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Abstract

Population growth has declined markedly in almost all major economies. We argue this trend
has important consequences for creative destruction, product concentration, and firm dynam-
ics. We propose a rich model of growth with multi-product firms, and show that lower popu-
lation growth reduces entry and creative destruction, increases product concentration, raises
market power and firm size, and lowers aggregate growth. At the same time, lower popu-
lation growth increases the mass of products available to consumers, making the short-run
welfare impacts ambiguous. In an application to the US, the slowdown in population growth
accounts for a substantial share of the fall in the entry and exit rates, and the increase in prod-
uct concentration and firm size. By contrast, the impact on markups is modest. The effect on
aggregate growth is initially positive, before turning negative thereafter.
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1 Introduction

Almost all major economies have experienced a substantial decline in population and
labor force growth in recent decades.1 The left panel of Figure 1 shows the pronounced
downward trend in the US: since the late 1970s, labor force growth has fallen from 3% to
1%. Moreover, according to the BLS, this trend is projected to continue for the foreseeable
future, driven largely by continuing declines in fertility. Global population growth has
also been falling, driven mostly by drastic declines in Asia and Latin America. A world
of low and falling population growth looks like it is here to stay.

In this paper we study the effect of falling population growth on firm dynamics, product
concentration and aggregate economic performance. We do so in the context of a semi-
endogenous growth model with multi-product firms. Our baseline model is an enhanced
version of Klette and Kortum (2004), augmented by the possibility of population growth,
new-variety creation, own-innovation, and a demand elasticity that exceeds unity. The
model is rich enough to rationalize many first-order features of the firm-level data, yet
has an analytic solution that allows us to express the process of firm dynamics and the
aggregate growth rate directly as a function of population growth.

Our theory makes tight predictions for the effects of falling population growth. We first
show that a slow-down in population growth reduces creative destruction and the cre-
ation of new products. The reason is the following. In the long-run, the number of prod-
ucts available to consumers has to grow at the same rate as the population. If that was
not the case, firm profits would either grow without bound or converge to zero, both of
which are inconsistent with free entry. Falling population growth thus goes hand in hand
with a decline in product innovation, reducing both the creation of new varieties and the
rate of creative destruction.

We then show this decline in churning leads to rising product concentration and larger
firms. In particular, we show that, under standard assumptions, the decline in product
creation and creative destruction is only accommodated through a decline in entry. By
contrast, incumbent firms’ innovation policies are, in general equilibrium, independent
of the rate of population growth. This change in the composition of creative destruction
implies that incumbent firms face less competition by entrants, which allows them to

1Throughout the paper, we often speak of population growth and labor-force growth interchangeably.
We take these to be exogenous to market concentration and firm dynamics. Across the developed world,
decreases in fertility in the 1960s and 1970s manifested in slower rates of growth in the labor force in the
1980s and 1990s - see De Silva and Tenreyro (2017).
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Figure 1: Labor Force Growth and Product Concentration

(a) Falling Labor Force Growth
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(b) Rising Product Concentration
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Notes: In the left panel we display historical and projected labor force growth for the US and for several regions across the globe. In
the right panel we display the share of US manufacturing firms with at least two (shown blue, left axis) and at least five (shown in red,
right axis) products, using data from the Census of Manufacturing. The number of product produced is self-reported by firms and
assigned to 10-digit NAICS categories by the US Census. See Section 4.2 below for details.

accumulate more products over their life-cycle. As a consequence, concentration and
firm size rise, entry and exit rates fall and firms get older.

In the right panel of Figure 1 we document this rise of product concentration for the US
manufacturing sector. The share of manufacturing firms producing at least two products,
shown in blue, rose from about 20% in the late 1980s to almost 80% in 2012. Similarly, the
share of firm producing at least five products, shown in red, also more than doubled and
reached more than 10% in 2012. Consistent with our theory, product markets in the US
are increasingly dominated by large, multi-product firms.2

In addition to firm dynamics, our theory also makes clear predictions about the relation-
ship between population growth and per-capita income, both in levels and in growth
rates. As in many aggregate models of semi-endogenous growth, the long-run growth
rate declines as population growth falls. However, we show that an important coun-
tervailing effect makes the relationship between population growth and welfare a priori
ambiguous. By reducing creative destruction, falling population growth increases the
value of incumbent firms, because future profits are discounted at a lower rate. Free en-
try therefore requires an increase in the economy-wide number of products to increase
competition. Note that this rise in the number of products per worker coincides with a
decline in the number of firms per worker, that is, an increase in average firm size, be-

2Below we report the full distribution. We also show these trends are not unique to the manufacturing
sector, but are are present in other sectors.
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cause the number of products per firm rises. Because additional varieties raise income
per-capita, the welfare consequences of declining population growth hinge on the rela-
tive importance of these static variety gains relative to the dynamic losses from lower
growth.

These results are robust to a variety of changes in the environment. Most importantly,
we extend our model to a setting where firms compete a la Bertrand and market power
is endogenous. While all our theoretical results above directly generalize to this setting,
declining population growth interacts with firms’ ability to charge markups in an inter-
esting way. In our theory, more productive firms post higher markups, and productivity
increases over the firms’ life cycle. Because creative destruction reduces firms’ chances of
survival, it hinders incumbents from accumulating market power. Declining population
growth, by lowering creative destruction, therefore reduces competition and increases
markups. Hence, the trend of rising product concentration shown in Figure 1 goes hand
in hand with large producers being able to sell their products at high markups.

To quantify the strength of this mechanism, we calibrate our model to data for the pop-
ulation of US firms. In addition to targeting standard moments such as the entry rate,
average size, and life-cycle growth, we also link firm-level information on sales to the
US Census. We can therefore explicitly target a measure of the life-cycle of firm-level
markups for a majority of firms in the US. Exploiting information on the evolution of
both markups and size at the firm-level allows us to separately identify own-innovation
and variety creation at the firm-level.

With the calibrated model in hand, we ask a simple question: what are the implications
of the decline in the rate of labor-force growth since 1980 shown in Figure 1? Our theory
is tractable enough that we can solve for the transitional dynamics induced by this path,
treating the projections of the BLS as the rational expectations of the agents in our theory.
We find this decline has quantitatively large effects. Our model can explain a substantial
share of the decline in the entry and exit rate, the increase in average firm size, and the
degree of concentration. However, markups change little; our calibrated model implies
markups increase by around 1%. The effect on income growth is more subtle. Whereas
growth will inevitably decline in the long-run, the static effect of variety creation increases
income growth for about one decade during the transition. However, the overall welfare
consequences of falling population growth are negative.

Related Literature. We are not the first to connect the decline in population growth to
changes in firm dynamics. Karahan et al. (2019) and Hathaway and Litan (2014) use
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geographic variation to provide direct empirical support that a lower rate of population
growth reduces the start-up rate. Karahan et al. (2019) and Hopenhayn et al. (2018) study
the relationship between population growth and firm dynamics in a neoclassical model,
where firm productivity is exogenous and changes in demographics can only affect the
incentives of entering firms. By contrast, our theory builds on models with endogenous
firm dynamics, where population growth affects innovation incentives by both entrants
and incumbents, and has novel implications for creative destruction, market power, and
aggregate productivity growth.

Our theory builds on Schumpeterian models in the tradition of Aghion and Howitt (1992)
and Klette and Kortum (2004). We augment these models by allowing for efficiency im-
provements of existing firms as in Atkeson and Burstein (2010), Luttmer (2007), Akcigit
and Kerr (2018), or Cao et al. (2017), the creation of new varieties as in Young (1998), and
endogenous markups as in Peters (2020) or Acemoglu and Akcigit (2012). Our model is
thus akin to a version of Garcia-Macia et al. (2019) or Klenow and Li (2021), featuring both
endogenous markups and endogenous innovation choices, and incorporating changes in
the long-run growth in the labor force. To the best of our knowledge, our paper is the first
that focuses squarely on how demographic changes affect creative destruction, aggregate
growth, and the firm-size distribution in the context of firm-based models of growth.3

The relationship between economic growth and population growth has been been subject
to an extensive literature. Many models of endogenous growth feature “strong scale ef-
fects” whereby economic growth depends on the population level. By contrast, models of
semi-endogenous growth are characterized by “weak scale effects” and imply economic
growth is determined by population growth.4 In our model, growth is tied to the micro
process of firm dynamics. This link puts tight restrictions on the relationship between
economic growth and population growth. If growth depends on the level of the popu-
lation, so does the firm size distribution. By contrast, if economic growth depends on
population growth, the firm size distribution is also independent of the size of work-
force and only a function of its growth rate. In order for the firm size distribution to be
stationary in the presence of a growing population, growth thus (generically) needs to be
semi-endogenous.5 Moreover, the relationship between economic growth and population

3Engbom (2017) studies the implications of population aging in the context of a search model.
4Classic examples of the former are Aghion and Howitt (1992), Romer (1990), Klette and Kortum (2004)

or Grossman and Helpman (1991). Examples of the latter are Jones (1995), Kortum (1997), Young (1998),
or Peretto (1998). See Jones (2021) for a recent survey and Atkeson et al. (2018) for a discussion of the
quantitative importance of this distinction.

5In our model, population growth is not the only determinant of the equilibrium growth rate, and our
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growth is governed by parameters that we can discipline with firm-level data.

In our quantitative application, we focus on the case of the US. A growing literature high-
lights the decline of dynamism in the US. This literature, which is summarized in Akcigit
and Ates (2019a), shows that the entry rate has fallen substantially (Alon et al., 2018;
Decker et al., 2014; Karahan et al., 2019), that broad measures of reallocation have de-
clined (Haltiwanger et al., 2015), that industries are becoming more concentrated (Kehrig
and Vincent, 2017; Autor et al., 2020), and that markups and profits are rising (Edmond
et al., 2018; De Loecker et al., 2020; Van Vlokhoven, 2021). In terms of explanations, the lit-
erature has proposed improvements in IT technology (Aghion et al. (2019); Lashkari et al.
(2019)), a rise in the use of intangible capital (De Ridder (2019)), or changes in the process
of knowledge diffusion (Akcigit and Ates (2019b), Olmstead-Rumsey (2020)). Our pa-
per is complementary to these studies by highlighting that all these phenomena occurred
within an environment of declining population growth and are key implications of the
theory we propose. Falling population growth might therefore be an important secular
determinant of firm-dynamics and aggregate growth in the decades to come.

2 The Baseline Model

Time is continuous and there is a mass Lt of identical individuals, each supplying one
unit of labor inelastically. The rate of population growth L̇t/Lt = ηt, which we take as
exogenous, is the crucial parameter of this paper. Households have preferences over a
final consumption good ct given by U =

∫ ∞
0 e−(ρ−ηt)t ln (ct) dt.

The final consumption good is composed of a continuum of differentiated varieties, that
(as in Klette and Kortum (2004)) may be produced by multiple firms:

Yt =



∫ Nt

0

(
∑

f∈Sit

y f it

) σ−1
σ

di




σ
σ−1

.

Here, Nt is the mass of available products indexed by i. This mass evolves endogenously
through the creation of new and the destruction of old products. Sit denotes the set of
firms with the knowledge to produce product i, which likewise evolves endogenously.

Firms can be active in multiple product markets. Each firm f is characterized by the set
of products it produces, denoted by Θ f , and the efficiency of producing these products,

economy features growth even in the presence of a stable population.
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indexed by {q f i}i∈Θ f . We denote the number of products firm f produces by n f . Pro-
duction of each good uses only labor, and is given by y f i = q f il f i, where q f i denotes the
efficiency of firm f in producing product i.

Because the output of firms producing the same product is perfectly substitutable, each
product is only produced by the most efficient firm. Suppose to begin with that the pro-
ducing firm charges a constant markup over marginal cost µ = σ

σ−1 .6 Aggregate output
Yt and equilibrium wages wt are thus given by

Yt = QtN
1

σ−1
t LP

t and wt = µ−1Yt/LP
t , (1)

where Qt ≡
(∫

qσ−1
i dFt (q)

)1/(σ−1)
is a measure of average efficiency, Ft is the endoge-

nous distribution of product efficiency, and LP
t is the total amount of labor devoted to the

production of goods. Equilibrium profits per product are given by

πt (q) = (µ− 1)
(

q
Qt

)σ−1 LP
t

Nt
wt. (2)

Hence, profits are high if the product’s efficiency q is large relative to average efficiency
Qt and if average employment per product, LP

t /Nt, is large.

2.1 Product Innovation, Entry and Aggregate Growth

Suppose first that entry is the sole source of creative destruction and product creation.
Potential entrants have access to a linear entry technology, where each worker generates
a flow of ϕE new products. Conditional on successfully creating a new product, this
product can either be a new variety, or it can improve upon an existing product from
another firm. After entry, as in Atkeson and Burstein (2010) or Luttmer (2007), the firm’s
efficiency q grows at an exogenous own-innovation rate I, that is, q̇it = Iqit.7 We also
assume that product lines die at an exogenous rate δ. Doing so helps ensure stationarity
at low or negatives levels of population growth, but is otherwise inconsequential.

In the baseline we assume product creation is “undirected”. With probability α, the new
product represents a technological advance over a (randomly selected) existing product,

6This can be the case if firms have to pay an infinitesimal sunk cost before producing, as less productive
firms will not enter (see Garcia-Macia et al. (2019)).

7For simplicity, we start by assuming I is exogenous and constant over time. In Section 2.6, we show
how to endogenize this rate and how it depends on population growth.
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increases the efficiency by a factor λ > 1, and forces the current producer to exit (“creative
destruction”). With the complementary probability 1 − α, the product will be new to
society as a whole, and the mass of available products Nt grows (“variety creation”).
The efficiency of new varieties is given by q′ = ωQt, where ω is drawn from a fixed
distribution Γ(ω). Hence, as in Buera and Oberfield (2020), the efficiency of new varieties
is determined both by the existing knowledge embedded in Qt and by novel ideas. It is
useful to define ω ≡

(∫
ωσ−1dΓ (ω)

)1/(σ−1), which we also refer to as the mean efficiency
of new products.

Let Zt denote the aggregate flow of entry and zt = Zt/Nt the entry intensity per product.
The rates of variety creation νt and creative destruction τt are then given by

νt = (1− α) zt and τt = αzt. (3)

Creative destruction τ and variety creation ν both depend on the entry intensity z and are
thus closely linked. Our formulation of undirected innovation makes this link particu-
larly stark. However, as we show in Section 2.6, the optimal level of creative destruction
and variety creation positively co-move even in a more general setting where α is a choice
variable.

Given νt and τt, we can compute the aggegate growth rate. The variety growth rate is
simply the net rate of product creation

gN
t ≡

Ṅt

Nt
= νt − δ =

1
1− α

zt − δ. (4)

Similarly, the efficiency growth rate is given by

gQ
t ≡

Q̇t

Qt
=

qσ−1 − 1
σ− 1

zt + I, where q =
(

αλσ−1 + (1− α)ωσ−1
) 1

σ−1 . (5)

Average efficiency grows for two reasons. The first term is related to product creation and
hence the entry rate zt. The average efficiency gain of a new product, q, is a CES-weighted
average of the efficiency improvement of creative destruction λ and the relative efficiency
of new varieties ω. Because λ > 1, creative destruction is always a source of efficiency
growth. Whether the creation of new varieties raises or lowers efficiency growth depends
on their initial efficiency ω. If new products are, on average, as productive as existing
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products, that is, ω = 1, the growth rate of average efficiency is independent of νt.8 If,
by contrast, new products are, on average, worse (ω < 1), faster product creation has a
negative effect on efficiency growth. Average efficiency thus increases in zt as long as α

and ω are sufficiently large. The second term in (4) captures the vertical component of
life-cycle productivity growth I, which raises firm productivity and also translates into
aggregate efficiency growth gQ.

Using (4) and (5), the overall growth of labor productivity Yt/LP
t = QtN

1
σ−1
t , which we

denote by gy
t , depends on both efficiency growth and variety growth:

gy
t = gQ

t +
1

σ− 1
gN

t =
qσ−1 − α

σ− 1
zt + I − δ

σ− 1
.

Note that aggregate productivity growth is always increasing in the rate of product cre-
ation zt, because qσ−1 > α even if even if ω < 1 (recall that λ > 1 and ω > 0). Intuitively,
even if efficiency growth is decreasing in zt, overall productivity growth increases once
the variety gains are taken into account. Holding zt constant, a higher rate of obsolescence
δ reduces growth though the loss of varieties.

Optimal Entry and the Value Function. To solve for the equilibrium rate of entry, let
Vt (q) denote the value of producing a product with efficiency q at time t. This value
function solves the HJB equation:

rtVt (q)− V̇t (q) = πt (q) +
∂Vt (q)

∂q
Iq− (τt + δ)Vt (q) . (6)

The value Vt (q) is increasing in the current flow profits πt (q) and the rate of efficiency
growth Iq, and decreasing in the risk of exit, which happens at the endogenous rate of
creative destruction τt and the exogenous rate of obsolescence δ.

Given Vt (q), we can compute the expected value of creating a new product. With prob-
ability α, the new entrant improves over a randomly selected product with efficiency q′,
and creatively destroys the current producer. This yields the value Vt (λq′). With the com-
plimentary probability, a new variety with quality ωQt and the associated value Vt (ωQt)

is created. Integrating over the existing distribution Ft (q′) and the exogenous distribution
of the efficiency of new varieties Γ (ω) yields the value of creating a new product

VPC
t = α

∫
Vt
(
λq′
)

dFt
(
q′
)
+ (1− α)

∫
Vt (ωQt) dΓ (ω) . (7)

8Note that gQ = 1
σ−1

[(
λσ−1 − 1

)
τt +

(
ωσ−1 − 1

)
νt

]
. Substituting (3) yields (5).
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To make progress, note that profits are homogeneous in qσ−1 and so is the value function
Vt (q). This implies that the product creation value in (7) is given by VPC

t = Vt (qQt),
where q is given in (5). Hence, VPC

t is simply the value of a product with “average”
quality qQt. The free entry condition thus reads

wt

ϕE
= VPC

t = Vt (qQt) , (8)

and hence requires Vt (qQt) to be tied to the equilibrium wage. Using (8), we can solve for
Vt (q) explicitly, both off and on the balanced growth path. As we show in Section A-1.1.3
in the Appendix, the solution to the differential equation in (6), Vt (q), is given by

Vt (q) =
πt (q)

rt + τt + δ + (σ− 1)
(

gQ
t − I

)
− gwt

. (9)

The value of a firm is the present discounted value of profits, where the appropriate dis-
count rate reflects four distinct considerations: the interest rate (rt), the risk of firm death
(τt + δ), the fact that a higher growth rate of average efficiency reduces the firms’ rela-
tive competitiveness

(
(σ− 1)

(
gQ

t − I
))

, and the rate of wage growth (gw). Note that a
higher growth of wages reduces the effective discount rate (and hence increases Vt (q)),
because free entry ties the growth rate of wages to the growth of the value function. Faster
wage growth is thus associated with capital gains.

2.2 Equilibrium

To characterize the equilibrium, define the two aggregate statistics Nt ≡ Nt/Lt and `P
t ≡

LP
t /Lt. We refer to the mass of products per capita Nt as the economy’s variety intensity

and to the share of working employed in production `P
t as the production share. These two

aggregate statistics are sufficient to characterize the entire equilibrium path.

To determine this path, note first that labor market clearing requires that Lt = LP
t +

Nt
1

ϕE
zt. Using that zt =

1
1−α νt, this can be written as

1− `P
t

Nt
=

1
ϕE

νt

1− α
. (10)

Holding the variety intensity Nt constant, a higher production share `P
t reduces the cre-

ation of new varieties νt, as fewer resources are allocated toward research. Similarly,
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holding the allocation of workers constant, a higher variety intensity reduces the number
of researchers per product and hence the rate of new variety creation. Equation (10) is the
first key equation to characterize the equilibrium.

The second key equation is the free-entry condition. Substituting the solution for Vt in (9)
into the free entry condition (8), and using the consumer Euler equation gy = rt − ρ, the
expressions for τt and gQ given in (3) and (5) and the fact that gw = gy − g`

P
(see (1)), free

entry requires that

1
ϕE

=
Vt (qQt)

wt
=

(µ− 1) qσ−1

ρ + δ +
(

qσ−1

1−α − 1
)

νt + g`P
t

`P
t

Nt
. (11)

Now recall that ˙Nt/Nt = νt − δ − η. Substituting for νt shows that (10) and (11) are
two differential equations in

{
Nt, `P

t
}

t. Together with the initial condition N0 and the
transversality condition, they fully determine the equilibrium path.9

The Balanced Growth Path. Consider first a BGP where the interest rate and the economy-
wide growth rate are constant. This implies both variety creation ν and creative destruc-
tion τ are constant, and the population grows at a constant rate. Equations (10) and (11)
then require that Nt and `P

t are constant. This has the important implication that the mass
of varieties Nt has to grow at the rate of population growth:

η = gN = νt − δ = (1− α) z− δ. (12)

The aggregate quantity of product creation is thus directly tied to the growth rate of the
labor force η. This link between population and product growth is a consequence of the
free entry condition. If the number of products was growing faster than the population,
profits per product would be declining. Eventually, entry would stop as the equilibrium
wage would exceed the value of product creation. Conversely, if population growth was
higher than the rate of new product creation, flow profits would perpetually rise. The free
entry condition would then require a steady increase in the rate at which future profits are
discounted. This, however, would eventually violate the economy’s resource constraint.

With equation (12) at hand, we can analytically characterize the allocations along the BGP
as a function of population growth:

Proposition 1. On a BGP, the following holds:

9See Section A-1.1.4 in the Appendix, where we derive this system of differential equations.
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1. The rates of variety creation ν, creative destruction τ, and entry z are given by

ν = η + δ τ =
α

1− α
(η + δ) z =

η + δ

1− α
. (13)

2. Aggregate productivity growth gy is given by

gy =
qσ−1 − 1

σ− 1
1
α

τ + I +
1

σ− 1
η, (14)

where qσ−1 = αλσ−1 + (1− α)ωσ−1 (see (5)).

3. The production share `P and the variety intensity N are given by

N =
ϕE (µ− 1) qσ−1

ρ + δ +
(
µqσ−1 − (1− α)

) 1
α τ

and `P =
ρ + δ +

(
qσ−1 − (1− α)

) 1
α τ

ρ + δ +
(
µqσ−1 − (1− α)

) 1
α τ

. (15)

Proof. See Section A-1.1.2 in the Appendix.

Proposition 1 contains three key theoretical results. First, a decline in population growth
reduces variety creation, creative destruction and entry. In particular, because each firm
only produces a single product, the entry rate E is trivially given by E = z and hence
declines as population growth falls.

Second, aggregate growth gy depends directly on the rate of population growth η. First,
population growth determines variety creation ( 1

σ−1 η). Second, population growth also
affects creative destruction τ and hence the rate of efficiency growth gQ. Although the
effect of population growth on variety growth is always positive, its effect on efficiency
growth depends on the average efficiency of newly created products ω and the increment
of creative destruction λ. The overall effect on income growth, however, is unambiguous.
Upon substituting the expression for τ in (13), the change in income growth with respect
to population growth is given by

dgy

dη
=

qσ−1 − α

(σ− 1) (1− α)
> 0.

Hence, as is typical in models of semi-endogenous growth, falling population growth
reduces long-run income growth. Note that the relationship between population growth
and income growth is determined by α, σ and q, and hence governed by parameters that,
as we show below, can be disciplined from firm-level data. For example, Jones (2021) or
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Bloom et al. (2020) show that gy = 1
β η, where β parametrizes the extent to which ideas are

getting harder to find. Hence, as far as the relationship between income and population
growth is concerned, our model implies that 1

β = qσ−1−α
(σ−1)(1−α)

.

Equation (14) also highlights that growth is not bound to be zero if population growth
is zero. First, the “vertical dimension” of life-cycle growth I is a source of aggregate
efficiency growth. Second, even if η = 0, τ and ν are positive to replace products that
become obsolete. If qσ−1 > 1, such newly created products are (on average) better then
exiting products. This form of selection is an additional force pushing for growth to be
positive even if the population.is stable.

Third, the level of varieties relative to the population, N , and the share of workers al-
located to research, `P, are also functions of population growth η, which enters through
the rate of creative destruction.. As seen in equation (15), a decline in population growth
(and hence creative destruction) increases the variety intensity N if µqσ−1 > 1− α, that
is if λ, α, µ and ω are sufficiently large. To understand the role of this condition, note
that τ + (σ− 1)

(
gQ − I

)
appears in the equilibrium discount rate of corporate profits

(see (11)). On the one hand, lower population growth reduces creative destruction τ.This
channel increases the value of entry because firms live longer and profits are discounted
at a lower rate. On the other hand, lower population growth could increase average effi-
ciency growth gQ if the average efficiency of new products qσ−1 is sufficiently low. This
channel would lower the value of entry because firms face more competition during their
life-time. As long as µqσ−1 > 1− α (which is the case for our estimated parameters), the
creative-destruction effect dominates the efficiency-growth effect, and falling population
growth increases the value of entry through a lower rate of discounting. Free entry there-
fore requires the level of flow profits to go down, which is achieved through an increase
in the number of varieties per capita N . This increase in the variety intensity is a static
countervailing force to the negative growth implications of falling population growth.

Finally, (14) and (15) highlight that our model features weak scale effects: the population
size L and the cost of entry ϕE do not affect the growth rate, but only the mass of varieties
Nt. Hence, changes in the scale of the economy or the efficiency of product creation have
level effect, not growth effects.

Transitional Dynamics. Equations (10) and (11) not only describe the BGP, but the entire
equilibrium path. We can characterize this path with a phase diagram depicted in the left
panel of Figure 2. The downward sloping schedule shown in orange depicts the locus of a
stable variety intensity (gN = 0). This locus follows from the resource constraint: if `P

t is
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Figure 2: Equilibrium path of
{
`P

t , Nt
}

(a) Phase diagram

   ℓP

   𝒩

1

 gℓP = 0

 g𝒩 = 0

(b) Dynamics after a fall in population growth

   ℓP

   𝒩

1

 gℓP = 0

 g𝒩 = 0
Declining population 

growth: 𝜂↧

Note: The left panel shows the phase diagram for the equilibrium path of
(
`P, N

)
. The right panel shows the response to a fall in

population growth.

too high (low), there is too little (much) production creation and the variety intensity falls
(rises). The upward sloping schedule shown in blue represents the locus of a constant
production share (g`P = 0) and summarizes the free entry condition. If the variety in-
tensity is too high (low), there is little creative destruction and the production share, and
with it flow profits, has to fall (rise) to satisfy free entry. Hence, there is a unique stable
arm (shown in red), that takes the economy to the BGP characterized in Proposition 1.

This phase diagram is not only useful to establish the stability and uniqueness of the
equilibrium path, but also to analyze the impact of a fall in population growth. This
experiment is shown in the right panel of Figure 2. A fall in population growth rotates
the orange locus to the right: for a given variety intensity there are too many workers
employed in the research sector, given that the entry rate has to fall eventually.10 Hence,
on impact, the production share `P

t jumps up. During the transition there is a continual
rise in the variety intensity and a reallocation of workers out of the research sector. This
initial rise in the production of goods and the increase in the number of products per
capita constitute a source of welfare gains, especially in the short-run.

10In Section A-1.1.4 in the Appendix we show that we can express the free entry condition shown in blue
without reference to η.
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2.3 Product Creation by Incumbent Firms

So far, we assumed that entrants are the sole source of product creation. We now extend
our model to also allow incumbents to engage in these activities. Doing so is crucial to
understand the link between population growth and firm-dynamics. Note that in ab-
sence of incumbent innovation, firms only produce a single product and exit at rate τ + δ

irrespective of their size and age. Both of these predictions are, of course, empirically
counterfactual. By allowing for product creation by incumbent firms, we capture the fact
that firms, on average, grow as they age and that exit rates are declining in size and age.11

Crucially, we show that falling population growth increases firms’ life-cycle growth and
raises product concentration (as documented in Figure 1). At the same time, we also show
that the aggregate implications of population growth contained in Proposition 1 survive
entirely unchanged.

Suppose that, in addition to the vertical dimension of efficiency growth I, firms can also
grow horizontally by adding new products to their portfolio. Following Klette and Ko-
rtum (2004), we assume that firms choose the Poisson rate X with which they expand
into new product lines. Such expansion activities are costly, and we denote these costs (in
units of labor) as

cX
t (X, n) =

1
ϕx

Xζn1−ζ =
1
ϕx

xζn, (16)

where ζ > 1, n denotes the number of products the firm is currently producing and
x = X/n is the firms’ innovation intensity. Conditional on successfully creating a product
innovation, we treat incumbents entirely symmetrically to entrants, that is, a fraction α of
new ideas improve upon an existing product and a fraction 1− α yields a new variety,
whose average efficiency is ωQt. Letting xt = 1

Nt

∫
xitdi denote the average expansion

intensity by incumbent firms, the aggregate amounts of variety creation ν and creative
destruction τ are given by

νt = (1− α) (zt + xt) and τt = α (zt + xt) , (17)

and thus reflect the activities of both entrants and incumbents.

Allowing for active innovative behavior by incumbent firms naturally changes the value

11If product creation is only due to entrants, firm growth tends to be negative. Note that employment
is proportional to (q/Q)σ−1 and thus grows at rate (σ− 1)

(
I − gQ

)
= −

(
qσ−1 − 1

)
z. Hence, in the em-

pirically relevant case, where product innovation contributes positively to average efficiency growth, that
is qσ−1 > 1, average employment declines conditional on survival.
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function. Because firms can now produce multiple products, let {q f i}i∈Θ f be the state

variables at the firm-level and Vt

(
{q f i}i∈Θ f

)
be the corresponding value function. As we

show in Section A-1.1 in the Appendix, this value function is additively separable across
products, i.e. Vt

(
{q f i}i∈Θ f

)
= ∑

n f
i=1 Vt (qi), and the product-level value function Vt (q)

solves the HJB equation

rtVt (q)− V̇t (q) = πt (q) +
∂Vt (q)

∂q
Iq− (τt + δ)Vt (q) + max

x

{
xVPC

t − xζwt

ϕx

}
, (18)

where the value of production creation VPC
t is still given in (7).

Compared to the value function in the entry-only model (6), the possibility of expanding
horizontally carries an option value, which is determined by the endogenous creation
value VPC

t and the expansion costs 1
ϕx

xζwt. However, the solution to (18) is again very
similar to the case without incumbent innovation. In particular, Vt is still homogenous in
qσ−1, so that VPC

t = Vt (qQt).

Proposition 2. The optimal rate of product innovation x is given by

x =

(
ϕx

ζ

Vt (qQt)

wt

) 1
ζ−1

=

(
1
ζ

ϕx

ϕE

) 1
ζ−1

, (19)

where Vt (qi) is defined in (18). On a BGP, Vt (q) is given by

Vt (q) =
πt (q)

ρ + τ + δ + (σ− 1) (gQ − I)︸ ︷︷ ︸
Production value

+
1

ρ + τ + δ

ζ − 1
ϕx

xζwt

︸ ︷︷ ︸
Innovation value

. (20)

Proof. See Section A-1.1 in the Appendix.

Proposition 2 contains two important results. First, (19) shows that the equilibrium rate
of incumbent product innovation x is constant and a function of technological parameters
only. It is independent of any general equilibrium variables and, in particular, does not
depend on the rate of population growth η. The reason is that the free entry condition in
(7) still applies, which ties the ex-ante value of product innovation Vt (qQt) to the entry
costs 1

ϕE
wt. Economically, it follows from the fact that incumbents’ innovation technology

has decreasing returns at the firm level, whereas entry, which operates at the aggregate
level, has constant returns.12 Hence, the free-entry condition pins down the value of

12Note that incumbent product creation also has constant returns in the aggregate: if the number of firms
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product creation, and incumbent firms optimally choose the rate of product creation to
equalize the marginal cost and the marginal benefits. This also implies that equation (19)
holds both on and off the BGP and relies only on the free-entry condition to be binding.

Second, along a BGP, the value function Vt (q) has an explicit solution. It is the sum of the
net present value of flow profits (the “production value”) and the option value of product
innovation (the “innovation value”). The production value is exactly the same as in the
entry-only model. The innovation value is, of course, absent in the entry-only model.
If incumbent innovation gets prohibitively expensive, i.e. ϕx → 0, the solution in (20)
coincides with (9).

With the results of Proposition 2 in hand, it is also immediate that most results of Propo-
sition 1 apply without any change in the presence of incumbent product creation. Im-
portantly, however, the composition of creative destruction and variety creation between
entrants and incumbents is now endogenous and depends on population growth.

Proposition 3. Consider the model with product creation by incumbent firms. Then,

1. The expressions for creative destruction τ, variety creation ν and aggregate growth gy are
exactly the same as in the “entry-only” model characterized in Proposition 1;

2. The rates of entry z and incumbent product creation x are given by

x =

(
1
ζ

ϕx

ϕE

) 1
ζ−1

and z =
η + δ

1− α
− x. (21)

Proof. See Section A-1.1.6 in the Appendix. There we also derive the equilibrium condi-
tions for N and `P, which are very similar to (15).

Proposition 3 highlights a key theoretical result of our analysis: allowing for product
innovation by incumbents does not change any aggregate outcomes but only makes the
composition of product creation and creative destruction endogenous. Crucially, because
x is independent of population growth, the entirety of the decline in population growth
is absorbed by the economy’s extensive margin: Entrants do all the work and incumbents
are insulated from demographics. This implies that the share of creative destruction and

were to double, the amount of product creation performed by incumbents would also double. In Section
2.6 below, we generalize our results to the case in which the entry process has decreasing returns in the
aggregate. In that case, x is also affected by population growth.
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variety creation due to incumbents, sx, is given by (see (17) and (21))

sx ≡
(1− α) x

ν
=

αx
τ

=
1− α

η + δ
x =

1− α

η + δ

(
1
ζ

ϕx

ϕE

) 1
ζ−1

. (22)

Naturally, incumbents’ share of innovative activity is increasing in their relative efficiency
ϕx/ϕE. More importantly, it is declining in population growth η. This compositional
change, whereby falling population growth increases incumbent innovation relative to
entrants is a key aspect of how population growth changes the process of firm dynamics
and the firm-size distribution - see Section 2.4 below.

One key implication of our theory is that scale effects are absent for both the rate of growth
and the equilibrium size distribution: along a BGP, the employment distribution is sta-
tionary and fully determined from the entry flow z, the rate of product innovation by
incumbents x, and the rate of own-innovation I, all of which are independent of the level
of the population Lt.13 This symmetry for the role of scale effects is not a coincidence. The
standard model of Klette and Kortum (2004) features strong scale effects and implies that
the firm size distribution depends on the size the population.14 By contrast, our model
implies that differences in the level of the population affect the mass of varieties Nt, leav-
ing the process of firm-dynamics and aggregate growth unchanged. In that sense, our
model is akin to Young (1998), augmented with a full endogenous process of firm dy-
namics. Population growth is therefore consistent with a BGP and a stationary firm size
distribution. Given that empirically the distribution of firm size is reasonably stable when
compared to the large changes in the size of the population, firm-based models of growth
point towards a world of semi-endogenous growth.

2.4 Population Growth and Firm Dynamics

To see how population growth affects the process of firm dynamics, recall that firms gain
products at rate x and lose products at rate τ + δ. Then define the net rate of product

13This result does not hinge on taking I to be exogenous. In Section 2.6 we treat I as endogenous and
show that it is independent of level of the population.

14The Klette and Kortum (2004) model is nested in our framework. It is a parametrization where the
population is constant (i.e. η = 0), there is no own-innovation (i.e. I = 0) and the mass of varieties is
exogenous (i.e. α = 1 and δ = 0). Incumbents’ innovation efforts are still constant and given by (19). The
rate of entry is given by z = τ − x and efficiency grows at rate gQ = λσ−1−1

σ−1 τ. Creative destruction τ and
the production share `P are then determined from the free entry condition and the resource constraint. It is
easy to show that an increase in L increases z and hence τ. A larger population thus increases growth and
creative destruction and reduces firm size.
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accumulation ψ ≡ x− (τ + δ) . Using (13) to express τ in terms of the rate of population
growth η yields ψ = x − αη+δ

1−α : a decline in population growth increases the net rate of
product accumulation, because firms face less of a threat of creative destruction.

Let S (a) denote the share of firms that survive until age a, and n (a) the average number
of products of a firm of age a, i.e. the firm’s “product life cycle”. As we show in Section
A-1.1.8 in the Appendix, S (a) and n (a) are given by

S (a) =
ψeψa

ψ− x (1− eψa)
and n (a) = 1− x

ψ

(
1− eψa) . (23)

In Figure 3, we display S (a) and n (a) graphically. Naturally, S (a) is declining and sat-
isfies lima→∞ S (a) = 0, because all firms exit eventually. Similarly, n (a) is increasing
because surviving firms are selected on having had many successful product innovations
and little creative destruction. More importantly, lower population growth increases firms’
survival rates and raises the life-cycle profile of product growth. Hence, falling population
growth increases the concentration of the product space in two ways. First, because lower
population growth reduces creative destruction, it increases firms’ chances of survival.
As a consequence the age distribution shifts to the right. This increases concentration
because older firms are larger. Second, as highlighted by the shift in the n (a) schedule,
lower population growth also increases firm size conditional on age because, in line with
the pattern shown in Figure 1, firms accumulate more products as they age. Both of these
mechanisms push towards rising concentration and larger firms.

To see this link between population growth and product concentration formally, in Sec-
tion A-1.1.8 in the Appendix we formally characterize the product distribution. In partic-
ular, using the results of Luttmer (2011) and Cao et al. (2017), we show that, as as long as
η > ψ > 0, the distribution of the number of products n f has a Pareto tail $n, which is
given by

$n =
η

ψ
=

(1− α) η

x (1− α)− δ− αη
. (24)

Hence, the tail of the product distribution is a closed-form expression of the rate of popu-
lation growth η, and a decline in population growth reduces $n and increases concentra-
tion.

Equation (24) highlights that population growth affects the product distribution through
two channels. Holding firms’ net expansion rate ψ constant, lower population growth
increases concentration because it reduces the rate at which new firms, which are, on av-
erage, small, enter. In addition, lower population growth endogenously increases the net
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Figure 3: Falling Population Growth and Rising Concentration

(a) Firm Survival

Survival rate 
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Age a
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(b) Size by Age
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1 − x/ψ (ηH)
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Note: The figure shows the relationship between population growth η and firms’ survival probabilities S (a) in the left panel and the
relationship between population growth η and the average number of products n (a) in the right panel.

accumulation rate ψ and concentration. Interestingly, this increase in product concentra-
tion goes hand in hand with an increase in the number of varieties per person Nt = Nt/Lt:
even though population growth reduces the number of firms per worker, it increases the
number of products per worker because each existing firm offers a larger product portfo-
lio. Hence, higher concentration at the firm-level can coexist with an expansion of product
variety.

Even though population growth affects the tail of the product distribution, it might not
affect the tail of the employment distribution. Recall that firm-level employment is given
by

l f t =

n f

∑
i=1

(
qi

Qt

)σ−1

× LP
t

Nt
=

n f

∑
i=1

(
qi

Qt

)σ−1

× `P

N
, (25)

that is, the firm-size distribution depends on the distribution of both the number of prod-
ucts n and of scaled efficiency q/Q. The tail of the employment distribution is thus given
by $l = min

{
$n, 1

σ−1 $q

}
, where $n is the tail of the product distribution given in (24) and

$q is the tail of the scaled efficiency distribution. Intuitively, firms can be large in two
ways: by having many products, or by having an extraordinarily good product.

As we show in Section A-1.1.8 in the Appendix, the distribution of relative efficiency also
has a Pareto tail and the tail parameter $q depends on λ, α, σ, and q and is implicitly
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defined by:

$q

(
qσ−1 − 1

σ− 1

)
= −1 + αλ$q . (26)

Crucially, and in stark contrast to (24), the tail of the efficiency distribution $q is indepen-
dent of population growth η. Even though declining population growth always increases
concentration, whether this increase also shows up in the tail of the size distribution de-
pends on the comparison of $n and $q. If $n < $q, the product distribution is the dominat-
ing force and lower population growth increases the thickness of the tail of the employ-
ment distribution. If $n > $q, the tail of the employment distribution is determined from
the distribution of relative efficiency and independent of the rate of population growth.
Which of these cases prevails is a quantitative question.

2.5 The Mechanism: Demand or Supply?

Falling population growth impacts the economy both through a decline in labor supply
and via aggregate demand. It is thus natural to ask whether the resulting changes in firm
dynamics and aggregate growth contained in Propositions 1 and 3 reflect supply, demand
or both.

To distinguish the supply and demand channel, suppose there is a second sector that has
access to a production technology Yt = AtHt, where Ht denotes the number of workers
in sector 2 andAt grows at an exogenous rate gA. The mass of sector-2-workers Ht grows
at rate ηH and they can only provide labor to sector 2. All individuals have identical
intra-temporal Cobb Douglas preferences ct = cϑ

1tc
1−ϑ
2t , and spend a share ϑ on goods

of sector 1. This setup, which can be also be thought of as an open economy extension
where sector 2 is a foreign country, allows us to independently vary aggregate demand
and labor supply. Changes in population growth of sector-1-workers, η, still have supply
and demand effects. By contrast, population growth of sector-2-workers, ηH, has no effect
on labor supply in sector 1.

In Section SM-2 in the Supplementary Material we characterize this model in detail and
derive the analogue of Propositions 1 and 3 in this more general environment. First, we
show that creative destruction τ, variety creationν, entry z, and incumbent innovation x
are exactly the same as in our baseline economy. Hence, neither gA nor ηH have any effect
on these outcomes and, as a a consequence, on the resulting firm-size distribution.
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By contrast, real consumption growth of workers in sector 1 is now

gc = ϑ

(
gQ +

1
σ− 1

gN
)
+ (1− ϑ)

(
gA + ηH − η

)
,

that is, an increase in gA or ηH raises consumption growth through cheaper relative
prices. These results highlight that the relationship between population growth, firm-
dynamics and local productivity growth is a supply side phenomenon. However, domes-
tic consumers can be somewhat shielded from falling local population growth by global
productivity or population growth.

2.6 Discussion of Assumptions

Three assumptions made our theory particularly tractable. First, we assumed a linear
entry technology. Second, product creation was undirected: a constant share α of product
innovation results in creative destruction rather than new-variety creation. Third, we
took the rate of own-innovation I to be exogenous. In this section, we show that our main
results do not hinge on these modeling choices - see Section A-1.2 in the Appendix for
details.

Decreasing Returns in the Entry Technology. Assume the productivity of entrant labor
hired to produce new ideas is given by ϕE (zt) = ϕ̃Ez−χ

t . Here, zt is the aggregate entry
rate that each entrant takes as given. For χ = 0, this specification yields the constant-
returns case analyzed above. For χ > 0, the cost of entry rises with the aggregate entry
rate. Free entry requires that Vt (qQt) = 1

ϕE(zt)
wt =

1
ϕ̃E

zχ
t wt. Hence, the aggregate entry

supply curve is increasing with an elasticity 1/χ.

Propositions 1 and 3 extend to this case in a straightforward case. Along a BGP, the rate
of variety growth is still tied to the rate of population growth, i.e. ν = η + δ. This directly
implies that the rate of creative destruction τ and the aggregate growth rate gy are exactly
the same as in Propositions 1 and 3. By contrast, the composition of product innovation
depends on the strength of congestion χ. As we show in Section A-1.2 in the Appendix, z
and x are then determined from

η + δ

1− α
= z + x and x =

(
ϕx

ζ ϕ̃E

) 1
ζ−1

z
χ

ζ−1 .

Comparing this expression with (21) in Proposition 3 highlights that the entry elasticity
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χ determines how entry and incumbent innovation co-move. As long as ζ − 1 > χ,
incumbents’ innovation share x/ (z + x) is declining in η as in (22) and all our qualitative
results apply. Below we show that the canonical free entry specification χ = 0 provides a
good quantitative fit to the data.

Endogenizing the Direction of Innovation α. Our second assumption concerns the direc-
tion of innovation α. In Section A-1.2 in the Appendix, we present a detailed analysis of
an extension of our model, where entrants and incumbents can directly choose the flow
rate at which they want to creatively destroy products (xCD and zCD) and at which they
want to create new varieties (xNV and zNV).

This extension of our model is still very tractable. First, the value function takes a similar
form to (20) in Proposition 2. Second, letting ϕN and ϕCD denote the relative costs of new
variety creation and creative destruction, the optimal rates of incumbent innovation are
given by

xNV =

(
ϕN

ζ

Vt (ωQt)

wt

) 1
ζ−1

and xCD =

(
ϕCD

ζ

Vt (λQt)

wt

) 1
ζ−1

. (27)

Third, because entering firms have the same innovation technology as incumbents, zNV =

xVNz and zCD = xCDz, where z is the aggregate flow of entry.

Equation (27) highlights why variety creation and creative destruction are tightly linked:
both depend on the same value function Vt (q) /wt. In fact, in the special case where
λ = ω, this model is exactly isomorphic to our baseline model because equation (27)
implies α

1−α = xCD
xNV

= (ϕCD/ϕN)
1/(ζ−1), and the expression for creative destruction τ is

unchanged. In Section A-1.2 in the Appendix, we also analyze the general case of λ 6= ω,
which implies α is no longer constant. However, quantitatively, falling population growth
still reduces both creative destruction and the relative importance of entrants.

Endogenous Own-Innovation I. Our results also extend seamlessly to the case where I
is endogenous. Because the proofs of Propositions 1 and 3 never used any properties of
firms’ vertical innovation choices I, the expressions for τ, z, x and gy are exactly the same
as in Propositions 1 and 3, except that I is no longer a parameter but a choice variable. In
Section A-1.2 in the Appendix we solve for I explicitly, and show that I depends on the
creative destruction rate τ and parameters other than population growth. Moreover, I is
increasing in τ, that is, a decline in population growth reduces the rate of own-innovation.
The endogenous response of incumbents’ own-innovation efforts thus amplifies the neg-
ative growth consequences of falling population growth.15

15That I is increasing in τ seems surprising given that higher creative destruction reduces the expected
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3 Endogenous Market Power

So far, we have assumed markups were constant and equal to the standard CES markup.
We now generalize our model by assuming firms compete a la Bertrand within product
lines. Doing so makes the distribution of markups endogenous, and allows us to study
the effects of falling population growth on market power.

Given the CES structure of demand, each firm would like to charge a markup of σ
σ−1

over marginal cost. However, the presence of competing firms within their product line
implies the most efficient producer might have to resort to limit pricing. The markup
charged in product i, µi, is thus given by µi = min

{
σ

σ−1 , ∆i
}

, where qC
i is the efficiency of

the next best competitor, and ∆i ≡ qi/qC
i > 1 is the firm’s efficiency advantage relative to

it competitors (we also refer to this as the “gap”).

The static equilibrium allocations generalize in a straightforward way. Aggregate output

and equilibrium wages are now given by Yt =MtQtN
1

σ−1
t LP

t and wt = ΛtYt/LP
t , where

Mt =

(∫
µ1−σ (q/Qt)

σ−1 dFt (q, µ)
) σ

σ−1

∫
µ−σ (q/Qt)

σ−1 dFt (q, µ)
and Λt =

∫
µ−σ (q/Qt)

σ−1 dFt (q, µ)∫
µ1−σ (q/Qt)

σ−1 dFt (q, µ)
,

and Ft(q, µ) denotes the joint distribution of efficiency and markups. The two aggre-
gate statistics Mt and Λt fully summarize the static macroeconomic consequences of
monopoly power. Market power reduces both production efficiency (the misallocation
term Mt) and lowers factor prices relative to their social marginal product (the labor
wedge Λt). Because the joint distribution of markups and efficiency, Ft (q, µ), is a function
of the rate of population growth, declining population growth affects bothMt and Λt.

Most of our theoretical results directly carry over to this more general environment.
Most importantly, the key results of Propositions 1 and 3 exactly hold in the model with
Bertrand competition: the expressions for creative destruction τ and variety creation ν,
the aggregate rate of growth gy and entry and incumbent innovation z and x still hold in
an environment with imperfect product markets and as a consequence the link between
population growth and product concentration applies unchanged. In addition, although

life-span. Holding LP
t /Nt fixed, this intuition is indeed correct. However, once the change in LP

t /Nt is
taken into account, the effect of creative destruction becomes positive. The reason is that free entry requires
the average production value plus the innovation value to be equal to the entry costs. A lower rate of
population growth increases the innovation value and reduces the production value. And as the returns
to own-innovation only scale with the production value, they are lower in an environment with lower
population growth.
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Figure 4: Falling Population Growth and Rising Market Power

(a) The Life-Cycle of Product Markups
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Notes: This left panel shows a stylized example of how markups evolve at the product level. When a firm takes over a product,
markups increase through own-innovation. Once the product is lost to another firm, markups are reset to the baseline level of λ. The
right panel shows what happens to the distribution of markups when population growth falls.

the value function is more involved, we show in Section A-1.3 in the Appendix that we
can still derive an analytic expression that has a similar form to the one derived in the
constant markup case.

Allowing for imperfect competition, however, yields additional insights, because our
model features a crucial asymmetry between productivity growth due to creative de-
struction and own-innovation. Suppose the current producer of product i has an effi-
ciency gap of ∆i. If this firm is replaced by another producer, the efficiency gaps reduces
to λ as the new firm’s efficiency exceeds the one of the previous producer by the creative-
destruction step size λ. By contrast, if the existing firm increases its efficiency through
own-innovation, the markup increases at rate I (as long as ∆i ≤ σ

σ−1 ). Therefore, own-
innovation is akin to a positive drift for the evolution of markups, whereas creative de-
struction is similar to a “reset” shock, which keeps the accumulation of market power in
check. This process is displayed in the left panel of Figure 4.

This stochastic process gives rise to a stationary distribution of markups. Newly created
varieties do not face any competitor and charge a markup of σ

σ−1 . Products that have been
creatively destroyed at some point in the past are subject to Bertrand competition and the
markup depends on ∆. Let NNC

t denote the mass of products without any competitor, and
let NC

t = Nt − NNC
t be the mass of products that are subject to competition. In Section

A-1.3.1 in the Appendix, we prove two results. First, we show that, along a BGP, the
share of product without any competitor is given by NNC

t /Nt = 1− α; that is, it is simply
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given by the share of product creation that results in new varieties. Second, the marginal
distribution of efficiency gaps among products with a competitor is a Pareto distribution
with a tail parameter of (τ + η + δ) /I:

FC (∆) = 1− (λ/∆)
τ+η+δ

I = 1− (λ/∆)
1

1−α
η+δ

I , (28)

where the second equality uses that τ = α
1−α (η + δ) . Equation (28) highlights that slower

population growth increases the distribution of efficiency gaps in a first-order stochas-
tic dominance sense. First, slower population growth shifts the product distribution to-
ward old products, which, on average, have higher markups. In addition, because slower
population growth also reduces creative destruction and product churning, this effect is
amplified: the average efficiency gap is increasing even for a given cohort of firms.

To translate efficiency gaps into markups, recall that µ (∆) = min
{

σ
σ−1 , ∆

}
. A reduction

in population growth therefore increases markups along the whole distribution and shifts
more mass towards the maximum CES markup. Because higher markups reduce the labor
share Λ and more dispersed markups reduce allocative efficiencyM, lower population
growth tends to increase profits relative to factor payments and has adverse effects on
static allocation efficiency. In the right panel of Figure 4, we depict how the distribution
of markups changes in response to a decline in population growth from ηH to ηL.

The macroeconomic consequences of misallocation are summarized byM and Λ, which
depend on the joint distribution between efficiency gaps ∆ and efficiency q. To derive
this distribution, define relative efficiency q̂ = ln (q/Qt)

σ−1 and let λ̂ = ln λσ−1 . Denote
FC

t (∆, q̂) as the joint distribution of efficiency gaps and relative efficiency for products
that have a next-best competitor. Similarly, denote FNC

t (q̂) as the distribution of relative
efficiency for products that do not have a competitor. We show in Section A-1.3.1 in the
Appendix that these objects satisfy the differential equations

∂FC
t (∆, q̂)

∂t
= −∂FC

t (∆, q̂)
∂∆

I∆− (σ− 1)(I − gQ
t )

∂FC
t (∆, q̂)

∂q̂︸ ︷︷ ︸
drift from own innovation

− (τt + δ + η) Ft

(
∆, q̂

)

︸ ︷︷ ︸
product loss

+ lim
s→∞

τtFC
t
(
s, q̂− λ̂

)
︸ ︷︷ ︸

creative destruction of C products

+ τt
NNC

t

NC
t

FNC
t (q̂− λ̂)

︸ ︷︷ ︸
creative destruction of NC products

,
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∂FNC
t (q̂)
∂t

= −∂FNC
t (q̂)
∂q̂

(σ− 1) (I − gQ
t )

︸ ︷︷ ︸
drift from own innovation

− (τt + δ + η) FNC
t (q̂)︸ ︷︷ ︸

product loss

+
(1− α)

α
τtΓ
(

exp (q̂)
σ− 1

)

︸ ︷︷ ︸
new products

.

These expressions highlight the separate roles of own-innovation and creative destruc-
tion in influencing the evolution of efficiency and markups. Own-innovation causes both
production efficiency and the gap to drift upwards at the deterministic rate I, whereas
creative destruction “resets” the mass in the distribution above ∆ to have a gap of λ.
Below, we quantify the impact of falling population growth on Ft(∆, q̂) computationally
both along the BGP and during the transition.

4 Quantitative Analysis: Calibration

To quantify the importance of declining population growth, we now calibrate our model
to data from the US. We parametrize the model to a balanced growth path matching key
moments of the data in 1980, when labor force growth was approximately 2%. We then
study the aggregate impact of the historical and projected decline in population growth
since 1980 by computing the dynamic response in our model.

4.1 Data

Our main dataset is the US Census Longitudinal Business Database (LBD). The LBD is
an administrative dataset containing information on the universe of employer establish-
ments since 1978. It contains information on the age, industry, employment, and payroll
of each establishment, along with identifiers at the firm level that allow us to track the
ownership of each establishment over time. We define the age of the firm in the LBD as
the age of the oldest establishment that the firm owns. The birth of a new firm requires
both a new firm ID in the Census and a new establishment record.

To measure firms’ markups, we require information on sales. We augment the LBD data
with information on firm revenue from administrative data contained in the Census Bu-
reau’s Business Register, following Moreira (2015) and Haltiwanger et al. (2016). The
Business Register is the master list of establishments and firms for the US Census, and we
are able to match approximately 70% of the records to the LBD.

In Table A-1, we provide some basic summary statistics on the firms in our dataset. In
total our data comprises about 3.61 million firms in 1980 and 4.95 million firms in 2010.
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During that time period, concentration rose substantially. Average firm employment in-
creased by around 10%, from 20 to 22 employees, the aggregate employment share of
firms with less than 20 employees declined from 21.5% to 18.8%, and that of very large
firms (with more than 10,000 employees) increased from 25.7% to 27%. Furthermore,
firms became substantially older: the employment share of firms less than five years old
declined from 38% to 30%. Qualitatively, all these facts are implications of our theory.
Below we show the observed decline in population growth goes a long way toward repli-
cating these patterns quantitatively.

In addition, we use data on the number of products per firm from the Census of Manufac-
turers between 1987 and 2012. As part of the survey, firms self-report the type of products
they sell and the Census Bureau assigns these products to 10-digit NAICS categories. We
only use the simple count of products per firm.

4.2 Product Concentration: Direct Evidence

A key implication of our theory is that falling population growth reduces creative de-
struction and increases product concentration. In Figure 1 we already showed that the
importance of multi-product firms in the US manufacturing sector rose sharply since the
1980s. In this section we show that this trend is apparent for the whole product distribu-
tion and that it is not unique to the manufacturing sector.

In the left panel of Figure 5 we depict the distribution of the number of products per man-
ufacturing in different years, using the Census of Manufacturing. As our theory predicts,
the distributions of products per firm shifted steadily outwards in a first-order stochastic
dominance sense. We also extend this analysis to sectors outside of manufacturing, using
data from the LBD. To be able to observe a ’product’, we focus on firms that provide non-
tradable services, such as restaurants, retail, construction, or accommodations. From the
point of view of such firms, each distinct establishment in space serving a distinct market
(Starbucks on 116th street vs. Starbucks in Madison Square) can be thought of as a dis-
tinct product in our theory. In the right panel, we plot the distribution of the number of
establishments per firm, focusing on firms with at least two establishments. As for prod-
ucts in manufacturing, the plant distribution in the non-tradable service sector shifted
steadily to the right. While in 1980, more than 50% of multi-establishment non-tradable
firms had only two establishments, this share declined by 10 percentage points by 2015.
By contrast, the share of firms with more than 10 establishments increased by roughly
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Figure 5: Rising Product Concentration
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Note: Panel (a) shows the number of products per firm in the Census of Manufacturing. Panel (b) displays the number of establish-
ments per firm in non-tradable industries (Restaurants, Retail, Construction, Accommodation) from the LBD.

5%. Through the lens of our theory, these patterns are a natural consequence of declining
creative destruction by entrants relative to incumbents and a key implication of declining
population growth.

4.3 Calibration

Our model is parsimoniously parametrized and rests on 11 parameters:

Ψ =





α, ζ, ϕE, ϕx, I, ω̄, λ︸ ︷︷ ︸
Innovation & Entry technology

, δ︸︷︷︸
Exog. exit

, η︸︷︷︸
Pop. growth

, ρ, σ︸︷︷︸
Preferences





.

We set three of them exogenously. We fix the elasticity of substitution between products
σ at 4, following Garcia-Macia et al. (2019), set the discount rate ρ to 0.95, and assume a
quadratic innovation cost function (i.e. ζ = 2) as in Acemoglu et al. (2018).

The rate of labor force growth η is directly observed in the data and is our key parameter
for the comparative statics. The remaining seven parameters are calibrated internally.
First, we target three moments from the cross-sectional size distribution in 1980: the entry
rate, average firm size and the Pareto tail of the employment distribution. Second, we
utilize two moments of firm-growth, namely the dynamics of sales and markups over
firms’ life-cycle. Finally, we rely on two aggregate moments: the aggregate growth rate
and the average markup. In Table 1 we report the parameters and the main moments
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Table 1: Model Parameters

Structural Parameters Moments
Description Value Data Model

η Labor force growth in 1980 0.02 Data from BLS 2% 2%

λ Step size on quality ladder 1.11 Aggregate poductivity growth 2% 2%

I Rate of own innovation 0.023 Markup growth by age 10 (RevLBD) 10.2% 10.2%

ϕX Cost of inc. product creation 0.04 Sales growth by age 10 (RevLBD) 58% 58%

ϕE Cost of entry 0.12 Avg. firm size (BDS) 20.7 20.7

δ Exogenous rate product death 0.06 Entry rate in 1980 (BDS) 11.6 % 11.6 %

α Share of creative destruction 0.59 Average profit share 25% 25%

ω̄ Relative efficiency of new products 0.45 Pareto tail of LBD employment distribution in 1980 1.1 1.1

ζ Curvature of innovation cost 2 Set exogenously

σ Demand elasticity 4 Set exogenously

ρ Discount rate 0.05 Set exogenously

Note: This table reports the calibrated parameters for the full model. Data for the firm lifecycle comes from the US Census Longitudinal
Database, augmented with revenues from tax-information using the Census Bureau’s Business Register. Data for average firm size
and the firm entry rate in 1980 are taken from the public-use Business Dynamics Statistics.

we target. While all moments are targeted simultaneously, there is nevertheless a tight
mapping between particular moments and parameters which highlights how the different
parameters are identified.

Innovation efficiency of incumbent firms: I and ϕx. We identify the relative efficiency of
vertical own-innovation and horizontal expansion from the life-cycle profiles of sales and
markups. Because markup growth is driven by incumbents’ own-innovation activities
(see Figure 4), this moment is informative about the rate of efficiency improvement I.
Sales growth is additionally affected by the rate of incumbent product creation, which
depends directly on the cost of product expansion ϕx.

As we show in detail in Section A-2.2 in the Appendix, we can derive the life-cycle profiles
of sales and markups (essentially) explicitly. This is not only convenient from a quantita-
tive standpoint but also clarifies our identification strategy. The main insight in deriving
these moments is to first express markups and sales of a given product as a function of
the “product age” aP, that is the amount of time a given product has been produced by
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the same firm. Average sales as a function of product age aP are given by

sP (aP) ≡ E
[ piyi

Y

∣∣∣ ap

]
= E

[
µ1−σ

i

(
qi

Qt

)σ−1
∣∣∣∣∣ ap

]
= µ

(
ap
)1−σ e(σ−1)(I−gQ)ap qσ−1,

where µ (aP) = min
{

σ
σ−1 , ∆ (aP)

}
= min

{
σ

σ−1 , λeIaP
}

, and the remaining terms are aver-
age relative quality.16

With this expression in hand, we can calculate the life-cycle of sales and markups at the
firm-level. Average sales and markups as a function of firm age a f are given by

s f

(
a f

)
= E




N f

∑
n=1

sP (aP)

∣∣∣∣∣∣
a f


 and µ f

(
a f

)
= E







N f

∑
i=1

µ
(
ap
)−1 sP (aP)

∑
N f
i=1 sP (aP)



−1
∣∣∣∣∣∣∣

a f


 ,

where the expectations are taken with respect to the conditional distribution of N f and aP,
conditional on a f . As we show in Section A-2.2 in the Appendix, we can calculate these
conditional distributions essentially explicitly. This allows us to compute the life-cycle
profiles of sales and markups without having to simulate the model.

Empirically, we measure markups at the firm level by the inverse labor share µ f =
py f
wl f

,
where py f is the total revenue of the firm, and wl f is the total wage bill. While this
approach allows us, in principle, to measure markups for the population of US firms, we
only use firms’ markup growth to calibrate our model. More specifically, letting µ f ,t be the
markup of firm f at time t, we run a regression of the form

ln µ f ,t =
20

∑
a=0

γ
µ
a IAge f t=a + θ f + θt + ε f ,t, (29)

where IAge f t=a is an indicator for whether the firm is of age a and θ f and θt are firm and
time fixed effects respectively. Hence, γ

µ
a provides a non-parametric estimate of the rate

of markup growth. We calibrate our model to the growth rate at the 10-year horizon, γ
µ
10.

Because we explicitly control for a firm fixed effect when estimating (29), we do not have
to take a stand on firms’ output elasticities as long as they are constant with age.

We follow the same approach when we estimate the life-cycle of sales; that is, we also
estimate (29) using log sales as the dependent variable and target γ

py
10 in our quantitative

16Because own-quality q increases at rate I while average quality Q increases at rate gQ, e(σ−1)(I−gQ)ap is
the relative drift of these random variables. The last term reflects the initial average quality when the firm
adds the product to its portfolio.
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model. In the LBD, firms increase their average markup by roughly 10 percentage points
and grow in size by about 80% by age 10.

Entry costs and product obsolescence: ϕE and δ. We choose ϕE and δ to jointly match
the entry rate and average firm size. The free condition determines market size LP

t /Nt

as a function of entry efficiency ϕE. This in turn is a key component of average firm
employment. We thus choose ϕE to match an average firm employment of 20.04 in 1980
from the BDS. The exogenous rate of obsolescence δ directly influences the exit and hence
- in a BGP - the entry rate of firms. We target the entry rate in 1980 of 11.6%.

Productivity growth through innovation: λ and ω. The parameters λ and ω determine
the relative quality of creatively destroyed products and newly generated varieties. We
infer these parameters from the aggregate growth rate and the tail of the firm size distri-
bution. That λ and ω directly affect the growth rate is apparent from Proposition 1. For
the tail of the firm size distribution, we find in our calibration that ςn > 1

σ−1 ςq, i.e. the tail
of the employment distribution is given by 1

σ−1 ςq, where ςq is given in (26). Given α and
σ, this tail only depends on λ and ω. For our calibration, we chose λ and ω̄ to target a
rate of productivity growth of 2% and a tail parameter of the firm size distribution of 1.1
(Luttmer, 2007).17

New varieties vs. creative destruction: α. The share of new products in innovation, 1− α,
plays an important role for the level of markups in the economy. The higher α, the lower
the economy-wide markup, because the higher the share of products that are subject to
Bertrand competition. We target an economy-wide profit share of 25%.

4.4 Estimates and Model Fit

As seen in Table 1, our model is able to match the targeted moments perfectly. To ra-
tionalize the fact that firm-level markups grow by around 10 percentage points at the 10
year horizon, our model implies a rate of own-innovation of around 2.3%. For a creative
destruction event, we estimate a productivity increase of 11%. This is required to match
an annual aggregate growth rate of 2%. On average, about 60% of product innovations
result in creative destruction, and 40% generate a new variety. The initial ion efficiency
of these new products, ω, is estimated to be low, about 50% of the average product in
the economy. This relatively low value is required to match the thickness of the tail of

17While none of the moments we target depend on higher moments of the initial efficiency distribution
Γ(ω), the shape of F(q̂, ∆) is affected by this choice. We choose Γ to be a Pareto with mean ω and a tail
index of 4, which rationalizes the relatively low dispersion of entrant size in the LBD.
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Figure 6: Lifecycle Growth in Firm Sales and Markups
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(b) Markup Growth by Age
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Note: Panel (a) in this figure compares the lifecycle of firm sales in the model to the estimated lifecycle in the data. The data lifecycle
plots the age coefficients from estimating equation (29) in the LBD. The sample size is 35, 300, 000, where this number has been rounded
to accord with Census Bureau disclosure rules. Panel (b) does the same for relative markups.

the employment distribution. These estimates imply that the average efficiency of new
product, q, is given by 0.95.

These parameters also determine the long-run growth impact of falling population growth:

dgy/dη =
qσ−1 − α

(σ− 1) (1− α)
≈ 0.2. (30)

Hence, a one percentage point decline in the rate of population growth reduces economic
growth by 0.2 percentage point. This result is consistent with the findings of Bloom et al.
(2020). In their model, dgy/dη = 1/β where β is the “degree of diminishing returns” (i.e.
Ȧt/At = A−β

t LR
t ). They estimate 1/β = 0.33 for the aggregate economy.

Our model also matches a variety of additional non-targeted moments despite its par-
simonious parametrization. Consider first the sales and markup life cycle. In Figure 6
we show the model’s performance by plotting the estimated coefficients γ

µ
a and γ

py
a from

specification (29) estimated in the model and in the data. As highlighted in Table 1, we
calibrate our model to match γ

py
10 and γ

µ
10. Figure 6 shows that the model’s implication for

the whole age profile of sales (in the left panel) and markups (in the right panel) is quite
close to what is observed in the data.18

In Figure 7, we confront our model’s predictions for the size distribution and firms’ exit

18In Figure A-2 in the Appendix we show the joint density of markups and efficiency, illustrating the
positive correlation between markups and efficiency induced by survival and own-innovation.
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Figure 7: Size Distribution and Exit Hazards: Model vs Data
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(b) Exit Rates By Age
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Notes: This figure plots the employment shares by firm size (left panel) and the lifecycle exit rates (right panel) in the calibrated model
(blue) and the data in 1980 (orange). The data in the left panel is from the BDS. The exit rates by age in the data are taken from the
increments in a Kaplan-Meier survival function estimated on all firms in the LBD born between 1980 and 1990.

hazard with the data. Whereas we have explicitly targeted average size and the Pareto
tail, the left panel shows that our model matches the full non-parametric firm size dis-
tribution very well.19 Note, in particular, that it replicates the aggregate importance of
very large firms with more than 1000 employees, which account for 25% of aggregate em-
ployment. A central reason our model successfully replicates the firm-size distribution
is that it provides a good fit for the empirically observed exit hazards, despite the fact
that we do not target them in the estimation - see right panel of Figure 7. In our theory,
exit rates are declining in age because older firms have more product lines, and owning
more products progressively lowers the likelihood that they will all be destroyed within
a particular year.20

19For replicability we chose size bins that are also available in the publicly available data from the BDS.
20In Section A-2.3 in the Appendix we also analyze our model’s predictions for firms’ exit rates by size.

Our model overestimates the extent to which large firms exit. The reason is that (in our calibration) the
thick tail of the employment distribution is driven by the distribution of product quality. Hence, large firms
are firms with a few superstar products, not those with many products. And because creative destruction
is independent of product quality, such firms are as likely to exit as other firms. In Section SM-3 in the
Supplementary Material we also show how we can extend our model to allow for type heterogeneity along
the lines of Sterk et al. (2021) to address this counterfactual prediction.
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5 The Aggregate Impact of Falling Population Growth

We now use our model to quantify the consequences of falling population growth shown
on Figure 1, which, for convenience, we replicate in panel (a) of Figure 8. While the US
labor force grew by 2% in 1980, this rate declined to about 1% two decades later. The
official BLS projections paint an even direr picture for the years ahead: by 2050 it projects
the US labor force to grow at around 0.25%. To study the implications of this trend, we
start with the calibrated BGP in 1980, and then feed this path of population growth into
the model, assuming that all agents have rational expectations about this path. All other
parameters are held constant.

5.1 Declining Population Growth and Changing Firm Dynamics

We start by considering the impact on firm dynamics. We focus first on the entry rate, the
exit rate and average firm size. In Figure 8, we plot both the data and the implications of
our theory. Consider first the data, shown in green. The entry rate, shown in panel (b),
declined markedly in the last 30 years from around 12% in the 1980s to around 8% in the
mid 2000s. Note this series of the entry rate tracks the evolution of population growth
closely, and the contemporaneous correlation is 0.74. Similarly, the exit rate, shown in
panel (c), declined from 9% in 1980 to almost 7% in 2015. Average firm size, shown in
panel (d), rose from 20 to 23 employees, increasing by around 15%.

In blue, we superimpose the predictions of our theory. Recall that we used both the entry
rate and average size in 1980 as a calibration target, and hence match these numbers by
construction. The exit rate, by contrast, is not targeted. The subsequent fall in entry and
exit and the rise in average size are the sole consequence of the observed and projected
decline in population growth.

Figure 8 shows that the decline in population growth goes a long way toward explaining
the observed trends. For the entry and exit rates, our model matches the US experience
almost perfectly. For average size, our model predicts a somewhat slower increase than
what is observed in the data, and highlights that the long-run increase in firm size will
take many decades to settle at a higher value once labor force growth stabilizes. The
increase in concentration is also similar to what is observed in the data, with the employ-
ment share of large firms (defined by the BDS to be 10,000 employees or more) increasing
by 1% by 2015, roughly in line with the data (see Table A-1).

34



Figure 8: Declining Population Growth and Changing Firm Dynamics
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(d) Average Firm Size
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Note: Panel (a) displays the growth rate of the labor force in the US, with the raw series in blue and a HP-filtered trend component in
red. The data is sourced from the BLS, accessed through FRED. Grey shading indicates projections. The remaining panels show the
the dynamic response of the entry rate (panel (a)), the exit rate (panel (b)), and average firm size (panel (c)) to the path of population
growth shown in panel (a) . The same objects from the BDS data are shown in green.

In Figure 8, we only display the implications of our theory until 2070. Given the pop-
ulation growth path shown in panel (a), our model has not reached a new BGP at this
point. Hence, we also plot the long-run implications as dashed lines. The entry and exit
rates adjust relatively quickly and are already quite close to their long-run BGP values by
2070. By contrast, our model predicts that average size has some way left to run due to
the slow-moving firm size distribution and will increase substantially in the long-run.

As also highlighted in Hopenhayn et al. (2018), the four series shown in Figure 8 are
linked via a fundamental accounting equation: population growth is the sum of the entry
rate Et and the change in average firm size St minus the exit rate Xt, ηt = Ṡt/St + Et−Xt.
Because our theory correctly predicts an increase in average size and a fall in the exit rate,
the decline in the entry rate is substantially larger than the decline in population growth.
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Figure 9: Declining Population Growth, Firm Aging and Product Concentration
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Note: The left panel shows the share of firms older than 10 years old. The right panel shows the share of firms with at least two and
at least five products.

Along a BGP, where average size is constant, η = E − X . The fact that, empirically,
the gap between the entry rate and the exit declined markedly since 1980, is a further
indication that falling population growth is a key determinant of the observed changes in
the US firm size distribution.

In Figure 9 we trace out the evolution of the age distribution and the rise in product con-
centration. In the left panel we depict the share of firms older than ten years. Falling
population growth leads to firm aging as the fall in entry reduces the inflow of young
firms and lower creative destruction increases firms’ chance of survival. Quantitatively,
our model suggests that the share of old firms increases from 40% to around 70% in the
new BGP. The US economy has experienced a fair amount of firm aging, and the quanti-
tative magnitude of the change appears similar.21 In the right panel, we depicts the rise in
product concentration. We focus on the two statistics shown in Figure 1: the share of firms
with at least two and five products. Even though the units are not directly comparable,
like in the data, both increase steadily in response to falling population growth. This rise
in product concentration is an immediate reflection of the decline in creative destruction,
which allows incumbent firms to accumulate products at a faster rate as they age.

Our model predicts that average size is increasing both because of a shift in the age dis-
tribution towards older firms and because lower population growth increases firm size
conditional on age. Quantitatively, however, much of the increase depicted in Figure 8 is

21Because the age information in the LBD is censored in 1977, we cannot directly compute the share
of firms older than 10 years old in 1980. Between 1990 and 2010, the share of firms older than ten years
increased by 22 percentage points, from 29% to 51%.
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Figure 10: Declining Population Growth and Rising Market Power
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Notes: The left panel shows the transition path of the average product markup as labor force growth changes according to the path in
Figure 8. The right panel shows average markups by age before and after the transition.

due to shifts in the age distribution even though firms’ innovation spending is endoge-
nous and responds to changes in population growth. In Figure A-4 in the Appendix, we
show the change in sales growth and exit by age. These objects do change as population
growth declines, but only modestly. This dominant role of the age distribution is consis-
tent with the data, where size or exit rates by age also changed little (see Karahan et al.
(2019) and Hopenhayn et al. (2018)).

Finally, in Figure 10, we report the implied change in the cost-weighted average markup.
As implied by our theoretical results, the decline in population growth increases markups.
Quantitatively, the increase in market power is modest: the average product markup in-
creases by about 1%.

As shown in the right panel, our model implies this increase in markups occurs mostly
across firms and is a reflection of the fact that firms become older. Within firms, products
tend to become older because products are destroyed less frequently. On its own, this
fact raises average markups. However, firms also accumulate more products, which are,
on average, younger, and hence have lower markups. Quantitatively, these two forces
almost exactly offset one another, leaving the life-cycle of markups essentially unchanged.
Hence, as for the effects on firm size and exit, the rise in markups reflects compositional
changes whereby large and old firms with high markups increase their market share. This
pattern is qualitatively consistent with the findings reported in Kehrig and Vincent (2017)
and Autor et al. (2020).
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Figure 11: Declining Population Growth and Income per Capita
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Note: The figure displays the dynamic response of the aggregate growth rate (left panel) and the variety intensity Nt = Nt/Lt to the
path of population growth shown in Figure 8.

5.2 Declining Population Growth, Income per Capita and Welfare

We now turn to the normative implications. In Figure 11 we depict the growth rate of
income per capita (left panel) and the change in the variety intensity Nt (right panel).
Interestingly, the effect of population growth on output growth is not monotone. On
impact, a population growth decline increases output growth for about one decade. This
is due to an increase in the variety intensity Nt: even though the number of firms per
worker declines, the mass of products available to consumers increases by about 30%
in the long-run. This amounts to a static productivity increase of about 1

σ−1 ln (1.3) ≈
9%. But because this increase in variety is transitory, output growth eventually declines
and stabilizes at a lower level as in most models of semi-endogenous growth. In our
calibration, the long-run growth rate declines from around 2% to 1.6%, consistent with
(30).22 This decline in growth stems to a large extent from falling variety growth. In
fact, efficiency growth gQ rises slightly in response to the decline in population growth,
because we estimate the efficiency of new varieties ω to be relatively low. The creative
destruction hazard τ declines from about 20% to 17%.

The competing forces of rising variety and declining growth make the welfare conse-
quences of falling population growth in principle ambiguous. We measure welfare in
consumption equivalent terms, asking by how much would we need to change the level

22We also conducted our analysis for the case of endogenous own-innovation I. As shown in Section 2.6,
this amplifies the effect of population growth on productivity growth. Quantitatively, we find that long-run
growth declines to 1.2% instead of 1.6%.
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of consumption per capita in each period in the old BGP to achieve the same level of
welfare as the transition for a member of the representative household who discounts the
future at rate ρ. We find that the long-run decline in economic growth dominates: falling
population growth amounts to a 1.9% reduction in the level of consumption each period.

6 Conclusion

Most countries have experienced declining rates of fertility and a slowdown in population
growth in recent decades. There is little reason to think this trend is going to reverse any
time soon.

In this paper we have shown that this trend has important implications for the process
of firm dynamics and aggregate productivity. We analyzed a model of semi-endogenous
growth with multi-product firms that is rich enough to rationalize many first-order fea-
tures of the micro-data, but nevertheless lends itself to an analytical characterization.
Declining population growth reduces creative destruction and product creation, causes
a decline in entry, and increases average firm size, markups and market concentration.
Furthermore, lower population growth reduces economic growth in the long-run, but
has positive effects on productivity in the short-run though a surge in variety creation.

In our application to the US, we draw three main quantitative conclusions. First, the pop-
ulation growth channel can account for a large share of the change in entry, exit rates and
product concentration since the 1980s, and is thus likely to be an important contributor
for the decline in dynamism in the US and the rest of the developed world. Second, even
though the decline in population growth is predicted to lower economic growth in the
long-run, economic growth remains higher for about one decade. Third, even though
lower population growth increases market power and markups, we estimate this effect
to be quantitatively small. Hence, the rise in markups and the fall in the labor share are
unlikely to be driven by falling fertility.
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Online Appendix for “Population Growth and
Firm Dynamics”

[FOR ONLINE PUBLICATION]

A-1 Theory

A-1.1 Characterization of the Baseline Model

This section contains the derivation of all results for the baseline model characterized in
Section 2. The household side is characterized by usual Euler equation ċt

ct
= rt− ρ and the

transversality condition limt→∞

[
e−
∫ t

0 (rs−η)dsat

]
= 0, where at denotes per-capita assets

of the representative household. Our assumption ρ > η implies that the transversality
condition is satisfied along a BGP.

A-1.1.1 Static Equilibrium

Consider first the static equilibrium allocations, in particular (1). Letting µi denote the
markup in product i, the equilibrium wage is given by

wt =

(∫ Nt

0
µ1−σ

i qσ−1
i di

) 1
σ−1

= N
1

σ−1
t

(∫
µ1−σqσ−1dFt (q, µ)

) 1
σ−1

.

Similarly, aggregate output Yt is given by

Yt = N
1

σ−1
t

(∫
µ1−σqσ−1dFt (q, µ)

) σ
σ−1

∫
µ−σqσ−1dFt (q, µ)

LP
t . (A-1)

Defining Qt =
(∫

qσ−1dFt (q)
) 1

σ−1 =
(
E
[
qσ−1]) 1

σ−1 we can write (A-1) as Yt = N
1

σ−1
t QtMtLP

t
where

Λt =

∫
µ−σ (q/Qt)

σ−1 dFt (q, µ)∫
µ1−σ (q/Qt)

σ−1 dFt (q, µ)
andMt =

(∫
µ1−σ (q/Qt)

σ−1 dFt (q, µ)
) σ

σ−1

∫
µ−σ (q/Qt)

σ−1 dFt (q, µ)
. (A-2)
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For the case of µi = µ, Mt and Λt reduce to Mt = 1 and Λt = 1/µ as required in (1).
Product-level sales and profits are given by

pyi = µ1−σ
i

(
qi

Qt

)σ−1 ( 1
MtΛt

)σ−1 Yt

Nt
and πi =

(
1− 1

µi

)
pyi. (A-3)

If markups are constant, (A-3) reduces to pyi =
(

qi
Qt

)σ−1 Yt
Nt

and πi =
(

µ−1
µ

) (
qi
Qt

)σ−1 Yt
Nt

.

A-1.1.2 Aggregate Growth Rate

Given τt and νt = gNt + δ, the rate of quality growth is given by

gQ =
Q̇t

Qt
=

(
λσ−1 − 1

σ− 1

)
τt +

(
ωσ−1 − 1

)

σ− 1
νt + I. (A-4)

The growth rate of labor productivity is given by

gLP
t =

d
dt

ln
(

QtN
1

σ−1
t

)
= gQ

t +
1

σ− 1
gN

t = I +
(

λσ−1 − 1
σ− 1

)
τt +

ωσ−1

σ− 1
νt −

δ

σ− 1
. (A-5)

A-1.1.3 Derivation of value function Vt (q) in the model with entry (Equation (9))

Conjecture that the value function takes the form Vt (q) = qσ−1Ut, so that V̇t (q) =

gUV (t) . The HJB equation in (6) then implies that

Ut =
(µ− 1)

(
1

Qt

)σ−1 LP
t

Nt
wt

rt + τt + δ− gU
. (A-6)

The free entry condition in (7) is thus given by

1
ϕE

wt = VEntry =
qσ−1 (µ− 1) LP

t
Nt

wt

rt + τt + δ− gU
= qσ−1Qσ−1

t Ut.

This implies that Ut grows at rate gU = gw − (σ− 1) gQ. Substituting this in (A-6) yields
(9).

A-1.1.4 Proof of Proposition 1

Equations (13) and (14) follow directly from η = (1− α) z − δ in (12). To derive (15),
consider the free entry condition in (A-7). The Euler equation implies gY/L = rt − ρ.
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Also, gw = gY/L − g`P . Finally, (A-4) implies that

ρ + τt + δ + (σ− 1) gQ + g`P = ρ +
qσ−1

1− α
δ +

(
qσ−1

1− α
− 1

)
(gN + η) + g`P .

The free entry condition in (A-7) thus implies that

1
ϕE

=
(µ− 1) qσ−1

ρ + qσ−1

1−α δ +
(

qσ−1

1−α − 1
)
(gN + η) + g`P

`P
t

Nt
. (A-7)

Similarly, the resource constraint in (10) can be written as

(
1− `P

t
Nt

)
=

1
ϕE

νt

1− α
=

1
ϕE

gN + δ

1− α
=

1
ϕE

gN + η + δ

1− α
. (A-8)

These are two differential equations in Nt and `P
t . Together with the initial condition N0

and the consumers’ transversality condition as a terminal condition, they determine the
path

{
Nt, `P

t
}

t.

Along the BGP, gN = g`P = 0. Equations (A-7) and (A-8) can then be solved for N and
`P given in (15). In addition, (A-7) and (A-8) also characterize the transitional dynamics
depicted in Figure 2. Rearranging terms in (A-8) and substituting for gN in (A-7) yields

g`P = ϕE (1− α)

(
µqσ−1

1−α − 1
)
`P

t −
(

qσ−1

1−α − 1
)

Nt
− ρ− δ

gN = ϕE (1− α)

(
1− `P

t
Nt

)
− η − δ.

This dynamic system is depicted in the phase diagram in Figure 2.

A-1.1.5 Proof of Proposition 2

We first derive the value function stated in Proposition 2. Upon rewriting the innovation
value Ξt as

Ξt = n×max
x

{
x
(

α
∫

Vt ([qi] , λq) dFt (q) + (1− α)
∫

Vt ([qi] , ωQt) dΓ (ω)−Vt ([qi])

)
− xζ

ϕx
wt

}
,
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it is immediate that the value function is additive, i.e. Vt ([qi]) = ∑n
i=1 Vt (qi). The HJB equation

associated with Vt (qi) is given by

rtVt (q)− V̇t (q) = πt (q) + I
∂Vt (q)

∂q
q− (τ + δ)Vt (q) + Ξt, (A-9)

where Ξt = maxx

{
x
(

αVCD
t + (1− α)VNV

t

)
− 1

ϕx
xζwt

}
with VCD

t =
∫

Vt (λq) dFt (q) and VNV
t =

∫
Vt (ωQt) dΓ (ω).

Suppose the value function takes the following form Vt (q) = qσ−1Ut + Mt, where Mt and
Ut grow at some rate gM and gU respectively. Then I ∂Vt(q)

∂q q = I (σ− 1) qσ−1Ut. (A-9) can
then be written as

(rt + τ + δ− gU) qσ−1Ut + (r + τ + δ− gM) Mt =

(
(µ− 1)

(
1

Qt

)σ−1 LP
t

Nt
wt + I (σ− 1)Ut

)
qσ−1 + Ξt.

(A-10)

It is easy to show that along a BGP this implies that

Ut =
(µ− 1)

(
1

Qt

)σ−1 LP
t

Nt
wt

ρ + τ + δ + (σ− 1) (gQ − I)
and Mt =

Ξt

ρ + τ + δ
,

as Ξt ∝ wt. To see this note that Ξt =
ζ−1
ϕx

xζwt,where

x =

(
ϕx

ζ

) 1
ζ−1
(

α
VCD

t
wt

+ (1− α)
VNV

t
wt

) 1
ζ−1

. (A-11)

The value function is therefore given by

Vt (q) =
πt (q)

ρ + τ + δ + (σ− 1)
(

gQ − I
) +

ζ−1
ϕx

xζwt

ρ + τ + δ
.

Note also that VCD
t =

∫
Vt (λq) dFt (q) = Vt (λQt) and VNV

t = Vt (ωQt).

A-1.1.6 Characterization of Equilibrium

The equilibrium is characterized by the following conditions. First, the evolution of
aggregate productivity is given by in (A-4). Second, the rate of creative destruction is
given by τ = α

1−α νt, where νt = (1− α) (zt + x). Third, labor market clearing requires

Lt = LPt + LRt, where LRt = Nt
1

ϕE

(
zt +

1
ζ x
)

. Fourth, the Euler equation is given by
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r = ρ + gc, where gc is the growth rate of per capita consumption. Wages and output are

given by Yt = N
1

σ−1
t QtLP

t and wt =
1
µYt/LP

t . Market clearing requires Ct = Yt. Hence, the
growth rate of per capita consumption is given by

gc = gY − η = gw + gLP − η, (A-12)

where gw = 1
σ−1 gN + gQ (see (A-5)). Thus, r = ρ + gw + gLP − η. Finally, (A-10) and free

entry implies that 1
ϕE

= qσ−1ut + mt, where

mt =

ζ−1
ϕx

xζ

ρ + gLP − η + τ + δ− gm
and ut =

(µ− 1) `P
t /Nt

ρ + gLP − η + τ + δ− gu + (σ− 1)
(

gQ − I
) . (A-13)

Then we can write the free entry condition as

1
ϕE

=
qσ−1 (µ− 1)

ρ + g` + δ− gu +
(

qσ−1

1−α − 1
)

νt

`P
t

Nt
+

ζ−1
ϕx

xζ

ρ + g` + α
1−α νt + δ− gm

.

Hence, the equilibrium is characterized by a path
{
`P

t , Nt
}

t that satisfies the free entry
condition and labor market clearing

1
ϕE

=
qσ−1 (µ− 1)

ρ + g` + δ− gu +
(

qσ−1

1−α − 1
)

νt

`P
t

Nt
+

ζ−1
ϕx

xζ

ρ + g` + α
1−α νt + δ− gm

(A-14)

1− `P
t

Nt
=

1
ϕE

(
νt

1− α
− ζ − 1

ζ
x
)

, (A-15)

where gu and gm are the growth rates of ut and mt given in (A-13). For a given initial condition
N0 and the terminal condition that `P

t → `
P

and mt → m and ut → u one can solve for the dynamic

path
{
`P

t , Nt
}

t.

A-1.1.7 Balanced Growth Path

Along a BGP, income per capita grows at a constant rate. (A-12) implies that

gc = gw + gLP − η =

(
qσ−1 − α

σ− 1

)
νt

1− α
− 1

σ− 1
δ + I + g`P .

Along the BGP it also has to be the case that `P = LP
t /Lt. Hence, gN is constant along

a BGP, i.e. gN = ν− δ = η. With `P and N constant, gu = gm = 0 along the BGP. Hence,
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(
N , `P) are given by

1
ϕE

=
qσ−1 (µ− 1)

ρ +
(

qσ−1

1−α − 1
)

η + qσ−1

1−α δ

`P
t

Nt
+

ζ−1
ϕx

xζ

ρ + αη+δ
1−α

(A-16)

1− `P

N
=

1
ϕE

(
η + δ

1− α
− ζ − 1

ζ
x
)

. (A-17)

These equations have a unique solution for N > 0 and `P ∈ (0, 1).

A-1.1.8 Population Growth and Firm Dynamics (Section 2.4)

In this section we derive the relationship between population growth η and the process
of firm dynamics. In particular, we derive (i) the survival function S (a) in (23), (ii) the
average number of products by age n (a) in (23), and (iii) the Pareto tail of the product
distribution ζn in (24).

Firm survival S (a) and the average number of products n (a) Let pn (a) be the proba-
bility that a firm has n products at age a. This evolves according to

ṗn (a) = (n− 1) xpn−1 (a) + (n + 1) (τ + δ) pn+1 (a)− n (x + τ + δ) pn (a) .

Because exit is an absorbing state, ṗ0 (a) = (τ + δ) p1 (a) . The solution to this set of dif-
ferential equations is (see Klette and Kortum (2004))

p0 (a) =
τ + δ

x
γ (a) (A-18)

p1 (a) = (1− p0 (a)) (1− γ (a))

pn (a) = pn−1 (a) γ (a) (A-19)

where

γ (a) =
x
(

1− e−(τ+δ−x)a
)

τ + δ− x× e−(τ+δ−x)a
. (A-20)

Given that 1−α
α τ = δ + η, the net rate of accumulation ψ is given by

ψ ≡ x− τ − δ = x− α

1− α
(η + δ)− δ = x− αη + δ

1− α
. (A-21)
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Hence, ψ is decreasing in η. From this solution for pn (a) we can calculate both the sur-
vival rate and the cross-sectional age distribution.

Let S (a) denote share of firms that survive until age a. Then

S (a) = 1− p0 (a) =
ψeψa

ψ− x (1− eψa)
, (A-22)

which is equation (23) in the main text.

To derive n (a), let pn (a) denote the share of firms of age a with n production condi-
tional on survival. Then, pn (a) = pn(a)

1−p0(a) for n ≥ 1. Using (A-18)-(A-19), pn (a) =

γ (a)n−1 (1− γ (a)) . Then,

n (a) = E
[

N| A f = a
]

=
∞

∑
n=1

npn (a) = (1− γ (a))
∞

∑
n=1

nγ (a)n−1 =
1

1− γ (a)
.

Using (A-20), this implies n (a) = 1− x
ψ

(
1− eψa), which is the expression in (23).

The Pareto tail of the product distribution $n. To derive the tail of the product distri-
bution, let ωt (n) be the mass of firms with n products at time t. For n ≥ 2,

ω̇t (n) = ωt (n− 1) (n− 1) x + ωt (n + 1) (n + 1) (τ + δ)−ωt (n) n (τ + x + δ) .

For n = 1 we have ω̇t (1) = Zt + ωt (2) 2 (τ + δ)−ωt (1) (τ + x + δ) . Along the BGP the
mass of firms grows at rate η, that is ω̇t (n) = ηωt (n) . Denoting χ (n) = ωt(n)

Nt
,

χ (2) =
χ (1) (τ + x + δ + η)− z

2 (τ + δ)
(A-23)

and

χ (n + 1) =
χ (n) n (τ + x + δ) + χ (n) η − χ (n− 1) (n− 1) x

(n + 1) (τ + δ)
for n ≥ 2. (A-24)

Given χ (1), these equations fully determine [χ (n)]n≥2 as a function of (x, z, τ). We can
then pin down χ (1) from the consistency condition that

∞

∑
n=1

χ (n) n =
∞

∑
n=1

ωt (n)
Nt

n =
∑∞

n=1 ωt (n) n
Nt

= 1. (A-25)
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Hence, equations (A-23), (A-24) and (A-25) fully determine the firm-size distribution
[χ (n)]n≥1.

The distribution described by (A-23), (A-24) and (A-25) has a Pareto tail as long as η >

x − τ − δ > 0. Applying Proposition 3 in Luttmer (2011), the tail index of the prod-
uct distribution is given by $n = η

x−τ−δ . Using that τ = α
1−α (η + δ) we get that $n =

(1−α)η
x(1−α)−δ−αη

= η
η−z , where the second equality uses that z = η+δ

1−α − x. Also ∂$n
∂η > 0,

that is a decline in population growth reduces the Pareto tail towards unity and increases
concentration.23

The Pareto tail of the efficiency distribution $q. In this section we derive the marginal
distribution of efficiency q. In particular we derive (26), which we use to calibrate ω.
Define q̂t as the relative productivity of a product q̂t ≡ ln (qt/Qt)

σ−1. The drift of q̂t

(conditional on survival) is given by

∂q̂t

∂t
= (σ− 1) I − (σ− 1) d ln Qt = −

(
α
(
λσ−1 − 1

)

1− α
+ ωσ−1 − 1

)
(η + δ) , (A-26)

where the second equality uses (14).

Let Ft (q̂) denote the share of products at time t with q̂i ≤ q̂. This cdf evolves according to
the differential equation

∂Ft (q̂)
∂t

= − ∂Ft (q̂)
∂q̂

∂q̂t

∂t︸ ︷︷ ︸
Drift of q̂

+ τ
(

Ft(q̂− λ̂)− Ft (q̂)
)

︸ ︷︷ ︸
Creative destruction

− (δ + η)

(
Ft (q̂)− Γ

(
exp

(
q̂

σ− 1

)))

︸ ︷︷ ︸
Product loss vs new product creation

,

where λ̂ = ln λσ−1. In the steady state, ∂Ft(q̂)
∂t = 0 so that

dF (q̂)
dq

∂q̂t

∂t
= τ

(
Ft(q̂− λ̂)− Ft (q̂)

)
− (δ + η)

(
Ft (q̂)− Γ

(
exp

(
q̂

σ− 1

)))
. (A-27)

Guess that F is exponential in the tail with index $q, that is lim
q̂→∞

e$q q̂(1− F(q̂)) = a for

23Note that ∂$n
∂η = (1− α)

x(1−α)−δ

(x(1−α)−δ−αη)2 > 0. Using that τ = α
1−α (η + δ), it follows that x − τ − δ =

1
1−α (x (1− α)− αη − δ) . Hence, x− τ − δ > 0 implies that x (1− α)− δ > αη > 0.
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some a and $q. If we assume that Γ has a thin tail24 then as q̂→ ∞, (A-27) implies that

lim
q̂→∞

(
ae−$q q̂$q

∂q̂t

∂t

)
= lim

q̂→∞

[
(δ + η + τ)− τe$qλ̂

]
ae−$q q̂ − (δ + η) .

Hence, the tail coefficient $q solves the equation −$q
∂q̂t
∂t = −(δ + η + τ) + τe$qλ̂. Substi-

tuting (A-26) and noting that τ = α
1−α (η + δ) yields

$q

(
αλσ−1 + (1− α)ωσ−1 − 1

)
= −1 + αλ$q(σ−1).

This is equation (26) in the main text.

A-1.2 Model Extensions (Section 2.6)

A-1.2.1 Endogenizing the Direction of Innovation α.

Suppose that the firm can independently chose the flow of new varieties xN and creative
destruction xCD. The value function is then given by

rtVt (q)− V̇t (q) = πt (q) + I
∂Vt (q)

∂q
q− (τt + δ)Vt (q) + Ξt

where

Ξt ≡ max
xN

{
xNVN

t −
1

ϕN
xζ

Nwt

}
+ max

xCD

{
xCDVCD

t − 1
ϕCD

xζ
CDwt

}
. (A-28)

ϕCD and ϕN parametrize the efficiency of creative destruction and new variety creation
and VN

t and VN
t denote the value of creative destruction and new variety creation respec-

tively. Along the BGP, the solution of Vt (q) is given by

Vt (q) =
(µ− 1)

ρ + (gN − η) + (gQ − I) (σ− 1) + τ + δ

(
q

Qt

)σ−1 LP
t

Nt
wt +

Ξt

r + τ + δ− gΞt

.

24Formally, assume that for any κ, we have lim
q̂→∞

eκq̂(1− Γ
(

exp
(

q̂
σ−1

))
) = 0.
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The optimal innovation rates associated with (A-28) are given by

xNV =

(
ϕN

ζ

VNV
t
wt

) 1
ζ−1

and xCD =

(
ϕCD

ζ

VCD
t
wt

) 1
ζ−1

. (A-29)

Note that this implies that the endogenous share of product creation directed to creative

destruction is given by α̃
1−α̃ =

(
ϕCDVCD

t
ϕNVN

t

) 1
ζ−1

, i.e. the relative “bias” of innovation depends
on the relative valuations. This also implies that

Ξt =

(
ζ − 1
ϕNV

xζ
NV +

ζ − 1
ϕCD

xζ
CD

)
wt, (A-30)

where xNV and xCD are constant (see below). Hence, the value of product creation grows
at rate wt, i.e. gΞt = gw = r− ρ. Similarly, along the BGP we have gN = η, so that

Vt (q) =
(µ− 1)

ρ + (gQ − I) (σ− 1) + τ + δ

(
q

Qt

)σ−1 LP
t

Nt
wt +

Ξt

ρ + τ + δ
.

As before, VN
t and VCD

t are given by Vt (λQt) and V (ωQt).

We assume the following process of entry. As in the baseline model, the economy has
access to a linear entry technology whereby each worker generates a flow of ϕE new
firms. These firms then have access to the same innovation technology as incumbents to
eventually start producing either a creatively destroyed product or a new variety. In the
event that no product is discovered, the potential firm exits.

Because new firms have - after paying the entry costs 1
ϕE

wt - the same opportunity as
incumbents, their direction of innovation (i.e. new varieties versus creative destruction)
is exactly the same as the one of incumbent firms. Hence, if z new firms are created (per
product Nt), the total amount of creative destruction and variety creation by entrants is
given by zxCD and zxNV respectively. It also implies that the free entry condition is given
by 1

ϕE
wt = Ξt.

BGP equilibrium The BGP equilibrium in this economy is fully characterized by inno-
vation choices xNV and xCD, the entry flow z, value functions VNV/wt and VCD/wt, the
rate of creative destruction τ and the mass of production labor per product LP

t /Nt. As
before, gN = η so that ν = xNV (1 + z) = η + δ and τ = xCD (1 + z). The first order
condition for xNV and xCD are given in (A-29). Equation (A-30) implies that the free entry
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condition is given by 1
ϕE

= Ξt
wt

= ζ−1
ϕNV

xζ
NV + ζ−1

ϕCD
xζ

CD. The value function is given by

Vt (q)
wt

=
(µ− 1)

(
q

Qt

)σ−1

λσ−1τ + (ωσ−1 − 1) η + ωσ−1δ

LP
t

Nt
+

1
ρ + τ + δ

1
ϕE

. (A-31)

We can simplify this system further and express the BGP equilibrium in terms of xNV

and τ. Note first that τ = xCD
xNV

(η + δ) . From (A-29) we get that xζ
N

ζ−1
ϕN

= ζ−1
ζ

VN
t

wt
xN and

xζ
CD

ζ−1
ϕN

= ζ−1
ζ

VCD
t
wt

xCD. Free entry therefore requires that

1
ϕE

=
ζ − 1

ζ

(
VCD

t
wt

xN +
VNV

t
wt

xCD

)
.

Using the expressions for VCD
t
wt

and VNV
t
wt

, to solve for LP
t

Nt
, substituting in (A-29), and us-

ing τ = xCD
xNV

(η + δ), we can express the entire equilibrium in terms of xNV and τ. In
particular, one can show that

xN =

(
ϕN

(ζ − 1) ϕE

)1/ζ
(

1 +
(

τ

η + δ

)ζ ϕN

ϕCD

)−1/ζ

.

Finally, τ is determined from

((
λ

ω

)σ−1

− 1

)
1

η + δ

τ

ρ + δ + τ
=

ζ

(ζ − 1)
ζ−1

ζ

(
ϕE

ϕN

) 1
ζ

(
λ
ω

)σ−1 τ
η+δ −

(
τ

η+δ

)ζ ϕN
ϕCD

(
1 +

(
τ

η+δ

)ζ ϕN
ϕCD

) ζ−1
ζ

, (A-32)

and hence depends directly on η.

Assume first that creative destruction and new variety creation leads to the same quality
improvement, i.e. λ = ω. This implies that

α =
xCD

xCD + xNV
=

(ϕCD)
1

ζ−1

(ϕCD)
1

ζ−1 + (ϕNV)
1

ζ−1
,

that is α is indeed constant. Along the BGP, we still have xNV (1 + z) = (1− α) x (1 + z) =
η + δ. Similarly, creative destruction is given by τ = αx (1 + z) . Hence, as in the baseline
model, τ = α

1−α (η + δ) , i.e. lower population growth reduces creative destruction. Using

the free entry condition yields xζ = 1
ζ−1

1
ϕE

(
(1−α)ζ

ϕNV
+ αζ

ϕCD

)−1

. As in the baseline model,
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Figure A-1: The Effects of Population Growth (Endogenous α)
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Note: This figure plots model outcomes in a calibrated version of the extended model with endogenous
innovation direction as a function of the rate of population growth.

x is constant and fully determined from parameters governing the relative innovation
technologies. And with x constant, we have zx = η+δ

1−α − x, i.e. the total entry flow per
product, zx, is a decreasing function of population growth: in equilibrium entrants bear
the brunt of declining population growth.

If λ 6= ω, τ is determined from (A-32). One can show that there is at least one solution τ

and that a fall in η lowers τ if there is a unique solution. In Figure A-1 we show creative
destruction τ, the relative importance of entry z = zNV

xNV
= zCD

xCD
and the share of creative

destruction α as a function of population growth. The comparative static results shown
in Figure A-1 accord well with our baseline model. Creative destruction is an increasing
function of population growth, falling population reduces z, the flow of entrant product
innovation relative to incumbents and the creative destruction share α is increasing in η.
The result that α is increasing in η is driven by our estimates that ω < λ. This implies that
VCD

t puts a higher weight on the production as opposed to the innovation value. And
because a fall in population growth reduces the innovation value, it raises the value of
new variety creation relative to the value of creative destruction, leading to a decline in
the creative destruction share α.

A-1.2.2 Endogenous own-innovation I

Suppose now that firms can chose the rate of own-innovation I. Assume that the cost

function (in terms of labor) of achieving a drift I is given by c (I; q/Q) =
(

q
Qt

)σ−1
1
ϕI

Iζ .
Hence, the cost of innovation are convex in I and depend on firms’ relative efficiency q/Qt

to make the model consistent with balanced growth and Gibrat’s law for large firms.

Most results of the baseline model generalize in a straightforward way. In particular,
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Proposition 1 is exactly the same in this more general framework, except I in the expres-
sion for the growth rate is no longer a parameter but a choice variable. The value function
is still additive across products and the value of a given product with efficiency q is given
by

Vt (q) =
πt (q)

ρ + δ + τ +
(

gQ − ζ−1
ζ I
)
(σ− 1)

+

ζ−1
ϕx

xζwt

ρ + τ + δ
. (A-33)

Hence, the only difference to the baseline model is the term ζ−1
ζ in front of I in the discount

rate. Using (A-33), the optimal innovation rate is given by

I =


 ϕI

ζ


 1

ϕE
−

ζ−1
ϕx

xζ

ρ + τ + δ


 σ− 1

qσ−1




1
ζ−1

. (A-34)

Because x is still given by the expression in (19), (A-34) determines I as a function of τ and exoge-

nous parameters. Moreover, I is increasing in τ and hence declining in η.

A-1.3 Characterization of the Model with Bertrand Competition
In this section we derive the results for the model with Bertrand competition described in
Section 3. The only difference relative to the baseline case is that the static profit function
is given by (A-3), i.e.

π (qi, ∆i) =

(
1− 1

µ (∆i)

)
µ (∆i)

1−σ
(

qi

Qt

)σ−1 1

(MtΛt)
σ−1

Yt

Nt
. (A-35)

The value function is still additive across products, i.e. Vt ([qi, ∆i]) = ∑n
i=1 Vt (qi, ∆i). The

HJB equation for Vt (qi, ∆i) is given by

(rt + τt + δ)Vt (q, ∆)− V̇t (q, ∆) = πt (q, ∆) + I
{

∂Vt (q, ∆)
∂q

q +
∂Vt (q, ∆)

∂∆
∆
}
+ Ξt,

(A-36)

where Ξt = maxx

{
x
(

αVCD
t + (1− α)VNV

t

)
− 1

ϕx
xζwt

}
with VCD

t =
∫

Vt (λq, λ) dFt (q) and

VNV
t =

∫
Vt
(
ωQt, σ

σ−1

)
dΓ (ω). Note that for notational simplicity we denote the quality

gap for the creation of a new variety by σ
σ−1 to indicate that new varieties are able to

charge the monopolistic markup.

Note first that free entry and the definition of Ξt still implies that x =
(

ϕx
ϕE

1
ζ

) 1
ζ−1 and

Ξt = ζ−1
ϕx

xζwt. To solve for Vt (q, ∆), conjecture that Vt (q, ∆) takes the form Vt (q, ∆) =
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k (∆) qσ−1Ut + Mt. This implies that

∂Vt (q, ∆)
∂q

q = (σ− 1) k (∆) qσ−1Ut and
∂Vt (q, ∆)

∂∆
∆ = k′ (∆)∆qσ−1Ut.

Equation (A-36) thus implies that k (∆), Ut and Mt solve the equations

(rt + τ) Mt − Ṁt =
ζ − 1

ϕx
xζwt (A-37)

and

k (∆) qσ−1 ((rt + τ − I (σ− 1 + εk (∆)))Ut − U̇t
)

= πt (q, ∆)

= h (∆)
(

qi

Qt

)σ−1 Yt/Nt

(MtΛt)
σ−1 ,

where h (∆) =
(

1− 1
µ(∆)

)
µ (∆)1−σ and εk (∆) ≡ k′(∆)∆

k(∆) .

Along the BGP,MtΛt is constant, wt ∝ Yt/Nt and Ut grows at the same rates as Yt
Nt

Q1−σ
t .

This implies that gU = U̇t
Ut

= gw − (σ− 1) gQ. Hence,

k (∆)Ut =
h (∆)

(
1

Qt

)σ−1
1

(MΛ)σ−1
Yt
Nt

r + δ + τ − gw + (σ− 1)
(

gQ − I
)
− Iεk (∆)

.

The solution to the value function is therefore

Ut =

(
1

Qt

)σ−1 1

(MΛ)σ−1
Yt

Nt
and k (∆) =

h (∆)

r + δ + τ − gw + (σ− 1) (gQ − I)− I k′(∆)∆
k(∆)

.

Along the BGP, r + δ + τ − gw + (σ− 1)
(

gQ − I
)
= ρ + δ +

(
qσ−1

1−α − 1
)
(η + δ). Hence,

k (∆) solves the differential equation

k (∆) C − Ik′ (∆)∆ = h (∆) =
min

{
σ

σ−1 , ∆
}
− 1

min
{

σ
σ−1 , ∆

}σ ,

where C = ρ + δ +
(

qσ−1

1−α − 1
)
(η + δ). For ∆ ≥ σ

σ−1 we have k (∆) C − Ik′ (∆)∆ =
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1
σ−1

(
σ−1

σ

)σ
. Hence, k′ (∆) = 0 and k (∆) =

1
σ−1(

σ−1
σ )

σ

C . For ∆ < σ
σ−1 , we have

k (∆) C − Ik′ (∆)∆ =
∆− 1

∆σ
.

We can solve this differential equation together with the terminal condition k
(

σ
σ−1

)
=

1
σ−1(

σ−1
σ )

σ

C .

Equation (A-37) implies Mt grows at gw along the BGP. Hence, Mt = 1
ρ+τ+δ

ζ−1
ϕx

xζ . To-
gether with wtLP = ΛtYt, the value function along the BGP is given by

Vt (q, ∆) =

{
k (∆)

(
q

Qt

)σ−1 1
Mσ−1Λσ

`P

N
+

1
ρ + τ + δ

ζ − 1
ϕx

xζ

}
wt. (A-38)

Using (A-38) we can derive the free entry condition. The value of creative destruction is
given by VCD

t = Vt (λQt, λ). The value of variety creation is VNV
t = Vt

(
ωQt, σ

σ−1

)
. The

free entry condition, is thus given by

1
ϕE

=
VEntry

t
wt

=
αk (λ) λσ−1 + (1− α) k

(
σ

σ−1

)
ωσ−1

Mσ−1Λσ

`P

N
+

1
ρ + τ + δ

ζ − 1
ϕx

xζ .

BecauseMσ−1Λσ can be calculated along a BGP, the free entry condition determines `P

N

as in the model with constant markups.

To see that Proposition 1 still applies in the model with Bertrand competition, note first
that creative destruction and variety creation are still given by τ = α (z + x) and ν =

(1− α) (z + x). Moreover, the optimality condition for incumbent expansion x is still

given by (A-11) and the free entry condition still holds. Hence, x =
(

1
ζ

ϕx
ϕE

) 1
ζ−1 . These

three equations together with BGP condition gN = η = ν − δ are sufficient to derive
Proposition 1.

A-1.3.1 The Joint Distribution of Gaps and Productivity

In the model with Bertrand competition, the joint distribution of relative quality q̂t =

ln (qt/Qt)
σ−1 and quality gaps ∆, Ft (∆, q̂t), emerges as a key endogenous object. To solve

for Ft (∆, q̂t), it is useful to separate the problem by focusing individually on products
with competitors (i.e. where creative destructions has happened at some point in the
past) and products without competitors (i.e. products which are still owned by the firms
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that introduced the variety originally). We denote these distributions by FC
t (∆, q̂) and

FNC
t (q̂).25 They are characterized from the two differential equations ∂FC

t (∆,q̂)
∂t and ∂FNC

t (q̂)
∂t

given in the main text. In this section we derive these expressions. We denote the mass of
products with and without competitors respectively by NC

t and NNC
t . Also recall that q̂t

has a drift of gq̂ = (σ− 1)
(

I − gQ,t
)
.

Let F̄C
t (∆, q̂) = NC

t FC
t (∆, q̂) denote the mass of products with a gap less than ∆ and relative

productivity less than q̂, for products with a direct competitor. Similarly, let F̄NC
t (q̂) =

NNC
t FNC

t (q̂) denote the mass of the products who have no direct competitor at time t with
relative productivity less than q̂. The evolution of F̄NC

t (q̂) satisfies

F̄NC
t (q̂) = F̄NC

t−ι

(
q̂− gq̂ι

)
(1− (τt + δ) ι) +

(
1− α

α

)
τtNtΓ

(
exp (q̂)
σ− 1

)
ι,

where we have used the fact that the new product creation rate is 1−α
α τ = νt. As ι becomes

small this leads to the differential equation

∂F̄NC
t (q̂)
∂t

= −gq̂
∂F̄NC

t (q̂)
∂q̂

− (τt + δ) F̄NC
t (q̂) +

(
1− α

α

)
τtNtΓ

(
exp (q̂)
σ− 1

)
, (A-39)

so that

∂FNC
t (q̂)
∂t

= −gq̂
∂FNC

t (q̂)
∂q̂

− (τt + δ + η) FNC
t (q̂) +

(
1− α

α

)
τt

Nt

NNC
t

Γ
(

exp (q̂)
σ− 1

)
.

This is the equation reported in Section 3.

For the mass of products with a competitor, F̄C
t (∆, q̂), we not only need to keep track of

the relative quality q̂ but also of the quality gap ∆. This mass evolves according to the
differential equation

∂F̄C
t (∆, q̂)

∂t
=− ∂F̄C

t (∆, q̂)
∂∆

I∆− gq̂
∂F̄C

t (∆, q̂)
∂q̂

− F̄C
t

(
∆, q̂

)
(τt + δ)

+ lim
s→∞

τt F̄C
t (s, q̂− λ̂) + τF̄NC

t (q̂− λ̂),

25Note that we do not need to keep track of the quality gap among products without competitors because
markups are always given by σ

σ−1 .
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where again we defined λ̂ = ln λσ−1. Defining F̄C
t (∆, q̂) = NC

t FC
t (∆, q̂), we get

∂FC
t (∆, q̂)

∂t
= −∆I

∂FC
t

(
∆, q̂

)

∂∆
− gq̂

∂FC
t

(
∆, q̂

)

∂q̂
− (τt + δ + η) FC

t (∆, q̂)

+ lim
s→∞

τtFC
t (s, q̂− λ̂) + τt

NNC
t

NC
t

FNC
t (q̂− λ̂).

Note that both differential equations depend on NNC
t /NC

t and Nt/NNC
t . NNC

t and NC
t

evolve according to

ṄNC
t = Ntτ

(
1− α

α

)
− NNC

t (δ + τ) and ṄC
t = −δNC

t + NNC
t τ.

The steady state share of NC products is therefore given by NNC
t
Nt

=
τ( 1−α

α )
η+δ+τ = 1− α.

In the left panel of Figure A-2 we display the distribution F (∆, q̂) in a BGP. Multiple
forces shape this distribution. On the one hand, firms increase their efficiency q over their
life-cycle. This tends to generate a positive correlation between relative efficiency and
efficiency gaps. On the other hand, successful creative destruction events also increase
relative efficiency but reduce efficiency gaps and hence markups. Moreover, new prod-
ucts have - in our calibration - low efficiency (because ω < 1) and high efficiency gaps.

In the right panel we look at the efficiency distributions of the different type of products
more directly. We depict the overall cross-sectional distribution of competitive products
in red and compare it to the efficiency of products conditional on having a quality gap
of λ (blue) and to the products that just entered and are still without a competitor (or-
ange). The overall distribution dominates the distribution of new products in a first-order
stochastic dominance sense because new products have on average lower qualities. The
efficiency distribution, conditional on having a quality gap of ∆, is also lower because
some of these products are non-competitive products that just experienced their first cre-
ative destruction event.

We can also derive the distribution of efficiency gaps given in (28). Let FC
t (∆) denote the

cdf of quality gaps among products with a competitor. The distribution FC
t (∆) the solves

the differential equation

∂FC
t (∆)
∂t

+ FC
t (∆)

1
NC

t

∂NC
t

∂t
= −I∆

∂FC
t (∆)
∂∆

− δFC
t (∆) + (1− FC

t (∆))τ +
NNC

t

NC
t

τ.

Along a BGP, this distribution is stationary, the number of competitive products grows at
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Figure A-2: The Distributions of Efficiency q and Gaps ∆

(a) Joint Distribution of Efficiency and
Gaps (b) Conditional Productivity Distributions
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non-competitive products (orange), products which have just seen a creative destruction event and have a gap of ∆ = λ (red) and all
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rate η and NNC
t /NC

t = 1−α
α . Hence,

I∆
∂FC (∆)

∂∆
= − (δ + η) FC(∆) + (1− FC(∆))τ +

1− α

α
τ = − (δ + η + τ) FC(∆) +

1
α

τ.

Together with the initial condition FC (λ) = 0 and the fact that 1−α
α τ = η + δ, it is easy to

verify that the solution to this differential equation is FC(∆) = 1−
(

λ
∆

) δ+η+τ
I .

A-2 Quantitative Analysis

A-2.1 Data Description

Our main data is the LBD, which contains information for employment and age for the
population of firms in the US. In Table A-1 we report a set of descriptive statistics from
this data. The firm size distribution in the US has been changing. Between 1980 and 2010
average firm size increased from 20 employees to about 22 employees. This increase in
firm size is mostly due to a change in the concentration of economic activity. As seen
in Panel B, the employment share of firms with more than 10,000 employees increased
and the employment share of firms with less than 20 employees declined. Finally, an
important mechanisms underlying these changes in the size distribution are shifts in the
age distribution. As seen in the lowest panel, young firms account for much lower share
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Table A-1: Summary of Data

Aggregate Statistics

Year Number of Firms Employees Average Employment

1980 3,606,457 73,753,303 20.04
1995 4,613,849 99,243,906 21.20
2010 4,953,425 111,189,088 22.15

Size Distribution
Firms with <20 Employees Firms with >10,000 Employees

Year Firm Share Employment Share Firm Share Employment share

1980 89.38 21.58 0.0002 25.71
1995 88.95 20.74 0.0002 23.84
2010 88.88 18.8 0.0002 27.02

Age Distribution
Firms with <5 years Firms with >5 years

Year Firm Share Employment Share Firm Share Employment share

1980 13.84 % 38.50 % 86.16% 61.50 %
1995 13.12 % 35.34 % 86.88 % 64.66 %
2010 9.43% 30.02% 91.57 % 69.98 %

Notes: This table gives basic summary information about the firms in the LBD through time.
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of aggregate employment then they used to in 1980.

A-2.2 Computing the sales and markups lifecycle

In this section we derive the details of our characterization of the firms’ lifecycle of markup
and sales that we use to calibrate the model (see Section 4.3). In particular, we show that
relative sales by age of the product is given by

sP (aP) ≡ E
[ piyi

Y

∣∣∣ ap

]
= µ

(
ap
)1−σ e(σ−1)(I−gQ)ap qσ−1. (A-40)

Moreover we derive the distribution of product age aP as a function of firm age a f and the
number of products N. Given this distribution we can then easily evaluate s f

(
a f
)

and
µ f
(
a f
)

computationally.

Consider a BGP whereMt and Λt are constant. Equation (A-3) then implies that sales of
product i relative to average sales are

sP (aP) ≡ E
[

piyi

Yt/Nt

∣∣∣∣ ap

]
= E

[
µ1−σ

i

(
qi

Qt

)σ−1
∣∣∣∣∣ ap

](
1

MtΛt

)σ−1

.

Because ∆ and hence markups are a deterministic function of the age of the product,
µi = µ (aP) = min

{
λeIaP , σ−1

σ

}
. Similarly, Qt is given by Qt = egQap Qt−ap .

Now consider the distribution of qi conditional on aP. This distribution is given by

P (qi ≤ q|aP) = P (qi ≤ q|aP, CD) α + P (qi ≤ q|aP, NV) (1− α) ,

where P (qi ≤ q|aP, CD) and P (qi ≤ q|aP, NV) denotes the conditional probability, condi-
tional on the firm having acquired product i through creative destruction or new variety
creation respectively. Then

P (qi ≤ q|aP, CD) = Ft−aP

(
1
λ

qe−IaP

)
,

where Ft−aP (q) denotes the productivity distribution at time t− aP. Similarly,

P (qi ≤ q|aP, NV) = Γ
(

qe−IaP
1

Qt−aP

)
.
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Hence,

E
[

qσ−1
i

∣∣∣ aP

]
= α

∫
qσ−1dFt−aP

( q
λ

e−IaP
)
+ (1− α)

∫
qσ−1dΓ

(
qe−IaP

Qt−aP

)
= e(σ−1)IaP Qσ−1

t−aP
qσ−1,

so that sP (aP) = µ (aP)
1−σ e(σ−1)(I−gQ)aP qσ−1

(
1

MtΛt

)σ−1
(see (A-40)).

Life-Cycle Dynamics Relative sales and markups at the product level as a function of
the state variables ∆ and q are given by

µ (∆) = min
{

σ

σ− 1
, ∆
}

and
si

Yt/Nt
= sP (∆, q) =

(
1

µ (∆)
1

MtΛt

q
Qt

)σ−1

.

Relative sales and average markups of firm f as functions of the random vector [∆i, qi]
N f
i=1

are then given by

s f t

Yt/Nt
=

N f

∑
i=1

sP (∆i, qi) and µ f =
1

N f

N f

∑
i=1

µ (∆i) .

Expected relative sales as a function of firm age a f are given by

E
[

s f t

Yt/Nt

∣∣∣∣ a f

]
= E

[ N f

∑
n=1

E
[

sP (∆i, qi)| a f , aP, N f
]
∣∣∣∣∣ a f

]
= E

[ N f

∑
n=1

sP (aP)

∣∣∣∣∣ a f

]
,

where sP (aP) is given in (A-40). The last equality exploits the fact that conditional on
product age aP, product level sales are independent of firm age a f and the number of
products N f . Let faP|A f ,N (aP|a, n) denote the conditional distribution of product age
aP conditional on firm age a f and the number of products n and recall that pn

(
a f
)
=

γ
(
a f
)n−1 (1− γ

(
a f
))

is the probability a firm of age a f having n products (conditional
on survival), where γ (a) is given in (A-20). Then

E
[ s f t

Yt/Nt

∣∣∣∣ a f

]
=
(
1− γ

(
a f
)) ∞

∑
n=1

n
(∫

aP

sP (aP) faP|A f ,N
(
aP|a f , n

)
daP

)
γ
(
a f
)n−1 .

Using the same logic, the average markup as a function of firm age a f is given by

E
[

µ f
∣∣ a f
]
=
(
1− γ

(
a f
)) ∞

∑
n=1

(∫

aP

µ (aP) faP|A f ,N
(
aP|a f , n

)
daP

)
γ
(
a f
)n−1 .
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Figure A-3: Firm Exit Rates: Model and Data
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Notes: This figure presents a comparison of the exit rates by firm size in the model (blue) and the data (orange)

Given the density faP|A f ,N
(
aP|a f , n

)
, these expressions can be directly evaluated. In Sec-

tion SM-4 in the Supplementary Material we show how to compute this density.

A-2.3 Exit Rates by Size

In Figure A-3, we depict the exit rate for different size categories. Empirically, these exit
rates are declining. Our model implies that this exit rate is initially declining but essen-
tially independent of size for firms with more than 10 employees. The reason our model
has this counterfactual prediction is that (in our calibration) the thick tail of the employ-
ment distribution is driven by the distribution of product quality q and not the extensive
margin of product creation. Hence, large firms are firms with a few superstar products,
not those with many products. And because creative destruction is independent of prod-
uct quality, such firms are as likely to exit as other firms.

To address this counterfactual prediction, in Section SM-3 in the Supplementary Material,
we extend our model to allow for type heterogeneity, whereby some young firms (some-
times described as “rockets” or “gazelles”, see Sterk et al. (2021)) grow systematically at
a faster rate. This extension improves the model’s fit along this dimension substantially,
because some large firms have many products and are thus unlikely to exit, but changes
little else in the theoretical analysis.

A-2.4 Decomposing the Impact of Falling Population Growth

Our analysis in Section 5 showed that the experienced and projected decline in popula-
tion growth increased firm size and markups. In principle, these patterns can be due to
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changes in the age distribution and changes in firms’ size or markups conditional on age.
In Figure A-4 we show that the lion share of these changes is due to changes in the age
distribution. We show the exit rate by age (left panel) and the sales life-cycle (right panel)
both in the original BGP (blue) and the new BGP when population growth is 0.24% (red
line). While both the age conditional exit rate and the life-cycle do change, the changes
are qualitatively small. By contrast, the age distribution, which we display in Figure A-5,
shifts substantially. And because older firms are larger and exit at a lower rate, such
shifts in the age distribution explain most of the observed change in concentration in our
model. This result is consistent with the findings of Hopenhayn et al. (2018) and Karahan
et al. (2019), who document empirically that the age-conditional allocations have been
relatively constant since the 1980s.

Figure A-4: Decomposing the Impact of Falling Population Growth
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Figure A-5: The Impact of Falling Population Growth on the Age Distribution
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Supplementary Material for “Population Growth and
Firm Dynamics”

[NOT FOR PUBLICATION]

SM-1 Deriving a Sufficient Condition for N to Increase in Re-

sponse to Falling Population Growth

The two equations in (A-16) and (A-17) characterize N and `P as a function of population growth η.
In this section we show that

qσ−1

1− α
>

1
µ

(SM-1)

is a sufficient condition for N to be decreasing in η. We also show that (SM-1) is the tightest condition
one can derive without further restrictions on the innovation cost function.

Using (A-16) and (A-17) we can solve for N explicitly as

1
N

=
1

ϕE



(

1− ζ − 1
ζ

x
ρ + 1

1−α δ + α
1−α η

)
ρ + qσ−1

1−α δ +
(

qσ−1

1−α − 1
)

η

qσ−1 (µ− 1)
+

η + δ

1− α
− ζ − 1

ζ
x


 .

Clearly N is decreasing in η if qσ−1

1−α − 1 > 0. Hence, consider the case qσ−1

1−α − 1 < 0 and define

∆ ≡ −
(

qσ−1

1− α
− 1

)
> 0.

Substituting ∆ for qσ−1 yields

1
N

=
1

ϕE

[
1

1− α

((
1− ζ − 1

ζ

x
ρ + 1

1−α δ + α
1−α η

)
ρ + (1− ∆) δ− ∆η

(1− ∆) (µ− 1)
+ η + δ

)
− ζ − 1

ζ
x

]
.

Hence, define the function
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m (η) =

(
1− ζ − 1

ζ

x
ρ + 1

1−α δ + α
1−α η

)
ρ + (1− ∆) δ− ∆η

(1− ∆) (µ− 1)
+ η

=
ρ + (1− ∆) δ− ∆η

(1− ∆) (µ− 1)
− ζ − 1

ζ

x
ρ + 1

1−α δ + α
1−α η

ρ + (1− ∆) δ− ∆η

(1− ∆) (µ− 1)
+ η.

N is decreasing in η if m′ (η) > 0. Taking the derivative yields

m′ (η) =
1

(1− ∆) (µ− 1)


ζ − 1

ζ
x

∆ρ + α
1−α ρ + α

1−α δ
(

ρ + 1
1−α δ + α

1−α η
)2 + (1− ∆) µ− 1


 .

Note that 1− ∆ = qσ−1

1−α ≥ α
1−α > 0. Hence, we require that

ζ − 1
ζ

x
∆ρ + α

1−α ρ + α
1−α δ

(
ρ + 1

1−α δ + α
1−α η

)2 + (1− ∆) µ > 1.

Now note that x is only a function of the innovation technologies ϕx and ϕE. Hence, by choice of
these parameters, we can make x arbitrarily small. The tightest sufficient condition is therefore given
by

(1− ∆) =
qσ−1

1− α
>

1
µ

.

SM-2 The Mechanism: Demand or Supply?

In our baseline model, population growth impacts the economy on both the labor supply side and
via aggregate demand. In this section we extend to our analysis to distinguish these two forces.

Environment

Consider the following two-sector economy. Sector 1 is exactly the same as in our baseline model.
Sector 2 is comprised of a representative firm with a production technology Yt = AtHt,where Ht

denotes the number of workers in sector 2. Aggregate productivity in sector 2, At, grows at an
exogenous rate gA. To distinguish between supply and demand, we assume that the total population
consists of two separate types of people. A mass Lt of people can only work in sector 1. This mass
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grows at rate η. A mass Ht of people can only work in sector 2. This mass grows at rate ηH. We
assume that all individuals have identical intra-temporal Cobb Douglas preferences ct = cϑ

1tc
1−ϑ
2t . The

Lt workers in sector 1 have the same preferences as in our baseline model and engage in borrowing
and saving for inter-temporal consumption smoothing. For simplicity we assume that workers in
sector 2 act as hand-to-mouth consumers and simply spend their labor income in each period.

We let kt denote the equilibrium wage in sector 2 and St the price of sector 2 goods. The real price
index of the consumption bundle ct = cϑ

1tc
1−ϑ
2t is thus given by

Pt =

(
Pt

ϑ

)ϑ ( St

1− ϑ

)ϑ

=

(
1
ϑ

)ϑ ( St

1− ϑ

)ϑ

, (SM-2)

where Pt denotes the price index in sector 1, which we for comparability with our baseline model
take as the numeraire, i.e. Pt = 1.

The Value Function and Free Entry

We now derive the value function of firms in sector 1 and the free entry condition. Suppose aggregate
demand in sector 1 was given by Dt with Ḋt/Dt = gD. Total profits per product are then given by

πit =

(
µ− 1

µ

)
pyit =

(
µ− 1

µ

)
p1−σ

it Dt =

(
µ− 1

µ

)
µ1−σqσ−1w1−σ

t Dt. (SM-3)

The value function of an individual product is thus given by

rtVt (q)− V̇t (q) = πt (q) + I
∂Vt (q)

∂q
q− (τ + δ)Vt (q) + Ξt.

Free entry still implies that Ξt =
ζ−1
ϕx

xζwt and x =
(

1
ζ

ϕx
ϕE

) 1
ζ−1 .

Following the same steps as before, one can show that along a BGP the value function is given by

Vt (q) =

(
µ−1

µ

)
µ1−σw1−σ

t Dtqσ−1

r + τ + δ− gD − (σ− 1) (I − gw)
+

ζ−1
ϕx

xζwt

r + τ + δ− gw
.
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Hence, the expected value of product innovation is given by

VEntry
t = α

∫
Vt (λq) dFt (q) + (1− α)

∫
V (ωQt) dΓ (ω)

=

(
µ−1

µ

)
µ1−σw1−σ

t Dt (qQt)
σ−1

r + τ + δ− gD − (σ− 1) (I − gw)
+

ζ−1
ϕx

xζwt

r + τ + δ− gw
,

where as before q =
(

αλσ−1 + (1− α)ωσ−1
) 1

σ−1 . Free entry thus requires that

1
ϕE

=
VEntry

t
wt

=

(
µ−1

µ

)
µ1−σqσ−1

r + τ + δ− gD − (σ− 1) (I − gw)

DtQσ−1
t

wσ
t

+

ζ−1
ϕx

xζ

r + τ + δ− gw
.

The fact that the final good is the numeraire still implies that wt =
1
µ QtN

1
σ−1
t . Given aggregate spend-

ing Dt, it is still the case that production workers in sector 1 receive a constant share of aggregate
sales. In particular

Πt =
∫

i
πit =

(
µ− 1

µ

)
Dt and wtLP

t =
1
µ
Dt.

Substituting this into the free entry condition yields

1
ϕE

=
(µ− 1) qσ−1

r + τ + δ− gD − (σ− 1) (I − gw)
× LP

t
Nt

+

ζ−1
ϕx

xζ

r + τ + δ− gw
.

Note first that along a BGP it is still the case that LP
t /Nt is constant and variety growth is tied to the

rate of population growth
gN = η.

This directly implies that like in our baseline model

ν = η + δ and τ =
α

1− α
ν =

α

1− α
(η + δ) .

And because x is still constant

z =
τ

α
− x =

1
1− α

(η + δ)− x.

Hence, all the results about the effect of population growth on the firm size distribution, entry and
concentration are exactly as in our baseline model. This highlights that the relationship between
population growth and the firm-size distribution reflects the effect of demographics on labor supply.
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We can also solve for the rate of discounting along a BGP. Because total spending by sector 1 workers
grows at rate gw, the Euler equation requires that gw = r− ρ. Also note that wtLP

t ∝ Dt implies that
gD = gw + η. Finally note that gw = gQ + 1

σ−1 gN as before. This implies that the value function Vt (q)
is given by

Vt (q) =
(µ− 1)

(
q

Qt

)σ−1

ρ + δ +
(

qσ−1

1−α − 1
)

ν

wtLP
t

Nt
+

ζ−1
ϕx

xζwt

ρ + τ + δ
.

This is the same equation as in the baseline model. Given that the resource constraint is unchanged,
the variety intensity N and the production share `P is also the same as in the baseline model.

Income per capita growth

In our baseline model, real consumption and income growth was given by

gy = gc = gw = gQ +
1

σ− 1
gN =

(
qσ−1 − α

σ− 1

)
η

1− α
+

(
qσ−1 − 1

σ− 1

)
δ

1− α
+ I,

and hence directly tied to population growth η. In this multi-sector environment, additional forces
are at play. Because per-capita spending of workers in sector 1, Ptct, grows at rate gw, real consump-
tion grows at rate

gc = gw − gP . (SM-4)

Given the expression for the price index Pt in (SM-2), gP = ϑgS,where gS = Ṡt
St

denotes the growth
rate of prices in sector 2.

To solve for the relative price in sector 2, St, note that total spending by agents working sector 2 is
trivially given by DH

t = ktHt. The workers in sector 1 are subject to a dynamic budget constraint.
Along a BGP, total expenditure per capita grows at the rate of the wage wt, i.e. DL

t = χwtLt, where χ

is constant. Market clearing in sector 2 thus implies that

StAtHt = ktHt = (1− ϑ)
(
DL

t +DH
t

)
= (1− ϑ) (χwtLt + ktHt) ,

so that the wage in sector 2 is given by kt =
1−ϑ

ϑ χwt
Lt
Ht

. This implies that

St =
1
At

kt =
1
At

1− ϑ

ϑ
χwt

Lt

Ht
,
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so that
gS = −gA + gw + η − ηH.

Real consumption growth in (SM-4) is therefore given by

gc = gw − (1− ϑ) gS

= ϑgw + (1− ϑ)
(

gA + ηH − η
)

= ϑ

((
qσ−1 − α

σ− 1

)
η

1− α
+

(
qσ−1 − 1

σ− 1

)
δ

1− α
+ I

)
+ (1− ϑ)

(
gA + ηH − η

)
.

Hence, in this multi-sector extension of our theory, both productivity growth in sector 2, gA, and
relative population growth ηH − η determine the growth rate of real consumption. Both enter pos-
itively and are a source of welfare growth. Productivity gA reduces the price of sector 2 goods and
hence benefits workers in sector 1 in accordance with the expenditure share 1− ϑ. Similarly, relative
population growth ηH − η is a source of welfare growth. If labor in sector 2 becomes more abundant,
relative wages in sector 2 fall. This benefits workers in sector 1 again through falling prices.

SM-3 Firm Heterogeneity: Young Firm Rockets

Very young firms tend to grow fast even conditional on survival. Luttmer (2011) discusses how a
violation of Gibrat’s law is needed to deliver the relatively low age of very large firms: to match
the data, there must be a mechanism whereby young firms can grow quickly for a time. A similar
reasoning is also discussed in Sterk et al. (2021). In our baseline model, such a mechanism is absent.
Young firms do indeed violate Gibrat’s law in the model, but this is only because of survival bias.
Here we discuss the implications for the effects of a population growth slowdown of introducing a
subset of young firms that act as “rockets”, growing and innovating quickly for a time, before their
growth rate slows to look like other ordinary firms (see also Acemoglu et al. (2018))

Suppose that when a firm is born, it can be a rocket (R) or slow (S) type. The only difference between
the two is the speed with which a firm can invent new products, such that x = {xR, xS} To highlight
the central differences with the main model, we take these rates to be exogenous. In addition, assume
that a rocket firm transitions into being a slow firm at rate ξ. For exposition, assume labor is perfectly
substitutable between research and production, and the rate of own product improvement I is fixed.
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The value of such a firm can be written

rtVR
t ([∆i, qi]) =

n

∑
i=1

πt ([∆i, qi]) + V̇R
t ([∆i, qi])

+
n

∑
i=1

(τ + δ)
[
VR

t

([
∆j, qj

]
j 6=i

)
−VR ([∆i, qi])

]

+
n

∑
j=1

I
∂VR

t ([∆i, qi])

dqj
qj

+n max
x

{
x
[

α
∫

q
VR

t ([∆i, qi] , 1, λq) dFt (q) +

(1− α)
∫

ω

∫

∆
VR

t ([∆i, qi] , ∆, ωQt) dG(∆)dΓ (ω)

−VR
t ([∆i, qi])

]
− 1

ϕR
x

xζwt

}

ξ(VS
t ([∆i, qi])−VR

t ([∆i, qi])).

with an analogous equation holding for VS
t . Suppose lastly that entrants cannot choose whether they

are going to be a rocket or slow, but become a rocket at entry with fixed probability κ. It can be shown
that under these assumptions, the solution to the value functions are

VR
t ([∆i, qi]) =

n

∑
i=1

Ut (∆i, qi) + nφRwt

VS
t ([∆i, qi]) =

n

∑
i=1

Ut (∆i, qi) + nφSwt

Where

Ut (∆i, qi) =
u (∆i)

g (σ− 1) + ρ + τ + δ− η

qσ−1
i Yt

(MtΛt)σ−1NtQσ−1
t

and φR and φS are the solutions to

(ρ + τ + δ)φR = xR
[

1
ϕE

+ (1− κ)(φR − φS)

]
− 1

ϕR
x
(xR)ζ − ξ(φR − φS)

(ρ + τ + δ)φS = xS
[

1
ϕE
− κ(φR − φS)

]
− 1

ϕS
x
(xS)ζ

The share of rocket firms vR in the population depends on the entry rate, and so changes in popu-
lation growth will affect the average rate of incumbent expansion. To see this, note that the share of
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rockets firm ΥR
a,t of age a at time tdenoted is given by

ΥR
a,t = κe−ξa

where ΥR
a,tand so the share of rockets in the economy is given by integrating this object over the age

distribution. The age distribution is defined by the following two pieces. First, for fast firms the
fraction of firms with n products evolves with age a as

ṗR
n (a) = (n− 1) xR pR

n−1 (a) + (n + 1) (τ + δ) pR
n+1 (a)− n

(
xR + τ + δ

)
pR

n (a)− ξ pR
n (a) . (SM-5)

Because exit is an absorbing state, ṗR
0 (a) = (τ + δ) pR

1 (a) . The fraction of firms that have survived

by a is SR (a) = 1−pR
0 (a)

∑∞
n=0 pR

n (a)
. Similarly for slow firms, we have

ṗS
n (a) = (n− 1) xS pS

n−1 (a) + (n + 1) (τ + δ) pS
n+1 (a)− n

(
xS + τ + δ

)
pS

n (a) + ξ pR
n (a) .

with ṗS
0 (a) = (τ + δ) pS

1 (a) and SS (a) =
1−pS

0 (a)
∑∞

n=0 pS
n(a)

. The total fraction of surviving firms is then
given by

S(a) = 1− κSR(a)− (1− κ)SS(a).

The age distribution can be obtained from calculating the density of firms by age using

ωt (a) =
(1− α) zN0eη(t−a)S (a)∫ ∞

a=0 (1− α) zN0eη(t−a)S (a) da

=
e−ηaS (a)∫ ∞

a=0 e−ηaS (a) da

Then the share of rockets in the overall population of is

vR =
∫ ∞

0
κe−ξaω (a) da

The share of products that are owned by rockets however, is not quite the same thing. This is given
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by

v̂R =
FR

t
∫ ∞

0 ∑∞
n=1

pR
n (a)n

1−pR
0 (a)

ωR(a)da

FS
t
∫ ∞

0 ∑∞
n=1

pS
n(a)n

1−pS
0 (a)

ωS(a)da + FS
t
∫ ∞

0 ∑∞
n=1

pR
n (a)n

1−pR
0 (a)

ωR(a)da

=
vR ∫ ∞

0 ∑∞
n=1

pR
n (a)n

1−pR
0 (a)

ωR(a)da

(1− vR)
∫ ∞

0 ∑∞
n=1

pS
n(a)n

1−pS
0 (a)

ωS(a)da + vR
∫ ∞

0 ∑∞
n=1

pR
n (a)n

1−pR
0 (a)

ωR(a)da

where the numerator is the number of rocket firms times the average products of a rocket firm.

Creative destruction in this economy is given by

τ = α
(

z + v̂RxR + (1− v̂R)xS
)

However, it is still the case that
τ =

α

1− α
(η + δ)

So while changes in the age distribution will affect the share of rockets in the population, the overall
effect on growth is the same as the baseline model. To characterize the equilibrium with rockets, we
close the model with the labor market clearing condition

Lt = LP
t + LR

t = LP
t + Nt

(
1

ϕE
zt +

v̂R

ϕR
x
(xR)ζ +

(1− v̂R)

ϕS
x

(xS)ζ

)
.

Which we can characterize in terms of the production share `P and variety intensity N on the BGP
as (

1− `P
t

Nt

)
=

1
ϕE

z +
v̂R

ϕR
x
(xR)ζ +

(1− v̂R)

ϕS
x

(xS)ζ .

Free entry requires that

1
φE

wt = κα
∫

VR
t (λ, q) dFt(q) + κ(1− α)

∫
VR

t (∆̄, Qtq) dG(q)

+ (1− κ)α
∫

VS
t (λ, q) dFt(q) + (1− κ)(1− α)

∫
VS

t (∆̄, Qtq) dG(q)

=
αu(λ)λσ−1 + (1− α)u(ω̄)ω̄σ−1

g (σ− 1) + ρ + τ + δ− η

LP
t /Nt

(Mt)σ−1Λσ
t

wt + κφR + (1− κ)φS
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where in the exogenous I case, we can solve for u(∆) from the differential equation

u (∆) = h (∆) +
(σ− 1)u (∆) + u′ (∆)∆

g(σ− 1) + ρ + τ + δ− η
I

SM-3.1 Pareto Tail in the Product Distribution

Now we the following law for the evolution of the rocket distribution. Consider n ≥ 2. Then, the
number of rocket firms with each number of products n evolves according to

ω̇R
t (n) = ωR

t (n− 1) (n− 1) x︸ ︷︷ ︸
From n−1 ton products

+ωR
t (n + 1) (n + 1) (τ + δ)︸ ︷︷ ︸

From n+1 ton products

− ωR
t (n) n (τ + x + δ)︸ ︷︷ ︸

From n to n−1 or n+1 products

− ξωR
t (n)︸ ︷︷ ︸

Transition to slow

.

For n = 1 we have
ω̇R

t (1) = κZt + ωR
t (2) 2 (τ + δ)−ωR

t (1) (τ + x + δ) .

Along the BGP the mass of firms grows at rate η. . Hence, the mass of firms is increasing at rate η.
Hence, along the BGP we have

ω̇Rt (n) = ηωR
t (n) .

Along the BGP, {ν (n)}∞
n=1 is determined by

νR (2) =
νR (1)

(
τ + xR + δ + η + ξ

)
− κz

v̂R

2 (τ + δ)
(SM-6)

and

νR (n + 1) =
νR (n) n

(
τ + xR + δ

)
+ νR (n) (η + ξ)− νR (n− 1) (n− 1) xR

(n + 1) (τ + δ)
for n ≥ 2 (SM-7)

Again we can apply the result from Luttmer (2011) and the Pareto tail is given by

ζn =
η + ξ

xR − τ − δ

=
η + ξ

xR − α
1−α (η + δ)− δ

and we again have the result that lower population growth lowers this tail coefficient. Note also
that a smaller transition rate ξ reduces the Pareto tail, that is concentration in the top rises as rockets
transition into the slow types at a slower pace.
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SM-3.2 Exit Rates by Size with Firm Heterogeneity

The introduction of type heterogeneity substantially improves the fit of the model against the data
on exit rates by size. Simply put, this heterogeneity allows some firms to grow large by adding more
products, an outcome which is relatively rare in the baseline model. Because of diversification across
products, this lowers the exit rate for large firms (whereas in the baseline model, the overwhelming
majority of large firms are so because they have a single, high q product). Figure SM-1 shows an
illustrative calibration of the model with rockets, demonstrating a declining exit rate with size.

Figure SM-1: Exit Rate By Size with Rocket Firms
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Notes: This figure shows the exit rate by size in an illustrative calibration of the model with rocket firms.
The transition rate is set to ξ = 0.25, and the share of rockets at 0.1. The innovation rate of rockets xR is
chosen to match average sales growth by age 10 from the LBD, as in the main quantitative section, while
the rate of slow firms is set to 0.1.

SM-4 Calculating the conditional density faP|A f ,N
(
aP|a f , n

)

We now derive the conditional density of product age aP, faP|A f ,N
(
aP|a f , n

)
.

For illustration, we first derive the expected age of the products in a firm’s portfolio as it ages. To do
so, consider the mass of firms with n products at age A. We are going to derive the law of motion for
the total number of years the products that this mass of firms owns have been alive (think of products
accumulating years for every instant they have been alive). Call this object ΨA(n), where

ΨA(n) = ΛA(n)n︸ ︷︷ ︸
Total number of products by firms of age A

EA[a|n]︸ ︷︷ ︸
Average age of products of firms of age A and n products

.
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The pool of total years ΨA(n) is equal to the number of firms of age A with n products, denoted
ΛA(n), times the number of products they own n, times the average age of all those products EA[a|n].
We are going to consider how this object evolves through a discrete time approximation. For a small
time interval ι,

EA[a|n]ΛA(n)n = (EA−ι[a|n] + ι)ΛA−ι(n)n(1− (τ + δ + x)nι)︸ ︷︷ ︸
drift from existing mass

+ ιx(n− 1)ΛA−ι(n− 1)
(
(n− 1)EA−ι[a|n− 1])

)

︸ ︷︷ ︸
flow in from n-1 firms

+ ι(τ + δ)(n + 1)ΛA−ι(n + 1)
(

nEA−ι[a|n + 1]
)

︸ ︷︷ ︸
flow in from n+1 firms

The first term in this expression is the drift in total years from an increment of time ι, multiplied by
the fraction of firms who don’t drop or gain a product in this increment. Intuitively, these products
age with a unit drift. The second term is the flow of total years into the pool ΨA(n) from the mass of
firms with n− 1 products who are each gaining a product. Importantly, while they bring n products
each into the year pool, only n− 1 have a positive age, and their average age is EA−ι[a|n− 1]. Lastly,
the third term is the flow from the mass of firms with n + 1 products who are losing a product. They
bring n products with average age EA[a|n + 1] with them.

Rewrite this as

ΨA(n)−ΨA−ι(n)
ι

= ΛA(n)n− (τ + δ + x)nEA−ι[a|n]ΛA(n)n

+ x(n− 1)ΛA(n− 1)
(
(n− 1)EA−ι[a|n− 1])

)

+ (τ + δ)(n + 1)ΛA(n + 1)
(

nEA−ι[a|n + 1]
)

SM-12



so that

ΨA(n)
dA

= ΛA(n)n− (τ + δ + x)nEA[a|n]ΛA(n)n

+ x(n− 1)ΛA(n− 1)
(
(n− 1)EA[a|n− 1])

)

+ (τ + δ)(n + 1)ΛA(n + 1)
(

nEA[a|n + 1]
)

(SM-8)

This gives us a set of equations for the evolution of ΨA(n) for all n > 1 that can be solved computa-
tionally given initial conditions. We also need one for n = 1, which comes from

dEA[a|1]ΛA(1)1
dA

= ΛA(1)− (τ + δ + x)EA−ι[a|1]ΛA(1)

+ (τ + δ)(2)ΛA(2)
(

EA[a|2]
)

The initial condition is that E0[a|n]Λ0(n)n = Ψ0(n) = 0 for all n. The equations we solve computa-
tionally are

ΨA(n)
dA

= ΛA(n)n− (τ + δ + x)nΨA(n) + x(n− 1)ΨA(n− 1) + (τ + δ)nΨA(n + 1).

Lastly, to recover EA[a|n] after computing ΨA(n), note that ΛA(n) = F0pA(n), where F0 is the initial
number of firms, and pA(n) as above is the probability that a firm of age A will have n products , for
which we have closed form expressions. Then EA[a|n] = ΨA(n)

ΛA(n)n
. Finally, to compute the expected

age of products for surviving firms of age A, we have

EA[a] =
∞

∑
n=1

EA[a|n]
pA(n)

1− pA(0)

We use this object in computing markups and sales by firm age, since product markup is a determin-
istic function of product age.

Full Product Age Distribution

Consider the object XA,n(a) = ΛA(n)nΦA,n(a), the total number of products with age less than a
by firms of age A with n products. Recall that ΛA(n) is the total number of firms of age A with n
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products. Define ΦA,n(a) as the probability that a product of a firm of age A with nproducts is less
than or equal to a. This evolves as

XA,n(a) = ΛA−ι(n)ΦA−ι,n(a− ι)n(1− (τ + δ + x)nι)

+ ιx(n− 1)ΛA−ι(n− 1)
(
(n− 1)ΦA−ι,n−1(a) + 1

)

+ ι(τ + δ)(n + 1)ΛA−ι(n + 1)
(

nΦA−ι,n+1(a)
)

Note the difference on the second line now, because the new product has age 0 < a.

Write this as

XA,n(a)− XA−ι,n(a− ι)

ι
=− (τ + δ + x)nXA−ι,n(a− ι)

+ x(n− 1)ΛA−ι(n− 1) + x(n− 1)XA−ι,n−1(a)

+ (τ + δ)nXA−ι,n+1(a) (SM-9)

XA,n(a)− XA−ι,n(a) + XA−ι,n(a)− XA−ι,n(a− ι)

ι
=− (τ + δ + x)nXA−ι,n(a− ι)

+ x(n− 1)ΛA−ι(n− 1) + x(n− 1)XA,n−1(a)

+ (τ + δ)nXA,n+1(a)

which goes to

∂XA,n(a)
∂A

+
∂XA,n(a)

∂a
=− (τ + δ + x)nXA,n(a)

+ x(n− 1)ΛA(n− 1) + x(n− 1)XA,n−1(a)

+ (τ + δ)nXA,n+1(a) (SM-10)

In Figure SM-2 we depict the average product by firm age (left panel) and the probability of having
n products as a function of age. The left panel shows the effect of selection on the average product
age of multi-product firms. Conditional on the age of the firm, the average product is declining in
the number of products because newly added products are - by construction - younger. In the right
panel we show five “slices” of the joint distribution of age and the number of products. One-product
firms are mostly young firms as all firms enter with a single product. Old firms only rarely have a
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single product as they either grew or exited already. The remaining lines show that older firms are
more and more likely to have many products.

Figure SM-2: Product Age and Firm Age

(a) Average Product Age By Firm Age
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(b) Probability of Product Portfolios By Age
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Notes: Panel (a) of this figure plots the average product age for a firm of n products for n = 1, ..., 5 as the
firm ages in the calibrated model. These objects are computed using the productivity distribution XA,n(a)
(see (SM-10)). Panel (b) plots the conditional probability of a portfolio of n products for n = 1, ..., 5 in the
calibrated model for surviving firms by firm age.
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Figure SM-3: Estimating the tail of the firm size distribution
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SM-4.1 Estimating the Pareto tail of the employment distribution

One of our target moments is the Pareto tail of the employment distribution. The distribution of firm

employment at time t is - for large firms - given by Pt
(
l f > x

)
=
(

l/x
)ς

. Hence,

ln Pt
(
l f > x

)
= δ− ς ln x. (SM-11)

In Figure SM-3 we show the empirical relationship between ln Pt
(
l f > x

)
and ln x for different years.

As predicted by (SM-11), the relationship is almost perfectly linear and stable across years. When we
estimate (SM-11), we find ς ≈ 1. If anything ς is slightly smaller than 1. To keep average size
bounded, we require ς > 1. We therefore opt to calibrate our model to a tail of 1.1.

SM-5 Computing the the cross-sectional size and age distribution

(Section 4.4)

In Section 4.4 we reported the model-implied distribution of firm size and firm age. We now show
how to derive these objects.

SM-5.1 The cross-sectional size distribution

We have expressions for the probability distribution of number of products by age pn, as well as the
age distribution of firms. So the final piece is the distribution of employment conditional on firm age
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and number of products. To do so, define

lA,n = µ−σ
i

(
qi

Qt

)σ−1 Lt

Nt
Λ−σ

t M1−σ
t

as the random variable of employment at the product level, conditional on the firm having age of A
and n products. Conditional on the age of the firm and the number of products, the distribution of
lA,n is independent across products, so we derive the distribution of the sum of these objects through
a convolution. For the first product

Prob(lA,n ≤ y) ≡ D1
A,n(y) = Prob(ln

(
qi

Qt

)σ−1

≤ ln(y) + ln(µσ
i )− ln

(
Lt

Nt
Λ−σ

t M1−σ
t

)

=

Now note that µ = ∆ = λeIa for a below the critical threshold. Define the joint density of (log)
productivity and gaps f C(q̃, ∆)from

FC(q̂, ∆) =
∫ q̂

−∞

∫ ∆

λ
f (x, y)dxdy

with associated conditional density f C
q̂|∆(q̃|∆) and conditional distribution function FC

q̂|∆(q̂|∆). Lastly,
denote the distribution of productivity for the non-competitor mass as FNC(q̂|a). Given that incum-
bent innovation is constant for non-competitive products, the law of motion for the mass of products
F̄NC

a (q̂) at age a is given by

∂F̄NC
a (q̂)
∂a

=
∂FNC(q̂|a)

∂q̂
(σ− 1)((I(∆̄)− γ)− F̄NC

a (q̂)(τt + δ)

with initial condition F̄NC
0 (q̂) = Γ

(
exp(q̂)

σ−1

)
. From this we can compute the conditional distribution of

productivity FNC(q̂|a). With these pieces we can compute the distribution of employment as

D1
A,n(y) =

∫ ā

0
dΦA,n(a)FC(log(y) + log(µσ)− c|∆(a))

+
∫ A

ā
dΦA,n(a))FC(log(y) + log(µ̄σ)− c|∆(a))

+
∫ A

0
dΦA,n(a))FNC(log(y) + log(µ̄σ)− c|a)
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where c ≡ log( Lt
Nt

Λ−σ
t M1−σ

t ). Now we have the distribution of this object, we can define recursively

the distribution of the sums of employment across products from a convolution. Define Zj
A,n =

∑
j
i=1 li

A,n and then

P(Zj
A,n ≤ y) = Dj

A,n(y) =
∫ y

0

∫ ∞

−∞

dDj−1
A,n (x)
dx

dD1(z− x)
dx

dxdz

for j ≥ 2. Then, for each age of the firm we can define the conditional employment distribution as

Prob(E f ≤ y|a f = A) =
∞

∑
n=1

pn(A)

1− po(A)
Dn

A,n(y).

SM-5.2 The cross-sectional age distribution

Let Υta be the number of firms who are a years old at time t. The total number of firms at time t is
then given by Υt =

∫ ∞
a=0 Υtada. Let Eτ denote the number of entrants at time τ. Then

Υta = Et−a︸︷︷︸
Entrants

S (a)︸︷︷︸
Survival

.

Note also that the number of entrants is given by Eτ = zNτ. And as Nτ grows at rate η, we have
Eτ = zN0eητ. Hence

Υta = zN0eη(t−a)S (a) .

The density of firms which are a years old is therefore given by

ωF
t (a) =

Υta

Υt
=

zN0eη(t−a)S (a)∫ ∞
a=0 zN0eη(t−a)S (a) da

=

ψe−(ψ+η)a

ψ+x(1−e−ψa)
∫ ∞

a=0
ψe−(ψ+η)a′

ψ+x(1−e−ψa′)
da′

,

where the last line uses (A-22).

SM-6 Exit rates by size

To compute exit rates by size (show in Figure A-3) we can compute an exit rate per product. Then,
the probability of having a number of products n by age A of the firm, conditional on being a certain
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size y (between l and uemployees) is

Prob(A, n|l ≤ y ≤ u) =
Prob(l ≤ y ≤ u|A, n)× P(A, n)

∑A′ ∑n′ Prob(l ≤ y ≤ u|A′, n′)× P(A′, n′)

The joint probability of the age bins and number of products is P(A, n) = pn(A)ωF
t (A). Then we

can construct the probability

Prob(n|l ≤ y ≤ u) = ∑
A

Prob(l ≤ y ≤ u|A, n)× P(A, n)
∑A′ ∑n′ Prob(l ≤ y ≤ u|A′, n′)× P(A′, n′)

where we are using discrete A bins to compute this object. Once we have the conditional probabilities
of numbers of products by size bins, we can compute exit rates by size bins, since exit only depends
on the number of products. The exit probability for each number of products n can be calculated as
follows.

The probability of losing k products in an interval ∆ if you lose each product at rate τ + δ is

pn (k, τ) = e−τn∆ ((τ + δ)n∆)k

k!

The probability of winning m products in an interval ∆ if you expand at rate x

gn (m, x) = e−xn∆ (xn∆)m

m!

Hence, the probability of exit when a firm has n products is

Prob (k−m >= n) = Em [Prob (k >= n + m)] = Em

[
∞

∑
k=n+m+1

pn (k, (τ + δ))

]

=
∞

∑
m=0

e−xn∆ (xn∆)m

m!

∞

∑
k=n+m

e−τn∆ ((τ + δ)n∆)k

k!
.

SM-7 Computing the Transitional Dynamics

In this section we characterize the transitional dynamics of our model. In Section SM-7.1 we solve
for the value function without imposing the economy to be on the BGP. In Section SM-7.2 we char-
acterize the value of entry during the transitional dynamics. In Section SM-7.3 we use the free entry
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condition to characterize the differential equation for the free entry equilibrium during the transition.
In Section SM-7.4 we derive the characterization of the system of equations that fully characterize the
transitional dynamics. In Section (SM-7.5) we derive the differential equation for the joint distribu-
tion of quality q and quality gaps ∆, Ft (q, ∆), that we need to compute the evolution of markups
along the transition.

SM-7.1 The value function

As shown in Section A-1.3, the value function is additive across products and the value of a single
product with quality q and quality gap ∆ is described by the HJB equation

rtVt (q, ∆)− V̇t (q, ∆) = πt (qi, ∆i) +

(
∂Vt (q, ∆)

∂q
+

∂Vt (q, ∆)
∂∆

∂∆
∂q

)
q̇− (τt + δ)Vt (q, ∆) + Ξt,

where

πt (qi, ∆i) =

(
1− 1

µ (∆i)

)
µ (∆i)

1−σ
(

qi

Qt

)σ−1 1
Mσ−1

t Λσ
t

LP

Nt
wt.

Note that ∂∆
∂q = 1

q ∆. Also note that the free entry condition still implies that Ξt =
ζ−1
ϕx

xζwt. Hence, the
HJB equations reduces to

rtVt (q, ∆)− V̇t (q, ∆) = πt (qi, ∆i) +

(
∂Vt (q, ∆)

∂q
q +

∂Vt (q, ∆)
∂∆

∆
)

I − (τt + δ)Vt (q, ∆) +
ζ − 1

ϕx
xζwt,

where q̇
q = I.

Now conjecture that the value function takes the form

Vt (q, ∆) =
(

q
Qt

)σ−1

Ut (∆) + Mt. (SM-12)

This implies that

∂Vt (q, ∆)
∂q

q +
∂Vt (q, ∆)

∂∆
∆ = ((σ− 1) + εk (∆))

(
q

Qt

)σ−1

Ut (∆) ,

where
εt (∆) ≡

U′t (∆)∆
Ut (∆)

. (SM-13)
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Using the conjecture in (SM-12), the HJB simplifies to the following two equations:

1. The function Mt in (SM-12) solves the differential equation

(rt + τt + δ) Mt − Ṁt =
ζ − 1

ϕx
xζwt

2. The function Ut (∆) in (SM-12) solves the differential equation

(
rt + τt + δ + (σ− 1)

(
gQ − I

)
− Iεt (∆)

)
Ut (∆)− U̇t (∆) = h (∆)

1
Mσ−1

t Λσ
t

LP

Nt
wt

where

h (∆) =

(
1− 1

µ (∆i)

)
µ (∆i)

1−σ =

(
µ (∆i)− 1

µ (∆i)
σ

)
=

min
{

∆, σ
σ−1

}
− 1

(
min

{
∆, σ

σ−1

})σ

and εt (∆) is given in (SM-13).

SM-7.2 The value of entry

The value of entry is given by

VEntry
t = α

∫
Vt (λq, λ) dFt (q)

︸ ︷︷ ︸
CD with gap λ and quality λq

+ (1− α)
∫

Vt

(
ωQt,

σ

σ− 1

)
dΓ (ω)

︸ ︷︷ ︸
New variety with gap σ

σ−1 and quality ωQt

Using the conjecture in (SM-12), VEntry
t can be written as

VEntry
t = αλσ−1Ut (λ) + (1− α)ωσ−1Ut

(
σ

σ− 1

)
+ Mt.

Upon defining vEntry
t =

VEntry
t
wt

, mt =
Mt
wt

and ut (∆) =
Ut(∆)

wt
, we get

vEntry
t = αλσ−1ut (λ) + (1− α)ωσ−1ut

(
σ

σ− 1

)
+ mt (SM-14)
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where mt solves

(rt + τt + δ− gw)mt − ṁt =
ζ − 1

ϕx
xζ (SM-15)

and ut (∆) solves

(
rt + τt + δ− gw + (σ− 1)

(
gQ − I

)
− Iεt (∆)

)
ut (∆)− u̇t (∆) = h (∆)

1
Mσ−1

t Λσ
t

LP

Nt
(SM-16)

= h (∆)
1

Mσ−1
t Λσ

t
`tsP

t ,

where `t =
Lt
Nt

and sP
t = LPt

Lt
.

SM-7.3 Free Entry

Free entry requires vEntry
t = 1/ϕE so that

1
ϕE

= αλσ−1ut (λ) + (1− α)ωσ−1ut

(
σ

σ− 1

)
+ mt. (SM-17)

This also implies v̇Entry
t = 0. From (SM-14) this means u̇t and ṁt satisfy the restriction.

0 = αλσ−1u̇t (λ) + (1− α)ωσ−1u̇t

(
σ

σ− 1

)
+ ṁt.

Together with (SM-15), we can use this restriction to solve for mt in terms of ut as

mt =

ζ−1
ϕx

xζ −
(

αλσ−1u̇t (λ) + (1− α)ωσ−1u̇t
(

σ
σ−1

))

rt + τt + δ− gw
.

Substituting this in (SM-17) yields

1
ϕE

= αλσ−1
(

ut (λ)−
u̇t (λ)

rt + τt + δ− gw

)
(SM-18)

+ (1− α)ωσ−1

(
ut

(
σ

σ− 1

)
− u̇t

(
σ

σ−1

)

rt + τt + δ− gw

)
+

ζ − 1
ϕx

xζ

rt + τt + δ− gw
,

where ut solves the differential equation (SM-16).

Note that two discount rates appear in these equations.
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1. First we have rt + τt + δ− gw + (σ− 1)
(

gQ − I
)

in (SM-16). This can be written as

rt + τt + δ− gw + (σ− 1)
(

gQ − I
)
= ρ + gLP − gΛ − η

+

(
ωσ−1 + λσ−1 α

1− α

)
δ +

(
ωσ−1 − 1 + λσ−1 α

1− α

)
gN

t ,

where gΛ = Λ̇t/Λt and gLP = L̇P
t /LP

t . Using sP
t = LP

t /Lt we havegsP
t
= gLP − η. Hence,

rt + τt + δ− gw + (σ− 1)
(

gQ − I
)
= ρ + gsP

t
− gΛ

+

(
ωσ−1 + λσ−1 α

1− α

)
δ +

(
ωσ−1 − 1 + λσ−1 α

1− α

)
gN

t ,

2. Second we have the expression rt + τt + δ− gw in (SM-18). This can be written as

rt + τt + δ− gw = ρ + gsP
t
− gΛ +

α

1− α
gN +

1
1− α

δ

SM-7.4 Final Dynamic system

We now derive the final characterization equations characterizing the transitional dynamics. Note
first that labor market requires

`t

(
1− sP

t

)
=

1
ϕE

(
gN

t + δ

1− α
− ζ − 1

ζ
x
)

, (SM-19)

where `t =
Lt
Nt

and sP
t = LPt

Lt
. The free entry condition (SM-18) reads

1
ϕE

= αλσ−1

(
ut (λ)−

u̇t (λ)

ρ + gsP
t
− gΛ + α

1−α gN
t + 1

1−α δ

)

+ (1− α)ωσ−1

(
ut

(
σ

σ− 1

)
− u̇t

(
σ

σ−1

)

ρ + gsP
t
− gΛ + α

1−α gN
t + 1

1−α δ

)
(SM-20)

+
ζ − 1

ϕx

xζ

ρ + gsP
t
− gΛ + α

1−α gN
t + 1

1−α δ
(SM-21)
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where ut (∆) solves

(
ρ + gsP

t
− gΛ +

(
ωσ−1 + λσ−1 α

1− α

)
δ +

(
ωσ−1 − 1 + λσ−1 α

1− α

)
gN

t

)
ut (∆) (SM-22)

= −I
∂ut (∆)

∂∆
∆− u̇t (∆) = h (∆)

1
Mσ−1

t Λσ
t
`tsP

t . (SM-23)

This is a differential equation in ∆ and t. We have two terminal conditions. For ∆ ≥ σ
σ−1 we have

h
(

σ

σ− 1

)
=

σ
σ−1 − 1
(

σ
σ−1

)σ =

(
1

σ− 1

)1−σ 1
σσ

=
(σ− 1)σ−1

σσ

and ∂ut(∆)
∂∆ = 0. Furthermore, we have that 1

Mσ−1
t Λσ

t
`tsP

t is constant in the steady state so that u̇t (∆)→
0.

The transitional dynamics of the system is a path of
{
`t, sP

t
}

t that solves the equations above. Note
that given

{
`t, sP

t
}

t, we can calculate gN
t from SM-19. Given gN

t we can calculate τt and gQ,t as

τt =
α

1− α

(
gN

t + δ
)

(SM-24)

(
gQ − I

)
(σ− 1) =

((
λσ−1 − 1

) α

1− α
+ ωσ−1 − 1

)(
gN

t + δ
)

. (SM-25)

As we show in Section , this is also sufficient to compute
{
Mσ−1

t Λσ
t

}
t

and gΛ.

SM-7.5 The Evolution of Ft (∆, q): Calculating {Mt, Λt}t

To calculateMt and Λt we require the joint distribution of productivity q and quality gaps ∆, Ft (∆, q).
Note thatMt and Λt only depend on q via (q/Q)σ−1 . Hence, it is useful to characterize the distribu-
tion of Ft (∆, q̂), where q̂t = ln (qt/Qt)

σ−1. Let FC
t (∆, q̂) denote the distribution among products that

have a competitor and FNC
t (q̂) denote the distribution for products without a competitor.26 Let NC

t

and NNC
t denote the mass of these products. Let F̂C

t (∆, q̂) = FC
t (∆, q̂)NC

t
Nt

and F̂NC
t (q̂) = FNC

t (q̂)NC
t

Nt
.

26Recall that we do not need ∆ for the non-competitor products as they all have a markup of σ−1
σ .
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If we have the full evolution of
{

Nt, F̂C
t (∆, q̂), F̂NC

t (q̂)
}

t we can calculate Λt andMt as

Λt =
Nt
∫

µ (∆)−σ eq̂dF̂C
t (∆, q̂) + Nt

(
σ

σ−1

)−σ ∫ eq̂dF̂NC
t (q̂)

Nt
∫

µ (∆)1−σ eq̂dF̂C
t (∆, q̂) + Nt

(
σ

σ−1

)1−σ ∫ eq̂dF̂NC
t (q̂)

Mt =

(
Nt
∫

µ (∆)1−σ eq̂dF̂C
t (∆, q̂) + Nt

(
σ

σ−1

)1−σ ∫ eq̂dF̂NC
t (q̂)

) σ
σ−1

Nt
∫

µ (∆)−σ eq̂dF̂C
t (∆, q̂) + Nt

(
σ

σ−1

)−σ ∫ eq̂dF̂NC
t (q̂)

,

where eq̂ = (qt/Qt)
σ−1 as q̂t = ln (qt/Qt)

σ−1 and µ (∆) is the markup function µ (∆) = min
{

σ
σ−1 , ∆

}
.

We now derive expressions to calculate the evolution of
{

Nt, F̂C
t (∆, q̂), F̂NC

t (q̂)
}

t. Let
(

NC
0 , NNC

0 , F̂C
0 (∆, q̂), F̂NC

0 (q̂)
)

be given. In practice these objects are determined in the initial BGP. This in particular implies that
NC

0 = αNt and NNC
0 = (1− α) Nt. Suppose a path for

{
gN

t
}

is given. Then we can calculate and {τt}
and

{
gQt
}

from (SM-24) and (SM-25)

1. Given {τt} and
{

gQt
}

, we can calculate
{

F̂C
t (∆, q̂), F̂NC

t (q̂)
}

t as follows:

(a) The evolution of F̂NC
t (q̂) is given by

∂F̂NC
t (q̂)
∂t

= −gq̂
∂F̂NC

t (q̂)
∂q̂

−
(

τt + δ + gN
t

)
F̂NC

t (q̂) +
(

1− α

α

)
τtΓ
(

exp
(

q̂
σ− 1

))
,

where gq̂ = (σ− 1)
(

I − gQt
)

is given in (SM-25) and Γ
(

exp
(

q̂
σ−1

))
is the exogenous

source distribution.

(b) Given
{

F̂NC
t (q̂)

}
t we can solve for

{
F̂C

t (∆, q̂)
}

t. In particular,
{

F̂C
t (∆, q̂)

}
t then solves the

differential equation

∂F̂C
t (∆, q̂)

∂t
= −∆I

∂F̂C
t

(
∆, q̂

)

∂∆
− gq̂

∂F̂C
t

(
∆, q̂

)

∂q̂

−
(

τ + δ + gN
t

)
F̂C

t (∆, q̂) + lim
s→∞

τF̂C
t (s, q̂− λ̂) + τF̂NC

t (q̂− λ̂),

where λ̂ = ln λσ−1. Given that we solved for F̂NC
t (q̂− λ̂) already, this determines

{
F̂C

t (∆, q̂)
}

t
given an initial condition F̂C

0 (∆, q̂)
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SM-7.6 Firm-level moments along the transition

Given the equilibrium path {gN,t, zt} we can compute the time series of the entry rate and average
firm size. To do so, let ωt (n) be the mass of firms with n products at time t. Consider n ≥ 2. Then

ω̇t (n) = ωt (n− 1) (n− 1) x︸ ︷︷ ︸
From n−1 ton products

+ωt (n + 1) (n + 1) (τ + δ)︸ ︷︷ ︸
From n+1 ton products

− ωt (n) n (τ + x + δ)︸ ︷︷ ︸
From n to n−1 or n+1 products

.

For n = 1 we have
ω̇t (1) = Zt + ωt (2) 2 (τ + δ)−ωt (1) (τ + x + δ) .

Let νt (n) =
ωt(n)

Nt
, which is stationary along the BGP. Then

ω̇t (n)
Nt

= νt (n− 1) (n− 1) x + νt (n + 1) (n + 1) (τ + δ)− νt (n) n (τ + x + δ)

ω̇t (1)
Nt

= zt + νt (2) 2 (τ + δ)− νt (1) (τ + x + δ) .

Now
ω̇t (n) = ν̇t (n) Nt + νt (n) Ṅt

so that
ω̇t (n)

Nt
= ν̇t (n) + νt (n) gN,t

Hence,

ν̇t (n) = νt (n− 1) (n− 1) x + νt (n + 1) (n + 1) (τ + δ)− νt (n) n (τ + x + δ)− νt (n) gN,t

ν̇t (1) = zt + νt (2) 2 (τ + δ)− νt (1) (τ + x + δ)− νt (1) gN,t.

Given an initial condition{ν0 (n)}nwe can calculate the evolution of {νt (n)}n for given {gN,t, zt}.
Given {νt (n)}n we can calculate some objects:

1. The number of firms at time t:

Ft =
∞

∑
n=1

ωt (n) = Nt

∞

∑
n=1

νt (n)

and hence average firm size Lt/Ft
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2. The entry rate

Entry− ratet =
ztNt

Fr
=

zt

∑∞
n=1 νt (n)

.

3. The exit rate
Exit− ratet =

(τt + δ) Ntνt (1)
Ft

.

SM-8 Characterization of the Model with Endogenous Innovation

and Bertrand Competition

We now characterize the model in the case of both endogenous innovation on improving firm effi-
ciency I and endogenous markups. For full generality we allow research labor and production labor
to be imperfectly substitutable, such that the research wage vt may not equal the production wage
wt. The state variables of the firm are efficiency q and the efficiency gap ∆ for each product in the
firm’s portfolio, where we denote this set as [∆i, qi].

The value function Vt ([∆i, qi]) solves the HJB equation

rtVt ([∆i, qi]) =
n

∑
i=1

πt ([∆i, qi]) + V̇t ([∆i, qi]) +
n

∑
i=1

(τ + δ)
[
Vt

([
∆j, qj

]
j 6=i

)
−V ([∆i, qi])

]

+ max
{It(j)}n

j=1

n

∑
j=1

{
It (j)

∂Vt ([∆i, qi])

∂qj
qj − cI (It(j), ∆j, qj

)
vt

}

+max
X

{
X
[

α
∫

q
Vt ([∆i, qi] , 1, λq) dFt (q)

+ (1− α)
∫

ω

∫

∆
Vt ([∆i, qi] , ∆, ωQt) dG(∆)dΓ (ω)−Vt ([∆i, qi])

]

−cX (X, n) vt

}
.

Conjecture first that the value function is additive, i.e.

Vt ([∆i, qi]) =
n

∑
i=1

Vt (∆i, qi) . (SM-26)

We then have:

1. Loss through creative destruction:

Vt

([
∆j, qj

]
j 6=i

)
−Vt ([∆i, qi]) = −Vt (∆i, qi)
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2. Value of own-innovation:
∂Vt ([∆i, qi])

∂qi
qi =

dV (∆i, qi)

dqi
qi

3. Value of product creation:

∫

q
Vt
(
[∆i, qi]

n
i=1 , 1, λq

)
dFt (q)−Vt

(
[∆i, qi]

n
i=1
)
=
∫

q
Vt (1, λq) dFt (q)

and
∫

ω

∫

∆
Vt ([∆i, qi] , ∆, ωQt) dG(∆)dΓ (ω)−Vt

(
[∆i, qi]

n
i=1
)
=
∫

ω

∫

∆
Vt (∆, ωQt) dG(∆)dΓ (ω) .

Hence,

X
[

α
∫

q Vt ([∆i, qi] , 1, λq) dFt (q)

+ (1− α)
∫

ω

∫
∆ Vt ([∆i, qi] , ∆, ωQt) dG(∆)dΓ (ω)−Vt ([∆i, qi])

]

= X
[
α
∫

q Vt (1, λq) dFt (q) +
∫

ω

∫
∆ Vt (∆, ωQt) dG(∆)dΓ (ω)

]
.

Hence we can write the value function as

rt

n

∑
i=1

Vt (∆i, qi) =
n

∑
i=1

πt (∆i, qi) +
n

∑
i=1

V̇t (∆i, qi)− (τ + δ)
n

∑
i=1

Vt (∆i, qi) +

max
{It(i)}n

i=1

n

∑
i=1

{
It (i)

dVt (∆i, qi)

dqi
qi − cI (It(i), ∆i, qi) vt

}
+

n max
x

{
x
[

α
∫

q
Vt (1, λq) dFt (q) + (1− α)

∫

ω

∫

∆
Vt (∆, ωQt) dG(∆)dΓ (ω)

]
− cX (x, 1) vt

}
.

Hence, the value function is indeed additive and we can focus on a single product with state (∆i, qi), which

solves the HJB equation

(rt + τ + δ)Vt (∆i, qi) = πt (∆i, qi) + V̇t (∆i, qi) + max
I

[
I

dV (∆i, qi)

dqi
qi − cI (I, ∆i, qi) vt

]
+

max
x

{
x
[

α
∫

q
Vt (1, λq) dFt (q) + (1− α)

∫

ω

∫

∆
Vt (d, ωQt) dG(∆)dΓ (ω)

]
− cX (x, 1) vt

}
.

Note that the firm can choose a separate rate Ii for each product i, subject to a paying a cost cI
t (Ii, ∆i, qi)
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which depends on that rate. We work with a particular convenient cost function, such that

cI
t (I, ∆, q) = ϕI

qσ−1

Qσ−1
t

Iζ ,

so that cost is increasing in a scaled-version of relative productivity.27

The value function above can be written as

Vt (∆i, qi) = Ut (∆i, qi) + φt, (SM-27)

where Ut (∆i, qi) captures the rents from the existing products and φt describes the expansion value. From

above, these functions solve the (partial) differential equations

(rt + τ + δ)Ut (∆i, qi) = −U̇t (∆i, qi) (SM-28)

+ πt (∆i, qi) + max
I

[
I
dU (∆i, qi)

dqi
qi − cI (I, ∆i, qi) vt

]
, (SM-29)

and

(r + τ + δ)φt − φ̇t = max
x

{
x
[

α
∫

q
Vt (1, λq) dFt (q) (SM-30)

+ (1− α)
∫

ω

∫

∆
Vt (∆, ωQt) dG(∆)dΓ (ω)

]
(SM-31)

− cX (x, 1) vt

}
. (SM-32)

Solving for Ut (∆i, qi). Conjecture that the value function of a particular product takes the following
form

Ut (∆i, qi) =
u (∆i)

g (σ− 1) + ρ + τ + δ− η

qσ−1
i Yt

(MtΛt)σ−1NtQσ−1
t

. (SM-33)

We need to determine the function u (.) Note that Yt is growing at rate g + η, that Nt is growing at
rate η, that g = gQ + 1

σ−1 η and that Qσ−1
t is growing at rate gQ(σ− 1). Hence, (SM-33) implies that -

along the BGP - we have

27It can be show that this cost function is consistent with balanced growth.
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U̇t (∆i, qi)

Ut (∆i, qi)
=

Ẏt

Yt
− Ṅt

Nt
− gQ(σ− 1) (SM-34)

= gQ +
1

σ− 1
η − gQ(σ− 1)

= g (2− σ) + η.

So for a fixed q, whether profits are shrinking or rising with g depends on whether σ ≶ 2. Note also
that because of log preferences we have r = g + ρ. Combing this with (SM-28) yields

(g (σ− 1) + ρ + τ + δ− η)Ut (∆i, qi) = πt (∆i, qi) + max
I

[
I
dU (∆i, qi)

dqi
qi − ϕI

qσ−1
i

Qσ−1
t

Iζvt

]
.

Now, the markup is given by
∆i =

qi

qC
i

for ∆i ≤ σ
σ−1 , so that

dU (∆i, qi)

dqi
qi =

(σ− 1)u (∆i)

g (σ− 1) + ρ + τ + δ− η

qσ−1
i Yt

(MtΛt)σ−1NtQσ−1
t

+
u′ (∆i)

qi
qC

i

g (σ− 1) + ρ + τ + δ− η

qσ−1
i Yt

(MtΛt)σ−1NtQσ−1
t

=
((σ− 1)u (∆i) + u′ (∆i)∆i)

g (σ− 1) + ρ + τ + δ− η

qσ−1
i Yt

(MtΛt)σ−1NtQσ−1
t

Optimality for I then requires

(σ− 1)u (∆i) + u′ (∆i)∆i

g(σ− 1) + ρ + τ + δ− η

qσ−1
i Yt

(MtΛt)σ−1NtQσ−1
t

= ζϕI
qσ−1

i

Qσ−1
t

Iζ−1vt

Solving for I yields

I (∆) =
(

(σ− 1)u (∆) + u′ (∆)∆
g(σ− 1) + ρ + τ + δ− η

Yt

(MtΛt)σ−1Ntvt

1
ζϕI

) 1
ζ−1

(SM-35)

=

(
(σ− 1)u (∆) + u′ (∆)∆

g(σ− 1) + ρ + τ + δ− η

LP
t /Nt

Mtσ−1Λσ
t ϕIζ

wt

vt

) 1
ζ−1

(SM-36)
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where the second equality uses YtΛt = LP
t wt. Hence,

max
I

{
I
(σ− 1)u (∆) + u′ (∆)∆

g(σ− 1) + ρ + τ + δ− η

qσ−1Yt

(MtΛt)σ−1NtQσ−1
t
− ϕI

qσ−1

Qσ−1
t

Iζvt

}
= (ζ − 1) ϕI I (∆)ζ vt

qσ−1

Qσ−1
t

.

Along with the expression for profits this yields

(g(σ− 1) + ρ + τ + δ− η)Ut (∆i, qi) = h(∆i)

(
qi

Qt

)σ−1 Yt

(MtΛt)
σ−1 Nt

+ (ζ − 1)ϕI
qσ−1

i

Qσ−1
t

I(∆i)
ζvt,

or

u (∆i)
qσ−1

i Yt

(MtΛt)
σ−1 NtQσ−1

t

=
h (∆i)

(MtΛt)
σ−1

qσ−1
i

Qσ−1
t

Yt

Nt
+ (ζ − 1) ϕI I (∆i)

ζ qσ−1
i

Qσ−1
t

ΛtYt

Nt

Nt

LP
t

vt

wt
,

So if u(∆) solves

u (∆) = h (∆) + (ζ − 1) ϕI I (∆)ζ Nt

LP
t
(Mt)

σ−1Λσ
t

vt

wt
(SM-37)

then our guess is verified .Substituting the optimal solution for I in (SM-35) yields

u (∆) = h (∆)+
(ζ − 1) ϕI

((g(σ− 1) + ρ + τ + δ− η) ϕIζ)
ζ

ζ−1

(
(σ− 1)u (∆) + u′ (∆)∆

) ζ
ζ−1

(
LP

t /Nt

(Mt)σ−1Λσ
t

wt

vt

) 1
ζ−1

.

(SM-38)

This is a non-linear differential equation in u (∆) given parameters and the general equilibrium statis-

tic LP
t /Nt

(Mt)σ−1Λσ
t

wt
vt

, which is constant on the BGP. Given {u (∆)}∆, firms’ optimal innovation rate is given
by

I (∆) =
(

u (∆)− h (∆)
(ζ − 1) ϕI

LP
t /Nt

(Mt)σ−1Λσ
t

wt

vt

)1/ζ

. (SM-39)

Note crucially that there is no dependence on a product’s efficiency; innovation only depends on the
gap between the efficiency of the firm and the next best producer.

To solve this differential equation, we require a boundary condition. The boundary condition comes
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Figure SM-4: Two Potential Solutions to Equation (SM-41)

ū
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(LHS)

h̄
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Notes: The figure displays the left hand side (LHS) and right hand side (RHS) of equation (SM-40).

from considering a firm with efficiency gap ∆ ≥ ∆ = σ
σ−1 . This firm will set a markup of σ

σ−1 . Hence,

h (∆) =
(

1
σ

)(
σ

σ− 1

)1−σ

= h for ∆ ≥ ∆.

Moreover, conditional on survival, it will never set a different markup. Because we restrict our
analysis to value functions which only depend on pay-off relevant state variables, we know that
u (∆) = u for ∆ ≥ ∆, and u′ (∆) = 0. Hence, (SM-35) implies that (for ∆ ≥ ∆)
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where
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To see that there is a unique solution I (∆), note that (generically) (SM-40) has two solutions in the
positive orthant- uL and uH. These are depicted in Figure (SM-4) below. We will now show that
uH > uL is in fact not a solution for the value function. To see this define the function
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Note that
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Also note that f ′ (uH) > 1 as the curve intersects from below at uH. This implies that
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Using that I = (CuH)
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ζ−1 , this inequality implies that
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I. (SM-42)

But now consider a firm with efficiency q and ∆ ≥ ∆. Using the solution for the value function in
(SM-40)

ūH = h (∆̄) + I
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Rearranging terms and using the expression for profits (A-3)
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Note that πi (∆̄)− ϕI Iζ
(
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)σ−1
vt is simply the per period cash flow of the firm. Hence, for uH to be

positive, it has to be the case that

1 >
σ− 1

g(σ− 1) + ρ + τ − η
I.

This contradicts (SM-42).
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SM-8.0.1 Solving for φt from (SM-30)

To solve for φt in (SM-30), by free entry it must be that

α
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Substituting this in (SM-30) yields
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Along the BGP, research wages grow at rate g. Hence, φ̇t = gφt so that
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SM-8.1 The Joint Distribution of Gaps and Productivity

As in the baseline model we can compute the joint distribution of scaled efficiency and efficiency
gaps. Again we define the objects F̄C

t (∆, q̂) and FNC
t (q̂) as the mass of products with a gap less than

∆ and relative productivity less than q̂, for products with (without) a direct competitor. Again, we
define q̂t ≡ ln (qt/Qt)

σ−1. Hence, for a product of efficiency and gap (∆, q̂t) we have

q̂t+ι = (σ− 1)((I(∆)− gQ)ι + q̂t

where gQ = dlog(Qt)
dt .
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Now, the evolution of the non competitor mass satisfies

F̄NC
t (q̂) = F̄NC

t−ι

(
q̂− (σ− 1)((I(∆̄)− gQ)ι

)
(1− (τt + δ)ι)

︸ ︷︷ ︸
existing mass that survives and improves/falls

+ (1− α)(zt−ι + xt−ι)NNC
t ιΓ

(
exp (q̂)
σ− 1

)

︸ ︷︷ ︸
new products

and then using the fact that z + x = τ/α we have

F̄NC
t (q̂) = F̄NC

t−ι

(
q̂− (σ− 1)((I(∆̄)− gQ)ι

)
(1− (τt + δ)ι)

+
(1− α)

α
τιNNC

t Γ
(

exp (q̂)
σ− 1

)

Write this as

F̄NC
t (q̂)− F̄t−ι(q̂)

ι
+

F̄t−ι(q̂)− F̄NC
t−ι

(
q̂− (σ− 1)((I(∆)− gQ)ι

)

(σ− 1)((I(∆)− gQ)ι
(σ− 1)((I(∆)− gQ) =

−(τt + δ)F̄NC
t−ι

(
q̂− (σ− 1)((I(∆)− gQ)ι

)
+

+
(1− α)

α
τNNC

t Γ
(

exp (q̂)
σ− 1

)

and taking the limit

∂F̄NC
t (q̂)
∂t

= −∂F̄NC
t (q̂)
∂q̂

(σ− 1)((I(∆̄)− gQ)− (τt + δ)F̄NC
t +

(1− α)

α
τNNC

t Γ
(

exp (q̂)
σ− 1

)
(SM-44)

Then define the distribution FNC
t ≡ F̄NC

t /NNC
t so that

∂F̄NC
t (q̂)
∂t

= ṄNC
t FNC

t (q̂) + Nt
∂FNC

t (q̂)
∂t
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So rewrite SM-44 as

∂FNC
t (q̂)
∂t

= −∂FNC
t (q̂)
∂q̂

(σ− 1)((I(∆̄)− gQ)− (τt + δ + η)FNC
t +

(1− α)

α
τΓ
(

exp (q̂)
σ− 1

)

Similarly, the competitor mass evolves as

F̄C
t (∆, q̂) = F̄C

t−ι

(
∆e−I(∆)ι, q̂− (σ− 1)((I(∆)− gQ)ι

)
(1− (τt + δ)ι)

︸ ︷︷ ︸
existing mass that survives and improves/falls

+ lim
s→∞

ιτt F̄C
t (s, q̂− (σ− 1)log(λ))

︸ ︷︷ ︸
CD returns gap to λ,increases productivity by λ

+ τιF̄NC
t (q̂− (σ− 1)log(λ))︸ ︷︷ ︸

NC products get improved by CD

Rewriting and taking the limit as ι→ 0

∂F̄C(∆, q̂)
∂t

=−
(

∂F̄C(∆, q̂)
∂∆

I(∆)∆ + (σ− 1)((I(∆)− gQ)
∂F̄C(∆, q̂)

∂q̂

)

− F̄C
t

(
∆, q̂

)
(τt + δ)

+ lim
s→∞

τt F̄C
t (s, q̂− (σ− 1)log(λ))

+ τF̄NC
t (q̂− (σ− 1)log(λ))

NowF̄C
t (∆, q̂) = NtFC

t (∆, q̂), so that

∂F̄C
t (∆, q̂)

∂t
= ṄtFt(∆, q̂) + Nt

∂Ft(∆, q̂)
∂t
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So dividing through by Nt

∂FC
t (∆, q̂)

∂t
= −

(
∂FC

t (∆, q̂)
∂∆

I(∆)∆ + (σ− 1)((I(∆)− gQ)
∂FC

t (∆, q̂)
∂q̂

)

− FC
t

(
∆, q̂

)
(τt + δ + ηt) + lim

s→∞
τtFC

t (s, q̂− (σ− 1)log(λ))

+ τFNC
t (q̂− (σ− 1)log(λ)).

SM-9 Fertility and Population Growth

In this section we show the evolution of two major determinants of population growth in the major
economies displayed in Figure 1. Figure SM-5 plots historical and projected birthrates from UN data.
In all cases, these birth rates have fallen and are projected to remain low. Figure SM-6 shows the net
migration rate for these economies, which is almost uniformly low and projected to remain as such.
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Figure SM-5: Birth Rate Across Major Economies

(a) Historical Birth Rate
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(b) Projected Birth Rate
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Notes: Panel (a) of this figure plots the historical “crude” birth rate from the UN World Population Prospects
2019 for several major economies. The crude birth rate is total births over total population in a given year.
Panel (b) plots the UN projections for population growth in the “Medium” scenario out to to 2060.
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Figure SM-6: Net Migration Across Major Economies

(a) Historical Net Migration
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(b) Projected Net Migration
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Notes: Panel (a) of this figure plots historical net migration growth from the UN World Population
Prospects 2019 for several major economies. Panel (b) plots the UN projections for population growth
in the “Medium” scenario out to to 2060.
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