of the directories in the main include path
(the one that -I adds to).

-imacros file Process file as input, discarding the resulting output, before processing the regular input file.
Because the output generated from the file is discarded, the only effect of -imacros file is
to make the macros defined in file available for use in the main input.
Any -D and -U options on the command line are always processed before -imacros file,
regardless of the order in which they are written. All the -include and -imacros options
are processed in the order in which they are written.

-include file Process file as input before processing the regular input file. In effect, the contents of file are
compiled first. Any -D and -U options on the command line are always processed before
-include file, regardless of the order in which they are written. All the -include and
-imacros options are processed in the order in which they are written.

-M Tell the preprocessor to output a rule suitable for make describing the dependencies of each
object file. For each source file, the preprocessor outputs one make-rule whose target is the
object file name for that source file and whose dependencies are all the #include header
files it uses. This rule may be a single line or may be continued with \-newline if it is long.
The list of rules is printed on standard output instead of the preprocessed C program.
-M implies -E (see Section 5.8.2 “Options for Controlling the Kind of Output”).

-MD Like -M but the dependency information is written to a file and compilation continues. The file
containing the dependency information is given the same name as the source file with a .d
extension.

-MF file When used with -M or -MM, specifies a file in which to write the dependencies. If no -MF
switch is given, the preprocessor sends the rules to the same place it would have sent
preprocessed output.
When used with the driver options, -MD or -MMD, -MF, overrides the default dependency
output file.

-MG Treat missing header files as generated files and assume they live in the same directory as
the source file. If -MG is specified, then either -M or -MM must also be specified. -MG is not
supported with -MD or -MMD.

-MM Like -M but the output mentions only the user header files included with #include "file".
System header files included with #include <file> are omitted.

TABLE 5-14: PREPROCESSOR OPTIONS (CONTINUED)

Option Definition

Compiler Command Line Driver

 2019 Microchip Technology Inc. DS50002895A-page 101

5.8.9 Options for Assembling

The following options control assembler operations.

5.8.10 Options for Linking

If any of the options -c, -S or -E are used, the linker is not run and object file names should not be used as
arguments.

-MMD Like -MD except mention only user header files, not system header files.

-MP This option instructs CPP to add a phony target for each dependency other than the main file,
causing each to depend on nothing. These dummy rules work around errors make gives if you
remove header files without updating the make-file to match.
This is typical output:
test.o: test.c test.h
test.h:

-MQ Same as -MT, but it quotes any characters which are special to make.
-MQ '$(objpfx)foo.o' gives $$(objpfx)foo.o: foo.c
The default target is automatically quoted, as if it were given with -MQ.

-MT target Change the target of the rule emitted by dependency generation. By default, CPP takes the
name of the main input file, including any path, deletes any file suffix such as .c, and
appends the platform’s usual object suffix. The result is the target.
An -MT option sets the target to be exactly the string you specify. If you want multiple targets,
you can specify them as a single argument to -MT, or use multiple -MT options.
For example:
-MT '$(objpfx)foo.o' might give $(objpfx)foo.o: foo.c

-nostdinc Do not search the standard system directories for header files. Only the directories you have
specified with -I options (and the current directory, if appropriate) are searched. See
Section 5.8.11 “Options for Directory Search” for information on -I.
By using both -nostdinc and -I-, the include-file search path can be limited to only those
directories explicitly specified.

-P Tell the preprocessor not to generate #line directives. Used with the -E option (see
Section 5.8.2 “Options for Controlling the Kind of Output”).

-trigraphs Support ANSI C trigraphs. The -ansi option also has this effect.

-Umacro Undefine macro macro. -U options are evaluated after all -D options, but before any
-include and -imacros options.

-undef Do not predefine any nonstandard macros (including architecture flags).

TABLE 5-15: ASSEMBLY OPTIONS

Option Definition

-Wa,option Pass option as an option to the assembler. If option contains commas, it is split into multiple
options at the commas.

TABLE 5-16: LINKING OPTIONS

Option Definition

-Ldir Add directory dir to the list of directories to be searched for libraries specified by the
command line option -l.

TABLE 5-14: PREPROCESSOR OPTIONS (CONTINUED)

Option Definition

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 102  2019 Microchip Technology Inc.

-llibrary Search the library named library when linking.
The linker searches a standard list of directories for the library, which is actually a file named
liblibrary.a. The linker then uses this file as if it had been specified precisely by name.
It makes a difference where in the command you write this option. The linker processes
libraries and object files in the order they are specified. Thus, foo.o -lz bar.o searches
library z after file foo.o but before bar.o. If bar.o refers to functions in libz.a, those
functions may not be loaded.
The directories searched include several standard system directories, plus any that you
specify with -L.
Normally the files found this way are library files (archive files whose members are object
files). The linker handles an archive file by scanning through it for members which define
symbols that have been referenced but not defined yet. But if the file found is an ordinary
object file, it is linked in the usual fashion. The only difference between using an -l option
(e.g., -lmylib) and specifying a file name (e.g., libmylib.a) is that -l searches several
directories, as specified.
By default the linker is directed to search:
<install-path>\lib
for libraries specified with the -l option. On Microsoft Windows, for a compiler installed into
the default location, this would be:
Program Files(x86)\Microchip\xc32\<version>\lib
This behavior can be overridden using the environment variables.
See also the INPUT and OPTIONAL linker script directives.

-nodefaultlibs Do not use the standard system libraries when linking. Only the libraries you specify are
passed to the linker. The compiler may generate calls to memcmp, memset and memcpy.
These entries are usually resolved by entries in the standard compiler libraries. These entry
points should be supplied through some other mechanism when this option is specified.

-nostdlib Do not use the standard system start-up files or libraries when linking. No start-up files and
only the libraries you specify are passed to the linker. The compiler may generate calls to
memcmp, memset and memcpy. These entries are usually resolved by entries in standard
compiler libraries. These entry points should be supplied through some other mechanism
when this option is specified.

-s Remove all symbol table and relocation information from the executable.

-u symbol Pretend symbol is undefined to force linking of library modules to define the symbol. It is
legitimate to use -u multiple times with different symbols to force loading of additional library
modules.

-Wl,option Pass option as an option to the linker. If option contains commas, it is split into multiple
options at the commas.

-Xlinker option Pass option as an option to the linker. You can use this to supply system-specific linker
options that the compiler does not know how to recognize.

TABLE 5-16: LINKING OPTIONS (CONTINUED)

Option Definition

Compiler Command Line Driver

 2019 Microchip Technology Inc. DS50002895A-page 103

5.8.11 Options for Directory Search

The following options specify to the compiler where to find directories and files to search.

5.8.12 Options for Code Generation Conventions

Options of the form -fflag specify machine-independent flags. Most flags have both positive and negative
forms. The negative form of -ffoo would be -fno-foo. In the table below, only one of the forms is listed
(the one that is not the default).

TABLE 5-17: DIRECTORY SEARCH OPTIONS

Option Definition

-Bprefix This option specifies where to find the executables, libraries, include files and data files of
the compiler itself.
The compiler driver program runs one or more of the sub-programs xc32-cpp, xc32-as
and xc32-ld. It tries prefix as a prefix for each program it tries to run.
For each sub-program to be run, the compiler driver first tries the -B prefix, if any. Lastly, the
driver searches the current PATH environment variable for the subprogram.
-B prefixes that effectively specify directory names also apply to libraries in the linker,
because the compiler translates these options into -L options for the linker. They also apply
to include files in the preprocessor, because the compiler translates these options into
-isystem options for the preprocessor. In this case, the compiler appends include to the
prefix.

-specs=file Process file after the compiler reads in the standard specs file, in order to override the
defaults that the xc32-gcc driver program uses when determining what switches to pass to
xc32-as, xc32-ld, etc. More than one -specs=file can be specified on the command
line, and they are processed in order, from left to right.

TABLE 5-18: CODE GENERATION CONVENTION OPTIONS

Option Definition

-fargument-alias
-fargument-noalias
-fargument-
 noalias-global

Specify the possible relationships among parameters and between parameters and global
data.
-fargument-alias specifies that arguments (parameters) may alias each other and
may alias global storage.
-fargument-noalias specifies that arguments do not alias each other, but may alias
global storage.
-fargument-noalias-global specifies that arguments do not alias each other and do
not alias global storage.
Each language automatically uses whatever option is required by the language standard.
You should not need to use these options yourself.

-fcall-saved-reg Treat the register named reg as an allocatable register saved by functions. It may be
allocated even for temporaries or variables that live across a call. Functions compiled this
way saves and restores the register reg if they use it.
It is an error to use this flag with the Frame Pointer or Stack Pointer. Use of this flag for
other registers that have fixed pervasive roles in the machine’s execution model produces
disastrous results.
A different sort of disaster results from the use of this flag for a register in which function
values are returned.
This flag should be used consistently through all modules.

-fcall-used-reg Treat the register named reg as an allocatable register that is clobbered by function calls.
It may be allocated for temporaries or variables that do not live across a call. Functions
compiled this way do not save and restore the register reg.
It is an error to use this flag with the Frame Pointer or Stack Pointer. Use of this flag for
other registers that have fixed pervasive roles in the machine’s execution model produces
disastrous results.
This flag should be used consistently through all modules.

-ffixed-reg Treat the register named reg as a fixed register. Generated code should never refer to it
(except perhaps as a Stack Pointer, Frame Pointer or in some other fixed role).
reg must be the name of a register (e.g., -ffixed-$0).

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 104  2019 Microchip Technology Inc.

-fno-ident Ignore the #ident directive.

-fpack-struct Pack all structure members together without holes. Usually you would not want to use this
option, since it makes the code sub-optimal, and the offsets of structure members won’t
agree with system libraries.

-fpcc-struct-
 return

Return short struct and union values in memory like longer ones, rather than in
registers. This convention is less efficient, but it has the advantage of allowing capability
between 32-bit compiled files and files compiled with other compilers.
Short structures and unions are those whose size and alignment match that of an integer
type.

-fshort-enums Allocate to an enum type only as many bytes as it needs for the declared range of possible
values. Specifically, the enum type is equivalent to the smallest integer type that has
enough room.

-fverbose-asm
-fno-verbose-asm

Put extra commentary information in the generated assembly code to make it more
readable.
-fno-verbose-asm, the default, causes the extra information to be omitted and is useful
when comparing two assembler files.

-fvolatile Consider all memory references through pointers to be volatile.

-fvolatile-global Consider all memory references to external and global data items to be volatile. The use of
this switch has no effect on static data.

-fvolatile-static Consider all memory references to static data to be volatile.

TABLE 5-18: CODE GENERATION CONVENTION OPTIONS (CONTINUED)

Option Definition

MPLAB® XC32 C/C++ COMPILER
USER’S GUIDE FOR

PIC32C/SAM MCUs

Chapter 6. ANSI C Standard Issues
This compiler conforms to the ANSI X3.159-1989 Standard for programming lan-
guages. This is commonly called the C89 Standard. It is referred to as the ANSI C
Standard in this manual. Some features from the later standard, C99, are also
supported.

6.1 DIVERGENCE FROM THE ANSI C STANDARD

There are no divergences from the ANSI C standard.

6.2 EXTENSIONS TO THE ANSI C STANDARD

C/C++ code for the MPLAB XC32 C/C++ Compiler extends ANSI C standard in these
areas: keywords, statements and expressions.

6.2.1 Keyword Differences

The new keywords are part of the base GCC implementation and the discussions in the
referenced sections are based on the standard GCC documentation, tailored for the
specific syntax and semantics of the 32-bit compiler port of GCC.

• Specifying Attributes of Variables – Section 8.11 “Variable Attributes”

• Specifying Attributes of Functions – Section 13.2 “Function Attributes and Specifi-
ers”

• Inline Functions – Section 13.9 “Inline Functions”

• Variables in Specified Registers – Section 8.11 “Variable Attributes”

• Complex Numbers – Section 8.7 “Complex Data Types”

• Double-Word Integers – Section 8.3 “Integer Data Types”

• Referring to a Type with typeof – Section 8.9 “Standard Type Qualifiers”

6.2.2 Statement Differences

The statement differences are part of the base GCC implementation and the discus-
sions in the referenced sections are based on the standard GCC documentation,
tailored for the specific syntax and semantics of the 32-bit compiler port of GCC.

• Labels as Values – Section 10.3 “Labels as Values”

• Conditionals with Omitted Operands – Section 10.4 “Conditional Operator
Operands”

• Case Ranges – Section 10.5 “Case Ranges”

6.2.3 Expression Differences

Expression differences are:

Binary constants – Section 8.8 “Constant Types and Formats”.
 2019 Microchip Technology Inc. DS50002895A-page 105

Compiler User’s Guide for PIC32C/SAM MCUs
6.3 IMPLEMENTATION-DEFINED BEHAVIOR

Certain features of the ANSI C standard have implementation-defined behavior. This
means that the exact behavior of some C code can vary from compiler to compiler. The
exact behavior of the MPLAB XC32 C/C++ Compiler is detailed throughout this
documentation and is fully summarized in Appendix B. “Implementation-Defined
Behavior”.
DS50002895A-page 106  2019 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
USER’S GUIDE FOR

PIC32C/SAM MCUs

Chapter 7. Device-Related Features
The MPLAB XC32 C/C++ Compiler supports a number of special features and exten-
sions to the C/C++ language which are designed to ease the task of producing
PIC32C/SAM devices. This chapter documents the special language features which
are specific to these devices.

7.1 DEVICE SUPPORT

MPLAB XC32 C/C++ Compiler aims to support all PIC32 devices. However, new
devices in these families are frequently released.

7.2 DEVICE HEADER FILES

There is one header file that is recommended be included into each source file you
write. The file is <xc.h> and is a generic file that will include other device-specific
header files when you build your project.

Inclusion of this file provides access to SFRs for the core and peripheral modules. See
Section 7.5 “Using SFRs From C Code” for further information.

7.3 STACK

The PIC32 devices use what is referred to in this user’s guide as a “software stack.”
This is the typical stack arrangement employed by most computers and is ordinary data
memory accessed by a push-and-pop type instruction and a stack pointer register. The
term “hardware stack” is used to describe the stack employed by Microchip 8-bit
devices, which is only used for storing function return addresses.

The PIC32 devices use a dedicated stack pointer register sp (register r14) for use as a
software Stack Pointer. All processor stack operations, including function calls, inter-
rupts and exceptions, use the software stack. It points to the next free location on the
stack. The stack grows downward, towards lower memory addresses.

By default, the size of the stack is 1024 bytes. The size of the stack can be specified
by defining the _min_stack_size symbol to the desired size in bytes using the
--defsym linker option. An example of allocating a stack of 2048 bytes using the
command line is:
xc32-gcc foo.c -Wl,--defsym,_min_stack_size=2048

The run-time stack grows downward from higher addresses to lower addresses. Two
working registers are used to manage the stack:
• Register r14 (sp) – This is the Stack Pointer. It points to the next free location on
the stack.
• Register r11 (fp) – This is the Frame Pointer. It points to the current function’s
frame.
No stack overflow detection is supplied.
The C/C++ run-time start-up module initializes the stack pointer during the start-up
and initialization sequence (see Section 15.2.1 “Initialize Stack Pointer and Heap”).
 2019 Microchip Technology Inc. DS50002895A-page 107

Compiler User’s Guide for PIC32C/SAM MCUs
7.4 CONFIGURATION BIT ACCESS

The PIC32 devices have several locations which contain the Configuration bits or
fuses. These bits specify fundamental device operation, such as the oscillator mode,
watchdog timer, programming mode and code protection. Failure to correctly set these
bits may result in code failure, or a non-running device.

The #pragma config directive specifies the processor-specific configuration settings
(i.e., Configuration bits) to be used by the application. Refer to the “PIC32 Configura-
tion Settings” online help (found under MPLAB X IDE>Help>Help Contents>XC32
Toolchain) for more information. (If using the compiler from the command line, this help
file is located at the default location at: Program Files/Microchip/
<install-dir>/<version>/docs/PIC32ConfigSet.html.)

Configuration settings may be specified with multiple #pragma config directives. The
compiler verifies that the configuration settings specified are valid for the processor for
which it is compiling. If a given setting in the Configuration word has not been specified
in any #pragma config directive, the bits associated with that setting default to the
unprogrammed value. Configuration settings should be specified in only a single trans-
lation unit (a C/C++ file with all of its include files after preprocessing).

• Syntax

• Example

7.4.1 Syntax

The following shows the meta syntax notation for the different forms the pragma may
take.

pragma-config-directive:

 # pragma config setting-list

setting-list:
 setting
 | setting-list, setting
setting:
 setting-name = value-name

The setting-name and value-name are device specific and can be determined by using
the PIC32ConfigSet.html document located in the installation directory, docs folder.

All #pragma config directives should be placed outside of a function definition as
they do not define executable code.

Integer values for config pragmas can be set using the config pragma. (Examples:
#pragma config USERID = 0x1234u)

7.4.2 Example

The following example shows how the #pragma config directive might be utilized.
The example does the following:

• Enables the Watchdog Timer

• Sets the Watchdog Postscaler to 1:128

• Selects the HS Oscillator for the Primary Oscillator
#pragma config FWDTEN = ON, WDTPS = PS128
#pragma config POSCMOD = HS
...
int main (void)
{
...
}

DS50002895A-page 108  2019 Microchip Technology Inc.

Device-Related Features
7.5 USING SFRS FROM C CODE

The Special Function Registers (SFRs) are registers that control aspects of the MCU,
or that of peripheral modules, on the device. These registers are memory-mapped,
which means that they appear at specific addresses in the device memory map. With
some registers, the bits within the register control independent features.

The SFRs may be read or modified using a C language interface. The SFR interface
definitions are accessible by including the <xc.h> header file in your source code (see
Section 7.2 “Device Header Files”).

The names used in the C interface for SFRs and SFR fields/bits are based on the
names specified in the device data sheet. Each peripheral component's registers are
accessed through a fixed-base address defined as, for example, WDT_BASE_ADDRESS,
which is the address of a structure containing all memory-mapped registers for the
component, for example WDT_CR.

Multiple ways are provided to work with fields or bits of each SFR. The register field in
the component structure can reference the complete register value, or individual bits or
fields of the register by name. Macro definitions are also provided to allow accessing
individual fields using bit operations. Section 7.5.1 “SFR Register Definitions” provides
more information on the SFR interface.

The <xc.h> header will include a device-specific header file for the device you are
using. These device-specific headers are located in the pic32c/include/proc direc-
tory of the compiler under a directory with a name that represents the device, e.g.,
pic32c/include/proc/32CZ2038CA70144.

To check the interface(s) for SFRs for the device you are using, inspect the headers in
the component subdirectory of the device-specific header directory. These headers are
automatically included by the device-specific header file and named based on the com-
ponent names in the device data sheet, e.g., wdt.h. Remember that no device-specific
headers need to be included directly into your source code – including the <xc.h>
header will ensure all required headers are included.

In additional to peripheral modules, SFRs controlling aspects of the MCU are also
accessible through the same interface. Core SFRs are defined in header files automat-
ically included by all device-specific header files, so including <xc.h> is sufficient to
allow access to all core SFRs. Core-specific header files are located in the
pic32c/include directory.
 2019 Microchip Technology Inc. DS50002895A-page 109

Compiler User’s Guide for PIC32C/SAM MCUs
7.5.1 SFR Register Definitions

In this section we describe the conventions of the SFR interface and use the WDT
(watchdog timer) component as an example. Always consult the device data sheet and
device-specific header files to confirm the specific capabilities and names for your
device.

The SFRs within each component are accessed through a base pointer, defined in the
header as a macro, for example, _WDT_REGS. This is used as a pointer to a structure of
type _wdt_registers_t containing all SFRs of that component by name, for example,
_WDT_REGS->WDT_CR. The fields of this structure are typed to reflect whether each reg-
ister is read-only, write-only, or read-write; however, the device data sheet should
always be consulted for details on the read/write properties of SFRs.

Each SFR field is, itself, a structure of the type allowing access to the SFR data as a
whole, e.g., WDT_CR.w, or access to individual bits or fields, e.g., WDR_CR.KEY. Any
reserved bits in an SFR are not individually accessible in this way. For example,

 /* get entire WDT CR contents */
 uint32_t _wdt_cr = _WDT_REGS->WDT_CR.w;

 /* Set KEY field of CR (8 bits) */
 _WDT_REGS->_WDT_CR.KEY = 0x1F;

 /* Read LOCKMR bit of CR */
 uint32_t lock = _WDT_REGS->WDT_CR.LOCKMR;

 /* Set entire WDT_CR - including reserved bits */
 _WDT_REGS->WDT_CR.w = 0xDEADBEEFu;

Note that this and subsequent examples are intended to demonstrate the language
interface only and do not demonstrate any usage of the particular SFRs.

For each field of an SFR, macros are also provided to facilitate access to that field using
bit operations. For example, WDR_CR_KEY_Pos is defined to the least-significant bit posi-
tion of the KEY field, and WDT_CR_KEY_Msk is defined to an integer mask of the same
width as the SFR, with all bits of the field set, and all other bits 0. Thus, one can, for
example, extract the KEY field as:

 /* Read KEY field by reading entire register and extracting
 bits by mask/shift operations */
 uint32_t wdt = _WDT_REGS->WDT_CR.w;
 uint32_t key = (wdt & WDT_CR_KEY_Msk) >> WDT_CR_KEY_Pos;

 /* Update KEY field by masking/inserting bits */
 wdt = (wdt & ~WDT_CR_KEY_Msk) | (0x1F << WDT_CR_KEY_Pos);

 /* Set WDRSTT bit by bit operations */
 wdt = wdt | (1u << WDT_CR_WDRSTT_Pos);

 /* Write back updated register contents */
 _WDT_REGS->WDR_CR.w = wdt;

In addition, the WDR_CR_KEY_Value function-like macro is defined to place a value in
the proper bit position for the field, so that WDR_CR_KEY_Value(0x3) produces the
same value as:

 WDT_CR_KEY_Msk & ((0x3) << WDT_CR_KEY_Pos)

Both explicit bit operations using the mask and position macros and bitfield operations
may be freely mixed; however, the WDT_BASE_ADDRESS pointer should only be
accessed using the defined structures, rather than casting to an integral type. Always
ensure that you confirm the operation of peripheral modules from the device data
sheet.
DS50002895A-page 110  2019 Microchip Technology Inc.

Device-Related Features
7.6 TIGHTLY-COUPLED MEMORIES

Some PIC32C/SAM device families feature a SRAM interface providing a fixed latency
called Tightly-Coupled Memory (TCM). These memories may contain code (called
instruction TCM or ITCM) or data (called data TCM or DTCM). To support this interface,
XC32 provides a new tcm attribute. You can apply this attribute to a function or variable
and it will be placed into instruction or data TCM as appropriate (e.g., uint32_t
__attribute__((tcm)) var;). Programmers may choose to use TCM in order to
achieve better speed and also more consistent timing.

The internal organization of TCM varies greatly from family to family and consequently
so do the compiler options used to control it. From the data sheet for the device you are
using, you can learn which category to consult below.

In families where code TCM (ITCM) and data TCM (DTCM) are separate, two separate
options are provided to specify the respective sizes of these. To enable TCM, pass the
-mitcm=<size_in_bytes> and the -mdtcm=<size_in_bytes> options to the
xc32-gcc/g++ driver. See the device data sheet for the size values supported by your
target device. The device-specific startup code and the device-specific linker script
then work together to set up, initialize, and enable TCM at startup, before your main()
function is called.

In families where code TCM (ITCM) and data TCM (DTCM) are combined, pass the sin-
gle option -mtcm=<size_in_bytes>. The device start-up code and linker script will
work together similarly.

Users can also optionally allocate the vector table and (separately) the stack to TCM.

There are two options to control this:

1. For the vector table, the default behavior is to place the vectors in TCM if possi-
ble. Users may pass the option -mno-vectors-in-tcm to change this. This
might be desirable on some smaller devices with TCM.

2. You may also choose to move your stack to DTCM by passing the
-mstack-in-tcm option to the xc32-gcc/g++ driver at compile and link time.
The linker will allocate a stack to DTCM and the startup code will transfer the
stack from System SRAM to DTCM before calling your main() function.
 2019 Microchip Technology Inc. DS50002895A-page 111

Compiler User’s Guide for PIC32C/SAM MCUs
NOTES:
DS50002895A-page 112  2019 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
USER’S GUIDE FOR

PIC32C/SAM MCUs

Chapter 8. Supported Data Types and Variables
The MPLAB XC32 C/C++ Compiler supports a variety of data types and attributes.
These data types and variables are discussed here. For information on where variables
are stored in memory, see Chapter 9. “Memory Allocation and Access” or Chapter
9. “Memory Allocation and Access”.

8.1 IDENTIFIERS

A C/C++ variable identifier (the following is also true for function identifiers) is a
sequence of letters and digits, where the underscore character “_” counts as a letter.
Identifiers cannot start with a digit. Although they may start with an underscore, such
identifiers are reserved for the compiler’s use and should not be defined by your pro-
grams. Such is not the case for assembly domain identifiers, which often begin with an
underscore

Identifiers are case sensitive, so main is different than Main.

All characters are significant in an identifier, although identifiers longer than 31
characters in length are less portable.

8.2 DATA REPRESENTATION

The compiler stores multibyte values in little-endian format. That is, the Least
Significant Byte is stored at the lowest address.

For example, the 32-bit value 0x12345678 would be stored at address 0x100 as:

8.3 INTEGER DATA TYPES

Integer values in the compiler are represented in 2’s complement and vary in size from
8 to 64 bits. These values are available in compiled code via limits.h.

Address 0x100 0x101 0x102 0x103

Data 0x78 0x56 0x34 0x12

Type Bits Min Max

char, signed char 8 -128 127

unsigned char 8 0 255

short, signed short 16 -32768 32767

unsigned short 16 0 65535

int, signed int, long, signed long 32 -231 231-1

unsigned int, unsigned long 32 0 232-1

long long, signed long long 64 -263 263-1

unsigned long long 64 0 264-1
 2019 Microchip Technology Inc. DS50002895A-page 113

Compiler User’s Guide for PIC32C/SAM MCUs
8.3.1 Signed and Unsigned Character Types

Each implementation must define whether a plain char is signed or unsigned. For
PIC32C and all other ARM platforms, a plain char defaults to be unsigned. Note that
this behavior differs from PIC32M. The options -funsigned-char and
-fsigned-char can always be used to alter the default type for a given translation
unit.

8.3.2 limits.h

The limits.h header file defines the ranges of values which can be represented by
the integer types.

TABLE 8-1: LIMITS.H HEADER FILE

Macro Name Value Description

CHAR_BIT 8 The size, in bits, of the smallest non-bit field
object.

SCHAR_MIN -128 The minimum value possible for an object of type
signed char.

SCHAR_MAX 127 The maximum value possible for an object of type
signed char.

UCHAR_MAX 255 The maximum value possible for an object of type
unsigned char.

CHAR_MIN -128 (or 0, see
Section 8.3.1 “Signed
and Unsigned
Character Types”)

The minimum value possible for an object of type
char.

CHAR_MAX 127 (or 255, see
Section 8.3.1 “Signed
and Unsigned
Character Types”)

The maximum value possible for an object of type
char.

MB_LEN_MA
X

16 The maximum length of multibyte character in any
locale.

SHRT_MIN -32768 The minimum value possible for an object of type
short int.

SHRT_MAX 32767 The maximum value possible for an object of type
short int.

USHRT_MAX 65535 The maximum value possible for an object of type
unsigned short int.

INT_MIN -231 The minimum value possible for an object of type
int.

INT_MAX 231-1 The maximum value possible for an object of type
int.

UINT_MAX 232-1 The maximum value possible for an object of type
unsigned int.

LONG_MIN -231 The minimum value possible for an object of type
long.

LONG_MAX 231-1 The maximum value possible for an object of type
long.

ULONG_MAX 232-1 The maximum value possible for an object of type
unsigned long.

LLONG_MIN -263 The minimum value possible for an object of type
long long.

LLONG_MAX 263-1 The maximum value possible for an object of type
long long.
DS50002895A-page 114  2019 Microchip Technology Inc.

Supported Data Types and Variables
8.4 FLOATING-POINT DATA TYPES

For the Cortex-M based devices, such as the MEC17, CEC17, and SAM families, XC32
defaults to using the hardware Floating-Point Unit (FPU) where available. For cases
where want a specific FPU calling convention, you can specify the following
command-line options to the xc32-gcc compilation driver at both compile and link time:

• -mfloat-abi=soft -- Specifying 'soft' causes XC32 to generate output containing
library calls for floating-point operations. This setting is the default for devices that
do not feature a hardware FPU.

• -mfloat-abi=softfp -- Specifying 'softfp' allows the generation of code using hard-
ware floating-point instructions, but still uses the soft-float calling conventions

• -mfloat-abi=hard -- Specifying 'hard' allows generation of floating-point instruc-
tions and uses FPU-specific calling conventions. This setting is the default for
devices that feature a hardware FPU.

The compiler uses the IEEE-754 floating-point format. Detail regarding the
implementation limits is available to a translation unit in float.h.

Variables may be declared using the float, double and long double keywords,
respectively, to hold values of these types. Floating-point types are always signed and
the unsigned keyword is illegal when specifying a floating-point type. All floating-point
values are represented in little endian format with the Least Significant Byte (LSB) at
the lower address.

This format is described in Table 8-2, where:

• Sign is the sign bit which indicates if the number is positive or negative

• For 32-bit floating-point values, the exponent is 8 bits which is stored as excess
127 (i.e., an exponent of 0 is stored as 127).

• For 64-bit floating-point values, the exponent is 11 bits which is stored as excess
1023 (i.e., an exponent of 0 is stored as 1023).

• Mantissa is the mantissa, which is to the right of the radix point. There is an
implied bit to the left of the radix point which is always 1 except for a zero value,
where the implied bit is zero. A zero value is indicated by a zero exponent.

The value of this number for 32-bit floating-point values is:

(-1)sign x 2(exponent-127) x 1. mantissa

and for 64-bit values

(-1)sign x 2(exponent-1023) x 1. mantissa.

ULLONG_MA
X

264-1 The maximum value possible for an object of type
unsigned long long.

TABLE 8-1: LIMITS.H HEADER FILE (CONTINUED)

Macro Name Value Description

Type Bits

float 32

double 64

long double 64
 2019 Microchip Technology Inc. DS50002895A-page 115

Compiler User’s Guide for PIC32C/SAM MCUs
Here is an example of the IEEE 754 32-bit format shown in Table 8-2. Note that the
Most Significant bit of the mantissa column (i.e., the bit to the left of the radix point) is
the implied bit, which is assumed to be 1 unless the exponent is zero (in which case
the float is zero).

The example in Table 8-2 can be calculated manually as follows.

The sign bit is zero; the biased exponent is 251, so the exponent is 251-127=124. Take
the binary number to the right of the decimal point in the mantissa. Convert this to dec-
imal and divide it by 223 where 23 is the number of bits taken up by the mantissa, to
give 0.302447676659. Add 1 to this fraction. The floating-point number is then given
by:

-1021241.302447676659

which becomes:

12.126764793256e+371.302447676659

which is approximately equal to:

2.77000e+37

Binary floating-point values are sometimes misunderstood. It is important to remember
that not every floating-point value can be represented by a finite-sized floating-point
number. The size of the exponent in the number dictates the range of values that the
number can hold, and the size of the mantissa relates to the spacing of each value that
can be represented exactly. Thus the 64-bit floating-point format allows for values with
a larger range of values and that can be more accurately represented.

For example, if you are using a 32-bit wide floating-point type, it can exactly store the
value 95000.0. However, the next highest number it can represent is (approximately)
95000.00781 and it is impossible to represent any value in between these two in such
a type as it will be rounded. This implies that C/C++ code which compares floating-point
type may not behave as expected. For example:

volatile float myFloat;
myFloat = 95000.006;
if(myFloat == 95000.007) // value will be rounded

LATA++; // this line will be executed!

in which the result of the if() expression will be true, even though it appears the two
values being compared are different.

The characteristics of the floating-point formats are summarized in Table 8-3. The sym-
bols in this table are preprocessor macros which are available after including
<float.h> in your source code. Two sets of macros are available for float and
double types, where XXX represents FLT and DBL, respectively. For example, FLT_MAX
represents the maximum floating-point value of the float type. DBL_MAX represents the
same values for the double type. As the size and format of floating-point data types are

TABLE 8-2: FLOATING-POINT FORMAT EXAMPLE IEEE 754

Format Number
 Biased

Exponent
 1.mantissa Decimal

32-bit 7DA6B69Bh

11111011b 1.01001101011011010011011b 2.77000e+37

(251) (1.302447676659) —
DS50002895A-page 116  2019 Microchip Technology Inc.

Supported Data Types and Variables
not fully specified by the ANSI Standard, these macros allow for more portable code
which can check the limits of the range of values held by the type on this
implementation.

8.5 STRUCTURES AND UNIONS

MPLAB XC32 C/C++ Compiler supports struct and union types. Structures and
unions only differ in the memory offset applied to each member.

These types will be at least 1 byte wide. Bit fields are fully supported.

Structures and unions may be passed freely as function arguments and function return
values. Pointers to structures and unions are fully supported.

8.5.1 Structure and Union Qualifiers

The MPLAB XC32 C/C++ Compiler supports the use of type qualifiers on structures.
When a qualifier is applied to a structure, all of its members will inherit this qualification.
In the following example the structure is qualified const.

const struct {
 int number;
 int *ptr;
} record = { 0x55, &i };

In this case, the entire structure will be placed into the program memory and each
member will be read-only. Remember that all members are usually initialized if a
structure is const as they cannot be initialized at runtime.

If the members of the structure were individually qualified const, but the structure was
not, then the structure would be positioned into RAM, but each member would be
read-only. Compare the following structure with the above.

struct {
 const int number;
 int * const ptr;
} record = { 0x55, &i};

TABLE 8-3: RANGES OF FLOATING-POINT TYPE VALUES

Symbol Meaning 32-bit Value 64-bit Value

XXX_RADIX Radix of exponent representation 2 2

XXX_ROUNDS Rounding mode for addition 1

XXX_MIN_EXP Min. n such that FLT_RADIXn-1 is
a normalized float value

-125 -1021

XXX_MIN_10_-
EXP

Min. n such that 10n is a
normalized float value

-37 -307

XXX_MAX_EXP Max. n such that FLT_RADIXn-1
is a normalized float value

128 1024

XXX_MAX_10_-
EXP

Max. n such that 10n is a
normalized float value

38 308

XXX_MANT_DIG Number of FLT_RADIX mantissa
digits

24 53

XXX_EPSILON The smallest number which
added to 1.0 does not yield 1.0

1.1920929e-07 2.22044604925
03131e-16
 2019 Microchip Technology Inc. DS50002895A-page 117

Compiler User’s Guide for PIC32C/SAM MCUs
8.5.2 Bit Fields in Structures

MPLAB XC32 C/C++ Compiler fully supports bit fields in structures.

Bit fields are always allocated within 8-bit storage units, even though it is usual to use
the type unsigned int in the definition. Storage units are aligned on a 32-bit boundary,
although this can be changed using the packed attribute.

The first bit defined will be the Least Significant bit of the word in which it will be stored.
When a bit field is declared, it is allocated within the current 8-bit unit if it will fit; other-
wise, a new byte is allocated within the structure. Bit fields can never cross the
boundary between 8-bit allocation units. For example, the declaration:

struct {
 unsigned lo : 1;
 unsigned dummy : 6;
 unsigned hi : 1;
} foo;

will produce a structure occupying 1 byte.

Unnamed bit fields may be declared to pad out unused space between active bits in
control registers. For example, if dummy is never referenced, the structure above could
have been declared as:

struct {
 unsigned lo : 1;
 unsigned : 6;
 unsigned hi : 1;
} foo;

A structure with bit fields may be initialized by supplying a comma-separated list of
initial values for each field. For example:

struct {
 unsigned lo : 1;
 unsigned mid : 6;
 unsigned hi : 1;
} foo = {1, 8, 0};

Structures with unnamed bit fields may be initialized. No initial value should be supplied
for the unnamed members, for example:

struct {
 unsigned lo : 1;
 unsigned : 6;
 unsigned hi : 1;
} foo = {1, 0};

will initialize the members lo and hi correctly.

The MPLAB XC compiler supports anonymous unions. These are unions with no iden-
tifier and whose members can be accessed without referencing the enclosing union.
These unions can be used when placing inside structures. For example:

struct {
union {
int x;
double y;

};
} aaa;

int main(void)
{

aaa.x = 99;
// ...}
DS50002895A-page 118  2019 Microchip Technology Inc.

Supported Data Types and Variables
In the previous example, the union is not named and its members are accessed as if
they are part of the structure. Anonymous unions are not part of any C Standard and
so their use limits the portability of any code.

8.6 POINTER TYPES

There are two basic pointer types supported by the MPLAB XC32 C/C++ Compiler:
data pointers and function pointers. Data pointers hold the addresses of variables
which can be indirectly read and possible indirectly written, by the program. Function
pointers hold the address of an executable function which can be called indirectly via
the pointer.

8.6.1 Combining Type Qualifiers and Pointers

It is helpful to first review the ANSI C/C++ standard conventions for definitions of
pointer types.

Pointers can be qualified like any other C/C++ object, but care must be taken when
doing so as there are two quantities associated with pointers. The first is the actual
pointer itself, which is treated like any ordinary C/C++ variable and has memory
reserved for it. The second is the target, or targets, that the pointer references, or to
which the pointer points. The general form of a pointer definition looks like the following:

target_type_&_qualifiers * pointer’s_qualifiers pointer’s_name;
Any qualifiers to the right of the * (i.e., next to the pointer’s name) relate to the pointer
variable itself. The type and any qualifiers to the left of the * relate to the pointer’s tar-
gets. This makes sense since it is also the * operator that dereferences a pointer, which
allows you to get from the pointer variable to its current target.

Here are three examples of pointer definitions using the volatile qualifier. The fields
in the definitions have been highlighted with spacing:

volatile int * vip ;
int * volatile ivp ;
volatile int * volatile vivp ;

The first example is a pointer called vip. It contains the address of int objects that are
qualified volatile. The pointer itself — the variable that holds the address — is not
volatile; however, the objects that are accessed when the pointer is dereferenced
are treated as being volatile. In other words, the target objects accessible via the
pointer may be externally modified.

The second example is a pointer called ivp which also contains the address of int
objects. In this example, the pointer itself is volatile, that is, the address the pointer
contains may be externally modified; however, the objects that can be accessed when
dereferencing the pointer are not volatile.

The last example is of a pointer called vivp which is itself qualified volatile, and
which also holds the address of volatile objects.

Bear in mind that one pointer can be assigned the addresses of many objects; for
example, a pointer that is a parameter to a function is assigned a new object address
every time the function is called. The definition of the pointer must be valid for every
target address assigned.

Note: Care must be taken when describing pointers. Is a “const pointer” a pointer
that points to const objects, or a pointer that is const itself? You can talk
about “pointers to const” and “const pointers” to help clarify the definition,
but such terms may not be universally understood.
 2019 Microchip Technology Inc. DS50002895A-page 119

Compiler User’s Guide for PIC32C/SAM MCUs
8.6.2 Data Pointers

Pointers in the compiler are all 32 bits in size. These can hold an address which can
reach all memory locations.

8.6.3 Function Pointers

The MPLAB XC compiler fully supports pointers to functions, which allows functions to
be called indirectly. These are often used to call one of several function addresses
stored in a user-defined C/C++ array, which acts like a lookup table.

Function pointers are always 32 bits in size and hold the address of the function to be
called.

Any attempt to call a function with a function pointer containing NULL will result in an
ifetch Bus Error.

8.6.4 Special Pointer Targets

Pointers and integers are not interchangeable. Assigning an integer constant to a
pointer will generate a warning to this effect. For example:

const char * cp = 0x123; // the compiler will flag this as bad code

There is no information in the integer constant, 0x123, relating to the type or size of the
destination. This code is also not portable and there is a very good chance of code fail-
ure if pointers are assigned integer addresses and dereferenced, particularly for PIC®
devices that have more than one memory space.

Always take the address of a C/C++ object when assigning an address to a pointer. If
there is no C/C++ object defined at the destination address, then define or declare an
object at this address which can be used for this purpose. Make sure the size of the
object matches the range of the memory locations that can be accessed.

For example, a checksum for 1000 memory locations starting at address 0xA0001000
is to be generated. A pointer is used to read this data. You may be tempted to write
code such as:

int * cp;
cp = 0xA0001000; // what resides at 0xA0001000???

and increment the pointer over the data. A much better solution is this:

int * cp;
int __attribute__((address(0xA0001000))) inputData [1000];
cp = &inputData;
// cp is incremented over inputData and used to read values there

In this case, the compiler can determine the size of the target and the memory space.
The array size and type indicates the size of the pointer target.

Take care when comparing (subtracting) pointers. For example:

if(cp1 == cp2)
 ; take appropriate action

The ANSI C standard only allows pointer comparisons when the two pointer targets are
the same object. The address may extend to one element past the end of an array.

Comparisons of pointers to integer constants are even more risky, for example:

if(cp1 == 0xA0000100)
 ; take appropriate action

A NULL pointer is the one instance where a constant value can be assigned to a pointer
and this is handled correctly by the compiler. A NULL pointer is numerically equal to 0
(zero), but this is a special case imposed by the ANSI C standard. Comparisons with
the macro NULL are also allowed.
DS50002895A-page 120  2019 Microchip Technology Inc.

Supported Data Types and Variables
8.7 COMPLEX DATA TYPES

Complex data types are currently not implemented in MPLAB XC32 C/C++ Compiler.

8.8 CONSTANT TYPES AND FORMATS

A constant is used to represent a numerical value in the source code, for example 123
is a constant. Like any value, a constant must have a C/C++ type. In addition to a con-
stant’s type, the actual value can be specified in one of several formats. The format of
integral constants specifies their radix. MPLAB XC32 C/C++ supports the ANSI stan-
dard radix specifiers as well as ones which enables binary constants to be specified in
C code.

The formats used to specify the radices are given in Table 8-4. The letters used to spec-
ify binary or hexadecimal radices are case insensitive, as are the letters used to specify
the hexadecimal digits.

Any integral constant will have a type of int, long int or long long int, so that the
type can hold the value without overflow. Constants specified in octal or hexadecimal
may also be assigned a type of unsigned int, unsigned long int or unsigned long
long int if the signed counterparts are too small to hold the value.

The default types of constants may be changed by the addition of a suffix after the dig-
its, e.g., 23U, where U is the suffix. Table 8-5 shows the possible combination of suffixes
and the types that are considered when assigning a type. For example, if the suffix l is
specified and the value is a decimal constant, the compiler will assign the type long
int, if that type will hold the constant; otherwise, it will be assigned long long int. If
the constant was specified as an octal or hexadecimal constant, then unsigned types
are also considered.

TABLE 8-4: RADIX FORMATS

Radix Format Example

binary 0b number or 0B number 0b10011010

octal 0 number 0763

decimal number 129

hexadecimal 0x number or 0X number 0x2F

TABLE 8-5: SUFFIXES AND ASSIGNED TYPES

Suffix Decimal Octal or Hexadecimal

u or U unsigned int
unsigned long int
unsigned long long int

unsigned int
unsigned long int
unsigned long long int

l or L long int
long long int

long int
unsigned long int
long long int
unsigned long long int

u or U, and l or L unsigned long int
unsigned long long int

unsigned long int
unsigned long long int

ll or LL long long int long long int
unsigned long long int

u or U, and ll or LL unsigned long long int unsigned long long int
 2019 Microchip Technology Inc. DS50002895A-page 121

Compiler User’s Guide for PIC32C/SAM MCUs
Here is an example of code that may fail because the default type assigned to a
constant is not appropriate:

unsigned long int result;
unsigned char shifter;

int main(void)
{

shifter = 40;
result = 1 << shifter;
// code that uses result

}

The constant 1 will be assigned an int type hence the result of the shift operation will
be an int and the upper bits of the long variable, result, can never be set, regardless
of how much the constant is shifted. In this case, the value 1 shifted left 40 bits will yield
the result 0, not 0x10000000000.

The following uses a suffix to change the type of the constant, hence ensure the shift
result has an unsigned long type.

result = 1UL << shifter;

Floating-point constants have double type unless suffixed by f or F, in which case it is
a float constant. The suffixes l or L specify a long double type.

Character constants are enclosed by single quote characters, ’, for example ’a’. A
character constant has int type, although this may be optimized to a char type later in
the compilation.

Multi-byte character constants are accepted by the compiler but are not supported by
the standard libraries.

String constants, or string literals, are enclosed by double quote characters " ", for
example "hello world". The type of string constants is const char * and the char-
acter that make up the string are stored in the program memory, as are all objects
qualified const.

To comply with the ANSI C standard, the compiler does not support the extended char-
acter set in characters or character arrays. Instead, they need to be escaped using the
backslash character, as in the following example:

const char name[] = "Bj\370rk";
printf("%s's Resum\351", name); \\ prints "Bjørk's Resumé"

Assigning a string literal to a pointer to a non-const char will generate a warning from
the compiler. This code is legal, but the behavior if the pointer attempts to write to the
string will fail. For example:

char * cp= "one"; // "one" in ROM, produces warning
const char * ccp= "two"; // "two" in ROM, correct

Defining and initializing a non-const array (i.e., not a pointer definition) with a string,

char ca[]= "two"; // "two" different to the above

is a special case and produces an array in data space which is initialized at start-up
with the string "two" (copied from program space), whereas a string constant used in
other contexts represents an unnamed const -qualified array, accessed directly in
program space.
DS50002895A-page 122  2019 Microchip Technology Inc.

Supported Data Types and Variables
The MPLAB XC32 C/C++ Compiler will use the same storage location and label for
strings that have identical character sequences. For example, in the code snippet

if(strncmp(scp, "hello world", 6) == 0)
fred = 0;

if(strcmp(scp, "hello world") == 0)
fred++;

the two identical character string greetings will share the same memory locations. The
link-time optimization must be enabled to allow this optimization when the strings may
be located in different modules.

Two adjacent string constants (i.e., two strings separated only by white space) are
concatenated by the compiler. Thus:

const char * cp = "hello" "world";

will assign the pointer with the address of the string "hello world".

8.9 STANDARD TYPE QUALIFIERS

Type qualifiers provide additional information regarding how an object may be used.
The MPLAB XC32 C/C++ Compiler supports both ANSI C qualifiers and additional spe-
cial qualifiers which are useful for embedded applications and which take advantage of
the PIC MCU architecture.

8.9.1 Const Type Qualifier

The MPLAB XC32 C/C++ Compiler supports the use of the ANSI type qualifiers const
and volatile.

The const type qualifier is used to tell the compiler that an object is read only and will
not be modified. If any attempt is made to modify an object declared const, the com-
piler will issue a warning or error.

Usually a const object must be initialized when it is declared, as it cannot be assigned
a value at any point at runtime. For example:

const int version = 3;

will define version as being an int variable that will be placed in the program memory,
will always contain the value 3, and which can never be modified by the program.

Objects qualified const are placed into the program memory unless the
-mno-embedded-data option is used.

8.9.2 Volatile Type Qualifier

The volatile type qualifier is used to tell the compiler that an object cannot be guar-
anteed to retain its value between successive accesses. This prevents the optimizer
from eliminating apparently redundant references to objects declared volatile
because it may alter the behavior of the program to do so.

Any SFR which can be modified by hardware or which drives hardware is qualified as
volatile, and any variables which may be modified by interrupt routines should use
this qualifier as well. For example:

extern volatile unsigned int WDTCON __attribute__((section("sfrs")));

The volatile qualifier does not guarantee that any access will be atomic, but the com-
piler will try to implement this.

The code produced by the compiler to access volatile objects may be different than
that to access ordinary variables, and typically the code will be longer and slower for
volatile objects, so only use this qualifier if it is necessary. However failure to use this
qualifier when it is required may lead to code failure.
 2019 Microchip Technology Inc. DS50002895A-page 123

Compiler User’s Guide for PIC32C/SAM MCUs
Another use of the volatile keyword is to prevent variables from being removed if
they are not used in the C/C++ source. If a non-volatile variable is never used, or
used in a way that has no effect on the program’s function, then it may be removed
before code is generated by the compiler.

A C/C++ statement that consists only of a volatile variable’s name will produce code
that reads the variable’s memory location and discards the result. For example the
entire statement:

PORTB;

will produce assembly code that reads PORTB, but does nothing with this value. This is
useful for some peripheral registers that require reading to reset the state of interrupt
flags. Normally such a statement is not encoded as it has no effect.

8.10 COMPILER-SPECIFIC QUALIFIERS

There are currently no non-standard qualifiers implemented in MPLAB XC32 C/C++
Compiler. Attributes are used to control variables and functions.

8.11 VARIABLE ATTRIBUTES

The compiler keyword __attribute__ allows you to specify special attributes of vari-
ables or structure fields. This keyword is followed by an attribute specification inside
double parentheses.

You may also specify attributes with __ (double underscore) preceding and following
each keyword (e.g., __aligned__ instead of aligned). This allows you to use them in
header files without being concerned about a possible macro of the same name.

To specify multiple attributes, separate them by commas within the double
parentheses, for example:

__attribute__ ((aligned (16), packed)).

address (addr)

Specify an absolute virtual address for the variable. This attribute can be used in
conjunction with a section attribute.

This attribute can be used to start a group of variables at a specific address:

 int foo __attribute__((section("mysection"),address(0xA0001000)));
 int bar __attribute__((section("mysection")));
 int baz __attribute__((section("mysection")));

Keep in mind that the compiler performs no error checking on the specified address.
The section will be located at the specified address regardless of the memory-region
ranges listed in the linker script or the actual ranges on the target device. This
application code is responsible for ensuring that the address is valid for the target
device and application.

In addition, to make effective use of absolute sections and the new best-fit allocator,
standard program-memory and data-memory sections should not be mapped in the
linker script. The built-in linker script does not map most standard sections such as the
.text, .data, .bss, or .ramfunc section. By not mapping these sections in the linker
script, we allow these sections to be allocated using the best-fit allocator rather than

Note: It is important to use variable attributes consistently throughout a project.
For example, if a variable is defined in file A with the aligned attribute, and
declared extern in file B without aligned, then a link error may result.
DS50002895A-page 124  2019 Microchip Technology Inc.

Supported Data Types and Variables
the sequential allocator. Sections that are unmapped in the linker script can flow around
absolute sections whereas sections that are linker-script mapped are grouped together
and allocated sequentially, potentially causing conflicts with absolute sections.

aligned (n)

The attributed variable will be aligned on the next n byte boundary.

The aligned attribute can also be used on a structure member. Such a member will be
aligned to the indicated boundary within the structure.

If the alignment value n is omitted, the alignment of the variable is set 8 (the largest
alignment value for a basic data type).

Note that the aligned attribute is used to increase the alignment of a variable, not
reduce it. To decrease the alignment value of a variable, use the packed attribute.

cleanup (function)

Indicate a function to call when the attributed automatic function scope variable goes
out of scope.

The indicated function should take a single parameter, a pointer to a type compatible
with the attributed variable, and have void return type.

packed

The attributed variable or structure member will have the smallest possible alignment.
That is, no alignment padding storage will be allocated for the declaration. Used in
combination with the aligned attribute, packed can be used to set an arbitrary
alignment restriction greater or lesser than the default alignment for the type of the
variable or structure member.

section ("section-name")

Place the variable into the named section.

For example,

unsigned int dan __attribute__ ((section (".quixote")))

Variable dan will be placed in section .quixote.

The -fdata-sections command line option has no effect on variables defined with a
section attribute unless unique_section is also specified.

Note: In almost all cases, you will want to combine the address attribute with the
space attribute to indicate code or data with space(prog) or space(data),
respectively. See the description for the attribute space(mem-
ory-space).
 2019 Microchip Technology Inc. DS50002895A-page 125

Compiler User’s Guide for PIC32C/SAM MCUs
space(memory-space)

The space attribute can be used to direct the compiler to allocate a variable in a specific
memory space. Valid memory spaces are prog for program memory, data for data
memory, and serial_mem for serial memory such as SPI Flash. The data space is the
default space for non-const variables.

The prog, data, and serial_mem spaces normally correspond to the kseg0_prog_mem,
ksegN_data_mem, and serial_mem memory regions, respectively, as specified in the
default device-specific linker scripts.

This attribute also controls how initialized data is handled. The linker generates an
entry in the data-initialization template for the default space(data). But, it does not
generate an entry for space(prog) or space(serial_mem), since the variable is
located in non-volatile memory. Typically, this means that space(data) applies to vari-
ables that will be initialized at runtime startup; while space(prog) and space(seri-
al_mem) apply to variables that will be programmed by an in-circuit programmer or a
bootloader.

For example,

const unsigned int __attribute__((space(prog))) jack = 10;
const unsigned int __attribute__((space(serial_mem))) zori = 1;
signed int __attribute__((space(data))) oz = 5;

unique_section

Place the variable in a uniquely named section, just as if -fdata-sections had been
specified. If the variable also has a section attribute, use that section name as the
prefix for generating the unique section name.

For example,

int tin __attribute__ ((section (".ofcatfood"), unique_section)

Variable tin will be placed in section .ofcatfood.

unused

Indicate to the compiler that the variable may not be used. The compiler will not issue
a warning for this variable if it is not used.

weak

The weak attribute causes the declaration to be emitted as a weak symbol. A weak
symbol indicates that if a global version of the same symbol is available, that version
should be used instead.

When weak is applied to a reference to an external symbol, the symbol is not required
for linking. For example:

extern int __attribute__((weak)) s;
int foo() {
 if (&s) return s;
 return 0; /* possibly some other value */
}

In the above program, if s is not defined by some other module, the program will still
link but s will not be given an address. The conditional verifies that s has been defined
(and returns its value if it has). Otherwise '0' is returned. There are many uses for this
feature, mostly to provide generic code that can link with an optional library.
DS50002895A-page 126  2019 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
USER’S GUIDE FOR

PIC32C/SAM MCUs

Chapter 9. Memory Allocation and Access
There are two broad groups of RAM-based variables: auto/parameter variables, which
are allocated to some form of stack and global/static variables, which are positioned
freely throughout the data memory space. The memory allocation of these two groups
is discussed separately in the following sections.

9.1 ADDRESS SPACES

Unlike the 8- and 16-bit PIC devices, the PIC32 has a unified programming model.
PIC32 devices provide a single 32-bit wide address space for all code, data,
peripherals and Configuration bits.

Memory regions within this single address space are designated for different purposes;
for example, as memory for instruction code or memory for data. Internally the device
uses separate buses1 to access the instructions and data in these regions, thus allow-
ing for parallel access. The terms program memory and data memory, which are used
on the 8- and 16-bit PIC devices, are still relevant on PIC32 devices, but the smaller
parts implement these in different address spaces.

All addresses used by the CPU within the device are virtual addresses. These are
mapped to physical addresses by the system control processor.

9.2 VARIABLES IN DATA MEMORY

Most variables are ultimately positioned into the data memory. The exceptions are
non-auto variables which are qualified as const, which are placed in the program
memory space, see Section 8.9.1 “Const Type Qualifier”.

Due to the fundamentally different way in which auto variables and non-auto variables
are allocated memory, they are discussed separately. To use the C/C++ language ter-
minology, these two groups of variables are those with automatic storage duration and
those with permanent storage duration, respectively.

1.The device can be considered a Harvard architecture in terms of its internal bus arrangement.

Note: The terms “local” and “global” are commonly used to describe variables, but
are not ones defined by the language standard. The term “local variable” is
often taken to mean a variable which has scope inside a function, and
“global variable” is one which has scope throughout the entire program.
However, the C/C++ language has three common scopes: block, file (i.e.,
internal linkage) and program (i.e., external linkage), so using only two
terms to describe these can be confusing. For example, a static variable
defined outside a function has scope only in that file, so it is not globally
accessible, but it can be accessed by more than one function inside that
file, so it is not local to any one function either. In terms of memory alloca-
tion, variables are allocated space based on whether it is an auto or not,
hence the grouping in the following sections.
 2019 Microchip Technology Inc. DS50002895A-page 127

Compiler User’s Guide for PIC32C/SAM MCUs
9.2.1 Non-auto Variable Allocation

Non-auto variables (those with permanent storage duration) are located by the com-
piler into any of the available data banks. This is done in a two-stage process: placing
each variable into an appropriate section and later linking that section into data
memory.

The compiler considers three categories of non-auto variable which all relate to the
value the variable should contain by the time the program begins. The following
sections are used for the categories described.

• .bss These sections (also .sbss) contain any uninitialized variables, which are
not assigned a value when they are defined, or variables which should be cleared
by the runtime start-up code.

• .data These sections (also .sdata) contain the RAM image of any initialized
variables, which are assigned a non-zero initial value when they are defined and
which must have a value copied to them by the runtime start-up code.

Note that the data section used to hold initialized variables is the section that holds the
RAM variables themselves. There is a corresponding section (called .dinit) that is
placed into program memory (so it is non-volatile) and which is used to hold the initial
values that are copied to the RAM variables by the runtime start-up code.

9.2.2 Static Variables

All static variables have permanent storage duration, even those defined inside a
function which are “local static” variables. Local static variables only have scope in
the function or block in which they are defined, but unlike auto variables, their memory
is reserved for the entire duration of the program. Thus, they are allocated memory like
other non-auto variables. Static variables may be accessed by other functions via
pointers, since they have permanent duration.

Variables which are static are guaranteed to retain their value between calls to a func-
tion, unless explicitly modified via a pointer.

Variables which are static and initialized have their initial value assigned only once
during the program's execution. Thus, they may be preferable over initialized auto
objects which are assigned a value every time the block they are defined in begins exe-
cution. Any initialized static variables are initialized in the same way as other non-auto
initialized objects by the runtime start-up code (see Section 5.4.2 “Peripheral Library
Functions”). Static variables are located in the same sections as their non-static
counterparts.

9.2.3 Non-auto Variable Size Limits

Arrays of any type (including arrays of aggregate types) are fully supported by the com-
piler. So too are the structure and union aggregate types (see Section 8.5 “Structures
and Unions”). There are no theoretical limits on how large these objects can be made.
DS50002895A-page 128  2019 Microchip Technology Inc.

Memory Allocation and Access
9.2.4 Changing the Default Non-auto Variable Allocation

There are several ways in which non-auto variables can be located in locations other
than the default.

Variables can be placed in other device memory spaces by the use of qualifiers. For
example if you wish to place variables in the program memory space, then the const
specifier should be used (see Section 8.9.1 “Const Type Qualifier”).

If you wish to prevent all variables from using one or more data memory locations so
that these locations can be used for some other purpose, it is best to define a variable
(or array) using the address attribute so that it consumes the memory space (see
Section 8.11 “Variable Attributes”).

If only a few non-auto variables are to be located at specific addresses in data space
memory, then the variables can be located using the address attribute. This attribute
is described in Section 8.11 “Variable Attributes”.

9.3 AUTO VARIABLE ALLOCATION AND ACCESS

This section discusses allocation of auto variables (those with automatic storage dura-
tion). This also includes function parameter variables, which behave like auto (short for
automatic) variables, as well as temporary variables defined by the compiler.

The auto variables are the default type of local variable. Unless explicitly declared to
be static, a local variable will be made auto. The auto keyword may be used if
desired.

The auto variables, as their name suggests, automatically come into existence when
a function is executed, then disappear once the function returns. Since they are not in
existence for the entire duration of the program, there is the possibility to reclaim mem-
ory they use when the variables are not in existence and allocate it to other variables
in the program.

On PIC32C devices, the registers r4-r8, r10, and r11 are used to hold the values of a
function's automatic variables. A function must preserve the contents of the registers
r4-r8, r10, r11, and r13/SP.

Often times, the software stack of the PIC32C is used to store auto variables. The val-
ues from registers are pushed onto the stack. Functions are reentrant and each
instance of the function has its own area of memory on the stack for its auto and param-
eter variables.

On PIC32C devices, the Stack Pointer (SP) is register r13. The core uses a full
descending stack. A full descending stack means that the stack pointer holds the
address of the last stacked item in memory and the stack grows to lower addresses.
When the core pushes a new item onto the stack, it decrements the stack pointer and
then writes to the item to the new memory location.

The standard qualifiers const and volatile may both be used with auto variables and
these do not affect how they are positioned in memory. This implies that a local
const-qualified object is still an auto object and, as such, will be allocated memory on
the stack in the data memory, not in the program memory like with non-auto const
objects.
 2019 Microchip Technology Inc. DS50002895A-page 129

Compiler User’s Guide for PIC32C/SAM MCUs
FIGURE 9-1: STACK

9.3.1 Local Variable Size Limits

There is no theoretical maximum size for auto variables.

9.4 VARIABLES IN PROGRAM MEMORY

The only variables that are placed into program memory are those that are not auto
and which have been qualified const. Any auto variables qualified const are placed
on the stack along with other auto variables.

Any const-qualified (auto or non-auto) variable will always be read-only and any
attempt to write to these in your source code will result in an error being issued by the
compiler.

A const object is usually defined with initial values, as the program cannot write to
these objects at runtime. However, this is not a requirement. An uninitialized const
object is allocated space in the bss section, along with other uninitialized RAM vari-
ables, but is still treated as read-only by the compiler.

const char IOtype = 'A'; // initialized const object
const char buffer[10]; // I just reserve memory in RAM

9.4.1 Size Limitations of const Variables

There is no theoretical maximum size for const variables.
DS50002895A-page 130  2019 Microchip Technology Inc.

Memory Allocation and Access
9.4.2 Changing the Default Allocation

If you intend to prevent all variables from using one or more program memory locations
so that you can use those locations for some other purpose, you may choose to adjust
the memory regions in a custom linker script.

If only a few non-auto const variables are to be located at specific addresses in pro-
gram space memory, then the variables should use the address attribute to locate them
at the desired location. This attribute is described in Section 8.11 “Variable Attributes”.

9.5 VARIABLES IN REGISTERS

Allocating variables to registers, rather than to a memory location, can make code more
efficient. With MPLAB XC32 C/C++ Compiler, variables may be allocated to registers
as part of code optimizations. For optimization levels 1 and higher, a value assigned to
a variable may be stored in a register. During this time, the memory location associated
with the variable may not hold the live value.

The register keyword may be used to indicate your preference for the variable to be
allocated a register, but this is just a recommendation and may not be honored. The
specific register may be indicated as well, but this is not recommended as your register
choice may conflict with the needs of the compiler. Using a specific register in your code
may cause the compiler to generate less efficient code.

EXAMPLE 9-1: VARIABLES IN REGISTERS

volatile unsigned int special;
unsigned int example (void)
{
register unsigned int my_reg __asm__("v1");
my_reg += special;
return my_reg;
}

As indicated in Section 12.2 “Register Conventions”, parameters may be passed to a
function via a register.

The source code for this is found in the pic32c-libs.zip file located at:

<install-directory>/pic32-libs/

Once the file is unzipped, the source code can be found at:

pic32m-libs/libpic32/stubs/pic32_init_tlb_ebi.S.
 2019 Microchip Technology Inc. DS50002895A-page 131

Compiler User’s Guide for PIC32C/SAM MCUs
9.6 DYNAMIC MEMORY ALLOCATION

The run-time heap is an uninitialized area of data memory that is used for dynamic
memory allocation using the standard C library dynamic memory management
functions, calloc, malloc and realloc along with the C++ new operator. Most C++
applications will require a heap.

If you do not use any of these functions, then you do not need to allocate a heap. By
default, a heap is not created.

In MPLAB X, you can specify a heap size in the project properties for the xc32-ld linker.
MPLAB X will automatically pass the option to the linker when building your project.

If you do want to use dynamic memory allocation, either directly, by calling one of the
memory allocation functions, or indirectly, by using a standard C library function that
uses one of these functions, then a heap must be created. A heap is created by
specifying its size on the linker command line using the --defsym,min_heap_size
linker command line option. An example of allocating a heap of 512 bytes using the
command line is:

xc32-gcc foo.c -Wl,--defsym,min_heap_size=512

An example of allocating a heap of 0xF000 bytes using the xc32-g++ driver is:

xc32-g++ vector.cpp -Wl,--defsym,min_heap_size=0xF000

The linker allocates the heap immediately before the stack.
DS50002895A-page 132  2019 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
USER’S GUIDE FOR

PIC32C/SAM MCUs

Chapter 10. Operators and Statements
The MPLAB XC32 C/C++ Compiler supports all ANSI operators. The exact results of
some of these are implementation-defined. Implementation-defined behavior is fully
documented in Appendix B. “Implementation-Defined Behavior”. The following
sections illustrate code operations that are often misunderstood, as well as additional
operations that the compiler is capable of performing.

10.1 INTEGRAL PROMOTION

When there is more than one operand to an operator, they typically must be of exactly
the same type. The compiler will automatically convert the operands, if necessary, so
they do have the same type. The conversion is to a “larger” type so there is no loss of
information; however, the change in type can cause different code behavior to what is
sometimes expected. These form the standard type conversions.

Prior to these type conversions, some operands are unconditionally converted to a
larger type, even if both operands to an operator have the same type. This conversion
is called integral promotion and is part of Standard C behavior. The MPLAB XC32
C/C++ Compiler performs these integral promotions where required, and there are no
options that can control or disable this operation. If you are not aware that the type has
changed, the results of some expressions are not what would normally be expected.

Integral promotion is the implicit conversion of enumerated types, signed or unsigned
varieties of char, short int or bit field types to either signed int or unsigned int.
If the result of the conversion can be represented by an signed int, then that is the
destination type, otherwise the conversion is to unsigned int.

Consider the following example:

unsigned char count=0, a=0, b=50;
if (a - b < 10)
 count++;

The unsigned char result of a - b is 206 (which is not less than 10), but both a and
b are converted to signed int via integral promotion before the subtraction takes
place. The result of the subtraction with these data types is -50 (which is less than 10)
and hence the body of the if() statement is executed.

If the result of the subtraction is to be an unsigned quantity, then apply a cast. For
example:

if((unsigned int)(a - b) < 10)
 count++;

The comparison is then done using unsigned int, in this case, and the body of the
if() would not be executed.

Another problem that frequently occurs is with the bitwise compliment operator, ~. This
operator toggles each bit within a value. Consider the following code:

unsigned char count=0, c;
c = 0x55;
if (~c == 0xAA)
 count++;
 2019 Microchip Technology Inc. DS50002895A-page 133

Compiler User’s Guide for PIC32C/SAM MCUs
If c contains the value 0x55, it is often assumed that ~c will produce 0xAA, however the
result is 0xFFFFFFAA and so the comparison in the above example would fail. The
compiler may be able to issue a mismatched comparison error to this effect in some
circumstances. Again, a cast could be used to change this behavior.

The consequence of integral promotion as illustrated above is that operations are not
performed with char -type operands, but with int -type operands. However there are
circumstances when the result of an operation is identical regardless of whether the
operands are of type char or int. In these cases, the MPLAB XC32 C/C++ Compiler
will not perform the integral promotion so as to increase the code efficiency. Consider
the following example:

unsigned char a, b, c;
a = b + c;

Strictly speaking, this statement requires that the values of b and c should be promoted
to unsigned int, the addition performed, the result of the addition cast to the type of
a, and then the assignment can take place. Even if the result of the unsigned int addi-
tion of the promoted values of b and c was different to the result of the unsigned char
addition of these values without promotion, after the unsigned int result was con-
verted back to unsigned char, the final result would be the same. If an 8-bit addition
is more efficient than a 32-bit addition, the compiler will encode the former.

If, in the above example, the type of a was unsigned int, then integral promotion
would have to be performed to comply with the ANSI C standard.

10.2 TYPE REFERENCES

Another way to refer to the type of an expression is with the typeof keyword. This is a
non-standard extension to the language. Using this feature reduces your code
portability.

The syntax for using this keyword looks like sizeof, but the construct acts semantically
like a type name defined with typedef.

There are two ways of writing the argument to typeof: with an expression or with a
type. Here is an example with an expression:

typeof (x[0](1))

This assumes that x is an array of functions; the type described is that of the values of
the functions.

Here is an example with a typename as the argument:

typeof (int *)

Here the type described is a pointer to int.

If you are writing a header file that must work when included in ANSI C programs, write
__typeof__ instead of typeof.

A typeof construct can be used anywhere a typedef name could be used. For
example, you can use it in a declaration, in a cast, or inside of sizeof or typeof.

• This declares y with the type of what x points to:
typeof (*x) y;

• This declares y as an array of such values:
typeof (*x) y[4];

• This declares y as an array of pointers to characters:
typeof (typeof (char *)[4]) y;
It is equivalent to the following traditional C declaration:
char *y[4];
DS50002895A-page 134  2019 Microchip Technology Inc.

Operators and Statements
To see the meaning of the declaration using typeof and why it might be a useful way
to write, let’s rewrite it with these macros:

#define pointer(T) typeof(T *)
#define array(T, N) typeof(T [N])

Now the declaration can be rewritten this way:

array (pointer (char), 4) y;

Thus, array (pointer (char), 4) is the type of arrays of four pointers to char.

10.3 LABELS AS VALUES

You can get the address of a label defined in the current function (or a containing
function) with the unary operator '&&'. This is a non-standard extension to the language.
Using this feature reduces your code portability.

The value returned has type void *. This value is a constant and can be used
wherever a constant of that type is valid. For example:

void *ptr;
...
ptr = &&foo;

To use these values, you need to be able to jump to one. This is done with the
computed goto statement, goto *exp;. For example:

goto *ptr;

Any expression of type void * is allowed.

One way of using these constants is in initializing a static array that will serve as a jump
table:

static void *array[] = { &&foo, &&bar, &&hack };

Then you can select a label with indexing, like this:

goto *array[i];

Such an array of label values serves a purpose much like that of the switch statement.
The switch statement is cleaner and therefore preferable to an array.

Another use of label values is in an interpreter for threaded code. The labels within the
interpreter function can be stored in the threaded code for fast dispatching.

This mechanism can be misused to jump to code in a different function. The compiler
cannot prevent this from happening, so care must be taken to ensure that target
addresses are valid for the current function.

10.4 CONDITIONAL OPERATOR OPERANDS

The middle operand in a conditional expression may be omitted. Then if the first
operand is nonzero, its value is the value of the conditional expression. This is a
non-standard extension to the language. Using this feature reduces your code
portability.

Therefore, the expression:

x ? : y

has the value of x if that is nonzero; otherwise, the value of y.

Note: This does not check whether the subscript is in bounds. (Array indexing in
C never does.)
 2019 Microchip Technology Inc. DS50002895A-page 135

Compiler User’s Guide for PIC32C/SAM MCUs
This example is equivalent to:

x ? x : y

In this simple case, the ability to omit the middle operand is not especially useful. When
it becomes useful is when the first operand does, or may (if it is a macro argument),
contain a side effect. Then repeating the operand in the middle would perform the side
effect twice. Omitting the middle operand uses the value already computed without the
undesirable effects of recomputing it.

10.5 CASE RANGES

You can specify a range of consecutive values in a single case label, like this:

case low ... high:

This has the same effect as the proper number of individual case labels, one for each
integer value from low to high, inclusive. This is a non-standard extension to the
language. Using this feature reduces your code portability.

This feature is especially useful for ranges of ASCII character codes:

case 'A' ... 'Z':

Be careful: Write spaces around the..., otherwise it may be parsed incorrectly when
you use it with integer values. For example, write this:

case 1 ... 5:

rather than this:

case 1...5:
DS50002895A-page 136  2019 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
USER’S GUIDE FOR

PIC32C/SAM MCUs

Chapter 11. Fixed-Point Arithmetic Support
The MPLAB XC32 C/C++ Compiler supports fixed-point arithmetic according to the
N1169 draft of ISO/IEC TR 18037, the ISO C99 Technical Report on Embedded C. It is
available at: http://www.open-std.org/JTC1/SC22/WG14/www/projects#18037.

This chapter describes the implementation-specific details of the types and operations
supported by the compiler under the N1169 draft standard.

11.1 ENABLING FIXED-POINT ARITHMETIC SUPPORT

Fixed-point arithmetic support is enabled by default by the MPLAB XC32 C/C++
compiler, allowing use of built-in fixed-point types, literals and operators as described
in Section 11.2 “Data Types”. Additional headers may be included to provide conve-
nient definitions as described in Section 11.3 “External Definitions”.

11.2 DATA TYPES

All of the 12 primary fixed-point types and their aliases, as described in Section 4.1
“Overview and principles of the fixed-point data types” of the N1169 draft of ISO/IEC
TR 18037, are supported by the compiler. Fixed-point data values consist of fractional
and optional integral parts. The format of fixed-point data types supported by the
compiler are specified in Table 11-1 below.

In the formats shown, “s” indicates the sign bit for signed types (absent for unsigned
types). Numeric values indicate the width of the integer and fractional parts, with a
period separating the optional integer part from the fractional part.

TABLE 11-1: FIXED POINT FORMATS

Type Format Description

short _Fract s.7 1 bit sign, 7 bits fraction

unsigned short _Fract 0.8 8 bits fraction

_Fract s.15 1 bit sign, 15 bits fraction

unsigned _Fract 0.16 16 bits fraction

long _Fract s.31 1 bit sign, 31 bits fraction

unsigned long _Fract 0.32 32 bits fraction

long long _Fract s.63 1 bit sign, 63 bits fraction

unsigned long long _Fract 0.64 64 bits fraction

short _Accum s8.7 1 bit sign, 8 bits integer, 7 bits fraction

unsigned short _Accum 8.8 8 bits integer, 8 bits fraction

_Accum s16.15 1 bit sign, 16 bits integer, 15 bits fraction

unsigned _Accum 16.16 16 bits integer, 16 bits fraction

long _Accum s32.31 1 bit sign, 32 bits integer, 31 bits fraction

unsigned long _Accum 32.32 32 bits integer, 32 bits fraction

long long _Accum s32.31 1 bit sign, 32 bits integer, 31 bits fraction

unsigned long long _Accum 32.32 32 bits integer, 32 bits fraction
 2019 Microchip Technology Inc. DS50002895A-page 137

Compiler User’s Guide for PIC32C/SAM MCUs
The _Sat type modifier may be used with any type in Table 11-1 to indicate that values
are saturated, as described in ISO/IEC TR 18037 draft N1169. For example, _Sat
short _Fract is the saturating form of short _Fract. Signed types saturate at the
largest-magnitude negative and position numbers representable by the type. Unsigned
types saturate at 0 and the largest-magnitude (positive) value representable by the
type.

The default behavior of overflow on signed or unsigned types is saturation. The prag-
mas described in Section 4.1.3 “Rounding and Overflow” of the N1169 draft of ISO/IEC
TR 18037 to control the rounding and overflow behavior are not supported.

Table 11-2 describes the fixed-point literal suffixes supported to form fixed-point literals
of each type.

11.3 EXTERNAL DEFINITIONS

The stdfix.h file included with the compiler provides various pre-processor macros
related to fixed-point support. This header defines aliases for the ISO/IEC TR 18037
draft N1169 type specifiers/modifiers, for example fract as an alias for _Fract, as well
as macros related to the precision and limits of each type. An example of usage follows:

#include <stdfix.h>
int main(void)
{
 int i;
 fract a[5] = {0.5,0.4,0.2,0.0,-0.1};
 fract b[5] = {0.1,0.8,0.6,0.5,-0.1};
 accum dp = 0;
 /* compute dp = dot product of a[] and b[] */
 for (i = 0; i < 5; i++) {
 dp += a[i] * b[i];
 }
 return 0;
}

TABLE 11-2: FIXED-POINT LITERAL SUFFIXES

Type Suffixes

short _Fract hr, HR

unsigned short _Fract uhr, UHR

_Fract r, R

unsigned _Fract ur, UR

long _Fract lr, LR

unsigned long _Fract ulr, ULR

long long _Fract llr, LLR

unsigned long long _Fract ullr, ULLR

short _Accum hk, HK

unsigned short _Accum uhk, UHK

_Accum k, K

unsigned _Accum uk, UK

long _Accum lk, LK

unsigned long _Accum ulk, ULK

long long _Accum llk, LLK

unsigned long long _Accum ullk, ULLK
DS50002895A-page 138  2019 Microchip Technology Inc.

Fixed-Point Arithmetic Support
11.4 C OPERATORS

The following C language operators are supported for fixed-point types:

• prefix and postfix increment and decrement operators (++, --)

• unary arithmetic operators (+, -, !)

• binary arithmetic operators (+, -, *, /)

• binary shift operators (<<, >>)

• relational operators (<, <=, >=, >)

• assignment operators (+=, -=, *=, /=, <<=, >>=)

• conversions to and from integer, floating-point, or fixed-point types

11.5 UNSUPPORTED FEATURES

The fixed-point conversion specifiers for formatted I/O, as described in Section 4.1.9
“Formatted I/O functions for fixed-point arguments” of ISO/IEC TR 18037 draft N1169,
are not supported by the current MPLAB XC32 standard C libraries. Fixed-point argu-
ments must be used in formatted I/O routines by conversion to or from an appropriate
floating-point representation. For example:

#include <stdio.h>
#include <stdfix.h>

int main(void)
{
 fract a = 0.5;
 accum b;
 double d;

 scanf ("%lf", &d); /* read into floating-point type */
 b = (accum) d; /* convert to fixed-point type */
 printf ("%1.4f", (float) a); /* cast to floating-point type for
output */
 return 0;
}

The fixed-point functions described in Section 4.1.7 of ISO/IEC TR 18037 draft N1169
are not provided by the current MPLAB XC32 standard C libraries.
 2019 Microchip Technology Inc. DS50002895A-page 139

Compiler User’s Guide for PIC32C/SAM MCUs
NOTES:
DS50002895A-page 140  2019 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
USER’S GUIDE FOR
PIC32C/SAM MCUs

 2019 Microchip Technology Inc. DS50002895A-page 141

Chapter 12. Register Usage

This chapter examines registers used by the compiler to generate assembly from
C/C++ source code.

12.1 REGISTER USAGE

This chapter describes the usage of registers in compiler-generated assembly and
hardware register conventions.

When generating assembly from C/C++ source code, the compiler assumes that reg-
ister contents will not be modified by external functions according to the calling conven-
tions, or by inline assembly statements. The extended inline assembly syntax may be
used to indicate the hardware registers used and/or modified by inline assembly so that
the compiler may generate correct code in the presence of these statements.

12.2 REGISTER CONVENTIONS
The 16 general-purpose registers in the Arm® Cortex®-Mx core of PIC32C devices are
shown in Table 12-1. Certain registers are assigned to a dedicated purpose by the
compiler, or have synonyms indicating their usage in the procedure call standard. The
special names for use in assembly code and for dedicated usage, when applicable, are
indicated.

TABLE 12-1: REGISTER CONVENTIONS

Register
Number

Special
Name

Use

R0-R6 General purpose registers.

R7 Syscall number register.

R8-R10 General purpose registers.

R11 FP Frame pointer.

R12 IP Intra-procedure-call scratch register.

R13 SP Stack pointer.

R14 LR Link register.

R15 PC Program counter.

Note: The special registers R7 and R11 may be available for general-purpose use
if not required for their dedicated use. Note also that all register names,
including synonyms and special names, are case-insensitive in assembly
language.

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 142  2019 Microchip Technology Inc.

NOTES:

MPLAB® XC32 C/C++ COMPILER
USER’S GUIDE FOR

PIC32C/SAM MCUs

Chapter 13. Functions
The following sections describe how function definitions are written and specifically
how they can be customized to suit your application. The conventions used for
parameters and return values, as well as the assembly call sequences are also
discussed.

13.1 WRITING FUNCTIONS

Functions may be written in the usual way in accordance with the C/C++ language.

The only specifier that has any effect on function is static. Interrupt functions are
defined with the use of the interrupt attribute (see Section 13.2 “Function Attributes
and Specifiers”).

A function defined using the static specifier only affects the scope of the function, i.e.,
limits the places in the source code where the function may be called. Functions that
are static may only be directly called from code in the file in which the function is
defined. The equivalent symbol used in assembly code to represent the function may
change if the function is static (see Section 9.2.2 “Static Variables”). This specifier
does not change the way the function is encoded.

13.2 FUNCTION ATTRIBUTES AND SPECIFIERS

13.2.1 Function Attributes

address(addr)

The address attribute specifies an absolute physical address at which the function will
be placed in memory.

The compiler performs no error checking on the address value, so the application must
ensure the value is valid for the target device. The section containing the function will
be located at the specified address regardless of the memory-regions specified in the
linker script or the actual memory ranges on the target device. The application code
must ensure that the address is valid for the target device.

To make effective use of absolute sections and the new best-fit allocator, standard
program-memory and data-memory sections should not be mapped in the linker script.
The built-in linker script does not map most standard sections, such as the .text,
.data, or .bss sections. By not mapping these sections in the linker script, we allow
these sections to be allocated using the best-fit allocator rather than the sequential allo-
cator. Sections that are unmapped in the linker script can flow around absolute sec-
tions, whereas sections that are linker-script mapped are grouped together and
allocated sequentially, potentially causing conflicts with absolute sections.

alias ("symbol")

Indicates that the function is an alias for another symbol. For example:

void foo (void) { /* stuff */ }
__attribute__ ((alias("foo"))) void bar (void);

In the above example, symbol bar is considered to be an alias for the symbol foo.
 2019 Microchip Technology Inc. DS50002895A-page 143

Compiler User’s Guide for PIC32C/SAM MCUs
always_inline

Instructs the compiler to always inline a function declared as inline, even if no
optimization level was specified.

const

If the result of a pure function is determined exclusively from its parameters (i.e., does
not depend on the values of any global variables), it may be declared with the const
attribute, allowing for even more aggressive optimization. Note that a function which
de-references a pointer argument cannot be declared const if it depends on the
referenced value, as the referenced storage is not considered a parameter of the
function.

deprecated
deprecated (msg)

When a function specified as deprecated is used, the compiler will generate a warning.
The optional msg argument, which must be a string, will be printed in the warning if
present. The deprecated attribute may also be used for variables and types.

format (type, format_index, first_to_check)

The format attribute indicates that the function takes a printf, scanf, strftime, or
strfmon style format string at position index in the argument list, and instructs the
compiler to type-check the arguments starting at first_to_check against the
conversion specifiers in the format string, just as it does for the standard library
functions.

The type parameter is one of printf, scanf, strftime or strfmon (optionally with
surrounding double underscores, e.g., __printf__) and determines how the format
string will be interpreted.

The format_index parameter specifies the position of the format string in the
function's parameters. Function parameters are numbered from the left, starting from
index 1.

The first_to_check parameter specifies the position of the first parameter to check
against the format string. All parameters following the parameter indicated by
first_to_check will be checked. If first_to_check is zero, type checking is not
performed, and the compiler only checks the format string for consistency.

format_arg (index)

The format_arg attribute specifies that a function manipulates a printf style format
string and that the compiler should check the format string for consistency. The index
parameter gives the position of the format string in the parameter list of the function,
numbered from the left beginning at index 1.

interrupt
interrupt(type)

Functionally equivalent to the isr attribute.

isr
isr(type)

Instructs the compiler to generate prologue and epilogue code for the function as an
interrupt handler function. See Chapter 14. “Interrupts”. The optional type argument
specifies the type of the interrupt, which may be one of the identifiers irq, fiq, abort,
undef or swi, in lowercase or uppercase.
DS50002895A-page 144  2019 Microchip Technology Inc.

Functions
keep

The keep attribute prevents the linker from removing an unused function when
--gc-sections is in effect.

long_call

Always call the function with an indirect call instruction.

malloc

The malloc attribute asserts that any non-null pointer return value from the function will
not be aliased to any other pointer which is live at the point of return from the function.
This allows the compiler to perform more aggressive optimizations.

naked

Indicates that the compiler should generate no prologue or epilogue code for the
function.

noinline

A function declared with the noinline attribute will never be considered for inlining,
regardless of optimization level.

nonnull (index, ...)

Indicate to the compiler that one or more pointer arguments to the function must be
non-null. When the -Wnonnull option is in effect, the compiler will issue a warning diag-
nostic if it can determine that the function is called with a null pointer supplied for any
nonnull argument. The index argument(s) indicate the position of the pointer argu-
ments required to be non-null in the parameter list of the function, numbered from the
left starting at index 1. If no arguments are provided, all pointer arguments of the
function will be marked as non-null.

noreturn

Indicate to the compiler that the function will never return control to its caller. In some
situations, this can allow the compiler to generate more efficient code in the calling
function, since optimizations can be performed without regard to behavior if the func-
tion ever did return. Functions declared with noreturn should always have a void
return type.

optimize(opt_level)

The optimize attribute may be used to specify different optimization options for individ-
ual functions within a source file. The opt_level argument may be an integer, which
will be assumed to be an optimization level (i.e., -Oopt_level, or a string specifying an
optimization option. Strings that begin with O are assumed to be an optimization option.
An example usage of this attribute is to have frequently-executed functions compiled
with more aggressive optimization options to produce faster and larger code, while
using lower optimization levels to avoid code size increases for less frequently used
functions.

pure

Indicates to the compiler that the function is pure, allowing for more aggressive optimi-
zations in the presence of calls to the function. A pure function has no side effects other
than its return value, and the return value is dependent only on parameters and/or
(non-volatile) global variables.
 2019 Microchip Technology Inc. DS50002895A-page 145

Compiler User’s Guide for PIC32C/SAM MCUs
section("name")

Place the function into the given named section. For example:

void __attribute__ ((section (".wilma"))) baz () {return;}

In the above example, function baz will be placed in section .wilma. The
-ffunction-sections command line option has no effect on functions declared with
the section attribute.

space(id)

Place the function in the memory space identified by the id argument. The id argument
may be prog, which places the function in the program space (i.e., ROM), or data,
which places the function in a data section (i.e., RAM). Unlike the section attribute,
the actual section is not explicitly specified.

short_call

Always call the function using an absolute call instruction, even when the
-mlong-calls command line option is specified.

tcm

Attempt to place the function in tightly-coupled memory (TCM), providing highly consis-
tent access times. The actual section will be determined by the compiler, possibly
based on other attributes such as space. For example:

void __attribute__((tcm)) foo (void) {return;}

In the above example, the compiler will attempt to place foo in tightly-coupled program
memory. Note that the amount of TCM available in program or data memory on the tar-
get device may vary, so the compiler cannot ensure all functions with the tcm attribute
can be placed in TCM.

Also see Section 7.6 “Tightly-Coupled Memories”.

unique_section

Place the function in a uniquely named section, as if -ffunction-sections were in
effect. If the function also has a section attribute, the given section name will be used
as a prefix for the generated unique section name. For example:

void __attribute__ ((section (".fred"), unique_section) foo (void)
{return;}

In the above example, function foo will be placed in section .fred.foo.

unsupported

Indicate to the compiler that the function is not supported, similar to the deprecated
attribute. A warning will be issued if the function is called.

unused

Indicate to the compiler that the function may not be used. The compiler will not issue
a warning for this function if it is not used.

used

Indicate to the compiler that the function is always used and code must be generated
for the function even if the compiler cannot determine that the function is called, e.g., if
a status function is only called from an inline assembly statement.
DS50002895A-page 146  2019 Microchip Technology Inc.

Functions
warn_unused_result

A warning will be issued if the return value of the indicated function is unused by a
caller.

weak

A weak symbol indicates that if another version of the same symbol is available, that
version should be used instead. For example, this is useful when a library function is
implemented such that it can be overridden by a user written function.

13.3 ALLOCATION OF FUNCTION CODE

Code associated with C/C++ functions is normally always placed in the program Flash
memory of the target device.

An alternative to Flash memory is to place functions in TMC on those devices if avail-
able.

13.4 CHANGING THE DEFAULT FUNCTION ALLOCATION

The assembly code associated with a C/C++ function can be placed at an absolute
address. This can be accomplished by using the address attribute and specifying the
virtual address of the function (see Section 8.11 “Variable Attributes”).

Functions can also be placed at specific positions by placing them in a user-defined
section and then linking this section at an appropriate address (see
Section 8.11 “Variable Attributes”).

13.5 FUNCTION SIZE LIMITS

 There are no theoretical limits as to how large functions can be made.

13.6 FUNCTION PARAMETERS

MPLAB XC uses a fixed convention to pass arguments to a function. The method used
to pass the arguments depends on the size and number of arguments involved.

The Stack Pointer is always aligned on an 8-byte boundary.

• All integer types smaller than a 32-bit integer are first converted to a 32-bit value.
The first four 32 bits of arguments are passed via registers a0-a3 (see Table 13-1
for how many registers are required for each data type).

• Although some arguments may be passed in registers, space is still allocated on
the stack for all arguments to be passed to a function (see Figure 13-1). Applica-
tion code should not assume that the current argument value is on the stack, even
when space is allocated.

• When calling a function:

- Registers a0-a3 are used for passing arguments to functions. Values in these
registers are not preserved across function calls.

- Registers t0-t7 and t8-t9 are caller saved registers. The calling function
must push these values onto the stack for the registers’ values to be saved.

Note: The names “argument” and “parameter” are often used interchangeably,
but typically an argument is the actual value that is passed to the function
and a parameter is the variable defined by the function to store the
argument.
 2019 Microchip Technology Inc. DS50002895A-page 147

Compiler User’s Guide for PIC32C/SAM MCUs
- Registers s0-s7 are called saved registers. The function being called must
save any of these registers it modifies.

- Register s8 is a saved register if the optimizer eliminates its use as the Frame
Pointer. s8 is a reserved register otherwise.

- Register ra contains the return address of a function call.

TABLE 13-1: REGISTERS REQUIRED

Data Type Number of Registers Required

char 1

short 1

int 1

long 1

long long 2

float 1

double 1

long double 2

structure Up to 4, depending on the size of the struct.
DS50002895A-page 148  2019 Microchip Technology Inc.

Functions
FIGURE 13-1: PASSING ARGUMENTS

Example 1:

int add (int, int)

a= add (5, 10);

SP + 4

SP

a0

a1

undefined

undefined

5

10

Example 2:

void foo (long double, long double)

call= foo (10.5, 20.1);

SP + 12

SP

undefined
SP + 8

SP + 4
undefined

a0

a3

10.5
a1

a2
20.1

void calculate (long double, long double, int)

calculate (50.3, 100.0, .10);

SP + 12

SP

undefined
SP + 8

SP + 4
undefined

a0

a3
100.0

a1

a2

.10

50.3

SP + 16

Example 3:
 2019 Microchip Technology Inc. DS50002895A-page 149

Compiler User’s Guide for PIC32C/SAM MCUs
13.7 FUNCTION RETURN VALUES

Function return values are returned in registers.

Integral or pointer value are placed in register v0. All floating-point values, regardless
of precision, are returned in floating-point register $f0.

If a function needs to return an actual structure or union – not a pointer to such an
object – the called function copies this object to an area of memory that is reserved by
the caller. The caller passes the address of this memory area in register $4 when the
function is called. The function also returns a pointer to the returned object in register
v0. Having the caller supply the return object’s space allows re-entrance.

13.8 CALLING FUNCTIONS

By default, functions are called using the direct form of the call (jal) instruction. This
allows calls to destinations within a 256 MB segment. This operation can be changed
through the use of attributes applied to functions or command-line options so that a lon-
ger, but unrestricted, call is made.

The -mlong-calls option, (see Section 5.8.1 “Options Specific to PIC32C/SAM
Devices”), forces a register form of the call to be employed by default. Generated code
is longer, but calls are not limited in terms of the destination address.

The attributes longcall or far can be used with a function definition to always enforce
the longer call sequence for that function. The near attribute can be used with a func-
tion so that calls to it use the shorter direct call, even if the -mlong-calls option is in
force.

13.9 INLINE FUNCTIONS

By declaring a function inline, you can direct the compiler to integrate that function’s
code into the code for its callers. This usually makes execution faster by eliminating the
function-call overhead. In addition, if any of the actual argument values are constant,
their known values may permit simplifications at compile time, so that not all of the
inline function’s code needs to be included. The effect on code size is less predictable.
Machine code may be larger or smaller with inline functions, depending on the
particular case.

To declare a function inline, use the inline keyword in its declaration, like this:

inline int
inc (int *a)
{
 (*a)++;
}

Note: Function inlining will only take place when the function’s definition is visible
(not just the prototype). In order to have a function inlined into more than
one source file, the function definition may be placed into a header file that
is included by each of the source files.
DS50002895A-page 150  2019 Microchip Technology Inc.

Functions
(If you are using the -traditional option or the -ansi option, write __inline__
instead of inline.) You can also make all “simple enough” functions inline with the
command-line option -finline-functions. The compiler heuristically decides which
functions are simple enough to be worth integrating in this way, based on an estimate
of the function’s size.

Certain usages in a function definition can make it unsuitable for inline substitution.
Among these usages are: use of varargs, use of alloca, use of variable-sized data,
use of computed goto and use of nonlocal goto. Using the command-line option -Win-
line will warn when a function marked inline could not be substituted, and will give
the reason for the failure.

In compiler syntax, the inline keyword does not affect the linkage of the function.

When a function is both inline and static, if all calls to the function are integrated
into the caller and the function’s address is never used, then the function’s own
assembler code is never referenced. In this case, the compiler does not actually output
assembler code for the function, unless you specify the command-line option
-fkeep-inline-functions. Some calls cannot be integrated for various reasons (in
particular, calls that precede the function’s definition cannot be integrated and neither
can recursive calls within the definition). If there is a non-integrated call, then the func-
tion is compiled to assembler code as usual. The function must also be compiled as
usual if the program refers to its address, because that can’t be inlined. The compiler
will only eliminate inline functions if they are declared to be static and if the function
definition precedes all uses of the function.

When an inline function is not static, then the compiler must assume that there may
be calls from other source files. Since a global symbol can be defined only once in any
program, the function must not be defined in the other source files, so the calls therein
cannot be integrated. Therefore, a non-static inline function is always compiled on its
own in the usual fashion.

If you specify both inline and extern in the function definition, then the definition is
used only for inlining. In no case is the function compiled on its own, not even if you
refer to its address explicitly. Such an address becomes an external reference, as if you
had only declared the function and had not defined it.

This combination of inline and extern has a similar effect to a macro. Put a function
definition in a header file with these keywords and put another copy of the definition
(lacking inline and extern) in a library file. The definition in the header file will cause
most calls to the function to be inlined. If any uses of the function remain, they will refer
to the single copy in the library.

Note: The inline keyword will only be recognized with -finline or
optimizations enabled.
 2019 Microchip Technology Inc. DS50002895A-page 151

Compiler User’s Guide for PIC32C/SAM MCUs
NOTES:
DS50002895A-page 152  2019 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
USER’S GUIDE FOR

PIC32C/SAM MCUs

Chapter 14. Interrupts
Interrupt processing is an important aspect of most microcontroller applications. Inter-
rupts may be used to synchronize software operations with events that occur in real
time. When an interrupt occurs, the normal flow of software execution is suspended
and special functions are invoked to process the event. These special functions and
are often called interrupt handlers or Interrupt Service Routines (ISRs). At the comple-
tion of interrupt processing, previous context information is restored and normal exe-
cution resumes.

PIC32C/SAM devices support multiple interrupts, from both internal and external
sources. The devices allow high-priority interrupts to override any lower priority inter-
rupts that may be in progress.

The compiler provides full support for interrupt processing in C/C++ or inline assembly
code. This section presents an overview of interrupt processing.

14.1 INTERRUPT OPERATION

Each interrupt typically has a control bit in a special function register (SFR) that can
disable that interrupt source. Most also have a configurable priority level. Check your
device data sheet and the appropriate technical reference manual for full information
on how your device handles interrupts.

The compiler incorporates features allowing interrupts to be fully handled from C/C++
code. Interrupt code is the name given to any code that executes as a result of an inter-
rupt occurring. Interrupt code completes at the point where the corresponding return
from interrupt instruction is executed. This contrasts with main-line code, which for a
freestanding application, is the main part of the program that executes after Reset.

14.2 WRITING AN INTERRUPT SERVICE ROUTINE

An interrupt service routine takes no arguments and returns no results, that is, its argu-
ment list is void and it returns type void. This pattern is not enforced but executing an
ISR, that does not follow it, will result in unpredictable behavior.

On the Cortex-M cores found in PIC32C/SAM devices, the hardware takes care of con-
text save and restore. When an ISR is executed, in addition to other things, the hard-
ware saves registers r0, r1, r2, r3, r12, and r14 on the stack and restores them when
the function exits. Consequently, any function with no return value and no arguments
that conforms to the procedure call standard of the platform can be used as a handler
function. See the appropriate architecture reference manual for the full details on
exception entry and exit behavior.

Given the hardware support, it is not mandatory to tell the compiler that a function is an
interrupt handler since no special entry or exit code needs to be generated. That said,
a function should still be marked as an interrupt handler function using the interrupt
attribute so that the compiler knows that it is used. With the interrupt attribute, the
compiler generates code to guarantee the stack is 8-byte (double-word) aligned when
the function is entered and restores the stack pointer to its original value when the func-
tion exits. Such an action is a safeguard, but the extra instructions are not necessary if
the device is configured to guarantee an 8-byte aligned stack upon exception entry.
See the architecture reference manual for details.
 2019 Microchip Technology Inc. DS50002895A-page 153

Compiler User’s Guide for PIC32C/SAM MCUs
14.2.1 Interrupt Attribute

__attribute__((interrupt))

Use of the interrupt attribute tells the compiler that the function is an interrupt han-
dler and generates code to ensure the stack pointer is aligned on 8 bytes upon function
entry.

14.3 ASSOCIATING A HANDLER FUNCTION WITH AN EXCEPTION

Each exception handler, be it internal or external, is associated with a function. The
exception handled by that function depends on its name. The name of a handler func-
tion corresponds to the name of the exception it handles, suffixed with _Handler. For
example, SysTick_Handler is the exception handler for the SysTick interrupt. To
define a custom handler, write a function with the name matching that of the default
handler for that exception and link it into your application. Aside from the standard inter-
nal handlers (see next section), names of handler functions are specific to the device.
To see the full list of handler function names, check the appropriate device header file
in pic32c/include_mcc/proc.

The following example shows how to create a custom SysTick_Handler.

#include <xc.h>
#include <stdint.h>

const static uint32_t LOWEST_IRQ_PRIORITY =
 (1UL << __NVIC_PRIO_BITS) - 1UL;

static uint32_t tick_counter;

__attribute__((interrupt)) void SysTick_Handler(void) {
 tick_counter += 1;
}

int main(void) {
 // Get the reload value for 10ms.
 uint32_t ticks = SysTick->CALIB & SysTick_CALIB_TENMS_Msk;

 // Set the IRQ priority, the SysTick reload value, the counter
 // value, then enable the interrupt. The same can be achieved
 // using the function SysTick_Config from the CMSIS-Core(M) API.
 NVIC_SetPriority(SysTick_IRQn, LOWEST_IRQ_PRIORITY);
 SysTick->LOAD = (uint32_t) ticks - 1UL;
 SysTick->VAL = 0UL;
 SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk
 | SysTick_CTRL_TICKINT_Msk
 | SysTick_CTRL_ENABLE_Msk;

 // Ensure the changes are written before continuing.
 __DSB();
 while (1) { __builtin_nop(); }
 return 0;
}

Note: The interrupt attribute can take arguments as described in the GCC
manual but are ignored when targeting PIC32C/SAM devices.
DS50002895A-page 154  2019 Microchip Technology Inc.

Interrupts
Some PIC32C/SAM devices have faults that must enabled in software. The following
example associates a handler with the UsageFault and enables divide-by-zero
errors.

#include <xc.h>
#include <stdint.h>

__attribute__((interrupt)) void UsageFault_Handler(void);

void UsageFault_Handler(void) {
 __builtin_software_breakpoint();
}

uint32_t DemoFunction(uint32_t dividend, uint32_t divisor) {
 return dividend / divisor;
}

int main(void) {
 // Enable UsageFault and divide by zero errors
 SCB->SHCSR |= SCB_SHCSR_USGFAULTENA_Msk;
 SCB->CCR |= SCB_CCR_DIV_0_TRP_Msk;
 // Ensure the changes are written before continuing.
 __DSB();

 DemoFunction(2, 0);

 return 0;
}

Below is a longer example that uses two interrupts to safely access shared data without
having to disable interrupts. The space for tick_counter is only accessed by the
SysTick and PendSV handlers. Both run at the same priority meaning that they can-
not interrupt each other. Hence, access to tick_counter is properly serialized.

#include <xc.h>
#include <stdint.h>
#include <assert.h>

const static uint32_t LIMIT = 50;
const static uint32_t LOWEST_IRQ_PRIORITY =
 (1UL << __NVIC_PRIO_BITS) - 1UL;

static uint32_t tick_counter = 0;

__attribute__((interrupt)) void SysTick_Handler(void) {
 tick_counter += 1;
 __conditional_software_breakpoint(tick_counter <= LIMIT);
}

static uint32_t tick_limit = 0;
static uint32_t result = 0;

__attribute__((interrupt)) void PendSV_Handler(void) {
 if (tick_counter == tick_limit) {
 tick_counter = 0;
 result = 1;
 } else {
 result = 0;
 }
}

static inline void TriggerPendSV(void) {
 2019 Microchip Technology Inc. DS50002895A-page 155

Compiler User’s Guide for PIC32C/SAM MCUs
 SCB->ICSR = SCB_ICSR_PENDSVSET_Msk;
 __DSB();
 __ISB();
}

uint32_t TickCounterReached(uint32_t limit) {
 tick_limit = limit;
 TriggerPendSV();
 return result;
}

int main(void) {
 const uint32_t ticks =
 (SysTick->CALIB & SysTick_CALIB_TENMS_Msk);

 SysTick_Config(ticks);
 NVIC_SetPriority(SysTick_IRQn, LOWEST_IRQ_PRIORITY);
 NVIC_SetPriority(PendSV_IRQn, LOWEST_IRQ_PRIORITY);
 __DSB();

 while (1) {
 if (TickCounterReached(LIMIT)) {
 __builtin_software_breakpoint();
 }
 }

 return 0;
}

In order to set interrupt handlers at runtime, it is best to copy the vector table into RAM.
The vector table is located via the Vector Table Offset Register (VTOR) in the System
Control Block (SCB). It is described by the DeviceVectors structure and is found in
the variable exception_table. These definitions are available in the device specific
header file included via xc.h. To set interrupt handlers dynamically, create a
DeviceVectors structure, copy exception_table into it, point the VTOR at it, then
change the handlers as desired. The actual structure definition is found in the default
device startup code. It is defined as weak and is put in the .vectors.default sec-
tion, which is mapped to the flash memory region by the default linker script. In C code,
the definition is the following, with the actual function pointers elided.

__attribute__((section(".vectors.default"), weak, externally_visible))
const DeviceVectors exception_table = { ... }

Setting a handler is best done using the Interrupts and Exceptions portion of the
CMSIS-Core(M) API, provided via xc.h. Each interrupt has an IRQ number found in
the IRQn_Type enumeration. The name for the IRQ number is similar to the name of
the handler function, except with the _IRQn suffix. To set the handler, use the function
NVIC_SetHandler() giving it the IRQ number and the function address.

Alignment of the vector table is important but is specific to the device (see the appro-
priate architecture manual for details). For Cortex-M7 devices (such as the SAME70)
the table must be aligned on a power of two greater than or equal to four times the num-
ber of exceptions, with a minimum of 128-byte alignment. At present, this must be
determined manually if you create your own vector table.

#include <xc.h>
#include <stdint.h>
#include <string.h>

// For a SAME70 device. Supports 90 exceptions (16 + 74).
// 90 * 4 = 360. Next highest power of 2 is 512.
#define TBL_ALIGN 512
DS50002895A-page 156  2019 Microchip Technology Inc.

Interrupts
DeviceVectors exn_table __attribute__((aligned(TBL_ALIGN)));
extern DeviceVectors exception_table;

static uint32_t counter;
__attribute__((interrupt)) void CustomSysTick_Handler(void) {
 counter += 1;
}

int main(void)
{
 memcpy(&exn_table, &exception_table, sizeof(DeviceVectors));

 // Disable interrupts, set the VTOR, ensure all data
 // operations are complete, then enable interrupts.
 __disable_irq();
 SCB->VTOR = (uint32_t) exn_table;
 __DSB();
 __enable_irq();

 NVIC_SetVector(SysTick_IRQn, (uint32_t) CustomSysTick_Handler);

 // Code continues here.
}

14.4 EXCEPTION HANDLERS

Cortex-M cores support exception handlers for internal events, although the specific
set of internal events depends on the architecture. All internal and external exception
handlers-except for the Reset handler-have a weak default implementation. This
default implementation executes __builtin_software_breakpoint() in a debug
build and goes into an infinite loop in a production build. The default implementation is
a weak function called Dummy_Handler; you may override it if you wish to define your
own default handler.

For convenience, the common set of exception handlers for internal events are briefly
described below. See the appropriate architecture reference manual for the list of all
internal events and how they are triggered.

14.4.1 Reset

The Reset exception is handled by the function Reset_Handler and has IRQ number
Reset_IRQn. It is always enabled and has the highest priority of all interrupts. The
handler is part of the C runtime start-up code and should not be altered. You can aug-
ment the reset handler by defining certain functions. See the Chapter 15. “Main, Run-
time Start-up and Reset” for details.

14.4.2 NMI (Non-Maskable Interrupt)

The NMI exception is handled by the function NonMaskableInt_Handler with IRQ
number NonMaskableInt_IRQn. It is always enabled and has a higher priority than
any other interrupt except Reset. Hardware typically triggers an NMI, although software
can trigger one using the following code.

SCB->ICSR = SCB_ICSR_NMIPENDSET_Msk;

14.4.3 HardFault

The HardFault exception is the generic fault mechanism, used when no other exception
mechanism applies for a fault. It is handled by the function HardFault_Handler with
IRQ number HardFault_IRQn. Like NMI, it is always enabled and has a higher prior-
ity than any other interrupt, except Reset and NMI.
 2019 Microchip Technology Inc. DS50002895A-page 157

Compiler User’s Guide for PIC32C/SAM MCUs
14.4.4 SVCall

The SVCall exception is triggered by the Supervisor Call (SVC) instruction. Its handler
is SVCall_Handler, its IRQ number is SVCall_IRQn, it is always enabled and has
configurable priority.

14.4.5 PendSV

PendSV is an internal interrupt, typically used to force a context switch in software. Its
handler is PendSV_Handler with IRQ number PendSV_IRQn. It is always enabled
and has configurable priority, normally configured to be at the lowest priority.

You can trigger a PendSV interrupt with the following code.

SCB->ICSR = SCB_ICSR_PENDSVSET_Msk;

14.4.6 SysTick

SysTick is an internal interrupt used to handle interrupts raised by the system timer. Its
handler is SysTick_Handler with IRQ number SysTick_IRQn, it is always enabled
and has configurable priority. This handler can also be triggered via software using the
following code.

SCB->ICSR = SCB_ICSR_PENDSTSET_Msk;

14.5 INTERRUPT SERVICE ROUTINE CONTEXT SWITCHING

As mentioned earlier, the hardware takes care of context switching on PIC32C/SAM
devices. In particular, the hardware saves and restores the argument registers (r0 to
r3), the IP register (r12) the link register (r14), the return address, and the program sta-
tus registers. Any other registers must be preserved by the interrupt handler function;
however, this is standard for any function that follows the procedure call standard.

It is possible for other exceptions to occur during the context switch. The work for this
is handled in hardware, the details of which can be found in the appropriate architecture
reference manual. In short, the context switching does not happen twice. Instead, the
higher priority interrupt is run with the other interrupt set to pending.

14.6 LATENCY

The time between interrupt generation and the execution of the first instruction of your
ISR is known as interrupt latency. There are two elements that affect it.

• Processor Servicing of Interrupt - This is the amount of time it takes the proces-
sor to recognize the interrupt and branch to the associated ISR.

• Saving ISR Code Context - The amount of time it takes to save registers on the
stack before entering the ISR.

For the most part, these are determined solely by the hardware on PIC32C/SAM
devices. In particular, the hardware saves the context on the stack, eliminating the need
for the compiler to generate such code. As a result, if your ISR is written such that it
does not need to save any registers beyond what is saved by the hardware, the inter-
rupt latency for your ISR is entirely hardware dependent.

To determine the value of the interrupt latency, see the data sheet for the device and
the appropriate Cortex-M technical reference manual.
DS50002895A-page 158  2019 Microchip Technology Inc.

Interrupts
14.7 ENABLING/DISABLING INTERRUPTS

The following functions from the CMSIS-Core(M) API are used to manipulate the inter-
rupt state of the CPU:

__enable_irq()
__disable_irq()

The Nested Vector Interrupt Controller (NVIC), which controls the aspects of nearly all
internal and external interrupts, can be manipulated using the CMSIS-Core(M) API.
See the Interrupts and Exceptions (NVIC) reference section of the API for more infor-
mation. The NVIC API is made available when you include the xc.h header.

14.8 ISR CONSIDERATIONS

There are a few things to consider when writing an interrupt service routine.

As with all compilers, limiting the number of registers used by the interrupt function, or
any functions called by the interrupt function, may result in less context switch code
being generated and executed by the compiler. Keeping interrupt functions small and
simple will help you achieve this.

When interrupt execution speed is a concern, avoid calling other functions from your
ISR. You may be able to replace a function call with a volatile flag that is handled by
your application's main control loop.
 2019 Microchip Technology Inc. DS50002895A-page 159

Compiler User’s Guide for PIC32C/SAM MCUs
NOTES:
DS50002895A-page 160  2019 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
USER’S GUIDE FOR
PIC32C/SAM MCUs

 2019 Microchip Technology Inc. DS50002895A-page 161

Chapter 15. Main, Runtime Start-up and Reset

When creating C/C++ applications targeting PIC32C/SAM/CEC devices, there are spe-
cific steps required to initialize the device, core registers, and the C/C++ runtime envi-
ronment after reset and before the application main() function is called. The XC32
compiler provides start-up code for each supported device to execute user-defined
functions at various points in the start-up process. These features, as well as the gen-
eral steps taken after a reset and before the main() function is called, are described in
this section.

15.1 THE MAIN FUNCTION

The identifier main() is reserved as the entry point for application code. The start-up
code for the device will call main() after performing all other initialization steps. Upon
returning from the main() function, control returns to the start-up function and will enter
an infinite loop. Calling the standard exit or abort functions will also cause execution
to enter an infinite loop. The return value of main() is not used by the start-up function.

15.2 RUNTIME START-UP CODE

A C/C++ application requires certain initialization steps and the processor to be in a
particular state before the execution of main() can proceed. Certain special functions
may be defined to execute at specific points during these initialization steps. The
start-up function supplied by the compiler to perform this initialization is called
Reset_Handler(). This section will describe the general sequence of operations per-
formed by the Reset_Handler() function.

The operations performed by Reset_Handler() are as follows:

1. Ensure the stack pointer (sp) register is initialized to point to the top of the system
stack.

2. Call the function void _on_reset() if it is defined by the application.

3. Enable the Floating Point Unit (FPU) device if present and enabled by the com-
piler options.

4. Enable the instruction and data caches, if present.

5. Configure the instruction and/or data Tightly-Coupled Memory (TCM), if present
and enabled (also see Section 7.6 “Tightly-Coupled Memories”).

6. Initialize the memory sections which must be filled with zeros, or initialized to
other known values and copy sections which should be placed into TCM as
needed.

7. If requested, relocate the stack to data TCM.

8. Initialize the VTOR (Vector Table on Reset) register to the address of the interrupt
vector table.

9. Perform the initialization for the standard C library.

10. Call the function void _on_bootstrap() if it is defined by the application.

11. Call the application main() function.

12. On return from main(), enter an infinite loop.

Each step will be described in further detail in the following sections.

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 162  2019 Microchip Technology Inc.

15.2.1 Initialize Stack Pointer and Heap

This step is only explicitly performed for some devices. The initial stack pointer value
is defined using the symbol _stack which is defined by the linker to be located in data
(RAM) memory. A minimum amount of stack space is reserved by defining the symbol
_min_stack_size to a positive value, e.g. by using the linker --defsym option. Note
that while some implementations may locate the stack base at the highest RAM
address, the XC32 linker may place it elsewhere in RAM. On devices which support
placing the stack in TCM with the -mstack-in-dtcm option, the stack pointer will be
updated to the new location in TCM following TCM initialization steps (see
Section 15.2.7 “Relocate Stack to TCM” and Section 7.6 “Tightly-Coupled Memo-
ries”).

15.2.2 Call the _on_reset() Function

The _on_reset() should be defined in an application if special initialization steps are
required upon device reset. When implementing _on_reset(), one must take care,
particular if writing in C, to account for the state of the device. In particular, the stack
pointer will be initialized, but no data or library initialization will be performed, nor will
any static constructors be called for C++ applications. References to non-automatic
variables in C/C++ applications may yield unexpected or unpredictable results.

The _on_reset() function is useful for cases where hardware must be initialized
before data is initialized. For instance, you may need to initialize a memory controller
before initializing data in that memory.

15.2.3 Enable the FPU Device

On devices with a FPU and for applications where code may be generated using the
Floating Point Unit, the unit will be enabled. This step is only performed if the
-mfloat-abi=hard|softfp option is in effect at the linker step, which is the default
behavior for devices which have an FPU present.

15.2.4 Configure Tightly-Coupled Memories

On devices supporting one or more TCMs, when enabled, device-specific code will be
called to perform any configuration or initialization required to satisfy the requested
TCM configuration (also see Section 7.6 “Tightly-Coupled Memories”).

15.2.5 Enable Caches

On devices supporting instruction or data cacheable memory, caches will be initialized
based on definitions in device-specific files controlled by the -mprocessor option.

15.2.6 Data Initialization

The internal library function __pic32c_data_initialization() is called to perform
any required data initialization based on the contents of the linker-generated .dinit
section, as well as clearing any uninitialized memory (e.g. the .bss and .sbss sec-
tions) as needed.

15.2.7 Relocate Stack to TCM

With the -mstack-in-itcm or similar options, the runtime stack may be placed into
TCM at this point. Following this step, the runtime stack will be located in the requested
memory region.

Main, Runtime Start-up and Reset

 2019 Microchip Technology Inc. DS50002895A-page 163

15.2.8 Set VTOR Register

The VTOR, or Vector Table Offset Register, on Arm Cortex-M MCUs, is set to reflect the
starting address of the Interrupt Vector Table (IVT). This value is determined by the spe-
cial symbol __svectors defined by the XC32 linker.

15.2.9 C Library Initialization

The function __libc_init_array() is called to perform all initialization required by the
standard C library. Before this step, standard C library routines may produce unex-
pected results.

15.2.10 Call the _on_bootstrap() Function

The _on_bootstrap() should be defined in an application if special initialization steps
are required after memory, CPU and library initialization is done but before main() is
called. Unlike _on_reset(), this function may be implemented in C with no caveats.

15.2.11 Call the Main Function

The main() function is called, with any return value unused. Following the return from
main(), control will return to Reset_Handler() and execution will enter an infinite loop.
On devices which support the Thumb-2 instruction set, the preprocessor macro __DE-
BUG may be defined to insert a software breakpoint instruction (BKPT) immediately after
the return from main().

15.2.12 Exception Handlers

For devices based on Arm Cortex-M cores, an exception table is defined (placed in the
section .vectors), containing the initial stack pointer and start address (e.g. the
Reset_Handler() function address) as well as the interrupt service routine (ISR) vec-
tor. The device-specific start-up code defines a default vector table exception_table,
as well as a default ISR named _Dummy_Handler(). Apart from the Reset_Handler(),
all pointers in exception_table are initialized to point to _Dummy_Handler(), which
simply enters an infinite loop. For devices supporting the Thumb-2 instruction set, a
software breakpoint instruction will be inserted before the infinite loop when __DEBUG is
defined.

The symbols exeception_table, Reset_Handler() and _Dummy_Handler() may be
redefined by user code to provide custom implementations.

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 164  2019 Microchip Technology Inc.

NOTES:

MPLAB® XC32 C/C++ COMPILER
USER’S GUIDE FOR

PIC32C/SAM MCUs

Chapter 16. Library Routines
16.1 USING LIBRARY ROUTINES

Library functions or routines (and any associated variables) will be automatically linked
into a program once they have been referenced in your source code. The use of a func-
tion from one library file will not include any other functions from that library. Only used
library functions will be linked into the program output and consume memory.

Your program will require declarations for any functions or symbols used from libraries.
These are contained in the standard C header (.h) files. Header files are not library files
and the two files types should not be confused. Library files contain precompiled code,
typically functions and variable definitions; the header files provide declarations (as
opposed to definitions) for functions, variables and types in the library files, as well as
other preprocessor macros.

#include <math.h> // declare function prototype for sqrt

int main(void)
{
 double i;

 // sqrt referenced; sqrt will be linked in from library file
 i = sqrt(23.5);
}

MPLAB® Harmony includes a set of peripheral libraries, drivers, and system services
that are readily accessible for application development. For access to the plib.h
(peripheral header files), go to the Microchip web site (www.microchip.com), click on
the Design tab, then click on Software and download MPLAB Harmony and MPLAB
Code Configurator. The path to the installed peripheral libraries is:

For Windows: C:\microchip\harmony\<version>\framework\peripheral

For Mac/Linux: ~\microchip\harmony\<version>\framework\peripheral
 2019 Microchip Technology Inc. DS50002895A-page 165

Compiler User’s Guide for PIC32C/SAM MCUs
NOTES:
DS50002895A-page 166  2019 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
USER’S GUIDE FOR

PIC32C/SAM MCUs

Chapter 17. Mixing C/C++ and Assembly Language
Assembly language code can be mixed with C/C++ code using two different tech-
niques: writing assembly code and placing it into a separate assembler module, or
including it as in-line assembly in a C/C++ module.This section describes how to use
assembly language and C/C++ modules together. It gives examples of using C/C++
variables and functions in assembly code and examples of using assembly language
variables and functions in C/C++.

The more assembly code a project contains, the more difficult and time consuming its
maintenance will be. As the project is developed, the compiler may work in different
ways as some optimizations look at the entire program. The assembly code is more
likely to fail if the compiler is updated due to differences in the way the updated compiler
may work. These factors do not affect code written in C/C++

17.1 MIXING ASSEMBLY LANGUAGE AND C VARIABLES AND FUNCTIONS

The following guidelines indicate how to interface separate assembly language
modules with C modules.

• Follow the register conventions described in Section 12.2 “Register Conventions”.
In particular, registers r0-r3 are used for parameter passing. An assembly lan-
guage function will receive parameters and should pass arguments to called func-
tions, in these registers.

• Table 12-1 describes which registers must be saved across non-interrupt function
calls

• Interrupt functions must preserve all registers. Unlike a normal function call, an
interrupt may occur at any point during the execution of a program. When return-
ing to the normal program, all registers must be as they were before the interrupt
occurred.

• Variables or functions declared within a separate assembly file that will be refer-
enced by any C source file should be declared as global using the assembler
directive .global. Undeclared symbols used in assembly files will be treated as
externally defined.

The following example shows how to use variables and functions in both assembly
language and C regardless of where they were originally defined.

The file ex1.c defines cFunction and cVariable to be used in the assembly language
file. The C file also shows how to call an assembly function, asmFunction, and how to
access the assembly defined variable, asmVariable.

Note: If assembly must be added, it is preferable to write this as self-contained
routine in a separate assembly module rather than in-lining it in C code.
 2019 Microchip Technology Inc. DS50002895A-page 167

Compiler User’s Guide for PIC32C/SAM MCUs
EXAMPLE 17-1: MIXING C AND ASSEMBLY
 .syntax unified
 .cpu cortex-m7
 .thumb

 .global asmVariable
 .type asmVariable,%object

 .data
 .align 2
asmVariable:
 .space 4

 @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
 @ char *asmFunction (char *s)
 @ {
 @ asmVariable = 0;
 @ if (s) {
 @ char *d = s, c;
 @ while ((c = *d)) {
 @ if (cFunction (c)) {
 @ *d = c & cVariable;
 @ ++asmVariable;
 @ }
 @ ++d;
 @ }
 @ }
 @ return s;
 @ }
 @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
 .global asmFunction
 .type asmFunction,%function

 .text
 .align 1

 .thumb_func
asmFunction:
 @ if the input string is not NULL
 cbnz r0, .L_not_NULL

 @ set 'asmVariable' to zero and return
 ldr r1, =asmVariable
 str r0, [r1]
 bx lr

.L_not_NULL:
 @ r4-r7 are callee-saved registers
 @ LR contains the return address
 @ r0 is the first argument and also the return value of the
function
 push {r0, r4-r7, lr}

 @ d = s;
 mov r4, r0

 @ r6 - the value of the C variable (8-bit AND mask)
 @ r7 - counter of changed chars
 ldr r6, =cVariable
 movs r7, #0
 ldrb r6, [r6]
DS50002895A-page 168  2019 Microchip Technology Inc.

Mixing C/C++ and Assembly Language
.L_while:
 @ while ((c = *d))
 ldrb r5, [r4]
 cbz r5, .L_end_while

 @ if (cFunction (c))
 mov r0, r5
 bl cFunction
 cbz r0, .L_next_char

 @ *d = c & cVariable;
 ands r5, r5, r6
 strb r5, [r4]

 @ ++ the number of changed chars
 adds r7, r7, #1

.L_next_char:
 @ ++d;
 adds r4, r4, #1
 b .L_while

.L_end_while:
 @ write the no. of changes to 'asmVariable'
 ldr r0, =asmVariable
 str r7, [r0]

 @ return s;
 pop {r0, r4-r7, pc}

 .pool
 .size asmFunction, .-asmFunction

The file ex1.S defines asmFunction and asmVariable as required for use in a linked
application. The assembly file also shows how to call a C function, cFunction, and how
to access a C defined variable, cVariable.

#include <xc.h>
#include <stdio.h>

extern int asmVariable;
extern char *asmFunction (char *s);

char cVariable = 0xDF;

char cFunction (char c)
{
 return c >= 'a' && c <= 'z';
}

int main()
{
 char s[] = "heLLo, wOrlD!";
 printf ("%s\n", s);

 char *d = asmFunction (s);
 printf ("%s\nchanges: %d", d, asmVariable);

 return 0;
 2019 Microchip Technology Inc. DS50002895A-page 169

Compiler User’s Guide for PIC32C/SAM MCUs
}

In the C file, ex2.c, although for the function declaration this isn’t required, note that
asmFunction is a char * function and is declared accordingly.

In the assembly file, ex1.S, the symbols asmFunction and asmVariable are made
globally visible through the use of the .global assembler directive and can be
accessed by any other source file.

17.2 USING INLINE ASSEMBLY LANGUAGE

Within a C/C++ function, the asm statement may be used to insert a line of assembly
language code into the assembly language that the compiler generates. Inline
assembly has two forms: simple and extended.

In the simple form, the assembler instruction is written using the syntax:

asm ("instruction");

where instruction is a valid assembly-language construct. If you are writing inline
assembly in ANSI C programs, write __asm__ instead of asm.

In an extended assembler instruction using asm, the operands of the instruction are
specified using C/C++ expressions. The extended syntax is:

asm("template" [: ["constraint"(output-operand) [, ...]]
 [: ["constraint"(input-operand) [, ...]]
 ["clobber" [, ...]]
]
]);

You must specify an assembler instruction template, plus an operand constraint
string for each operand. The template specifies the instruction mnemonic, and option-
ally placeholders for the operands. The constraint strings specify operand con-
straints, for example, that an operand must be in a register (the usual case), or that an
operand must be an immediate value.

Constraint letters and modifiers supported by the compiler are listed in Table 17-1
through Table 17-3.

TABLE 17-1: REGISTER CONSTRAINT LETTERS SUPPORTED BY THE
COMPILER

Note: Only a single string can be passed to the simple form of inline
assembly.

Letter Constraint

l In Thumb State, the core registers r0-r7. In Arm state, this is an alias for the 'r'
constraint.

h In Thumb state, the core registers r8-r15.

t In Arm/Thumb-2 state, the VFP floating-point registers s0-s31.

w In Arm/Thumb-2 state, the VFP floating-point registers d0-d15, or d0-d31 for
VFPv3.

x In Arm/Thumb-2 state, the VFP floating-point registers d0-d7.

Ts If -mrestrict-it is specified (for Arm-v8), the core registers r0-r7. Otherwise,
GENERAL_REGS (r0-r12 and r14).
DS50002895A-page 170  2019 Microchip Technology Inc.

Mixing C/C++ and Assembly Language
TABLE 17-2: INTEGER CONSTRAINT LETTERS SUPPORTED BY THE
COMPILER

TABLE 17-3: CONSTRAINT MODIFIERS SUPPORTED BY THE COMPILER

17.2.1 Examples:

• Insert Bit Field

• Multiple Assembler Instructions

17.2.1.1 INSERT BIT FIELD

This example demonstrates how to use the BFI instruction to insert a bit field into a
32-bit wide variable. This function-like macro uses inline assembly to emit the BFI
instruction, which is not commonly generated from C/C++ code.

/* Thumb2 insert bits */
#define _ins(tgt,val,pos,sz) __extension__({ \
 unsigned int __t = (tgt), __v = (val); \
 __asm__ ("bfi\t%0,%1,%2,%3" /* template */ \
 : "+r" (__t) /* output */ \
 : "r" (__v), "M" (pos), "M" (sz)); /* input */ \
 __t; \
})

Here __v, pos, and sz are input operands. The __v operand is constrained to be of
type 'r' (a register). The pos and sz operands are constrained to be of type 'M' (a con-
stant in the range 0-32 or any power of 2).

Letter Constraint

G In Arm/Thumb-2 state, the floating-point constant 0.

I In Arm /Thumb-2 state, a constant that can be used as an immediate value in a
Data Processing instruction (that is, an integer in the range 0 to 255 rotated by a
multiple of 2).
In Thumb-1 state, a constant in the range 0..255.

j In Arm /Thumb-2 state, a constant suitable for a MOVW instruction.

J In Arm /Thumb-2 state, a constant in the range -4095..4095.
In Thumb-1 state, a constant in the range -255..-1.

K In Arm /Thumb-2 state, a constant that satisfies the 'I' constraint if inverted (one's
complement).
In Thumb-1 state, a constant that satisfies the 'I' constraint multiplied by any
power of 2.

L In Arm /Thumb-2 state, a constant that satisfies 'I' constraint if negated (two's
complement).
In Thumb-1 state, a constant in the range -7..7.

M In Thumb-1 state, a constant that is a multiple of 4 in the range 0..1020.

N In Thumb-1 state, a constant in the range 0-31.

O In Thumb-1 state, a constant that is a multiple of 4 in the range -508..508.

Pf Memory models except relaxed, consume or release ones.

Letter Constraint

= Means that this operand is write-only for this instruction: the previous value is
discarded and replaced by output data.

+ Means that this operand is both read and written by the instruction

& Means that this operand is an earlyclobber operand, which is modified
before the instruction is finished using the input operands. Therefore, this
operand may not lie in a register that is used as an input operand or as part of
any memory address
 2019 Microchip Technology Inc. DS50002895A-page 171

Compiler User’s Guide for PIC32C/SAM MCUs
The __t output operand is constrained to be of type 'r' (a register). The '+' modifier
means that this operand is both read and written by the instruction and so the operand
is both an input and an output.

The following example shows this macro in use.

unsigned int result;
void example (void)
{
 unsigned int insertval = 0x12;
 result = 0xAAAAAAAAu;
 result = _ins(result, insertval, 4, 8);
 /* result is now 0xAAAAA12A */
}

For this example, the compiler may generate assembly code similar to the following.

 movs r2, #18 @ 0x12
 mov r3, #-1431655766 @ 0xaaaaaaaa

 bfi r3,r2,#4,#8 @ inline assembly

 ldr r2, .L2 @ load result address
 str r3, [r2] @ assign the result
 bx lr @ return
 ...
 .L2:
 .word result

17.2.1.2 MULTIPLE ASSEMBLER INSTRUCTIONS

This example demonstrates how to use a couple of REV instructions to perform a 64-bit
byte swap. The REV instruction is swapping (reversing the order of) the bytes in a 32-bit
word. This function-like macro uses inline assembly to create a “byte-swap double
word” using instructions that are not commonly generated from C/C++ code. However,
the same functionality can be gained by using one of the GCC built-in functions,
__builtin_bswap64(). As a general rule, built-ins should be preferred over inline
assembly, whenever possible.

The following shows the definition of the function-like macro, _bswapdw.

/* Thumb2 byte-swap double word */
#define _bswapdw(val) __extension__({ \
 union { uint32_t i[2]; uint64_t l; } __i, __o; \
 __i.l = (val); \
 __asm__ ("rev\t%0, %3\n\t" \
 "rev\t%1, %2" /* template */ \
 : "=&r" (__o.i[0]), "=r" (__o.i[1]) \
 : "r" (__i.i[0]), "r" (__i.i[1])); \
 __o.l; \
})

A union is used to reference the two 32-bit halves of a 64-bit integer. For example, the
C expressions for the input operands are '__i.i[0]' and '__i.i[1]' and the ones
for the output operands are '__o.i[0]' and '__o.i[1]', respectively.

All operands use the constraint 'r' (32-bit register). To be noted the '&' modifier for oper-
and 0, indicating that it is an "early-clobber" (written before all the input operands are
consumed, with the implication that the compiler will allocate a register different that the
input ones). This is needed because the 32-bit halves themselves need to be swapped.
DS50002895A-page 172  2019 Microchip Technology Inc.

Mixing C/C++ and Assembly Language
The function-like macro is shown in the following example assigning to result the con-
tent of value, swapped.

uint64_t result;
int example (void)
{
 uint64_t value = 0x0123456789ABCDEFull;
 result = _bswapdw (value);
 /* result == 0xEFCDAB8967452301 */
}

The compiler may generate assembly code similar to the following for this example:

 ldr r2, .L6 @ r2 = 0x01234567
 ldr r3, .L6+4 @ r3 = 0x89ABCDEF

 rev r1, r2 @ from inline asm
 rev r3, r3 @ from inline asm

 ldr r2, .L6+8 @ r2 = address of 'result'
 stm r2, {r1, r3} @ store value to 'result'
 bx lr @ return
 ...
 .align 2
.L6:
 .word 19088743 @ 0x01234567
 .word -1985229329 @ 0x89ABCDEF
 .word result

17.2.2 Equivalent Assembly Symbols

C/C++ symbols can be accessed directly with no modification in extended assembly
code.

17.3 PREDEFINED MACRO

There is one predefined macro available once you include <xc.h>. It is _nop(). This
macro inserts a nop instruction.
 2019 Microchip Technology Inc. DS50002895A-page 173

Compiler User’s Guide for PIC32C/SAM MCUs
NOTES:
DS50002895A-page 174  2019 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
USER’S GUIDE FOR

PIC32C/SAM MCUs

Chapter 18. Optimizations
Different MPLAB XC32 C/C++ Compiler editions support different levels of optimiza-
tion. Some editions are free to download and others must be purchased. Visit
http://www.microchip.com/MPLABXC compilers for more information on C and C++
licenses.

The compiler editions are:

Setting Optimization Levels

Different optimizations may be set ranging from no optimization to full optimization,
depending on your compiler edition. When debugging code, you may wish to not
optimize your code to ensure expected program flow.

For details on compiler options used to set optimizations, see Section 5.8.7 “Options
for Controlling Optimization”.

Edition Cost Description

Professional (PRO) Yes Implemented with the highest optimizations and
performance levels.

Free No Implemented with the most code optimizations
restrictions.

Evaluation (EVAL) No PRO edition enabled for 60 days and then reverts to
Free edition.
 2019 Microchip Technology Inc. DS50002895A-page 175

Compiler User’s Guide for PIC32C/SAM MCUs
NOTES:
DS50002895A-page 176  2019 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
USER’S GUIDE FOR

PIC32C/SAM MCUs

Chapter 19. Preprocessing
All C/C++ source files are preprocessed before compilation. Assembly source files that
use the .S extension (upper case) are also preprocessed. A large number of options
control the operation of the preprocessor and preprocessed code (see
Section 5.8.8 “Options for Controlling the Preprocessor”).

19.1 PREPROCESSOR DIRECTIVES

MPLAB XC32 C/C++ Compiler accepts all the standard preprocessor directives, which
are listed in Table 19-1.

TABLE 19-1: PREPROCESSOR DIRECTIVES

Directive Meaning Example

Preprocessor null directive, do nothing

#assert Generate error if condition false #assert SIZE > 10

#define Define preprocessor macro #define SIZE 5
#define FLAG
#define add(a,b) ((a)+(b))

#elif Short for #else #if see #ifdef

#else Conditionally include source lines see #if

#endif Terminate conditional source inclusion see #if

#error Generate an error message #error Size too big

#if Include source lines if constant
expression true

#if SIZE < 10
 c = process(10)
#else
 skip();
#endif

#ifdef Include source lines if preprocessor
symbol defined

#ifdef FLAG
 do_loop();
#elif SIZE == 5
 skip_loop();
#endif

#ifndef Include source lines if preprocessor
symbol not defined

#ifndef FLAG
 jump();
#endif

#include Include text file into source #include <stdio.h>
#include "project.h"

#line Specify line number and file name for
listing

#line 3 final

#nn (Where nn is a number) short for
#line nn

#20

#pragma Compiler specific options Refer to Section 19.3 “Pragma
Directives”

#undef Undefines preprocessor symbol #undef FLAG

#warning Generate a warning message #warning Length not set
 2019 Microchip Technology Inc. DS50002895A-page 177

Compiler User’s Guide for PIC32C/SAM MCUs
Macro expansion using arguments can use the # character to convert an argument to
a string, and the ## sequence to concatenate arguments. If two expressions are being
concatenated, consider using two macros in case either expression requires
substitution itself, so for example,

#define paste1(a,b) a##b
#define paste(a,b) paste1(a,b)

lets you use the paste macro to concatenate two expressions that themselves may
require further expansion. The replacement token is rescanned for more macro identi-
fiers, but remember that once a particular macro identifier has been expanded, it will
not be expanded again if it appears after concatenation.

The type and conversion of numeric values in the preprocessor domain is the same as
in the C domain. Preprocessor values do not have a type, but acquire one as soon as
they are converted by the preprocessor. Expressions may overflow their allocated type
in the same way that C expressions may overflow.

Overflow may be avoided by using a constant suffix. For example, an L after the
number indicates it should be interpreted as a long once converted.

So, for example:

#define MAX 100000*100000

and

#define MAX 100000*100000L

(note the L suffix) will define the values 0x540be400 and 0x2540be400, respectively.

19.2 C/C++ LANGUAGE COMMENTS

A C/C++ comment is ignored by the compiler and can be used to provide information
to someone reading the source code. They should be used freely.

Comments may be added by enclosing the desired characters within /* and */. The
comment can run over multiple lines, but comments cannot be nested. Comments can
be placed anywhere in C/C++ code, even in the middle of expressions, but cannot be
placed in character constants or string literals.

Since comments cannot be nested, it may be desirable to use the #if preprocessor
directive to comment out code that already contains comments, for example:

#if 0
result = read(); /* TODO: Jim, check this function is right */

#endif

Single-line, C++ style comments may also be specified. Any characters following // to
the end of the line are taken to be a comment and will be ignored by the compiler, as
shown below:

result = read(); // TODO: Jim, check this function is right
DS50002895A-page 178  2019 Microchip Technology Inc.

Preprocessing
19.3 PRAGMA DIRECTIVES

The #pragma directive may be used to modify the behavior of the compiler. The gen-
eral format of a pragma directive is:

#pragma [GCC] keyword options

where keyword is one of a set of supported keywords, some of which may be followed
by a number of options.

Certain keywords must be preceded by GCC indicating that the keyword is a GCC
extension. Any keyword not understood by the compiler will be ignored. The keywords
supported for PIC32C/SAM devices are given below.

19.3.1 Pragmas to Control Function Attributes

#pragma long_calls

Set all functions following the pragma to have the long_call function attribute.

#pragma no_long_calls

Set all functions following the pragma to have the short_call attribute.

#pragma long_calls_off

Disable the effect of any preceding long_calls or long_calls_off pragma, so
that following functions will not have any long_call or short_call attribute implic-
itly set.

19.3.2 Pragmas to Control Options/Optimization

#pragma GCC target ("string" ...)

This pragma may be used to set target-specific options for all subsequent function defi-
nitions. The arguments allowed are any options prefixed with -m, such that -m will be
prepended to each string given to form the target options, i.e., #pragma GCC target
("arch=armv7e-m"). All function definitions following this pragma will behave as if
the attribute ((target("string")) were applied to the definition. The parentheses
are optional.

#pragma GCC optimize ("string" ...)

This pragma may be used to set optimization options for all subsequent function defi-
nitions. The arguments allowed may be:

- A number n, to be interpreted as an optimization level, i.e., the -On option

- A string beginning with O, which is interpreted as an optimization option, i.e.,
-Ostring

- Otherwise, string should be an option with the prefix -f.

All function definitions following the pragma behave as if the attribute ((opti-
mize("string")) were specified for the definition. The parentheses are optional.

#pragma GCC push_options

#pragma GCC pop_options

These pragmas allow for maintaining a stack of target and optimize options. The
push_options pragma will push the current options onto the stack, which will be the
command-line options if no target or optimize pragma are in effect. The pop_op-
tions will restore the options in effect to those last pushed onto the stack.
 2019 Microchip Technology Inc. DS50002895A-page 179

Compiler User’s Guide for PIC32C/SAM MCUs
#pragma GCC reset_options

Clears any current options set via the target or optimize pragmas for all subse-
quent function definitions.

19.3.3 MPLAB XC32 Pragmas

The following pragma directives are specific to the MPLAB XC32 compiler.

#pragma config identifier = value

The config pragma allows for the setting of device-specific configuration bits for an
application. See Section 7.4 “Configuration Bit Access” for a description of the syn-
tax for the config options.

19.4 PREDEFINED MACROS

These are the predefined 32-bit C/C++ compiler macros available for use with the com-
piler.

The compiler provides a number of macro definitions which characterize the various
target-specific options and other aspects of the compiler and host environment.

TABLE 19-2: MACRO DEFINITIONS

Macro Meaning

__PIC__
__pic__

The translation unit is being compiled for position
independent code.

__PIC32C
__PIC32C__

Defined when a PIC32CX device is specified with the
-mprocessor option. Always defined when targeting a
PIC32C/SAM device.

__PIC32CZ Defined when a PIC32CZ device is specified with the
-mprocessor option.

__LANGUAGE_ASSEMBLY
__LANGUAGE_ASSEMBLY__
_LANGUAGE_ASSEMBLY

Defined if compiling a pre-processed assembly file (.S
files).

LANGUAGE_ASSEMBLY Defined if compiling a pre-processed assembly file (.S
files) and -ansi is not specified.

__LANGUAGE_C
__LANGUAGE_C__
_LANGUAGE_C

Defined if compiling a C file.

LANGUAGE_C Defined if compiling a C file and -ansi is not specified.

__LANGUAGE_C_PLUS_PLUS
__cplusplus
_LANGUAGE_C_PLUS_PLUS__

Defined if compiling a C++ file.

__EXCEPTIONS Defined if C++ exceptions are enabled.

__GXX_RTTI Defined if runtime type information is enabled.

__processor__ Where “processor” is the capitalized argument to the
-mprocessor option. For example,
-mprocessor=32CX0525SG12144 will define
__32CX05255SG12144__

__XC Always defined to indicate that this is a Microchip XC
compiler.

__XC32 Always defined to indicate this the XC32 compiler.
DS50002895A-page 180  2019 Microchip Technology Inc.

Preprocessing
See also the device-specific include files (pic32c/include/proc/p32*.h) for other macros
that can be used to determine the features available on the selected device. You will
find these macros near the end of the header file.

__VERSION__ The __VERSION__ macro expands to a string constant
describing the compiler in use. Do not rely on its contents
having any particular form, but it should contain at least
the release number. Use the __XC32_VERSION macro
for a numeric version number.

__XC32_VERSION or
__C32_VERSION__

The C compiler defines the constant __XC32_VERSION,
giving a numeric value to the version identifier. This
macro can be used to construct applications that take
advantage of new compiler features while still remaining
backward compatible with older versions. The value is
based upon the major and minor version numbers of the
current release. For example, release version 1.03 will
have a __XC32_VERSION definition of 1030. This macro
can be used, in conjunction with standard preprocessor
comparison statements, to conditionally include/exclude
various code constructs.

__arm__ Defined when compiling for ARM architectures,
regardless of whether generating Thumb or ARM code.

__thumb__ Defined to indicate the compiler is generating Thumb
code. This definition is subject to the -mthumb and
-marm options.

__thumb2__ Defined when generating Thumb code for a target
processor supporting the Thumb-2 instruction set.

__SOFTFP__ Defined when compiling for software floating-point, i.e.
when -mfloat-abi=soft is in effect.

__ARM_FP Defined to an integer mask describing the floating-point
capability of the current target processor. This is 0 when
software floating point is in effect. Otherwise, bits 1, 2
and 3 of the mask are set to indicate support for 16, 32
and 64-bit hardware floating point, respectively.

TABLE 19-2: MACRO DEFINITIONS (CONTINUED)

Macro Meaning
 2019 Microchip Technology Inc. DS50002895A-page 181

Compiler User’s Guide for PIC32C/SAM MCUs
NOTES:
DS50002895A-page 182  2019 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
USER’S GUIDE FOR

PIC32C/SAM MCUs

Chapter 20. Linking Programs

®
See the MPLAB XC32 Assembler, Linker and Utilities User’s Guide (DS50002186) for
more detailed information on the linker.

The compiler will automatically invoke the linker unless the compiler has been
requested to stop after producing an intermediate file.

Linker scripts are used to specify the available memory regions and where sections
should be positioned in those regions.

The linker creates a map file which details the memory assigned to sections. The map
file is the best place to look for memory information.

20.1 REPLACING LIBRARY SYMBOLS

Unlike with the Microchip MPLAB XC8 compiler, not all library functions can be
replaced with user-defined routines using MPLAB XC32 C/C++ Compiler. Only weak
library functions (see Section 8.11 “Variable Attributes”) can be replaced in this way.
For those that are weak, any function you write in your code will replace an identically
named function in the library files.

20.2 LINKER-DEFINED SYMBOLS

The 32-bit linker defines several symbols that can be used in your C code develop-
ment. Please see the MPLAB® XC32 Assembler, Linker and Utilities User’s Guide
(DS50002186) for more information.

The linker defines the symbols _ramfunc_begin and _bmxdkpba_address, which rep-
resent the starting address in RAM where ram functions will be accessed, and the cor-
responding address in the program memory from which the functions will be copied.
They are used by the default runtime start-up code to initialize the bus matrix if ram
functions exist in the project (see Section 13.3 “Allocation of Function Code”).

The linker also defines the symbol _stack, which is used by the runtime start-up code
to initialize the stack pointer. This symbol represents the starting address for the
software stack.

All the above symbols are rarely required for most programs, but may assist you if you
are writing your own runtime start-up code.
 2019 Microchip Technology Inc. DS50002895A-page 183

Compiler User’s Guide for PIC32C/SAM MCUs
NOTES:
DS50002895A-page 184  2019 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
USER’S GUIDE FOR
PIC32C/SAM MCUs

 2019 Microchip Technology Inc. DS50002895A-page 185

Appendix A. Embedded Compiler Compatibility Mode

Since very different device architectures may be targeted by other compilers, the
semantics of the non-standard extensions may be different to that in the MPLAB XC
compilers. This document indicates when the original C code may need to be reviewed.

A.1 COMPILING IN COMPATIBILITY MODE

An option is used to enable vendor-specific syntax compatibility. When using MPLAB
XC8, this option is --ext=vendor; when using MPLAB XC16 or MPLAB XC32, the
option is -mext=vendor. The argument vendor is a key that is used to represent the
syntax. See Table A-1 for a list of all keys usable with the MPLAB XC compilers.

The Common Compiler Interface is a language standard that is common to all
Microchip MPLAB XC compilers. The non-standard extensions associated with this
syntax are already described in Chapter 2. “Common C Interface” and are not
repeated here.

A.2 SYNTAX COMPATIBILITY

The goal of this syntax compatibility feature is to ease the migration process when
porting source code from other C compilers to the native MPLAB XC compiler syntax.

Many non-standard extensions are not required when compiling for Microchip devices
and, for these, there are no equivalent extensions offered by MPLAB XC compilers.
These extensions are then simply ignored by the MPLAB XC compilers, although a
warning message is usually produced to ensure that you are aware of the different
compiler behavior. You should confirm that your project will still operate correctly with
these features disabled.

Other non-standard extensions are not compatible with Microchip devices. Errors will
be generated by the MPLAB XC compiler if these extensions are not removed from the
source code. You should review the ramifications of removing the extension and decide
whether changes are required to other source code in your project.

TABLE A-1: VENDOR KEYS

Vendor
key

Syntax
XC8

Support
XC16

Support
XC32

Support

cci Common Compiler Interface Yes Yes Yes

iar IAR C/C++ Compiler™ for Arm Yes Yes Yes

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 186  2019 Microchip Technology Inc.

Table A-2 indicates the various levels of compatibility used in the tables that are pre-
sented throughout this guide.

Note that even if a C feature is supported by an MPLAB XC compiler, addresses, reg-
ister names, assembly instructions, or any other device-specific argument is unlikely to
be valid when compiling for a Microchip device. Always review code which uses these
items in conjunction with the data sheet of your target Microchip device.

A.3 DATA TYPE

Some compilers allow use of the boolean type, bool, as well as associated values true
and false, as specified by the C99 ANSI Standard. This type and these values may be
used by all MPLAB XC compilers when in compatibility mode1, as shown in Table A-3.

As indicated by the ANSI Standard, the <stdbool.h> header must be included for this
feature to work as expected when it is used with MPLAB XC compilers.

Do not confuse the boolean type, bool, and the integer type, bit, implemented by
MPLAB XC8.

A.4 OPERATOR

The @ operator may be used with other compilers to indicate the desired memory loca-
tion of an object. As Table A-4 indicates, support for this syntax in MPLAB C is limited
to MPLAB XC8 only.

Any address specified with another device is unlikely to be correct on a new architec-
ture. Review the address in conjunction with the data sheet for your target Microchip
device.

Using @ in a compatibility mode with MPLAB XC8 will work correctly, but will generate
a warning. To prevent this warning from appearing again, use the reviewed address
with the MPLAB C __at() specifier instead.

TABLE A-2: LEVEL OF SUPPORT INDICATORS

Level Explanation

support The syntax is accepted in the specified compatibility mode, and its
meaning will mimic its meaning when it is used with the original compiler.

support (no args) In the case of pragmas, the base pragma is supported in the specified
compatibility mode, but the arguments are ignored.

native support The syntax is equivalent to that which is already accepted by the MPLAB
XC compiler, and the semantics are compatible. You can use this feature
without a vendor compatibility mode having been enabled.

ignore The syntax is accepted in the specified compatibility mode, but the implied
action is not required or performed. The extension is ignored and a warning
will be issued by the compiler.

error The syntax is not accepted in the specified compatibility mode. An error will
be issued and compilation will be terminated.

1. Not all C99 features have been adopted by all Microchip MPLAB XC compilers.

TABLE A-3: SUPPORT FOR C99 BOOL TYPE

IAR Compatibility Mode

Type XC8 XC16 XC32

bool support support support

Embedded Compiler Compatibility Mode

 2019 Microchip Technology Inc. DS50002895A-page 187

For MPLAB XC16/32, consider using the address attribute.

A.5 EXTENDED KEYWORDS

Non-standard extensions often specify how objects are defined or accessed. Keywords
are usually used to indicate the feature. The non-standard C keywords corresponding
to other compilers are listed in Table A-5, as well as the level of compatibility offered by
MPLAB XC compilers. The table notes offer more information about extensions.

TABLE A-4: SUPPORT FOR NON-STANDARD OPERATOR

IAR Compatibility Mode

Operator XC8 XC16 XC32

@ native support error error

TABLE A-5: SUPPORT FOR NON-STANDARD KEYWORDS

IAR Compatibility Mode

Keyword XC8 XC16 XC32

__section_begin ignore support support

__section_end ignore support support

__section_size ignore support support

__segment_begin ignore support support

__segment_end ignore support support

__segment_size ignore support support

__sfb ignore support support

__sfe ignore support support

__sfs ignore support support

__asm or asm(1) support(2) native support native support

__arm ignore ignore ignore

__big_endian error error error

__fiq support error error

__intrinsic ignore ignore ignore

__interwork ignore ignore ignore

__irq support error error

__little_en-
dian(3)

ignore ignore ignore

__nested ignore ignore ignore

__no_init support support support

__noreturn ignore support support

__ramfunc ignore ignore support(4)

__packed ignore(5) support support

__root ignore support support

__swi ignore ignore ignore

__task ignore support support

__weak ignore support support

__thumb ignore ignore ignore

__farfunc ignore ignore ignore

__huge ignore ignore ignore

__nearfunc ignore ignore ignore

__inline support native support native support

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 188  2019 Microchip Technology Inc.

Note 1: All assembly code specified by this construct is device-specific and will need review
when porting to any Microchip device.

2: The keyword, asm, is supported natively by MPLAB XC8, but this compiler only sup-
ports the __asm keyword in IAR compatibility mode.

3: This is the default (and only) endianism used by all MPLAB XC compilers.

4: When used with MPLAB XC32, this must be used with the __longcall__ macro
for full compatibility.

5: Although this keyword is ignored, by default, all structures are packed when using
MPLAB XC8, so there is no loss of functionality.

A.6 INTRINSIC FUNCTIONS

Intrinsic functions can be used to perform common tasks in the source code. The
MPLAB XC compilers’ support for the intrinsic functions offered by other compilers is
shown in Table A-6.

Note 1: These intrinsic functions map to macros which disable or enable the global interrupt
enable bit on 8-bit PIC® devices.

The header file <xc.h> must be included for supported functions to operate correctly.

A.7 PRAGMAS

Pragmas may be used by a compiler to control code generation. Any compiler will
ignore an unknown pragma, but many pragmas implemented by another compiler have
also been implemented by the MPLAB XC compilers in compatibility mode. Table A-7
shows the pragmas and the level of support when using each of the MPLAB XC com-
pilers.

Many of these pragmas take arguments. Even if a pragma is supported by an MPLAB
XC compiler, this support may not apply to all of the pragma’s arguments. This is indi-
cated in the table.

TABLE A-6: SUPPORT FOR NON-STANDARD INTRINSIC FUNCTIONS

IAR Compatibility Mode

Function XC8 XC16 XC32

__disable_fiq(1) support ignore ignore

__disable_interrupt support support support

__disable_irq(1) support ignore ignore

__enable_fiq(1) support ignore ignore

__enable_interrupt support support support

__enable_irq(1) support ignore ignore

__get_interrupt_state ignore support support

__set_interrupt_state ignore support support

TABLE A-7: SUPPORT FOR NON-STANDARD PRAGMAS

IAR Compatibility Mode

Pragma XC8 XC16 XC32

bitfields ignore ignore ignore

data_alignment ignore support support

diag_default ignore ignore ignore

diag_error ignore ignore ignore

diag_remark ignore ignore ignore

diag_suppress ignore ignore ignore

Embedded Compiler Compatibility Mode

 2019 Microchip Technology Inc. DS50002895A-page 189

diag_warning ignore ignore ignore

include_alias ignore ignore ignore

inline support (no args) support (no args) support (no args)

language ignore ignore ignore

location ignore support support

message support native support native support

object_attribute ignore ignore ignore

optimize ignore native support native support

pack ignore native support native support

__printf_args support support support

required ignore support support

rtmodel ignore ignore ignore

__scanf__args ignore support support

section ignore support support

segment ignore support support

swi_number ignore ignore ignore

type_attribute ignore ignore ignore

weak ignore native support native support

TABLE A-7: SUPPORT FOR NON-STANDARD PRAGMAS (CONTINUED)

IAR Compatibility Mode

Pragma XC8 XC16 XC32

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 190  2019 Microchip Technology Inc.

NOTES:

MPLAB® XC32 C/C++ COMPILER
USER’S GUIDE FOR
PIC32C/SAM MCUs

 2019 Microchip Technology Inc. DS50002895A-page 191

Appendix B. Implementation-Defined Behavior

B.1 OVERVIEW

ISO C requires a conforming implementation to document the choices for behaviors
defined in the standard as “implementation-defined.” The following sections list all such
areas, the choices made for the compiler and the corresponding section number from
the ISO/IEC 9899:1999 standard.

B.2 TRANSLATION

B.3 ENVIRONMENT

ISO Standard: “How a diagnostic is identified (3.10, 5.1.1.3).”

Implementation: All output to stderr is a diagnostic.

ISO Standard: “Whether each nonempty sequence of white-space characters other than
new-line is retained or replaced by one space character in translation
phase 3 (5.1.1.2).”

Implementation: Each sequence of whitespace is replaced by a single character.

ISO Standard: “The name and type of the function called at program start-up in a
freestanding environment (5.1.2.1).”

Implementation: int main (void);

ISO Standard: “The effect of program termination in a freestanding environment
(5.1.2.1).”

Implementation: An infinite loop (branch to self) instruction will be executed.

ISO Standard: “An alternative manner in which the main function may be defined
(5.1.2.2.1).”

Implementation: int main (void);

ISO Standard: “The values given to the strings pointed to by the argv argument to
main (5.1.2.2.1).”

Implementation: No arguments are passed to main. Reference to argc or argv is
undefined.

ISO Standard: “What constitutes an interactive device (5.1.2.3).”

Implementation: Application defined.

ISO Standard: “Signals for which the equivalent of signal(sig, SIG_IGN); is
executed at program start-up (7.14.1.1).”

Implementation: Signals are application defined.

ISO Standard: “The form of the status returned to the host environment to indicate
unsuccessful termination when the SIGABRT signal is raised and not
caught (7.20.4.1).”

Implementation: The host environment is application defined.

ISO Standard: “The forms of the status returned to the host environment by the exit
function to report successful and unsuccessful termination (7.20.4.3).”

Implementation: The host environment is application defined.

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 192  2019 Microchip Technology Inc.

B.4 IDENTIFIERS

B.5 CHARACTERS

ISO Standard: “The status returned to the host environment by the exit function if the
value of its argument is other than zero, EXIT_SUCCESS, or
EXIT_FAILURE (7.20.4.3).”

Implementation: The host environment is application defined.

ISO Standard: “The set of environment names and the method for altering the
environment list used by the getenv function (7.20.4.4).”

Implementation: The host environment is application defined.

ISO Standard: “The manner of execution of the string by the system function (7.20.4.5).”

Implementation: The host environment is application defined.

ISO Standard: “Which additional multibyte characters may appear in identifiers and their
correspondence to universal character names (6.4.2).”

Implementation: No.

ISO Standard: “The number of significant initial characters in an identifier (5.2.4.1,
6.4.2).”

Implementation: All characters are significant.

ISO Standard: “The number of bits in a byte (C90 3.4, C99 3.6).”

Implementation: 8.

ISO Standard: “The values of the members of the execution character set (C90 and C99
5.2.1).”

ISO Standard: “The unique value of the member of the execution character set produced
for each of the standard alphabetic escape sequences (C90 and C99
5.2.2).”

Implementation: The execution character set is ASCII.

ISO Standard: “The value of a char object into which has been stored any character
other than a member of the basic execution character set (C90 6.1.2.5,
C99 6.2.5).”

Implementation: The value of the char object is the 8-bit binary representation of the char-
acter in the source character set. That is, no translation is done.

ISO Standard: “Which of signed char or unsigned char has the same range, representa-
tion, and behavior as “plain” char (C90 6.1.2.5, C90 6.2.1.1, C99 6.2.5,
C99 6.3.1.1).”

Implementation: By default on PIC32C, unsigned char is functionally equivalent to plain
char.

ISO Standard: “The mapping of members of the source character set (in character con-
stants and string literals) to members of the execution character set (C90
6.1.3.4, C99 6.4.4.4, C90 and C99 5.1.1.2).”

Implementation: The binary representation of the source character set is preserved to the
execution character set.

ISO Standard: “The value of an integer character constant containing more than one
character or containing a character or escape sequence that does not
map to a single-byte execution character (C90 6.1.3.4, C99 6.4.4.4).”

Implementation: The compiler determines the value for a multi-character character con-
stant one character at a time. The previous value is shifted left by eight,
and the bit pattern of the next character is masked in. The final result is of
type int. If the result is larger than can be represented by an int, a
warning diagnostic is issued and the value truncated to int size.

Implementation-Defined Behavior

 2019 Microchip Technology Inc. DS50002895A-page 193

B.6 INTEGERS

ISO Standard: “The value of a wide character constant containing more than one multib-
yte character, or containing a multibyte character or escape sequence not
represented in the extended execution character set (C90 6.1.3.4, C99
6.4.4.4).”

Implementation: See previous.

ISO Standard: “The current locale used to convert a wide character constant consisting
of a single multibyte character that maps to a member of the extended
execution character set into a corresponding wide character code (C90
6.1.3.4, C99 6.4.4.4).”

Implementation: LC_ALL

ISO Standard: “The current locale used to convert a wide string literal into corresponding
wide character codes (C90 6.1.4, C99 6.4.5).”

Implementation: LC_ALL

ISO Standard: “The value of a string literal containing a multibyte character or escape
sequence not represented in the execution character set (C90 6.1.4, C99
6.4.5).”

Implementation: The binary representation of the characters is preserved from the source
character set.

ISO Standard: “Any extended integer types that exist in the implementation (C99 6.2.5).”

Implementation: There are no extended integer types.

ISO Standard: “Whether signed integer types are represented using sign and magnitude,
two’s complement, or one’s complement, and whether the extraordinary
value is a trap representation or an ordinary value (C99 6.2.6.2).”

Implementation: All integer types are represented as two’s complement, and all bit
patterns are ordinary values.

ISO Standard: “The rank of any extended integer type relative to another extended inte-
ger type with the same precision (C99 6.3.1.1).”

Implementation: No extended integer types are supported.

ISO Standard: “The result of, or the signal raised by, converting an integer to a signed
integer type when the value cannot be represented in an object of that
type (C90 6.2.1.2, C99 6.3.1.3).”

Implementation: When converting value X to a type of width N, the value of the result is the
Least Significant N bits of the 2’s complement representation of X. That is,
X is truncated to N bits. No signal is raised.

ISO Standard: “The results of some bitwise operations on signed integers (C90 6.3, C99
6.5).”

Implementation: Bitwise operations on signed values act on the 2’s complement represen-
tation, including the sign bit. The result of a signed right shift expression is
sign extended.
C99 allows some aspects of signed '<<' to be undefined. The compiler
does not do so.

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 194  2019 Microchip Technology Inc.

B.7 FLOATING-POINT

ISO Standard: “The accuracy of the floating-point operations and of the library functions
in <math.h> and <complex.h> that return floating-point results (C90 and
C99 5.2.4.2.2).”

Implementation: The accuracy is unknown.

ISO Standard: “The accuracy of the conversions between floating-point internal repre-
sentations and string representations performed by the library functions in
<stdio.h>, <stdlib.h>, and <wchar.h> (C90 and C99 5.2.4.2.2).”

Implementation: The accuracy is unknown.

ISO Standard: “The rounding behaviors characterized by non-standard values of
FLT_ROUNDS (C90 and C99 5.2.4.2.2).”

Implementation: No such values are used.

ISO Standard: “The evaluation methods characterized by non-standard negative values
of FLT_EVAL_METHOD (C90 and C99 5.2.4.2.2).”

Implementation: No such values are used.

ISO Standard: “The direction of rounding when an integer is converted to a floating-point
number that cannot exactly represent the original value (C90 6.2.1.3, C99
6.3.1.4).”

Implementation: C99 Annex F is followed.

ISO Standard: “The direction of rounding when a floating-point number is converted to a
narrower floating-point number (C90 6.2.1.4, 6.3.1.5).”

Implementation: C99 Annex F is followed.

ISO Standard: “How the nearest representable value or the larger or smaller represent-
able value immediately adjacent to the nearest representable value is
chosen for certain floating constants (C90 6.1.3.1, C99 6.4.4.2).”

Implementation: C99 Annex F is followed.

ISO Standard: “Whether and how floating expressions are contracted when not disal-
lowed by the FP_CONTRACT pragma (C99 6.5).”

Implementation: The pragma is not implemented.

ISO Standard: “The default state for the FENV_ACCESS pragma (C99 7.6.1).”

Implementation: This pragma is not implemented.

ISO Standard: “Additional floating-point exceptions, rounding modes, environments, and
classifications, and their macro names (C99 7.6, 7.12).”

Implementation: None supported.

ISO Standard: “The default state for the FP_CONTRACT pragma (C99 7.12.2).”

Implementation: This pragma is not implemented.

ISO Standard: “Whether the “inexact” floating-point exception can be raised when the
rounded result actually does equal the mathematical result in an IEC
60559 conformant implementation (C99 F.9).”

Implementation: Unknown.

ISO Standard: “Whether the “underflow” (and “inexact”) floating-point exception can be
raised when a result is tiny but not inexact in an IEC 60559 conformant
implementation (C99 F.9).”

Implementation: Unknown.

Implementation-Defined Behavior

 2019 Microchip Technology Inc. DS50002895A-page 195

B.8 ARRAYS AND POINTERS

B.9 HINTS

B.10 STRUCTURES, UNIONS, ENUMERATIONS, AND BIT FIELDS

ISO Standard: “The result of converting a pointer to an integer or vice versa (C90 6.3.4,
C99 6.3.2.3).”

Implementation: A cast from an integer to a pointer or vice versa results uses the binary
representation of the source type, reinterpreted as appropriate for the
destination type.
If the source type is larger than the destination type, the Most Significant
bits are discarded. When casting from a pointer to an integer, if the source
type is smaller than the destination type, the result is sign extended.
When casting from an integer to a pointer, if the source type is smaller
than the destination type, the result is extended based on the signedness
of the source type.

ISO Standard: “The size of the result of subtracting two pointers to elements of the same
array (C90 6.3.6, C99 6.5.6).”

Implementation: 32-bit signed integer.

ISO Standard: “The extent to which suggestions made by using the register stor-
age-class specifier are effective (C90 6.5.1, C99 6.7.1).”

Implementation: The register storage class specifier generally has no effect.

ISO Standard: “The extent to which suggestions made by using the inline function
specifier are effective (C99 6.7.4).”

Implementation: If -fno-inline or -O0 are specified, no functions will be inlined, even if
specified with the inline specifier. Otherwise, the function may or may
not be inlined dependent on the optimization heuristics of the compiler.

ISO Standard: “A member of a union object is accessed using a member of a different
type (C90 6.3.2.3).”

Implementation: The corresponding bytes of the union object are interpreted as an object
of the type of the member being accessed without regard for alignment or
other possible invalid conditions.

ISO Standard: “Whether a “plain” int bit field is treated as a signed int bit field or as
an unsigned int bit field (C90 6.5.2, C90 6.5.2.1, C99 6.7.2, C99
6.7.2.1).”

Implementation: By default on PIC32C, a plain int bit field is treated as an unsigned inte-
ger. Note that this is different from the PIC32M. The default behavior can
be set explicitly by the compiler flags -funsigned-bitfields and
-fsigned-bitfields.

ISO Standard: “Allowable bit field types other than _Bool, signed int, and unsigned
int (C99 6.7.2.1).”

Implementation: No other types are supported.

ISO Standard: “Whether a bit field can straddle a storage unit boundary (C90 6.5.2.1,
C99 6.7.2.1).”

Implementation: No.

ISO Standard: “The order of allocation of bit fields within a unit (C90 6.5.2.1, C99
6.7.2.1).”

Implementation: Bit fields are allocated left to right.

ISO Standard: “The alignment of non-bit field members of structures (C90 6.5.2.1, C99
6.7.2.1).”

Implementation: Each member is located to the lowest available offset allowable according
to the alignment restrictions of the member type.

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 196  2019 Microchip Technology Inc.

B.11 QUALIFIERS

B.12 DECLARATORS

B.13 STATEMENTS

ISO Standard: “The integer type compatible with each enumerated type (C90 6.5.2.2,
C99 6.7.2.2).”

Implementation: If the enumeration values are all non-negative, the type is unsigned
int, else it is int. The -fshort-enums command line option can
change this.

ISO Standard: “What constitutes an access to an object that has volatile-qualified type
(C90 6.5.3, C99 6.7.3).”

Implementation: Any expression which uses the value of or stores a value to a volatile
object is considered an access to that object. There is no guarantee that
such an access is atomic.
If an expression contains a reference to a volatile object but neither uses
the value nor stores to the object, the expression is considered an access
to the volatile object or not depending on the type of the object. If the
object is of scalar type, an aggregate type with a single member of scalar
type, or a union with members of (only) scalar type, the expression is con-
sidered an access to the volatile object. Otherwise, the expression is
evaluated for its side effects but is not considered an access to the volatile
object.
For example:
volatile int a;
a; /* access to ‘a’ since ‘a’ is scalar */

ISO Standard: “The maximum number of declarators that may modify an arithmetic,
structure or union type (C90 6.5.4).”

Implementation: No limit.

ISO Standard: “The maximum number of case values in a switch statement (C90
6.6.4.2).”

Implementation: No limit.

Implementation-Defined Behavior

 2019 Microchip Technology Inc. DS50002895A-page 197

B.14 PRE-PROCESSING DIRECTIVES

ISO Standard: “How sequences in both forms of header names are mapped to headers
or external source file names (C90 6.1.7, C99 6.4.7).”

Implementation: The character sequence between the delimiters is considered to be a
string which is a file name for the host environment.

ISO Standard: “Whether the value of a character constant in a constant expression that
controls conditional inclusion matches the value of the same character
constant in the execution character set (C90 6.8.1, C99 6.10.1).”

Implementation: Yes.

ISO Standard: “Whether the value of a single-character character constant in a con-
stant expression that controls conditional inclusion may have a negative
value (C90 6.8.1, C99 6.10.1).”

Implementation: Yes.

ISO Standard: “The places that are searched for an included < > delimited header and
how the places are specified or the header is identified (C90 6.8.2, C99
6.10.2).”

Implementation: <install directory>/lib/gcc/pic32c/6.2.1/include

<install directory>/pic32c/include

ISO Standard: “How the named source file is searched for in an included "" delimited
header (C90 6.8.2, C99 6.10.2).”

Implementation: The compiler first searches for the named file in the directory containing
the including file, the directories specified by the -iquote command line
option (if any), then the directories which are searched for a < > delimited
header.

ISO Standard: “The method by which preprocessing tokens are combined into a header
name (C90 6.8.2, C99 6.10.2).”

Implementation: All tokens, including whitespace, are considered part of the header file
name. Macro expansion is not performed on tokens inside the delimiters.

ISO Standard: “The nesting limit for #include processing (C90 6.8.2, C99 6.10.2).”

Implementation: No limit.

ISO Standard: “The behavior on each recognized non-STDC #pragma directive (C90
6.8.6, C99 6.10.6).”

Implementation: See Section 8.11 “Variable Attributes”.

ISO Standard: “The definitions for __DATE_ _ and __TIME_ _ when respectively, the
date and time of translation are not available (C90 6.8.8, C99 6.10.8).”

Implementation: The date and time of translation are always available.

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 198  2019 Microchip Technology Inc.

B.15 LIBRARY FUNCTIONS

ISO Standard: “The Null Pointer constant to which the macro NULL expands (C90 7.1.6,
C99 7.17).”

Implementation: (void *)0

ISO Standard: “Any library facilities available to a freestanding program, other than the
minimal set required by clause 4 (5.1.2.1).”

Implementation: See the 32-Bit Language Tools Libraries (DS51685).

ISO Standard: “The format of the diagnostic printed by the assert macro (7.2.1.1).”

Implementation: “Failed assertion ‘message’ at line line of ‘filename’.\n”

ISO Standard: “The default state for the FENV_ACCESS pragma (7.6.1).”

Implementation: Unimplemented.

ISO Standard: “The representation of floating-point exception flags stored by the
fegetexceptflag function (7.6.2.2).”

Implementation: Unimplemented.

ISO Standard: “Whether the feraiseexcept function raises the inexact exception in
addition to the overflow or underflow exception (7.6.2.3).”

Implementation: Unimplemented.

ISO Standard: “Floating environment macros other than FE_DFL_ENV that can be used
as the argument to the fesetenv or feupdateenv function (7.6.4.3,
7.6.4.4).”

Implementation: Unimplemented.

ISO Standard: “Strings other than "C" and "" that may be passed as the second argu-
ment to the setlocale function (7.11.1.1).”

Implementation: None.

ISO Standard: “The types defined for float_t and double_t when the value of the
FLT_EVAL_METHOD macro is less than 0 or greater than 2 (7.12).”

Implementation: Unimplemented.

ISO Standard: “The infinity to which the INFINITY macro expands, if any (7.12).”

Implementation: Unimplemented.

ISO Standard: “The quiet NaN to which the NAN macro expands, when it is defined
(7.12).”

Implementation: Unimplemented.

ISO Standard: “Domain errors for the mathematics functions, other than those required
by this International Standard (7.12.1).”

Implementation: None.

ISO Standard: “The values returned by the mathematics functions and whether errno
is set to the value of the macro EDOM, on domain errors (7.12.1).”

Implementation: errno is set to EDOM on domain errors.

ISO Standard: “Whether the mathematics functions set errno to the value of the macro
ERANGE on overflow and/or underflow range errors (7.12.1).”

Implementation: Yes.

ISO Standard: “The default state for the FP_CONTRACT pragma (7.12.2)

Implementation: Unimplemented.

ISO Standard: “Whether a domain error occurs or zero is returned when the fmod
function has a second argument of zero (7.12.10.1).”

Implementation: NaN is returned.

ISO Standard: “The base-2 logarithm of the modulus used by the remquo function in
reducing the quotient (7.12.10.3).”

Implementation: Unimplemented.

ISO Standard: “The set of signals, their semantics, and their default handling (7.14).”

Implementation-Defined Behavior

 2019 Microchip Technology Inc. DS50002895A-page 199

Implementation: The default handling of signals is to always return failure. Actual signal
handling is application defined.

ISO Standard: “If the equivalent of signal(sig, SIG_DFL); is not executed prior to
the call of a signal handler, the blocking of the signal that is performed
(7.14.1.1).”

Implementation: Application defined.

ISO Standard: “Whether the equivalent of signal(sig, SIG_DFL); is executed prior
to the call of a signal handler for the signal SIGILL (7.14.1.1).”

Implementation: Application defined.

ISO Standard: “Signal values other than SIGFPE, SIGILL, and SIGSEGV that
correspond to a computational exception (7.14.1.1).”

Implementation: Application defined.

ISO Standard: “Whether the last line of a text stream requires a terminating new-line
character (7.19.2).”

Implementation: Yes.

ISO Standard: “Whether space characters that are written out to a text stream
immediately before a new-line character appear when read in (7.19.2).”

Implementation: Yes.

ISO Standard: “The number of null characters that may be appended to data written to a
binary stream (7.19.2).”

Implementation: No null characters are appended to a binary stream.

ISO Standard: “Whether the file position indicator of an append-mode stream is initially
positioned at the beginning or end of the file (7.19.3).”

Implementation: Application defined. The system level function open is called with the
O_APPEND flag.

ISO Standard: “Whether a write on a text stream causes the associated file to be
truncated beyond that point (7.19.3).”

Implementation: Application defined.

ISO Standard: “The characteristics of file buffering (7.19.3).”

ISO Standard: “Whether a zero-length file actually exists (7.19.3).”

Implementation: Application defined.

ISO Standard: “The rules for composing valid file names (7.19.3).”

Implementation: Application defined.

ISO Standard: “Whether the same file can be open multiple times (7.19.3).”

Implementation: Application defined.

ISO Standard: “The nature and choice of encodings used for multibyte characters in files
(7.19.3).”

Implementation: Encodings are the same for each file.

ISO Standard: “The effect of the remove function on an open file (7.19.4.1).”

Implementation: Application defined. The system function unlink is called.

ISO Standard: “The effect if a file with the new name exists prior to a call to the rename
function (7.19.4.2).”

Implementation: Application defined. The system function link is called to create the new
file name, then unlink is called to remove the old file name. Typically,
link will fail if the new file name already exists.

ISO Standard: “Whether an open temporary file is removed upon abnormal program
termination (7.19.4.3).”

Implementation: No.

ISO Standard: “What happens when the tmpnam function is called more than TMP_MAX
times (7.19.4.4).”

Implementation: Temporary names will wrap around and be reused.

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 200  2019 Microchip Technology Inc.

ISO Standard: “Which changes of mode are permitted (if any), and under what
circumstances (7.19.5.4).”

Implementation: The file is closed via the system level close function and re-opened with
the open function with the new mode. No additional restriction beyond
those of the application defined open and close functions are imposed.

ISO Standard: “The style used to print an infinity or NaN, and the meaning of the
n-char-sequence if that style is printed for a NaN (7.19.6.1, 7.24.2.1).”

Implementation: No char sequence is printed.
NaN is printed as "NaN."
Infinity is printed as "[-/+]Inf."

ISO Standard: “The output for %p conversion in the fprintf or fwprintf function
(7.19.6.1, 7.24.2.1).”

Implementation: Functionally equivalent to %x.

ISO Standard: “The interpretation of a - character that is neither the first nor the last
character, nor the second where a ^ character is the first, in the scanlist
for %[conversion in the fscanf or fwscanf function (7.19.6.2,
7.24.2.1).”

Implementation: Unknown

ISO Standard: “The set of sequences matched by the %p conversion in the fscanf or
fwscanf function (7.19.6.2, 7.24.2.2).”

Implementation: The same set of sequences matched by %x.

ISO Standard: “The interpretation of the input item corresponding to a %p conversion in
the fscanf or fwscanf function (7.19.6.2, 7.24.2.2).”

Implementation: If the result is not a valid pointer, the behavior is undefined.

ISO Standard: “The value to which the macro errno is set by the fgetpos, fsetpos,
or ftell functions on failure (7.19.9.1, 7.19.9.3, 7.19.9.4).”

Implementation: If the result exceeds LONG_MAX, errno is set to ERANGE.
Other errors are application defined according to the application definition
of the lseek function.

ISO Standard: “The meaning of the n-char-sequence in a string converted by the str-
tod, strtof, strtold, wcstod, wcstof, or wcstold function
(7.20.1.3, 7.24.4.1.1).”

Implementation: No meaning is attached to the sequence.

ISO Standard: “Whether or not the strtod, strtof, strtold, wcstod, wcstof, or
wcstold function sets errno to ERANGE when underflow occurs
(7.20.1.3, 7.24.4.1.1).”

Implementation: Yes.

ISO Standard: “Whether the calloc, malloc, and realloc functions return a Null
Pointer or a pointer to an allocated object when the size requested is zero
(7.20.3).”

Implementation: A pointer to a statically allocated object is returned.

ISO Standard: “Whether open output streams are flushed, open streams are closed, or
temporary files are removed when the abort function is called
(7.20.4.1).”

Implementation: No.

ISO Standard: “The termination status returned to the host environment by the abort
function (7.20.4.1).”

Implementation: By default, there is no host environment.

ISO Standard: “The value returned by the system function when its argument is not a
Null Pointer (7.20.4.5).”

Implementation: Application defined.

ISO Standard: “The local time zone and Daylight Saving Time (7.23.1).”

Implementation-Defined Behavior

 2019 Microchip Technology Inc. DS50002895A-page 201

B.16 ARCHITECTURE

Implementation: Application defined.

ISO Standard: “The era for the clock function (7.23.2.1).”

Implementation: Application defined.

ISO Standard: “The positive value for tm_isdst in a normalized tmx structure
(7.23.2.6).”

Implementation: 1.

ISO Standard: “The replacement string for the %Z specifier to the strftime, strfx-
time, wcsftime, and wcsfxtime functions in the “C” locale (7.23.3.5,
7.23.3.6, 7.24.5.1, 7.24.5.2).”

Implementation: Unimplemented.

ISO Standard: “Whether or when the trigonometric, hyperbolic, base-e exponential,
base-e logarithmic, error, and log gamma functions raise the inexact
exception in an IEC 60559 conformant implementation (F.9).”

Implementation: No.

ISO Standard: “Whether the inexact exception may be raised when the rounded result
actually does equal the mathematical result in an IEC 60559 conformant
implementation (F.9).”

Implementation: No.

ISO Standard: “Whether the underflow (and inexact) exception may be raised when a
result is tiny but not inexact in an IEC 60559 conformant implementation
(F.9).”

Implementation: No.

ISO Standard: “Whether the functions honor the Rounding Direction mode (F.9).”

Implementation: The Rounding mode is not forced.

ISO Standard: “The values or expressions assigned to the macros specified in the
headers <float.h>, <limits.h>, and <stdint.h> (C90 and C99
5.2.4.2, C99 7.18.2, 7.18.3).”

Implementation: See Section 8.3.2 “limits.h”.

ISO Standard: “The number, order, and encoding of bytes in any object (when not
explicitly specified in the standard) (C99 6.2.6.1).”

Implementation: Little endian, populated from Least Significant Byte first. See
Section 8.2 “Data Representation”.

ISO Standard: “The value of the result of the size of operator (C90 6.3.3.4, C99
6.5.3.4).”

Implementation: See Section 8.2 “Data Representation”.

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 202  2019 Microchip Technology Inc.

NOTES:

MPLAB® XC32 C/C++ COMPILER
USER’S GUIDE FOR

PIC32C/SAM MCUs

Appendix C. Built-In Functions
This appendix lists the built-in functions that are specific to MPLAB XC32 C/C++
Compiler.

Built-in functions give the C programmer access to assembler operators or machine
instructions that are currently only accessible using inline assembly, but are sufficiently
useful that they are applicable to a broad range of applications. Built-in functions are
coded in C source files syntactically like function calls, but they are compiled to
assembly code that directly implements the function, and do not involve function calls
or library routines.

There are a number of reasons why providing built-in functions is preferable to
requiring programmers to use inline assembly. They include the following:

1. Providing built-in functions for specific purposes simplifies coding.

2. Certain optimizations are disabled when inline assembly is used. This is not the
case for built-in functions.

3. For machine instructions that use dedicated registers, coding inline assembly
while avoiding register allocation errors can require considerable care. The
built-in functions make this process simpler as you do not need to be concerned
with the particular register requirements for each individual machine instruction.
 2019 Microchip Technology Inc. DS50002895A-page 203

Compiler User’s Guide for PIC32C/SAM MCUs
C.1 BUILT-IN FUNCTION DESCRIPTIONS (PIC32C)

This section describes the programmer interface to the compiler built-in functions.
Since the functions are “built in,” there are no header files associated with them. Simi-
larly, there are no command-line switches associated with the built-in functions – they
are always available. The built-in function names are chosen such that they belong to
the compiler’s namespace (they all have the prefix __builtin_), so they will not
conflict with function or variable names in the programmer’s namespace.

Built-In Function List

• void __builtin_nop(void)

• void __builtin_software_breakpoint(void)

void __builtin_nop(void)

Description: Emit a no-op instruction.

Prototype: void __builtin_nop(void);

Argument: None.

Return Value: None.

Assembler Operator/
Machine Instruction:

nop

Error Messages None.

void __builtin_software_breakpoint(void)

Description: Emit a software breakpoint instruction.

Prototype: void __builtin_software_breakpoint(void);

Argument: None.

Return Value: None.

Assembler Operator/
Machine Instruction:

bkpt

Error Messages None.
DS50002895A-page 204  2019 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
USER’S GUIDE FOR

PIC32C/SAM MCUs

Appendix D. ASCII Character Set
TABLE D-1: ASCII CHARACTER SET

Most Significant Character

Least
 Significant
 Character

Hex 0 1 2 3 4 5 6 7

0 NUL DLE Space 0 @ P ‘ p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 " 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 Bell ETB ’ 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ l |

D CR GS - = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL
 2019 Microchip Technology Inc. DS50002895A-page 205

Compiler User’s Guide for PIC32C/SAM MCUs
NOTES:
DS50002895A-page 206  2019 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
USER’S GUIDE FOR

PIC32C/SAM MCUs

Appendix E. Document Revision History
DOCUMENT REVISION HISTORY

Revision A (June 2019)

Initial revision of the document.
 2019 Microchip Technology Inc. DS50002895A-page 207

Compiler User’s Guide for PIC32C/SAM MCUs
NOTES:
DS50002895A-page 208  2019 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
USER’S GUIDE FOR

PIC32C/SAM MCUs

Support
myMICROCHIP PERSONALIZED NOTIFICATION SERVICE

myMicrochip: http://www.microchip.com/pcn

Microchip’s personal notification service helps keep customers current on their
Microchip products of interest. Subscribers will receive e-mail notification whenever
there are changes, updates, revisions or errata related to a specified product family or
development tool.

Please visit myMicrochip to begin the registration process and select your preferences
to receive personalized notifications. A FAQ and registration details are available on
the page, which can be opened by selecting the link above.

When you are selecting your preferences, choosing “Development Systems” will pop-
ulate the list with available development tools. The main categories of tools are listed
below:

• Compilers – The latest information on Microchip C compilers, assemblers, linkers
and other language tools. These include all MPLAB C compilers; all MPLAB
assemblers (including MPASM™ assembler); all MPLAB linkers (including
MPLINK™ object linker); and all MPLAB librarians (including MPLIB™ object
librarian).

• Emulators – The latest information on Microchip in-circuit emulators. This
includes the MPLAB REAL ICE™ in-circuit emulator.

• In-Circuit Debuggers – The latest information on Microchip in-circuit debuggers.
These include the PICkit™ 2, PICkit 3 and MPLAB ICD 3 in-circuit debuggers.

• MPLAB® X IDE – The latest information on Microchip MPLAB X IDE, the Win-
dows® Integrated Development Environment for development systems tools. This
list is focused on the MPLAB X IDE, MPLAB X IDE Project Manager, MPLAB Edi-
tor and MPLAB SIM simulator, as well as general editing and debugging features.

• Programmers – The latest information on Microchip programmers. These include
the device (production) programmers MPLAB REAL ICE in-circuit emulator,
MPLAB ICD 3 in-circuit debugger, MPLAB PM3 and development (nonproduction)
programmers PICkit 2 and 3.

• Starter/Demo Boards – These include MPLAB Starter Kit boards, PICDEM demo
boards, and various other evaluation boards.
 2019 Microchip Technology Inc. DS50002895A-page 209

Compiler User’s Guide for PIC32C/SAM MCUs
THE MICROCHIP WEB SITE

Web Site: http://www.microchip.com

Microchip provides online support via our web site. This web site is used as a means
to make files and information easily available to customers. Accessible by using your
favorite Internet browser, the web site contains the following information:

• Product Support – Data sheets and errata, application notes and sample
programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical
support requests, online discussion groups, Microchip consultant program
member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives

MICROCHIP FORUMS

Forums: http://www.microchip.com/forums

Microchip provides additional online support via our web forums. Currently available
forums are:

• Development Tools

• 8-bit PIC MCUs

• 16-bit PIC MCUs

• 32-bit PIC MCUs

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative

• Local Sales Office

• Field Application Engineer (FAE)

• Technical Support

Customers should contact their distributor, representative or field application engineer
(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document. See our web site
for a complete, up-to-date listing of sales offices.

Technical Support: http://support.microchip.com

Documentation errors or comments may be emailed to docerrors@microchip.com.

CONTACT MICROCHIP TECHNOLOGY

You can call or fax Microchip Corporate offices at the numbers below:

Voice: (480) 792-7200

Fax: (480) 792-7277
DS50002895A-page 210  2019 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
USER’S GUIDE FOR

PIC32C/SAM MCUs

Glossary
A
Absolute Section

A GCC compiler section with a fixed (absolute) address that cannot be changed by the
linker.

Absolute Variable/Function

A variable or function placed at an absolute address using the OCG compiler’s @
address syntax.

Access Memory

PIC18 Only – Special registers on PIC18 devices that allow access regardless of the
setting of the Bank Select Register (BSR).

Access Entry Points

Access entry points provide a way to transfer control across segments to a function
which may not be defined at link time. They support the separate linking of boot and
secure application segments.

Address

Value that identifies a location in memory.

Alphabetic Character

Alphabetic characters are those characters that are letters of the arabic alphabet
(a, b, …, z, A, B, …, Z).

Alphanumeric

Alphanumeric characters are comprised of alphabetic characters and decimal digits
(0,1, …, 9).

ANDed Breakpoints

Set up an ANDed condition for breaking, i.e., breakpoint 1 AND breakpoint 2 must
occur at the same time before a program halt. This can only be accomplished if a data
breakpoint and a program memory breakpoint occur at the same time.

Anonymous Structure

16-bit C Compiler – An unnamed structure.

PIC18 C Compiler – An unnamed structure that is a member of a C union. The mem-
bers of an anonymous structure may be accessed as if they were members of the
enclosing union. For example, in the following code, hi and lo are members of an
anonymous structure inside the union caster.

union castaway
 int intval;
 struct {
 char lo; //accessible as caster.lo
 char hi; //accessible as caster.hi
 };
} caster;
 2019 Microchip Technology Inc. DS50002895A-page 211

Compiler User’s Guide for PIC32C/SAM MCUs
ANSI

American National Standards Institute is an organization responsible for formulating
and approving standards in the United States.

Application

A set of software and hardware that may be controlled by a PIC® microcontroller.

Archive/Archiver

An archive/library is a collection of relocatable object modules. It is created by assem-
bling multiple source files to object files, and then using the archiver/librarian to com-
bine the object files into one archive/library file. An archive/library can be linked with
object modules and other archives/libraries to create executable code.

ASCII

American Standard Code for Information Interchange is a character set encoding that
uses 7 binary digits to represent each character. It includes upper and lower case
letters, digits, symbols and control characters.

Assembly/Assembler

Assembly is a programming language that describes binary machine code in a sym-
bolic form. An assembler is a language tool that translates assembly language source
code into machine code.

Assigned Section

A GCC compiler section which has been assigned to a target memory block in the linker
command file.

Asynchronously

Multiple events that do not occur at the same time. This is generally used to refer to
interrupts that may occur at any time during processor execution.

Asynchronous Stimulus

Data generated to simulate external inputs to a simulator device.

Attribute

GCC Characteristics of variables or functions in a C program which are used to
describe machine-specific properties.

Attribute, Section

GCC Characteristics of sections, such as “executable”, “readonly”, or “data” that can
be specified as flags in the assembler .section directive.

B
Binary

The base two numbering system that uses the digits 0-1. The rightmost digit counts
ones, the next counts multiples of 2, then 22 = 4, etc.

Bookmarks

Use bookmarks to easily locate specific lines in a file.

Select Toggle Bookmarks on the Editor toolbar to add/remove bookmarks. Click other
icons on this toolbar to move to the next or previous bookmark.

Breakpoint

Hardware Breakpoint: An event whose execution will cause a halt.

Software Breakpoint: An address where execution of the firmware will halt. Usually
achieved by a special break instruction.
DS50002895A-page 212  2019 Microchip Technology Inc.

Glossary
Build

Compile and link all the source files for an application.

C
C\C++

C is a general-purpose programming language which features economy of expression,
modern control flow and data structures, and a rich set of operators. C++ is the
object-oriented version of C.

Calibration Memory

A special function register or registers used to hold values for calibration of a PIC micro-
controller on-board RC oscillator or other device peripherals.

Central Processing Unit

The part of a device that is responsible for fetching the correct instruction for execution,
decoding that instruction, and then executing that instruction. When necessary, it works
in conjunction with the arithmetic logic unit (ALU) to complete the execution of the
instruction. It controls the program memory address bus, the data memory address
bus, and accesses to the stack.

Clean

Clean removes all intermediary project files, such as object, hex and debug files, for
the active project. These files are recreated from other files when a project is built.

COFF

Common Object File Format. An object file of this format contains machine code,
debugging and other information.

Command Line Interface

A means of communication between a program and its user based solely on textual
input and output.

Compiled Stack

A region of memory managed by the compiler in which variables are statically allocated
space. It replaces a software or hardware stack when such mechanisms cannot be effi-
ciently implemented on the target device.

Compiler

A program that translates a source file written in a high-level language into machine
code.

Conditional Assembly

Assembly language code that is included or omitted based on the assembly-time value
of a specified expression.

Conditional Compilation

The act of compiling a program fragment only if a certain constant expression, specified
by a preprocessor directive, is true.

Configuration Bits

Special-purpose bits programmed to set PIC microcontroller modes of operation. A
Configuration bit may or may not be preprogrammed.

Control Directives

Directives in assembly language code that cause code to be included or omitted based
on the assembly-time value of a specified expression.

CPU

See Central Processing Unit.
 2019 Microchip Technology Inc. DS50002895A-page 213

Compiler User’s Guide for PIC32C/SAM MCUs
Cross Reference File

A file that references a table of symbols and a list of files that references the symbol. If
the symbol is defined, the first file listed is the location of the definition. The remaining
files contain references to the symbol.

D
Data Directives

Data directives are those that control the assembler’s allocation of program or data
memory and provide a way to refer to data items symbolically; that is, by meaningful
names.

Data Memory

On Microchip MCU and DSC devices, data memory (RAM) is comprised of General
Purpose Registers (GPRs) and Special Function Registers (SFRs). Some devices also
have EEPROM data memory.

Data Monitor and Control Interface (DMCI)

The Data Monitor and Control Interface, or DMCI, is a tool in MPLAB X IDE. The inter-
face provides dynamic input control of application variables in projects. Applica-
tion-generated data can be viewed graphically using any of 4 dynamically-assignable
graph windows.

Debug/Debugger

See ICE/ICD.

Debugging Information

Compiler and assembler options that, when selected, provide varying degrees of infor-
mation used to debug application code. See compiler or assembler documentation for
details on selecting debug options.

Deprecated Features

Features that are still supported for legacy reasons, but will eventually be phased out
and no longer used.

Device Programmer

A tool used to program electrically programmable semiconductor devices such as
microcontrollers.

Digital Signal Controller

A A digital signal controller (DSC) is a microcontroller device with digital signal
processing capability, i.e., Microchip dsPIC DSC devices.

Digital Signal Processing\Digital Signal Processor

Digital signal processing (DSP) is the computer manipulation of digital signals, com-
monly analog signals (sound or image) which have been converted to digital form (sam-
pled). A digital signal processor is a microprocessor that is designed for use in digital
signal processing.

Directives

Statements in source code that provide control of the language tool’s operation.

Download

Download is the process of sending data from a host to another device, such as an
emulator, programmer or target board.

DWARF

Debug With Arbitrary Record Format. DWARF is a debug information format for ELF
files.
DS50002895A-page 214  2019 Microchip Technology Inc.

Glossary
E
EEPROM

Electrically Erasable Programmable Read Only Memory. A special type of PROM that
can be erased electrically. Data is written or erased one byte at a time. EEPROM
retains its contents even when power is turned off.

ELF

Executable and Linking Format. An object file of this format contains machine code.
Debugging and other information is specified in with DWARF. ELF/DWARF provide
better debugging of optimized code than COFF.

Emulation/Emulator

See ICE/ICD.

Endianness

The ordering of bytes in a multi-byte object.

Environment

MPLAB PM3 – A folder containing files on how to program a device. This folder can be
transferred to a SD/MMC card.

Epilogue

A portion of compiler-generated code that is responsible for deallocating stack space,
restoring registers and performing any other machine-specific requirement specified in
the runtime model. This code executes after any user code for a given function,
immediately prior to the function return.

EPROM

Erasable Programmable Read Only Memory. A programmable read-only memory that
can be erased usually by exposure to ultraviolet radiation.

Error/Error File

An error reports a problem that makes it impossible to continue processing your pro-
gram. When possible, an error identifies the source file name and line number where
the problem is apparent. An error file contains error messages and diagnostics
generated by a language tool.

Event

A description of a bus cycle which may include address, data, pass count, external
input, cycle type (fetch, R/W), and time stamp. Events are used to describe triggers,
breakpoints and interrupts.

Executable Code

Software that is ready to be loaded for execution.

Export

Send data out of the MPLAB X IDE in a standardized format.

Expressions

Combinations of constants and/or symbols separated by arithmetic or logical
operators.

Extended Microcontroller Mode

In extended microcontroller mode, on-chip program memory as well as external mem-
ory is available. Execution automatically switches to external if the program memory
address is greater than the internal memory space of the PIC18 device.
 2019 Microchip Technology Inc. DS50002895A-page 215

Compiler User’s Guide for PIC32C/SAM MCUs
Extended Mode (PIC18 MCUs)

In Extended mode, the compiler will utilize the extended instructions (i.e., ADDFSR,
ADDULNK, CALLW, MOVSF, MOVSS, PUSHL, SUBFSR and SUBULNK) and the indexed with lit-
eral offset addressing.

External Label

A label that has external linkage.

External Linkage

A function or variable has external linkage if it can be referenced from outside the
module in which it is defined.

External Symbol

A symbol for an identifier which has external linkage. This may be a reference or a
definition.

External Symbol Resolution

A process performed by the linker in which external symbol definitions from all input
modules are collected in an attempt to resolve all external symbol references. Any
external symbol references which do not have a corresponding definition cause a linker
error to be reported.

External Input Line

An external input signal logic probe line (TRIGIN) for setting an event based upon
external signals.

External RAM

Off-chip Read/Write memory.

F
Fatal Error

An error that will halt compilation immediately. No further messages will be produced.

File Registers

On-chip data memory, including General Purpose Registers (GPRs) and Special
Function Registers (SFRs).

Filter

Determine by selection what data is included/excluded in a trace display or data file.

Fixup

The process of replacing object file symbolic references with absolute addresses after
relocation by the linker.

Flash

A type of EEPROM where data is written or erased in blocks instead of bytes.

FNOP

Forced No Operation. A forced NOP cycle is the second cycle of a two-cycle instruc-
tion. Since the PIC microcontroller architecture is pipelined, it prefetches the next
instruction in the physical address space while it is executing the current instruction.
However, if the current instruction changes the program counter, this prefetched
instruction is explicitly ignored, causing a forced NOP cycle.

Frame Pointer

A pointer that references the location on the stack that separates the stack-based
arguments from the stack-based local variables. Provides a convenient base from
which to access local variables and other values for the current function.
DS50002895A-page 216  2019 Microchip Technology Inc.

Glossary
Free-Standing

An implementation that accepts any strictly conforming program that does not use
complex types and in which the use of the features specified in the library clause (ANSI
‘89 standard clause 7) is confined to the contents of the standard headers <float.h>,
<iso646.h>, <limits.h>, <stdarg.h>, <stdbool.h>, <stddef.h> and <stdint.h>.

G
GPR

General Purpose Register. The portion of device data memory (RAM) available for
general use.

H
Halt

A stop of program execution. Executing Halt is the same as stopping at a breakpoint.

Heap

An area of memory used for dynamic memory allocation where blocks of memory are
allocated and freed in an arbitrary order determined at runtime.

Hex Code\Hex File

Hex code is executable instructions stored in a hexadecimal format code. Hex code is
contained in a hex file.

Hexadecimal

The base 16 numbering system that uses the digits 0-9 plus the letters A-F (or a-f). The
digits A-F represent hexadecimal digits with values of (decimal) 10 to 15. The rightmost
digit counts ones, the next counts multiples of 16, then 162 = 256, etc.

High Level Language

A language for writing programs that is further removed from the processor than
assembly.

I
ICE/ICD

In-Circuit Emulator/In-Circuit Debugger: A hardware tool that debugs and programs a
target device. An emulator has more features than an debugger, such as trace.

In-Circuit Emulation/In-Circuit Debug: The act of emulating or debugging with an
in-circuit emulator or debugger.

-ICE/-ICD: A device (MCU or DSC) with on-board in-circuit emulation or debug circuitry.
This device is always mounted on a header board and used to debug with an in-circuit
emulator or debugger.

ICSP™

In-Circuit Serial Programming™. A method of programming Microchip embedded
devices using serial communication and a minimum number of device pins.

IDE

Integrated Development Environment, as in MPLAB X IDE.

Identifier

A function or variable name.

IEEE

Institute of Electrical and Electronics Engineers.

Import

Bring data into the MPLAB X IDE from an outside source, such as from a hex file.
 2019 Microchip Technology Inc. DS50002895A-page 217

Compiler User’s Guide for PIC32C/SAM MCUs
Initialized Data

Data which is defined with an initial value. In C,

int myVar=5;

defines a variable which will reside in an initialized data section.

Instruction Set

The collection of machine language instructions that a particular processor
understands.

Instructions

A sequence of bits that tells a central processing unit to perform a particular operation
and can contain data to be used in the operation.

Internal Linkage

A function or variable has internal linkage if it can not be accessed from outside the
module in which it is defined.

International Organization for Standardization

An organization that sets standards in many businesses and technologies, including
computing and communications. Also known as ISO.

Interrupt

A signal to the CPU that suspends the execution of a running application and transfers
control to an Interrupt Service Routine (ISR) so that the event may be processed. Upon
completion of the ISR, normal execution of the application resumes.

Interrupt Handler

A routine that processes special code when an interrupt occurs.

Interrupt Service Request (IRQ)

An event which causes the processor to temporarily suspend normal instruction exe-
cution and to start executing an interrupt handler routine. Some processors have
several interrupt request events allowing different priority interrupts.

Interrupt Service Routine (ISR)

Language tools – A function that handles an interrupt.

MPLAB X IDE – User-generated code that is entered when an interrupt occurs. The
location of the code in program memory will usually depend on the type of interrupt that
has occurred.

Interrupt Vector

Address of an interrupt service routine or interrupt handler.

L
L-value

An expression that refers to an object that can be examined and/or modified. An l-value
expression is used on the left-hand side of an assignment.

Latency

The time between an event and its response.

Library/Librarian

See Archive/Archiver.

Linker

A language tool that combines object files and libraries to create executable code,
resolving references from one module to another.
DS50002895A-page 218  2019 Microchip Technology Inc.

Glossary
Linker Script Files

Linker script files are the command files of a linker. They define linker options and
describe available memory on the target platform.

Listing Directives

Listing directives are those directives that control the assembler listing file format. They
allow the specification of titles, pagination and other listing control.

Listing File

A listing file is an ASCII text file that shows the machine code generated for each C
source statement, assembly instruction, assembler directive, or macro encountered in
a source file.

Little Endian

A data ordering scheme for multibyte data whereby the least significant byte (LSB) is
stored at the lower addresses.

Local Label

A local label is one that is defined inside a macro with the LOCAL directive. These
labels are particular to a given instance of a macro’s instantiation. In other words, the
symbols and labels that are declared as local are no longer accessible after the ENDM
macro is encountered.

Logic Probes

Up to 14 logic probes can be connected to some Microchip emulators. The logic probes
provide external trace inputs, trigger output signal, +5V, and a common ground.

Loop-Back Test Board

Used to test the functionality of the MPLAB REAL ICE in-circuit emulator.

LVDS

Low Voltage Differential Signaling. A low noise, low-power, low amplitude method for
high-speed (gigabits per second) data transmission over copper wire.

With standard I/O signaling, data storage is contingent upon the actual voltage level.
Voltage level can be affected by wire length (longer wires increase resistance, which
lowers voltage). But with LVDS, data storage is distinguished only by positive and neg-
ative voltage values, not the voltage level. Therefore, data can travel over greater
lengths of wire while maintaining a clear and consistent data stream.

Source: http://www.webopedia.com/TERM/L/LVDS.html.

M
Machine Code

The representation of a computer program that is actually read and interpreted by the
processor. A program in binary machine code consists of a sequence of machine
instructions (possibly interspersed with data). The collection of all possible instructions
for a particular processor is known as its “instruction set”.

Machine Language

A set of instructions for a specific central processing unit, designed to be usable by a
processor without being translated.

Macro

Macro instruction. An instruction that represents a sequence of instructions in abbrevi-
ated form.

Macro Directives

Directives that control the execution and data allocation within macro body definitions.
 2019 Microchip Technology Inc. DS50002895A-page 219

http://www.webopedia.com/TERM/L/LVDS.html

Compiler User’s Guide for PIC32C/SAM MCUs
Makefile

Export to a file the instructions to Make the project. Use this file to Make your project
outside of MPLAB X IDE, i.e., with a make.

Make Project

A command that rebuilds an application, recompiling only those source files that have
changed since the last complete compilation.

MCU

Microcontroller Unit. An abbreviation for microcontroller. Also uC.

Memory Model

For C compilers, a representation of the memory available to the application. For the
PIC18 C compiler, a description that specifies the size of pointers that point to program
memory.

Message

Text displayed to alert you to potential problems in language tool operation. A message
will not stop operation.

Microcontroller

A highly integrated chip that contains a CPU, RAM, program memory, I/O ports and
timers.

Microcontroller Mode

One of the possible program memory configurations of PIC18 microcontrollers. In
microcontroller mode, only internal execution is allowed. Thus, only the on-chip
program memory is available in microcontroller mode.

Microprocessor Mode

One of the possible program memory configurations of PIC18 microcontrollers. In
microprocessor mode, the on-chip program memory is not used. The entire program
memory is mapped externally.

Mnemonics

Text instructions that can be translated directly into machine code. Also referred to as
opcodes.

Module

The preprocessed output of a source file after preprocessor directives have been exe-
cuted. Also known as a translation unit.

MPASM™ Assembler

Microchip Technology’s relocatable macro assembler for PIC microcontroller devices,
KeeLoq® devices and Microchip memory devices.

MPLAB Language Tool for Device

Microchip’s C compilers, assemblers and linkers for specified devices. Select the type
of language tool based on the device you will be using for your application, e.g., if you
will be creating C code on a PIC18 MCU, select the MPLAB C Compiler for PIC18
MCUs.

MPLAB® ICD

Microchip in-circuit debugger that works with MPLAB X IDE. See ICE/ICD.

MPLAB X IDE

Microchip’s Integrated Development Environment.MPLAB X IDE comes with an editor,
project manager and simulator.
DS50002895A-page 220  2019 Microchip Technology Inc.

Glossary
MPLAB PM3

A device programmer from Microchip. Programs PIC18 microcontrollers and dsPIC
digital signal controllers. Can be used with MPLAB X IDE or stand-alone. Replaces
PRO MATE II.

MPLAB REAL ICE™ In-Circuit Emulator

Microchip’s next-generation in-circuit emulator that works with MPLAB X IDE. See
ICE/ICD.

MPLAB SIM

Microchip’s simulator that works with MPLAB X IDE in support of PIC MCU and dsPIC
DSC devices.

MPLIB™ Object Librarian

Microchip’s librarian that can work with MPLAB X IDE. MPLIB librarian is an object
librarian for use with COFF object modules created using either MPASM assembler
(mpasm or mpasmwin v2.0) or MPLAB C18 C Compiler.

MPLINK™ Object Linker

MPLINK linker is an object linker for the Microchip MPASM assembler and the Micro-
chip C18 C compiler. MPLINK linker also may be used with the Microchip MPLIB librar-
ian. MPLINK linker is designed to be used with MPLAB X IDE, though it does not have
to be.

MRU

Most Recently Used. Refers to files and windows available to be selected from MPLAB
X IDE main pull down menus.

N
Native Data Size

For Native trace, the size of the variable used in a Watch window must be of the same
size as the selected device’s data memory: bytes for PIC18 devices and words for
16-bit devices.

Nesting Depth

The maximum level to which macros can include other macros.

Node

MPLAB X IDE project component.

Non-Extended Mode (PIC18 MCUs)

In Non-Extended mode, the compiler will not utilize the extended instructions nor the
indexed with literal offset addressing.

Non Real Time

Refers to the processor at a breakpoint or executing single-step instructions or MPLAB
X IDE being run in simulator mode.

Non-Volatile Storage

A storage device whose contents are preserved when its power is off.

NOP

No Operation. An instruction that has no effect when executed except to advance the
program counter.
 2019 Microchip Technology Inc. DS50002895A-page 221

Compiler User’s Guide for PIC32C/SAM MCUs
O
Object Code/Object File

Object code is the machine code generated by an assembler or compiler. An object file
is a file containing machine code and possibly debug information. It may be immedi-
ately executable or it may be relocatable, requiring linking with other object files, e.g.,
libraries, to produce a complete executable program.

Object File Directives

Directives that are used only when creating an object file.

Octal

The base 8 number system that only uses the digits 0-7. The rightmost digit counts
ones, the next digit counts multiples of 8, then 82 = 64, etc.

Off-Chip Memory

Off-chip memory refers to the memory selection option for the PIC18 device where
memory may reside on the target board, or where all program memory may be supplied
by the emulator. The Memory tab accessed from Options>Development Mode
provides the Off-Chip Memory selection dialog box.

Opcodes

Operational Codes. See Mnemonics.

Operators

Symbols, like the plus sign ‘+’ and the minus sign ‘-’, that are used when forming
well-defined expressions. Each operator has an assigned precedence that is used to
determine order of evaluation.

OTP

One Time Programmable. EPROM devices that are not in windowed packages. Since
EPROM needs ultraviolet light to erase its memory, only windowed devices are eras-
able.

P
Pass Counter

A counter that decrements each time an event (such as the execution of an instruction
at a particular address) occurs. When the pass count value reaches zero, the event is
satisfied. You can assign the Pass Counter to break and trace logic, and to any
sequential event in the complex trigger dialog.

PC

Personal Computer or Program Counter.

PC Host

Any PC running a supported Windows operating system.

Persistent Data

Data that is never cleared or initialized. Its intended use is so that an application can
preserve data across a device Reset.

Phantom Byte

An unimplemented byte in the dsPIC architecture that is used when treating the 24-bit
instruction word as if it were a 32-bit instruction word. Phantom bytes appear in dsPIC
hex files.

PIC® MCUs

PIC microcontrollers (MCUs) refers to all Microchip microcontroller families.
DS50002895A-page 222  2019 Microchip Technology Inc.

Glossary
PICkit 2 and 3

Microchip’s developmental device programmers with debug capability through Debug
Express. See the Readme files for each tool to see which devices are supported.

Plug-ins

The MPLAB X IDE has both built-in components and plug-in modules to configure the
system for a variety of software and hardware tools. Several plug-in tools may be found
under the Tools menu.

Pod

The enclosure for an in-circuit emulator or debugger. Other names are “Puck”, if the
enclosure is round, and “Probe”, not be confused with logic probes.

Power-on-Reset Emulation

A software randomization process that writes random values in data RAM areas to
simulate uninitialized values in RAM upon initial power application.

Pragma

A directive that has meaning to a specific compiler. Often a pragma is used to convey
implementation-defined information to the compiler. MPLAB C30 uses attributes to
convey this information.

Precedence

Rules that define the order of evaluation in expressions.

Production Programmer

A production programmer is a programming tool that has resources designed in to pro-
gram devices rapidly. It has the capability to program at various voltage levels and com-
pletely adheres to the programming specification. Programming a device as fast as
possible is of prime importance in a production environment where time is of the
essence as the application circuit moves through the assembly line.

Profile

For MPLAB SIM simulator, a summary listing of executed stimulus by register.

Program Counter

The location that contains the address of the instruction that is currently executing.

Program Counter Unit

16-bit assembler – A conceptual representation of the layout of program memory. The
program counter increments by 2 for each instruction word. In an executable section,
2 program counter units are equivalent to 3 bytes. In a read-only section, 2 program
counter units are equivalent to 2 bytes.

Program Memory

MPLAB X IDE – The memory area in a device where instructions are stored. Also, the
memory in the emulator or simulator containing the downloaded target application firm-
ware.

16-bit assembler/compiler – The memory area in a device where instructions are
stored.

Project

A project contains the files needed to build an application (source code, linker script
files, etc.) along with their associations to various build tools and build options.

Prologue

A portion of compiler-generated code that is responsible for allocating stack space, pre-
serving registers and performing any other machine-specific requirement specified in
the runtime model. This code executes before any user code for a given function.
 2019 Microchip Technology Inc. DS50002895A-page 223

Compiler User’s Guide for PIC32C/SAM MCUs
Prototype System

A term referring to a user's target application, or target board.

Psect

The OCG equivalent of a GCC section, short for program section. A block of code or
data which is treated as a whole by the linker.

PWM Signals

Pulse Width Modulation Signals. Certain PIC MCU devices have a PWM peripheral.

Q
Qualifier

An address or an address range used by the Pass Counter or as an event before
another operation in a complex trigger.

R
Radix

The number base, hex, or decimal, used in specifying an address.

RAM

Random Access Memory (Data Memory). Memory in which information can be
accessed in any order.

Raw Data

The binary representation of code or data associated with a section.

Read Only Memory

Memory hardware that allows fast access to permanently stored data but prevents
addition to or modification of the data.

Real Time

When an in-circuit emulator or debugger is released from the halt state, the processor
runs in Real Time mode and behaves exactly as the normal chip would behave. In Real
Time mode, the real time trace buffer of an emulator is enabled and constantly captures
all selected cycles, and all break logic is enabled. In an in-circuit emulator or debugger,
the processor executes in real time until a valid breakpoint causes a halt, or until the
user halts the execution.

In the simulator, real time simply means execution of the microcontroller instructions as
fast as they can be simulated by the host CPU.

Recursive Calls

A function that calls itself, either directly or indirectly.

Recursion

The concept that a function or macro, having been defined, can call itself. Great care
should be taken when writing recursive macros; it is easy to get caught in an infinite
loop where there will be no exit from the recursion.

Reentrant

A function that may have multiple, simultaneously active instances. This may happen
due to either direct or indirect recursion or through execution during interrupt
processing.

Relaxation

The process of converting an instruction to an identical, but smaller instruction. This is
useful for saving on code size. MPLAB XC32 currently knows how to relax a CALL
instruction into an RCALL instruction. This is done when the symbol that is being called
is within +/- 32k instruction words from the current instruction.
DS50002895A-page 224  2019 Microchip Technology Inc.

Glossary
Relocatable

An object whose address has not been assigned to a fixed location in memory.

Relocatable Section

16-bit assembler – A section whose address is not fixed (absolute). The linker assigns
addresses to relocatable sections through a process called relocation.

Relocation

A process performed by the linker in which absolute addresses are assigned to relo-
catable sections and all symbols in the relocatable sections are updated to their new
addresses.

ROM

Read Only Memory (Program Memory). Memory that cannot be modified.

Run

The command that releases the emulator from halt, allowing it to run the application
code and change or respond to I/O in real time.

Run-time Model

Describes the use of target architecture resources.

Runtime Watch

A Watch window where the variables change in as the application is run. See individual
tool documentation to determine how to set up a runtime watch. Not all tools support
runtime watches.

S
Scenario

For MPLAB SIM simulator, a particular setup for stimulus control.

Section

The GCC equivalent of an OCG psect. A block of code or data which is treated as a
whole by the linker.

Section Attribute

A GCC characteristic ascribed to a section (e.g., an access section).

Sequenced Breakpoints

Breakpoints that occur in a sequence. Sequence execution of breakpoints is
bottom-up; the last breakpoint in the sequence occurs first.

Serialized Quick Turn Programming

Serialization allows you to program a serial number into each microcontroller device
that the Device Programmer programs. This number can be used as an entry code,
password or ID number.

Shell

The MPASM assembler shell is a prompted input interface to the macro assembler.
There are two MPASM assembler shells: one for the DOS version and one for the
Windows version.

Simulator

A software program that models the operation of devices.
 2019 Microchip Technology Inc. DS50002895A-page 225

Compiler User’s Guide for PIC32C/SAM MCUs
Single Step

This command steps though code, one instruction at a time. After each instruction,
MPLAB X IDE updates register windows, watch variables, and status displays so you
can analyze and debug instruction execution. You can also single step C compiler
source code, but instead of executing single instructions, MPLAB X IDE will execute all
assembly level instructions generated by the line of the high level C statement.

Skew

The information associated with the execution of an instruction appears on the proces-
sor bus at different times. For example, the executed opcodes appears on the bus as
a fetch during the execution of the previous instruction, the source data address and
value and the destination data address appear when the opcodes is actually executed,
and the destination data value appears when the next instruction is executed. The trace
buffer captures the information that is on the bus at one instance. Therefore, one trace
buffer entry will contain execution information for three instructions. The number of cap-
tured cycles from one piece of information to another for a single instruction execution
is referred to as the skew.

Skid

When a hardware breakpoint is used to halt the processor, one or more additional
instructions may be executed before the processor halts. The number of extra
instructions executed after the intended breakpoint is referred to as the skid.

Source Code

The form in which a computer program is written by the programmer. Source code is
written in a formal programming language which can be translated into machine code
or executed by an interpreter.

Source File

An ASCII text file containing source code.

Special Function Registers (SFRs)

The portion of data memory (RAM) dedicated to registers that control I/O processor
functions, I/O status, timers or other modes or peripherals.

SQTP

See Serialized Quick Turn Programming.

Stack, Hardware

Locations in PIC microcontroller where the return address is stored when a function call
is made.

Stack, Software

Memory used by an application for storing return addresses, function parameters, and
local variables. This memory is dynamically allocated at runtime by instructions in the
program. It allows for reentrant function calls.

Stack, Compiled

A region of memory managed and allocated by the compiler in which variables are stat-
ically assigned space. It replaces a software stack when such mechanisms cannot be
efficiently implemented on the target device. It precludes reentrancy.

MPLAB Starter Kit for Device

Microchip’s starter kits contains everything needed to begin exploring the specified
device. View a working application and then debug and program you own changes.

Static RAM or SRAM

Static Random Access Memory. Program memory you can read/write on the target
board that does not need refreshing frequently.
DS50002895A-page 226  2019 Microchip Technology Inc.

Glossary
Status Bar

The Status Bar is located on the bottom of the MPLAB X IDE window and indicates
such current information as cursor position, development mode and device, and active
tool bar.

Step Into

This command is the same as Single Step. Step Into (as opposed to Step Over) follows
a CALL instruction into a subroutine.

Step Over

Step Over allows you to debug code without stepping into subroutines. When stepping
over a CALL instruction, the next breakpoint will be set at the instruction after the CALL.
If for some reason the subroutine gets into an endless loop or does not return properly,
the next breakpoint will never be reached. The Step Over command is the same as
Single Step except for its handling of CALL instructions.

Step Out

Step Out allows you to step out of a subroutine which you are currently stepping
through. This command executes the rest of the code in the subroutine and then stops
execution at the return address to the subroutine.

Stimulus

Input to the simulator, i.e., data generated to exercise the response of simulation to
external signals. Often the data is put into the form of a list of actions in a text file.
Stimulus may be asynchronous, synchronous (pin), clocked and register.

Stopwatch

A counter for measuring execution cycles.

Storage Class

Determines the lifetime of the memory associated with the identified object.

Storage Qualifier

Indicates special properties of the objects being declared (e.g., const).

Symbol

A symbol is a general purpose mechanism for describing the various pieces which
comprise a program. These pieces include function names, variable names, section
names, file names, struct/enum/union tag names, etc. Symbols in MPLAB X IDE refer
mainly to variable names, function names and assembly labels. The value of a symbol
after linking is its value in memory.

Symbol, Absolute

Represents an immediate value such as a definition through the assembly .equ
directive.

System Window Control

The system window control is located in the upper left corner of windows and some dia-
logs. Clicking on this control usually pops up a menu that has the items “Minimize,”
“Maximize,” and “Close.”

T
Target

Refers to user hardware.

Target Application

Software residing on the target board.
 2019 Microchip Technology Inc. DS50002895A-page 227

Compiler User’s Guide for PIC32C/SAM MCUs
Target Board

The circuitry and programmable device that makes up the target application.

Target Processor

The microcontroller device on the target application board.

Template

Lines of text that you build for inserting into your files at a later time. The MPLAB Editor
stores templates in template files.

Tool Bar

A row or column of icons that you can click on to execute MPLAB X IDE functions.

Trace

An emulator or simulator function that logs program execution. The emulator logs pro-
gram execution into its trace buffer which is uploaded to MPLAB X IDE trace window.

Trace Memory

Trace memory contained within the emulator. Trace memory is sometimes called the
trace buffer.

Trace Macro

A macro that will provide trace information from emulator data. Since this is a software
trace, the macro must be added to code, the code must be recompiled or reassembled,
and the target device must be programmed with this code before trace will work.

Trigger Output

Trigger output refers to an emulator output signal that can be generated at any address
or address range, and is independent of the trace and breakpoint settings. Any number
of trigger output points can be set.

Trigraphs

Three-character sequences, all starting with ??, that are defined by ISO C as
replacements for single characters.

U
Unassigned Section

A section which has not been assigned to a specific target memory block in the linker
command file. The linker must find a target memory block in which to allocate an
unassigned section.

Uninitialized Data

Data which is defined without an initial value. In C,

int myVar;

defines a variable which will reside in an uninitialized data section.

Upload

The Upload function transfers data from a tool, such as an emulator or programmer, to
the host PC or from the target board to the emulator.

USB

Universal Serial Bus. An external peripheral interface standard for communication
between a computer and external peripherals over a cable using bi-serial transmission.
USB 1.0/1.1 supports data transfer rates of 12 Mbps. Also referred to as high-speed
USB, USB 2.0 supports data rates up to 480 Mbps.
DS50002895A-page 228  2019 Microchip Technology Inc.

Glossary
V
Vector

The memory locations that an application will jump to when either a Reset or interrupt
occurs.

Volatile

A variable qualifier which prevents the compiler applying optimizations that affect how
the variable is accessed in memory.

W
Warning

MPLAB X IDE – An alert that is provided to warn you of a situation that would cause
physical damage to a device, software file, or equipment.

16-bit assembler/compiler – Warnings report conditions that may indicate a problem,
but do not halt processing. In MPLAB C30, warning messages report the source file
name and line number, but include the text ‘warning:’ to distinguish them from error
messages.

Watch Variable

A variable that you may monitor during a debugging session in a Watch window.

Watch Window

Watch windows contain a list of watch variables that are updated at each breakpoint.

Watchdog Timer (WDT)

A timer on a PIC microcontroller that resets the processor after a selectable length of
time. The WDT is enabled or disabled and set up using Configuration bits.

Workbook

For MPLAB SIM stimulator, a setup for generation of SCL stimulus.
 2019 Microchip Technology Inc. DS50002895A-page 229

Compiler User’s Guide for PIC32C/SAM MCUs
NOTES:
DS50002895A-page 230  2019 Microchip Technology Inc.

MPLAB® XC32 C/C++ COMPILER
USER’S GUIDE FOR

PIC32C/SAM MCUs

Index
Symbols
... 96
__align Qualifier.. 29
__C32_VERSION__... 181
__deprecate Qualifier ... 31
__interrupt qualifier .. 29
__LANGUAGE_ASSEMBLY 180
__LANGUAGE_ASSEMBLY__.................................. 180
__LANGUAGE_C ... 180
__LANGUAGE_C__ ... 180
__persistent Qualifier... 28
__PIC__ .. 180
__pic__ .. 180
__PIC32MX.. 180
__PIC32MX__ ... 180
__processor__ ... 180
__section Qualifier ... 32
__VERSION__ ... 181
_LANGUAGE_ASSEMBLY .. 180
_LANGUAGE_C ... 180
.c... 61
.gld .. 62
.h files, see Header Files
.s... 61
Preprocessor Operator 178
Preprocessor Operator 178
#define .. 99
#ident .. 104
#if... 93
#include .. 100
#line .. 101
#pragma .. 90

Numerics
0b Binary Radix Specifier 121
32-Bit C Compiler Macros...................................... 180

A
Absolute Functions .. 28
Absolute Variables ... 28
Activation, see Compiler Installation and Activation
addressr Attribute ... 143
alias (symbol) ... 143
aligned (n) ..124, 125
always_inline ... 144
Anonymous Unions.. 118
-ansi ... 87, 88, 101, 151
ANSI C Standard ... 17

Conformance .. 105
Implementation-Defined Behavior 106

ANSI C, Strict ... 88
ANSI Standard Library Support 14

Arrays... 128
As Dummy Pointer Targets............................. 120
Initialization ... 122

ASCII Character Set... 205
ASCII Characters

Extended... 122
asm... 170
Assembly Code

Mixing with C... 45, 167
Writing... 45–46

Assembly Language
Common Errors... 46
Registers... 46

Assembly List Files .. 83
Assembly Options .. 101

-Wa.. 101
attribute.. 124
Attribute, Variable

aligned (n) .. 124, 125
cleanup (function) 125
packed ... 125
section (“name”) 125
unused ... 126
weak ... 126

auto Variables... 127
Memory Allocation ..??–131

Automatic Variable ... 90, 92
-aux-info.. 87, 88

B
-B ... 74, 103
Biased Exponent .. 116
Binary Constants

C Code.. 121
Bit Access of Variables .. 43
Bit Fields .. 87, 88
Bit-Fields 25, 26, 43, 118–119
bit-fields.. 26
Bitwise Complement Operator 133
Blinking an LED.. 57
Bootloaders .. 47

C
-C ... 99
-c ... 86, 101
C Dialect Control Options................................... 87, 88

-ansi ... 87, 88
-aux-info... 87, 88
-ffreestanding 87, 88
-fno-asm... 87, 88
-fno-builtin .. 87, 88
-fno-signed-bitfields....................... 87, 88
 2019 Microchip Technology Inc. DS50002895A-page 231

Compiler User’s Guide for PIC32C/SAM MCUs
-fno-unsigned-bitfields 87, 88
-fsigned-bitfields 87, 88
-fsigned-char .. 87, 88
-funsigned-bitfields 87, 88
-funsigned-char.................................... 87, 88
-fwritable-strings 87, 88
-traditional .. 151

C Standard Libraries .. 81
calloc .. 132
Case Ranges ... 136
Cast .. 91, 92
Casting ... 39, 133
CCI ... 19
char.. 87, 88, 89, 113, 148
char Data Types .. 23
CHAR_BIT .. 114
CHAR_MAX .. 114
CHAR_MIN .. 114
Character Constants

in C.. 122
cleanup (function) .. 125
Code Generation Conventions Options.................. 103

-fargument-alias...................................... 103
-fargument-noalias 103
-fargument-noalias-global 103
-fcall-saved .. 103
-fcall-used .. 103
-ffixed ... 103
-fno-ident .. 104
-fno-verbose-asm...................................... 104
-fpack-struct .. 104
-fpcc-struct-return 104
-fshort-enums .. 104
-fverbose-asm .. 104
-fvolatile .. 104
-fvolatile-global 104
-fvolatile-static 104

Code Size, Reduce .. 95
Command Line Option, Compiler

-fdate-sections.. 125
-fshort-enums .. 196
-iquote ... 197
-l.. 101
-o ex1.elf .. 77
-Wall ... 90

Command-Line Simulator... 14
Comments.. 89, 99
Common C Interface .. 19
Common Subexpression Elimination96, 97, 98
Common Subexpressions .. 98
Compiler

Driver .. 73, 103
Compiler Installation and Activation 35
Compiler Operating Mode 13, 50
Compiler Selection ... 37
Compiler-Generated Code 53
Conditional Expression... 135
Conditionals with Omitted Operands...................... 135
Configuration Pragma .. 108
Configuration Words... 108

const... 144
const Objects

Initialization ... 123
const Qualifier ... 123
Constants

C Specifiers... 121
Character .. 122
String, see String Literals 122

Contact Microchip Technology 210
Context Switch Code.. 52
Conversion Between Types 133
Customer Support .. 210

D
-D ... 99, 100, 101
Data Memory.. 127
Data Memory Space... 132
Data Types

Floating Point .. 117
Size of ... 22, 116

-dD ... 99
Debugging Information ... 94
Debugging Options... 94

-g .. 94
-Q .. 94
-save-temps .. 94

--defsym, _min_heap_size............................ 132
Delay Routine... 49
deprecated (msg) Attribute 144
deprecated (symbol) 144
deprecated Attribute 93, 144
Device Support... 107
Diagnostic Files .. 83
Directories .. 100, 101
Directory Search Options 103

-B .. 74, 103
-specs= ... 103

Disabling Interrupts .. 48
-dM ... 99
-dN ... 99
Documentation

Conventions .. 9
Layout ... 7

double .. 115, 148
Driver

Input Files.. 74
Driver Option

EXT ... 185
Driver Options38, 73, 84–103

E
-E ..86, 99, 100, 101
Endianism... 115
Environment Variables

PIC32_C_INCLUDE_PATH 74
PIC32_C_INCLUDE_PATH 74
PIC32_COMPILER_PATH 74
PIC32_EXEC_PREFIX...................................... 74
PIC32_LIBRARY_ PATH 74
TMPDIR ... 75
XC32_C_INCLUDE_PATH 74
DS50002895A-page 232  2019 Microchip Technology Inc.

Index
XC32_COMPILER_PATH 74
XC32_EXEC_PREFIX 74
XC32_LIBRARY_ PATH 74

Error Control Options
-pedantic-errors 88
-Werror... 92

Error Messages
Location .. 56

Example ... 70
Exponent .. 115
Extended Character Set... 122
Extensions ... 100
extern ...93, 99, 151

F
F Constant Suffix.. 122
-falign-functions .. 96
-falign-labels ... 96
-falign-loops ... 96
-fargument-alias... 103
-fargument-noalias .. 103
-fargument-noalias-global 103
Fatal Error Messages... 84
-fcaller-saves ... 96
-fcall-saved ... 103
-fcall-used ... 103
-fcse-follow-jumps .. 96
-fcse-skip-blocks... 96
-fdata-sections..97, 125
-fdefer-pop. See -fno-defer
-fexceptions ... 86
-fexpensive-optimizations 96
-ffixed .. 103
-fforce-mem ..95, 98
-ffreestanding ..87, 88
-ffunction-sections .. 97
-fgcse .. 97
-fgcse-lm.. 97
-fgcse-sm.. 97
File Extensions... 75

file.c ... 75
file.h ... 75
file.i ... 75
file.ii... 75
file.o ... 75
file.S ... 75
file.s ... 75

File Types
Input .. 74

file.c .. 75
file.h .. 75
file.i .. 75
file.o .. 75
file.S .. 75
file.s .. 75
Filling Unused Memory .. 48
-finline-functions 93, 95, 98, 151
-finline-limit=n... 99
-fkeep-inline-functions99, 151
-fkeep-static-consts 99
Flags, Positive and Negative98, 103

float .. 115, 148
float.h .. 115
Floating-Point Constant Suffixes............................ 122
Floating-Point Format

double ... 115
float ... 115
long double .. 115

Floating-Point Rounding... 42
Floating-Point Types .. 117

Biased Exponent... 116
Exponent... 116
Rounding... 116

-flto .. 95
-fmove-all-movables .. 97
-fno... 98, 103
-fno-asm .. 87, 88
-fno-builtin ... 87, 88
-fno-defer-pop ... 97
-fno-function-cse... 99
-fno-ident.. 104
-fno-inline ... 99
-fno-keep-static-consts................................ 99
-fno-peephole ... 97
-fno-peephole2 ... 97
-fno-show-column... 99
-fno-signed-bitfields 87, 88
-fno-unsigned-bitfields.......................... 87, 88
-fno-verbose-asm... 104
-fomit-frame-pointer 95, 99
-foptimize-register-move 97
-foptimize-sibling-calls 99
format (type, format_index, first_to_-
check)... 144

format_arg (index) .. 144
-fpack-struct ... 104
-fpcc-struct-return 104
Frame Pointer (W14).............................65, 67, 99, 103
-freduce-all-givs... 97
-fregmove.. 97
-frename-registers .. 97
-frerun-cse-after-loop............................ 97, 98
-frerun-loop-opt... 97
-fschedule-insns... 97
-fschedule-insns2... 97
-fshort-enums ... 104, 196
-fsigned-bitfields 87, 88
-fsigned-char ... 87, 88
-fstrength-reduce....................................... 97, 98
-fstrict-aliasing..................................95, 96, 98
-fsyntax-only ... 88
-fthread-jumps ... 95, 98
Function

Parameters ... 147
Pointers... 120
Specifiers .. 143

Function Attributes (PIC32C)
address ... 143
alias (symbol) .. 143
always_inline .. 144
const ... 144
 2019 Microchip Technology Inc. DS50002895A-page 233

Compiler User’s Guide for PIC32C/SAM MCUs
deprecated .. 144
deprecated (msg)...................................... 144
deprecated (symbol) 144
ection("name") .. 146
format (type, format_index,

first_to_check) 144
format_arg (index) 144
interrupt... 144
isr.. 144
isr(type)... 144
keep ... 145
longcall ... 145
malloc ... 145
naked ... 145
noinline ... 145
nonnull (index, ...) 145
noreturn ... 145
optimize ... 145
pure ... 145
space(id)... 146
tcm.. 146
unique_section .. 146
unused ... 146
used ... 146
warn_unused_result 147
weak ... 147

Functions
Absolute .. 28
Location of .. 53
Size of ... 43, 53
static ... 143
Written in Assembler 167

-funroll-all-loops 96, 98
-funroll-loops ..95, 96, 98
-funsigned-bitfields 87, 88
-funsigned-char ... 87, 88
-fverbose-asm ... 104
-fvolatile.. 104
-fvolatile-global... 104
-fvolatile-static... 104
-fwritable-strings 87, 88

G
-g ... 94
Glitches on Ports .. 46
GLOBAL Directive.. 45

H
-H ... 99
header file

search path ... 21
Header Files.................... 21, 74, 75, 99, 100, 101, 165

Device ... 107
--help .. 86
Help! ... 35
Hex File .. 77
Hex Files

Merging ... 47
Hexadecimal Constants

C Code.. 121

I
-I ... 100, 101
-I- ... 100, 101
IAR Compatibility...??–189
Identifiers

Unique Length of... 43
identifiers

unique length of... 22
-idirafter .. 100
-imacros .. 100, 101
Implementation-Defined Behavior 106
-include .. 100, 101
Include Files ... 103
Incremental Builds.. 78
Inhibit Warnings.. 88
Inline... 93, 95, 99
inline .. 99, 150
Input Files... 74
Installation, see Compiler Installation and Activation
int ... 113, 148
INT_MAX .. 114
INT_MIN .. 114
Integer Constants ... 121
Integer Suffixes .. 121
Integer Values

char.. 113
int.. 113
long.. 113
long long... 113
short ... 113
signed char .. 113
signed int... 113
signed long .. 113
signed long long...................................... 113
signed short .. 113
unsigned char .. 113
unsigned int .. 113
unsigned long .. 113
unsigned long long 113
unsigned short .. 113

Integral Promotion .. 133
Internet Address, Microchip.................................... 210
interrupt .. 144
Interrupt Functions

Optimizations .. 52
Interrupts

Context Switching ... 52
Disabling ... 48

-iquote .. 197
isr ... 144
isr(type) .. 144
-isystem .. 103

K
keep Attribute .. 145

L
-L ... 101, 103
-l ... 101, 102
L Constant Suffix .. 121
LANGUAGE_ASSEMBLY... 180
DS50002895A-page 234  2019 Microchip Technology Inc.

Index
LANGUAGE_C ... 180
LED, Blinking ... 57
Libraries ... 80

Search Order .. 74
User-Defined... 81

Library .. 102
ANSI Standard.. 14

limits.h ...113, 114
CHAR_BIT... 114
CHAR_MAX... 114
CHAR_MIN... 114
INT_MAX... 114
INT_MIN... 114
LLONG_MAX .. 114
LLONG_MIN .. 114
LONG_MAX... 114
LONG_MIN... 114
MB_LEN_MAX .. 114
SCHAR_MAX .. 114
SCHAR_MIN .. 114
SHRT_MAX... 114
SHRT_MIN... 114
UCHAR_MAX .. 114
UINT_MAX... 114
ULLONG_MAX .. 115
ULONG_MAX .. 114
USHRT_MAX .. 114

link .. 199
Linker ... 102
Linker Scripts ..62, 183
Linking Options .. 101

-L...101, 103
-l.. 102
-nodefaultlibs.. 102
-nostdlib .. 102
-s.. 102
-u.. 102
-Wl ... 102
-Xlinker... 102

LITE mode, see Compiler Operating Mode
Little Endian Format ... 115
Little-Endian ... 113
LLONG_MAX.. 114
LLONG_MIN.. 114
long ...113, 148
Long double ... 148
long double ... 115
long long...93, 113, 148
LONG_MAX .. 114
LONG_MIN .. 114
longcall .. 145
Loop Optimizer... 97
Loop Unrolling...65, 67, 98

M
-M... 100
Macro .. 99, 100, 101, 151
Macros

__C32_VERSION_.. 181
__LANGUAGE_ASSEMBLY 180
__LANGUAGE_ASSEMBLY__........................... 180

__LANGUAGE_C .. 180
__LANGUAGE_C__ .. 180
__PIC__ ... 180
__pic__ ... 180
__PIC32MX... 180
__PIC32MX__ .. 180
__processor__ .. 180
__VERSION__ .. 181
_LANGUAGE_ASSEMBLY 180
_LANGUAGE_C .. 180
LANGUAGE_ASSEMBLY 180
LANGUAGE_C .. 180

main Function.. 20
malloc .. 132, 145
Mantissa... 115
Map Files.. 83
MB_LEN_MAX.. 114
-MD... 100
Memory

Remaining... 54
Summary... 54

Memory Allocation.. 127
Data Memory .. 127
Function Code... 147
Non-autoVariables... 128
Static Variables ... 128

Messages
Error, See Error Messages
Fatal Error ... 84
Types of .. 84

-MF... 100
-MG... 100
-MM... 100
-MMD... 101
-MP... 101
MPLAB X IDE... 59

Compiler Operating Mode................................. 37
Project Properties Options 38

-mprocessor= ... 85
-MQ... 101
-MT... 101
myMicrochip Personalized Notification Service 209

N
naked .. 145
-nodefaultlibs ... 102
noinline .. 145
nonnull (index, ...) 145
Non-Volatile RAM... 123
noreturn .. 145
noreturn Function Attribute (PIC32M)

noreturn... 93
-nostdinc.. 100, 101
-nostdlib.. 102
NULL Macro.. 27
NULL Pointers.. 120

O
-O ... 94, 95
-o ... 77, 86
-o ex1.elf.. 77
 2019 Microchip Technology Inc. DS50002895A-page 235

Compiler User’s Guide for PIC32C/SAM MCUs
-O0... 95
-O1... 95
-O2... 95, 98
-O3... 95
Object File 64, 97, 100, 101, 102
Omitted Operands.. 135
Operator, Cast.. 39
Optimization Control Options 95

-falign-functions 96
-falign-labels .. 96
-falign-loops .. 96
-fcaller-saves .. 96
-fcse-follow-jumps 96
-fcse-skip-blocks 96
-fdata-sections.. 97
-fexpensive-optimizations 96
-fforce-mem .. 98
-ffunction-sections 97
-fgcse ... 97
-fgcse-lm... 97
-fgcse-sm... 97
-finline-functions 98
-finline-limit=n.. 99
-fkeep-inline-functions 99
-fkeep-static-consts 99
-flto ... 95
-fmove-all-movables 97
-fno-defer-pop .. 97
-fno-function-cse 99
-fno-inline .. 99
-fno-peephole .. 97
-fno-peephole2 .. 97
-fomit-frame-pointer 99
-foptimize-register-move 97
-foptimize-sibling-calls 99
-freduce-all-givs 97
-fregmove... 97
-frename-registers 97
-frerun-cse-after-loop........................... 97
-frerun-loop-opt.. 97
-fschedule-insns.. 97
-fschedule-insns2 97
-fstrength-reduce 97
-fstrict-aliasing 98
-fthread-jumps .. 98
-funroll-all-loops 98
-funroll-loops .. 98
-O.. 95
-O0.. 95
-O1.. 95
-O2.. 95
-O3.. 95
-Os.. 95

Optimization, Loop ... 97
Optimization, Peephole .. 97
Optimizations

Causing Corruption ... 48
Code Size ... 50
Faster Code .. 51
Interrupt Functions .. 52

optimize .. 145
Options

Assembling.. 101
C Dialect Control ... 87, 88
Code Generation Conventions........................ 103
Debugging... 94
Directory Search ... 103
Linking... 101
Optimization Control.. 95
Output Control... 86
Preprocessor Control .. 99
Warnings and Errors Control............................. 88

-Os ... 95
Output Control Options... 86

-c .. 86
-E .. 86
-fexceptions .. 86
-ftoplevel-reorder 96
--help ... 86
-o .. 86
-S .. 86
-v .. 86
-x .. 86

Output Files
Names of... 83

P
-P ... 101
packed .. 125
-pedantic .. 88, 93
-pedantic-errors ... 88
Peephole Optimization ... 97
PIC32_C_INCLUDE_PATH 74
PIC32_C_INCLUDE_PATH 74
PIC32_COMPILER_PATH .. 74
PIC32_EXEC_PREFIX... 74
PIC32_LIBRARY_ PATH .. 74
PIC32C Device-Specific Options

-mprocessor= .. 85
PIC32M Start-up Code ... 162
Pointer

Comparisons ... 120
Definitions ... 119
Qualifiers ... 119
Types .. 119

Pointers .. 93, 119–120
Assigning Dummy Targets 120
Assigning Integers... 120
Frame...65, 67, 99, 103
Function .. 120
Stack ... 103

Pragmas
#pragma config .. 108

Predefined Macros ... 180
Prefix .. 103
Preprocessing .. 177
Preprocessor

Type Conversions ... 178
Preprocessor Control Options 99

-C .. 99
-D .. 99
DS50002895A-page 236  2019 Microchip Technology Inc.

Index
-dD ... 99
-dM ... 99
-dN ... 99
-fno-show-column 99
-H.. 99
-I.. 100
-I- ... 100
-idirafter .. 100
-imacros... 100
-include... 100
-M.. 100
-MD ... 100
-MF ... 100
-MG ... 100
-MM ... 100
-MMD ... 101
-MQ ... 101
-MT ... 101
-nostdinc .. 101
-P.. 101
-trigraphs .. 101
-U.. 101
-undef ... 101

Preprocessor Directives??–178, 179–??
Preprocessor Macros

Predefined .. 33
printf Function ... 48
PRO Mode, see Compiler Operating Mode
Project Name ... 83
Project Properties Dialog ... 62
Projects .. 61
Provisions .. 82
pure .. 145

Q
-Q... 94
Qualifier

 volatile .. 48
__align... 29
__deprecate .. 31
__persistent .. 28
__section .. 32
const ... 123
volatile..46, 123

qualifier
__interrupt... 29

Qualifiers ...123–124
and Structures .. 117

R
Radix Specifiers

C Code.. 121
RAW Dependency ... 97
Reading, Recommended ... 10
Read-Only Variables.. 123
realloc .. 132
Reduce Code Size ... 95
Register Conventions... 141
Registers

Used by Functions .. 53
Return Type ... 89

Rotate Operator ... 49

S
-S ... 86, 101
-s ... 102
Safeguarding Code .. 48
-save-temps ... 94
SCHAR_MAX.. 114
SCHAR_MIN.. 114
Scheduling ... 97
SDE Compatibility Macros 181
Section ... 64, 97
section (“name”)... 125
section("name") ... 146
SFRs .. 109
short .. 113, 148
SHRT_MAX .. 114
SHRT_MIN .. 114
Sign Bit... 115
signed char ... 113
signed int.. 113
signed long ... 113
signed long long... 113
signed short ... 113
Simulator, Command-Line 14
Size Limits.. 52
Size of Types ... 116
Source Code .. 61
space(id).. 146
Special Function Registers 76
Special Function Registers, see SFRs
-specs= .. 103
Stack

Pointer (W15).. 103, 107
Standard I/O Functions .. 14
Standard Library Files
Start-Up and Initialization ... 82

For C ... 82
For C++... 82

Static .. 104
static... 104
static Functions.. 143
static Variables .. 128
STD Mode, see Compiler Operating Mode
Storage Duration .. 127
String Literals ... 122

Concatenation... 123
Storage Location... 123
Type of .. 122

Strings .. 87, 88
struct types, see Structures
Structure.. 148
Structure Bit-Fields... 118
Structure Qualifiers .. 117
Structures... 117

Bit-Fields in ... 43, 118
Switch... 90
Symbol ... 102
Syntax Check ... 88
System Function

link ... 199
 2019 Microchip Technology Inc. DS50002895A-page 237

Compiler User’s Guide for PIC32C/SAM MCUs
unlink ... 199
System Header Files .. 90, 100

T
tcm... 146
TMPDIR .. 75
-traditional ..87, 88, 151
Traditional C... 93
Trigraphs .. 90, 101
-trigraphs.. 101
Type Conversion ...39, 92, 133

U
-U ..99, 100, 101
-u ... 102
U Constant Suffix.. 121
UCHAR_MAX .. 114
UINT_MAX .. 114
ULLONG_MAX.. 115
ULONG_MAX .. 114
unction Attributes (PIC32C)

unsupported .. 146
-undef .. 101
Unions

Anonymous ... 118
Qualifiers ... 117

unique_section ... 146
unlink .. 199
Unnamed Bit-Fields.. 118
Unnamed Structure Members 118
Unroll Loop..65, 67, 98
unsigned char ... 113
unsigned int ... 113
unsigned long ... 113
unsigned long long .. 113
unsigned short ... 113
unsupported.. 146
unused Attribute91, 126, 146
Unused Function Parameter 91
Unused Memory... 54
Unused Variable... 91
Unused Variables

Removing.. 124
USB.. 228
used Attribute .. 146
USHRT_MAX .. 114

V
-v ... 86
Variable Names, see Identifiers
Variables

Absolute .. 28
In Program Memory .. 42
Location of .. 53
Maximum Size of .. 52
Sizes ... 116
static ... 128
Storage Duration... 127

volatile .. 104
volatile Qualifier.....................................46, 48, 123

W
-W ..88, 91, 92, 93
-w ... 88
-Wa ... 101
-Waggregate-return... 92
-Wall..89, 90, 92, 94
warn_unused_result... 147
Warning Messages... 84

Location... 56
Suppressing .. 57

Warnings and Errors Control Options 88
-fsyntax-only .. 88
-pedantic... 88
-pedantic-errors.. 88
-W .. 92
-w .. 88
-Waggregate-return 92
-Wall ... 89
-Wbad-function-cast 92
-Wcast-align .. 92
-Wcast-qual .. 92
-Wchar-subscripts...................................... 89
-Wcomment... 89
-Wconversion .. 92
-Wdiv-by-zero .. 89
-Werror ... 92
-Wformat ... 89
-Wimplicit... 89
-Wimplicit-function-declaration 89
-Wimplicit-int .. 89
-Winline ... 93
-Wlarger-than- .. 93
-Wlong-long .. 93
-Wmain ... 89
-Wmissing-braces.. 89
-Wmissing-declarations........................... 93
-Wmissing-format-attribute 93
-Wmissing-noreturn 93
-Wmissing-prototypes 93
-Wmultichar .. 89
-Wnested-externs.. 93
-Wno-long-long .. 93
-Wno-multichar .. 89
-Wno-sign-compare...................................... 93
-Wpadded ... 93
-Wparentheses .. 89
-Wpointer-arith .. 93
-Wredundant-decls...................................... 93
-Wreturn-type .. 89
-Wsequence-point.. 90
-Wshadow ... 93
-Wsign-compare .. 93
-Wstrict-prototypes 93
-Wswitch ... 90
-Wsystem-headers.. 90
-Wtraditional .. 93
-Wtrigraphs .. 90
-Wundef ... 93
-Wuninitialized .. 90
-Wunknown-pragmas...................................... 90
DS50002895A-page 238  2019 Microchip Technology Inc.

Index
-Wunreachable-code 94
-Wunused... 91
-Wunused-function 91
-Wunused-label.. 91
-Wunused-parameter 91
-Wunused-value.. 91
-Wunused-variable 91
-Wwrite-strings.. 94

Warnings, Inhibit .. 88
Watch Dog Timer ... 57
Watchdog Timer... 229
-Wbad-function-cast .. 92
-Wcast-align ... 92
-Wcast-qual ... 92
-Wchar-subscripts .. 89
-Wcomment.. 89
-Wconversion ... 92
-Wdiv-by-zero ... 89
weak ...126, 147
Web Site, Microchip ... 210
-Werror .. 92
-Wformat ...89, 93
-Wimplicit ... 89
-Wimplicit-function-declaration 89
-Wimplicit-int ... 89
-Winline ...93, 151
-Wl... 102
-Wlarger-than- ... 93
-Wlong-long ... 93
-Wmain .. 89
-Wmissing-braces... 89
-Wmissing-declarations.................................. 93
-Wmissing-format-attribute 93
-Wmissing-noreturn .. 93
-Wmissing-prototypes 93
-Wmultichar ... 89
-Wnested-externs... 93
-Wno- .. 88
-Wno-deprecated-declarations..................... 93
-Wno-div-by-zero... 89
-Wno-long-long ... 93
-Wno-multichar ... 89
-Wno-sign-compare92, 93
-Wpadded .. 93
-Wparentheses ... 89
-Wpointer-arith... 93
-Wredundant-decls .. 93
-Wreturn-type ... 89
-Wsequence-point... 90
-Wshadow .. 93
-Wsign-compare ... 93
-Wstrict-prototypes .. 93
-Wswitch .. 90
-Wsystem-headers... 90
-Wtraditional ... 93
-Wtrigraphs ... 90
-Wundef .. 93
-Wuninitialized... 90
-Wunknown-pragmas .. 90
-Wunreachable-code .. 94

-Wunused .. 91, 92
-Wunused-function... 91
-Wunused-label ... 91
-Wunused-parameter .. 91
-Wunused-value ... 91
-Wunused-variable... 91
-Wwrite-strings ... 94

X
-x ... 86
xc.h Header File ... 107
XC32_C_INCLUDE_PATH .. 74
XC32_COMPILER_PATH .. 74
XC32_EXEC_PREFIX... 74
XC32_LIBRARY_ PATH .. 74
xc32-ar .. 59
xc32-as .. 59
xc32-gcc .. 59, 73
xc32-ld .. 59
-Xlinker .. 102
 2019 Microchip Technology Inc. DS50002895A-page 239

Compiler User’s Guide for PIC32C/SAM MCUs

DS50002895A-page 240  2019 Microchip Technology Inc.

DS50002895A-page 241  2019 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC
Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733

China - Beijing
Tel: 86-10-8569-7000

China - Chengdu
Tel: 86-28-8665-5511

China - Chongqing
Tel: 86-23-8980-9588

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115

China - Hong Kong SAR
Tel: 852-2943-5100

China - Nanjing
Tel: 86-25-8473-2460

China - Qingdao
Tel: 86-532-8502-7355

China - Shanghai
Tel: 86-21-3326-8000

China - Shenyang
Tel: 86-24-2334-2829

China - Shenzhen
Tel: 86-755-8864-2200

China - Suzhou
Tel: 86-186-6233-1526

China - Wuhan
Tel: 86-27-5980-5300

China - Xian
Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-4121-0141

Japan - Osaka
Tel: 81-6-6152-7160

Japan - Tokyo
Tel: 81-3-6880- 3770

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870

Philippines - Manila
Tel: 63-2-634-9065

Singapore
Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600

Thailand - Bangkok
Tel: 66-2-694-1351

Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching
Tel: 49-8931-9700

Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-72400

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra’anana
Tel: 972-9-744-7705

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Padova
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-7288-4388

Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Gothenberg
Tel: 46-31-704-60-40

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

05/14/19

http://support.microchip.com
http://www.microchip.com

	Table of Contents
	Document Layout
	Conventions Used
	Recommended Reading

	Preface
	Chapter 1. Compiler Overview
	1.1 Compiler Description and Documentation
	1.1.1 Conventions
	1.1.2 ANSI C Standards
	1.1.3 Optimization
	1.1.4 ANSI Standard Library Support
	1.1.5 ISO/IEC C++ Standard
	1.1.6 Compiler Driver
	1.1.7 Documentation

	1.2 Device Support
	1.3 Compiler and Other Development Tools

	Chapter 2. Common C Interface
	2.1 Background – The Desire for Portable Code
	2.2 Using the CCI
	2.3 ANSI Standard Refinement
	2.4 ANSI Standard Extensions
	2.5 Compiler Features

	Chapter 3. How To’s
	3.1 Installing and Activating the Compiler
	3.1.1 How Do I Install and Activate My Compiler?
	3.1.2 How Can I Tell if the Compiler has Activated Successfully?
	3.1.3 Can I Install More Than One Version of the Same Compiler?

	3.2 Invoking the Compiler
	3.2.1 How Do I Compile from Within MPLAB X IDE?
	3.2.2 How Do I Compile on the Command-line?
	3.2.3 How Do I Compile Using a Make Utility?
	3.2.4 How Can I Select Which Compiler I Want to Build With?
	3.2.5 How Can I Change the Compiler's Operating Mode?
	3.2.6 How Do I Build Libraries?
	3.2.7 How Do I Know What Compiler Options Are Available and What They Do?
	3.2.8 How Do I Know What the Build Options in MPLAB X IDE do?
	3.2.9 What is Different About an MPLAB X IDE Debug Build?

	3.3 Writing Source Code
	3.3.1 C Language Specifics
	3.3.1.3 How Do I Enter Non-English Characters Into My Program?

	3.3.2 Device-Specific Features
	3.3.2.1 How Do I Set the Configuration Bits?
	3.3.2.3 How Do I Access SFRs?
	3.3.2.4 How Do I Find The Names Used to Represent SFRs and Bits?

	3.3.3 Memory Allocation
	3.3.3.1 How Do I Position Variables at an Address I Nominate?
	3.3.3.3 How Do I Place Variables in Program Memory?
	3.3.3.4 How Do I Stop the Compiler Using Certain Memory Locations?

	3.3.4 Variables
	3.3.4.1 Why Are My Floating-point Results Not Quite What I Am Expecting?
	3.3.4.3 How Long Can I Make My Variable and Macro Names?

	3.3.5 Functions
	3.3.5.1 What is the Optimum Size For Functions?
	3.3.5.3 How Do I Make a Function Inline?

	3.3.6 Interrupts
	3.3.6.1 How Do I Use Interrupts in C?

	3.3.7 Assembly Code
	3.3.7.1 How Should I Combine Assembly and C Code?
	3.3.7.3 How Do I Access C Objects from Assembly Code?
	3.3.7.5 What Things Must I Manage When Writing Assembly Code?

	3.4 Getting My Application to Do What I Want
	3.4.1 What Can Cause Glitches on Output Ports?
	3.4.2 How Do I Link Bootloaders and Downloadable Applications?
	3.4.3 What Do I Need to Do When Compiling to Use a Debugger?
	3.4.4 How Do I Share Data Between Interrupt and Main-line Code?
	3.4.5 How Can I Prevent Misuse of My Code?
	3.4.6 How Do I Use Printf to Send Text to a Peripheral?
	3.4.7 How Can I Implement a Delay in My Code?
	3.4.8 How Can I Rotate a Variable?

	3.5 Understanding the Compilation Process
	3.5.1 What’s the Difference Between the Free and PRO Modes?
	3.5.2 How Can I Make My Code Smaller?
	3.5.3 How Can I Reduce RAM Usage?
	3.5.4 How Can I Make My Code Faster?
	3.5.5 How Does the Compiler Place Everything in Memory?
	3.5.6 How Can I Make My Interrupt Routine Faster?
	3.5.7 How Big Can C Variables Be?
	3.5.8 What Optimizations Will Be Applied to My Code?
	3.5.9 What Devices are Supported by the Compiler?
	3.5.10 How Do I Know What Code the Compiler Is Producing?
	3.5.11 How Can I Tell How Big a Function Is?
	3.5.12 How Do I Know What Resources Are Being Used by Each Function?
	3.5.13 How Do I Find Out Where Variables and Functions Have Been Positioned?
	3.5.14 Why are Some Objects Positioned into Memory that I Reserved?
	3.5.15 How Do I Know How Much Memory Is Still Available?
	3.5.16 How Do I Use Library Files In My Project?
	3.5.17 How Do I Customize the C Runtime Startup Code?
	3.5.18 What Optimizations Are Employed By The Compiler?

	3.6 Fixing Code That Does Not Work
	3.6.1 How Do I Set Up Warning/Error Messages?
	3.6.2 How Do I Find the Code that Caused Compiler Errors Or Warnings in My Program?
	3.6.3 How Can I Stop Spurious Warnings from Being Produced?
	3.6.4 Why Can’t I Even Blink an LED?
	3.6.5 What Can Cause Corrupted Variables and Code Failure When Using Interrupts?

	Chapter 4. XC32 Toolchain and MPLAB X IDE
	4.1 MPLAB X IDE and Tools Installation
	4.2 MPLAB X IDE Setup
	4.3 MPLAB X IDE Projects
	4.4 Project Setup
	4.4.1 XC32 (Global Options)
	4.4.2 xc32-as (32-bit Assembler)
	4.4.3 xc32-gcc (32-bit C Compiler)
	4.4.4 xc32-g++(32-bit C++ Compiler)
	4.4.5 xc32-ld (32-Bit Linker)
	4.4.6 Options Page Features

	4.5 Project Example
	4.5.1 Run the Project Wizard
	4.5.2 Set Build Options
	4.5.3 Build the Project
	4.5.4 Output Files
	4.5.5 Further Development

	Chapter 5. Compiler Command Line Driver
	5.1 Invoking the Compiler
	5.2 The C Compilation Sequence
	5.3 The C++ Compilation Sequence
	5.4 Runtime Files
	5.5 Start-Up and Initialization
	5.6 Compiler Output
	5.7 Compiler Messages
	5.8 Driver Option Descriptions

	Chapter 6. ANSI C Standard Issues
	6.1 Divergence from the ANSI C Standard
	6.2 Extensions to the ANSI C Standard
	6.2.1 Keyword Differences
	6.2.2 Statement Differences
	6.2.3 Expression Differences

	6.3 Implementation-Defined Behavior

	Chapter 7. Device-Related Features
	7.1 Device Support
	7.2 Device Header Files
	7.3 Stack
	7.4 Configuration Bit Access
	7.4.1 Syntax
	7.4.2 Example

	7.5 Using SFRs From C Code
	7.5.1 SFR Register Definitions

	7.6 Tightly-Coupled Memories

	Chapter 8. Supported Data Types and Variables
	8.1 Identifiers
	8.2 Data Representation
	8.3 Integer Data Types
	8.3.1 Signed and Unsigned Character Types
	8.3.2 limits.h

	8.4 Floating-Point Data Types
	8.5 Structures and Unions
	8.5.1 Structure and Union Qualifiers
	8.5.2 Bit Fields in Structures

	8.6 Pointer Types
	8.6.1 Combining Type Qualifiers and Pointers
	8.6.2 Data Pointers
	8.6.3 Function Pointers
	8.6.4 Special Pointer Targets

	8.7 Complex Data Types
	8.8 Constant Types and Formats
	8.9 Standard Type Qualifiers
	8.9.1 Const Type Qualifier
	8.9.2 Volatile Type Qualifier

	8.10 Compiler-Specific Qualifiers
	8.11 Variable Attributes

	Chapter 9. Memory Allocation and Access
	9.1 Address Spaces
	9.2 Variables in Data Memory
	9.2.1 Non-auto Variable Allocation
	9.2.2 Static Variables
	9.2.3 Non-auto Variable Size Limits
	9.2.4 Changing the Default Non-auto Variable Allocation

	9.3 Auto Variable Allocation and Access
	9.3.1 Local Variable Size Limits

	9.4 Variables in Program Memory
	9.4.1 Size Limitations of const Variables
	9.4.2 Changing the Default Allocation

	9.5 Variables in Registers
	9.6 Dynamic Memory Allocation

	Chapter 10. Operators and Statements
	10.1 Integral Promotion
	10.2 Type References
	10.3 Labels as Values
	10.4 Conditional Operator Operands
	10.5 Case Ranges

	Chapter 11. Fixed-Point Arithmetic Support
	11.1 Enabling Fixed-Point Arithmetic Support
	11.2 Data Types
	11.3 External Definitions
	11.4 C Operators
	11.5 Unsupported Features

	Chapter 12. Register Usage
	12.1 Register Usage
	12.2 Register Conventions
	Table 12-1: Register Conventions

	Chapter 13. Functions
	13.1 Writing Functions
	13.2 Function Attributes and Specifiers
	13.2.1 Function Attributes

	13.3 Allocation of Function Code
	13.4 Changing the Default Function Allocation
	13.5 Function Size Limits
	13.6 Function Parameters
	13.7 Function Return Values
	13.8 Calling Functions
	13.9 Inline Functions

	Chapter 14. Interrupts
	14.1 Interrupt Operation
	14.2 Writing an Interrupt Service Routine
	14.2.1 Interrupt Attribute

	14.3 Associating a Handler Function with an Exception
	14.4 Exception Handlers
	14.4.1 Reset
	14.4.2 NMI (Non-Maskable Interrupt)
	14.4.3 HardFault
	14.4.4 SVCall
	14.4.5 PendSV
	14.4.6 SysTick

	14.5 Interrupt Service Routine Context Switching
	14.6 Latency
	14.7 Enabling/Disabling Interrupts
	14.8 ISR Considerations

	Chapter 15. Main, Runtime Start-up and Reset
	15.1 The Main Function
	15.2 Runtime Start-up Code

	Chapter 16. Library Routines
	16.1 Using Library Routines

	Chapter 17. Mixing C/C++ and Assembly Language
	17.1 Mixing Assembly Language and C Variables and Functions
	17.2 Using Inline Assembly Language
	17.3 Predefined Macro

	Chapter 18. Optimizations
	Chapter 19. Preprocessing
	19.1 Preprocessor Directives
	19.2 C/C++ Language Comments
	19.3 Pragma Directives
	19.3.1 Pragmas to Control Function Attributes
	19.3.2 Pragmas to Control Options/Optimization
	19.3.3 MPLAB XC32 Pragmas

	19.4 Predefined Macros

	Chapter 20. Linking Programs
	20.1 Replacing Library Symbols
	20.2 Linker-Defined Symbols

	Appendix A. Embedded Compiler Compatibility Mode
	A.1 Compiling in Compatibility Mode
	Table A-1: Vendor Keys

	A.2 Syntax Compatibility
	Table A-2: Level of Support Indicators

	A.3 Data Type
	Table A-3: Support for C99 bool Type

	A.4 Operator
	Table A-4: Support for Non-standard Operator

	A.5 Extended Keywords
	Table A-5: Support for Non-standard Keywords

	A.6 Intrinsic Functions
	Table A-6: Support for Non-standard Intrinsic Functions

	A.7 Pragmas
	Table A-7: Support for Non-standard Pragmas

	Appendix B. Implementation-Defined Behavior
	B.1 Overview
	B.2 Translation
	B.3 Environment
	B.4 Identifiers
	B.5 Characters
	B.6 Integers
	B.7 Floating-Point
	B.8 Arrays and Pointers
	B.9 Hints
	B.10 Structures, Unions, Enumerations, and Bit Fields
	B.11 Qualifiers
	B.12 Declarators
	B.13 Statements
	B.14 Pre-Processing Directives
	B.15 Library Functions
	B.16 Architecture

	Appendix C. Built-In Functions
	C.1 Built-In Function Descriptions (PIC32C)

	Appendix D. ASCII Character Set
	Appendix E. Document Revision History
	Document Revision History
	myMicrochip Personalized Notification Service
	The Microchip Web Site
	Microchip Forums
	Customer Support
	Contact Microchip Technology
	AMERICAS
	Corporate Office
	Atlanta
	Austin, TX
	Boston
	Chicago
	Dallas
	Detroit
	Houston, TX
	Indianapolis
	Los Angeles
	Raleigh, NC
	New York, NY
	San Jose, CA
	Canada - Toronto

	ASIA/PACIFIC
	Australia - Sydney
	China - Beijing
	China - Chengdu
	China - Chongqing
	China - Dongguan
	China - Guangzhou
	China - Hangzhou
	China - Hong Kong SAR
	China - Nanjing
	China - Qingdao
	China - Shanghai
	China - Shenyang
	China - Shenzhen
	China - Suzhou
	China - Wuhan
	China - Xian
	China - Xiamen
	China - Zhuhai

	ASIA/PACIFIC
	India - Bangalore
	India - New Delhi
	India - Pune
	Japan - Osaka
	Japan - Tokyo
	Korea - Daegu
	Korea - Seoul
	Malaysia - Kuala Lumpur
	Malaysia - Penang
	Philippines - Manila
	Singapore
	Taiwan - Hsin Chu
	Taiwan - Kaohsiung
	Taiwan - Taipei
	Thailand - Bangkok
	Vietnam - Ho Chi Minh

	EUROPE
	Austria - Wels
	Denmark - Copenhagen
	Finland - Espoo
	France - Paris
	Germany - Garching
	Germany - Haan
	Germany - Heilbronn
	Germany - Karlsruhe
	Germany - Munich
	Germany - Rosenheim
	Israel - Ra’anana
	Italy - Milan
	Italy - Padova
	Netherlands - Drunen
	Norway - Trondheim
	Poland - Warsaw
	Romania - Bucharest
	Spain - Madrid
	Sweden - Gothenberg
	Sweden - Stockholm
	UK - Wokingham
	Worldwide Sales and Service

	Support
	myMicrochip Personalized Notification Service
	The Microchip Web Site
	Microchip Forums
	Customer Support
	Contact Microchip Technology

	Glossary
	Index
	Worldwide Sales and Service

