AvcusT 1978

GARETH P. WILLIAMS

Planetary Circulations : 1. Barotropic Representation
of Jovian and Terrestrial Turbulence

GARETH P. WiLLIAMS

Geophysical Fluid Dynamics Laboratory/NOAA, Princeton University, Princeton, NJ 08540
(Manuscript received 2 December 1975, in final form 13 April 1978)

ABSTRACT

We seek the formative processes of the planetary circulations of Jupiter and Saturn. The study concen-
trates on examining whether processes known to control the terrestrial circulation, namely, two-dimensional
turbulence and baroclinic instability, can produce Jovian circulations under Jovian conditions. The first
numerical model involves a spherical barotropic vorticity equation subjected to a stochastic representation
of baroclinic processes. The resulting solutions suggest that a strong affinity exists between the Jovian and
terrestrial circulations. This leads to a reevaluation of terrestrial circulation theory from the broader per-
spective of parameter space.

The solutions in the Jovian regime support the hypothesis that a variation of the Rhines effect—an
interaction of the two-dimensional turbulence cascade and Rossby wave propagation—creates the pseudo-
axisymmetry and scale Lg=#(2U/B)? of the bands (U is the rms zonal velocity, and 8 the northward gra-
dient of the Coriolis force). The anisotropy of the interaction produces zonally oriented flows, composed of
a series of alternating easterly and westerly jets, between which lie characteristic ovals. Equatorial jets occur
readily when vorticity sources that lie symmetrically about the equator act on the atmosphere. Frictionally
induced Ekman circulations provide a possible mechanism for cloud formation,

Integrations with terrestrial parameters support Kuo’s (1951) forced vorticity-transfer theory for the
Earth’s circulation: westerly jets form in the forced midlatitude zones, and Rossby-wave propagation from
those zones causes the broad easterly trade winds. Enstrophy cascade and g effects control the formation of
momentum converging eddy patterns. Lg also provides a measure of the width of the terrestrial jet. Cascade
blocking by a stronger surface drag prevents terrestrial flows from approaching the same degree of zonality
as Jovian ones.

Jupiter also appears to be dynamically equivalent to a hypothetical (or primeval) global ocean that has
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neither continental boundaries nor surface winds.

1. Introduction

This three-part study is concerned with trying to
deduce the fundamental causes of the global circulations
of the atmospheres of Jupiter and Saturn. The approach
adopted is one of evaluating the behavior of known
terrestrial processes under Jovian conditions, rather
than of seeking new dynamical mechanisms.

The primary hypothesis made is that the major
Jovian characteristics—the axisymmetry and scale of
the bands, the zonal currents, the waves and eddies—
are all essentially a feature of two-dimensional turbu-
lence on a rapidly rotating planet, with the turbulence
being energized by baroclinic instability. To reinforce
this supposition, and delineate the relation between the
terrestrial and Jovian regimes, the original study
(Williams, 1975a,b) has been broadened to include an
examination of how the Earth’s circulation varies in
parameter space. In this regard, a major concern has
been to isolate the mechanism that determines the scale
of the terrestrial jet—to explain why only one jet occurs
in each hemisphere—and to understand why the jets
are less zonal than their Jovian counterparts.

This study of planetary turbulence begins with an
examination, in the Jovian and terrestrial regimes, of
atmospheric responses that are quasi-barotropic.! We
do not believe that either atmosphere is inherently
barotropic, only that on certain scales of space and
time, the barotropic exchanges determine certain fea-
tures. A practical advantage of this assumption is that
it involves primarily the horizontal components of
motion, and as such does not depend crucially on the
vertical structure of the atmosphere—details of which
remain obscure for Jupiter. Nonbarotropic effects are
represented statistically, using a stochastically forced
barotropic scheme to imitate the full baroclinic be-
havior. Such a formulation is not truly barotropic, and
the forced barotropic scheme can be said to provide a
barotropic representation® of the more complex baroclinic

1 The term barotropy is used in the dynamical context to denote
quasi-nondivergent horizontal flow. :

2 “Representation is a compromise with chaos” (Bernard
Berenson in Seeing and Knowing, 1953, Chapman and Hall,
London).
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system. This reversion to quasi-barotropic models is

not regressive, but provides an essential simplification

in understanding-zonal flow formation.

Although the interaction of two-dimensional turbu-
lence and Rossby-wave propagation control the largest
scales, processes imitated by the stochastic forcing
determine energy supply and smaller scale activity. The
solutions indicate that the most realistic flows occur
under the influence of vorticity sources of a scale com-
parable to the Jovian half-band width ; baroclinic insta-
bility provides the most probable candidate for such a
vorticity source. This leads us to examine, in Part 2,
quasi-geostrophic baroclinic turbulence, using the
classical circulation model of Phillips (1956) with Jovian
parameters. The baroclinic model explains items not
covered by the forced barotropic model: temperature
distribution, location of energy conversion, baroclinic
length scales, frontogenesis, Great Red Spot, polar
regime transition, long-term variation and equilibration.
In Part 3, evaluation of the same model for parameter
variations in the terrestrial regime clarifies the connec-
tion between the Jovian and terrestrial regimes, and
broadens the perspective on the terrestrial atmospheric
circulation.

To illustrate the relevance and necessity of the quasi-
barotropic and baroclinic turbulence hypotheses, we
review—in a prelude to all three studies—the basic
problems and theories of the circulations of Jupiter
(Section 2) and the Earth (Section 3). In Section 4,
those turbulence concepts that help explain important
aspects of the circulations are reviewed from a planetary
perspective. In particular, the Rhines effect will be
discussed in detail as it provides a basis for much of this
work, and a unifying principle whereby many circula-
tions may be discussed within the same theoretical
framework. A digression, in Section 5, explores the
relation, if any, between the general turbulence concepts
and specialized theories for the Great Red Spot.

2. The Jovian problem

For Jupiter, the main items requiring explanation are
the regularity with which the cloud bands parallel the
equator and the motions within them. Analyses of eddy
motion suggest that the circulation consists of a series
of alternating easterly and westerly jets, with velocities
of approximately 100 m s~ near the equator and of
20 m s7! at higher latitudes (Chapman, 1969). Distinc-
tive shears exist across the bands such that within zones
(light colored bands) and belts (dark colored bands)
westerly motion is associated with the poleward edges of
zones and the equatorward edges of belts, with easterly
motion occurring elsewhere (Hess and Panofsky, 1951).
This correlation provides a strong dynamical constraint
on models of the vertical structure of the circulation.
The bands fluctuate in width and color substantially
from year to year and vanish completely poleward of

50° latitude. Well-defined oval-shaped disturbances and
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waves, which last from a week to several months, arise
within the bands. .
Most of the proposed explanations of the Jovian

- circulation have one idea in common—that an insta-

bility process favoring the axisymmetric mode produces
the banded form. The current debate over the cause of
the Jovian circulation revolves around three such
axisymmetric instabilities (convective, radiative and
inertial) and the planetary turbulence hypothesis
(Williams, 1975b), to be discussed herein. All of the
instability mechanisms have serious disadvantages in
practical application to Jupiter and Saturn.

The main drawback, in applying the Solberg sym-
metric baroclinic “instability to Jupiter (Stone, 1967,
1971), lies in the vanishingly small length scales favored
by the mechanism (McIntyre, 1970a; Walton, 1975)—a
feature shared with the convective instability. Further-
more, the instability only occurs in a highly restricted
range of Richardson number. Although the process has
been reproduced numerically in the laboratory annulus
context (Williams, 1968, 1970), doubts exist as to
whether a stable realization is possible under planetary
conditions (Hoskins, 1974). The character of the dis-
turbances, with downward motion correlated to west-
ward flow, conflicts with observation.

Although the anisotropic-convection model for a
uniformly heated planet (Rossby, 1945; Williams and
Robinson, 1973) appears to reproduce the observed
mean flows and correlations, it does so under unsatis-
factory conditions. In particular, the length scales
depend on a poorly understood parameterization of
convective turbulence, and the maintenance of such
convection requires excessive heat. The instability
favors the axisymmetric mode only at lower Rayleigh
numbers; however, if the parameterizations are re-
garded as a representation of the large-scale eddies (as
in statistical circulation models), then the question of
zonal stability lacks meaning..

The radiative instability mechanism (Glerasch 1973)

“invokes a coupled radiative-dynamical cause to band

formation—implying that dynamics alone cannot
suffice. An ad hoc water cloud treatment that does not
apply to the Earth system and characteristic scales that
depend on this parameterization constitute the main
dlsadvantages of this original theory. In practice, the
instability has uncompetitive time scales and the
existence of water clouds, banded or otherwise, has
not been established.

3. Developments in circulation theory

Our perception of the circulations of the Earth’s
atmosphere and oceans has altered, from the classical
view involving mean circulation concepts, to one in
which the unsteady turbulent aspects of the flow pre-
dominate; a similar transformation of Jovian circulation
theory is required. Consideration of comparative atmo-
spheres raises new questions—concerning the parame-
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tric behavior of circulations—with which modern
theory must deal.

a. Classical theory

The mean meridional-cell theory of circulation
formation assumed the prevalence of a conserved
exchange of angular momentum in the meridional plane;
the modern view considers the exchange of vorticity or
potential vorticity in the horizontal plane as the
responsible process. The earlier theory was eventually
discarded because it was associated with too large a
transfer of angular momentum.

With an emphasis on horizontal turbulent exchanges,
Rossby’s (1947, 1949) (barotropic) vorticity equaliza-
tion theory attempted to rationalize the poleward
transfer of angular momentum. Rossby further sug-
gested that such theory should be relevant to the
formation of the Jovian equatorial circulation, an idea
that was taken up by Hess (1952). The inadequacies of
this theory were explained when the discovery of
baroclinic instability (quasi-horizontal convection)
(Chamney, 1947; Eady, 1949) revealed that the major
formative sources of momentum and vorticity are
created in the free atmosphere, and not, as previously
supposed, at the surface.

In retrospect, the misconceptions in classical theory
can be attributed to three mistaken assumptions: 1)
that some motion-related quantity, angular momentum
or vorticity, governed the flow and the requirement for
heat transfer was secondary; 2) that boundary sources
of momentum or vorticity, not internal sources, caused
the flow; and 3) that vertical exchange processes were
greater than or equal to the horizontal processes in
importance. This last conflict arises out of the uniquely
strong interaction between the atmosphere and the
Earth’s surface; the oceanic and Jovian systems exhibit
a weaker interaction and a more obvious dominance of
horizontal processes.

b. Modern theory

In the first “modern” description of the terrestrial
circulation, Eady (1950) recognized the fundamental
role of turbulence in the circulation, and regarded the
derivation of its cause and properties with respect to

the predominating horizontal eddy transports of heat

and angular momentum as the main problem. The
defining of available potential energy (Lorenz, 1955)
clarified the energetic properties of the eddies and mean
flow components. The numerical study of Phillips (1956)
supported the Eady-Lorenz view of the circulation and
made it clear that potential vorticity is the primary
distributive variable governing the circulation.

The meridional circulations are secondary effects as
far as heat transfer is concerned; they act mainly to
transfer angular momentum vertically (Eady, 1950),
thereby fulfilling the surface drag’s main role, that of
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limiting the amplitude of the disturbances and the
zonal currents that result from their activity. The lack
of mean meridional circulations, when our numerical
models omit surface drag, bears out Eady’s view.

The need to characterize a circulation as having
either strong (Earth) or weak (ocean, Jupiter) surface
interactions is essential to understanding its form.? On
Earth, the strong surface drag prevents the zonal flow
from evolving far from the Hadley state, thus obscuring
the atmosphere’s inertial response. The tendencies of a
free atmosphere are more clearly revealed in the weakly
dissipative Jovian regime where the evolved flow bears
no resemblance at all to the axisymmetric state, thus
revealing the irrelevance of the Hadley stability
problem.

¢. Representational theory

To avoid the complexity of baroclinic circulation
models, Kuo (1950, 1951, 1953) suggested that for
certain dynamical problems, the atmosphere can be
regarded as being controlled by barotropic vorticity
exchanges and that the internal forcing effects of
baroclinic processes could be implicitly represented.

Kuo supposed that vorticity concentrations occur
(due to the baroclinic divergence term) in a zonal belt,
with equal amounts of cyclonic (¢>0) and anticyclonic
vorticity. The vorticity equation, multiplied by v cosé
and integrated over a fluid area A, on whose boundaries
v vanishes, becomes

d
//3‘ cosﬂ;;dA = //W(f—}-g‘),, cos?0d A 1)

(see Section 6 for notation). The correlation between
vorticity and acceleration indicates a tendency for
vorticity transfer in the direction opposite to the
gradient of absolute vorticity. Thus, vortices migrate
to latitudes with their particular absolute vorticity:
cyclones move poleward and anticyclones equatorward.

As a result of such vortex partitioning, an increased
vorticity gradient occurs within the region of active
disturbances and a decreased gradient beyond. The
resulting poleward transfer of vorticity redistributes
existing vorticity and implies a change in the mean
zonal flow, the equation for which,

at=E) (2)

indicates that westerly winds will grow within the
disturbed zone and easterly currents without. By apply-
ing Taylor’s (1915) vorticity flux theory these easterly
currents can be shown to favor a uniform distribution.

8 The term surface is used in the Jovian context to denote a
sublayer with a different mode of existence.
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The theory transforms Eq. (2) inito the form
U= ———y.4 3

where y, is the meridional displacement from a latitude
of zero relative vorticity (Fjortoft, 1950; Arakawa,
1961; Bretherton, 1966; Dickinson, 1969). For small
convective contributions, this exact equation approxi-
mates to "

a=—3y.* 4

(Rhines, 1977), indicating the tendency toward unmi-
formity and the primary role of 8 in zonal flow
generation.’

The importance of absolute vorticity transfer in the
actual, complex scheme of atmospheric momentum
transfer is also substantiated by Green’s (1970) statis-
tical circulation model. In this, transfer coefficients Ko
are used, with reasonable justification, for the quasi-
conservative heat and potential vorticity quantities to
yield the momentum flux equation for the two-layer
model '

W)= K:(f+0) =M, h(3K1/82)— fK2,  (5)

where N~! is the Rossby radius of deformation and
Y=y, —y;3 the streamfunction differential (temperature)
over the scale height %. The relationship between the
first two terms resembles that implied by Kuo’s theory.

By emphasizing horizontal exchanges and by neglect-
ing surface effects completely, Kuo was led to the cause
of the basic circulation characteristics—the partitioning
of momentum into easterly and westerly components
by the forcing effect of vortex separation. However, the
growth and decline of the eddies, through their connec-
tion with the baroclinic component of mean flow,
represent an additional factor whose explanation
defines a more complex model of the circulation than
that of a statistically driven zonal flow. Nonetheless,
for certain phenomena and for remote atmospheres in
particular, the simpler definition provides a meaningful
preliminary.

v

d. The angular momentum problem

Questions remain concerning the basic form of the
terrestrial circulation. In particular, the skape of the
eddies, their degree of regularity and mode of angular
momentum transport constitute features that lack a
simple explanation (Lorenz, 1967, 1969). This angular
momentum problem relates to both the initial develop-
ment of westerly jets by eddy action and the mainte-
nance of existing jets by eddy interaction.

Various idealized eddy processes such as the baro-
clinic instability of meridionally sheared -zonal flows
(Pedlosky, 1964; McIntyre, 1970b; Williams, 1971) or
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vortex partitioning (Kuo, 1951, 1953) can yield some
of the appropriate momentum characteristics. However,
the different models reproduce these features for
different reasons, so doubts exist as to whether the
models relate to the atmospheric processes or describe
coincidental effects. Any success of these eddy repre-
sentations in circulation models (e.g., Charney, 1959)
can be attributed to the inhibition of eddy growth by
the strong surface drag.

¢. Current developments

The description of the terrestrial circulation in terms
of zonal means and eddies, with its simplistic dichotomy
of scales and limited dynamics, is giving way to a more
satisfactory view of the circulation in terms of the full
spectrum of motion. This change has arisen from the
appreciation of the relevance of the ideas of two-
dimensional turbulence and nonlinear wave theory to
atmospheric flow (see Section 4). These concepts also
allow us to view the various circulations of the ocean,

. atmosphere and Jovian planets as manifestations of

the same basic universal processes acting under different
constraints; such a unification has long been regarded
(Smagorinsky, 1969) as a desirable development in
circulation theory.

4, Planetary turbulence and waves

Although recent studies emphasize the need to under-
stand the complete spectrum of motion it is still con-
venient to subdivide the continuum into areas charac-
terized by some specific property: on the smaller scale
the ideas of two-dimensional turbulence prevail; on the
largér scale, nonlinear wave theory; while at an inter-
mediate scale £s~! both processes are equally active and
form a third dynamical domain. In describing these
dynamical regimes, we see characteristics that help
explain Jovian behavior.

a. k> kg: Two-dimensional turbulence

As a result of the conservation of enstrophy and
kinetic energy (constraints unique to two-dimensional
motion) kinetic energy is transferred to smaller wave-
numbers where it is conserved, while enstrophy cascades
to larger wavenumbers where it can be dissipated
(Onsager, 1949; Fjortoft, 1953; Lilly, 1972; Bretherton
and Haidvogel, 1976). If U is a typical velocity and L
the dominant scale of energy containing eddies, then
during the nonuniform evolution U remains approxi-
mately constant but L increases with time as the
eddies coalesce into larger ones at a rate r~UL™
(Batchelor, 1969). So while the flow becomes larger in
scale and smoother, the vorticity developes a finer
structure. The spectral peak so dominates two-
dimensional cascades that flow features can be specified
by this single set of scales, a possibility unavailable in
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three-dimensional motion and a property normally
associated with linear processes only.

Whereas energy decay in three-dimensional turbu-
lence has a time scale of UL™* (determined by nonlinear
exchanges), the much lengthier viscosity and a drag
time scales L?/v and 7p operate in the two-dimensional
case. Thus the presence of strong eddies does not mean
that energy dissipation is occurring; in fact, it is the
distinct inability of two-dimensional turbulence to
dissipate kinetic energy that is responsible for the
preservation of the Jovian circulation and longevity of
the Jovian disturbances.

In the limit of a purely two-dimensional cascade,
energy accumulates at the lowest possible wavenumber,
i.e., eddies grow to the size of the domain. Such an end
state does not occur when surface drag (Lilly, 1972) or
planetary wave propagation (Rhines, 1975) also
operate. On Jupiter, drag effects must be weak so the
cascade is more strongly modified by the more subtle
Rossby-wave blocking effect.

b. k~kg: The Rhines effect

On a rotating planet, the two-dimensional turbulent
eddies—by expanding in size—become prone to the
restoring effects of B, so the cascade eventually switches
to a state of Rossby wave propagation. The time scale
for the nonlinear interactions is (kU)™, where k! is the
eddy diameter and U the rms particle speed. For Rossby
waves of average orientation, the time scale is 2k/p.
The dynamical transition occurs where the two time
scales become equal, when

kg?=8/2U (6)
(Rhines, 1973).
In the turbulent regime, the energy cascade to smaller
k is also a migration to smaller frequency w, for the rela-
tion w~k|U| holds for the advective time scale. For
the Rossby wave regime, the dispersion relation

-8
T (it k)

indicates an association of smaller frequencies with
larger wavenumbers [for waves of the form ekr—wt),
where ki, ks are the longitudinal and latitudinal wave-
numbers]. Thus, the w, £ relations of the turbulent
cascade and wave propagation conflict at kg, to the
extent that the turbulent decascade of energy to smaller
k nearly ceases—it is reduced by an order of magnitude
(Rhines, 1975) for k<kg—as the transition to wave
motion occurs. Further spectral migration is slow so
that kg remains the dominant scale for considerable time.
This wave-turbulence interaction and its properties
will be referred to as the “Rhines effect”” for convenience.

The blocking of the energy decascade by the wave
regime does not proceed uniformly because of the aniso-
tropic form of the dispersion relation. The turbulent

)
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cascade can proceed further if k2/k1<<1, and the fluid
achieves this by favoring the production of longitudin-
ally oriented eddies, waves and currents. The transfer
of energy to the zonal flow component and the produc-
tion of an end state of the cascade in the form of
alternating east-west zonal currents of scale kg™ was
conjectured by Rhines (1975) and demonstrated by
Williams (1975a,b). Our numerical solutions support
the hypothesis that this production of zonal flow by
the Rhines effect is responsible for the Jovian band
structure and for zonality in the terrestrial circulation.

c. k<kg: Planetary waves and zonal flow

The energy decascade is completed within the wave
regime, k<kg, with the formation of zonal currents.
These can be shown to be barotropically stable (Rhines,
1975) under the integral stability condition (f+¢),#0;
however, the second stability criterion #(f+{),>0,
(e.g., Pedlosky, 1964) cannot be evaluated with
comparable generality.

Spectral evolution and the stability of more complex
flow configurations can be analyzed by nonlinear wave
theory (e.g., Lorenz, 1972; Gill 1974). Weak nonlinear
wave interactions can generate zonal flows under certain
circumstances: (i) by a triad of Rossby waves when the
meridional domain is finite and quantasizes the wave
spectrum (Loesch, 1977); (ii) by a wave quartet in an
unlimited domain (Newell, 1969; Loesch, 1977); and
(iii) by side-band resonances of triads of continuous
Rossby-wave packets (Newell, 1969).

Although zonal flow is a likely end state in atmo-
spheric cascades, the theoretical understanding of its
formation and maintenance remains rudimentary.

d. k.=0: Barotropy

The ideas of two-dimensional turbulence apply only
to the barotropic component of motion, so the question
that arises is under what circumstances, and to what
extent, do baroclinic atmospheres behave in a barotropic
or quasi-barotropic manner? The formal partitioning of
energetics into barotropic and baroclinic components
produces a complex system of interactions (Smagor-
insky, 1963) that defies simple interpretation. Nonethe-
less, some empirical results (in addition to Kuo’s) have
been attained. In particular, a limited correspondence
between barotropic and baroclinic states has been
defined by the so-called equivalent barotropic model
(Charney, 1949); a strong tendency toward barotropy
in tropical regions devoid of moisture has been identified
(Charney, 1963), and even in the ocean—where motions
are strongest in a shallow layer above the thermocline—
uniform barotropic models are relevant (Longuet-
Higgins, 1965).

Further progress in resolving this issue has come
from the cascade analysis of numerical solutions of
freely evolving turbulence in the simpler quasi-
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geostrophic models (Rhines, 1977). These_ solutions
show that an initial baroclinic eddy field will in general
evolve baroclinically, with decreasing vertical shear,
until the eddy size reaches the deformation radius k7.
Then follows a mutation to a barotropic state and a
growth of eddies towards the k5! scale, as discussed
earlier. Thus quasi-barotropy may exist for k<%,.

[Geostrophic turbulence (Charney, 1971) ignores
the B effect and applies only to the &>k, >kg range of
scales. ]

e. Planetary regimes

A similarity in nondimensional parameter values
indicates a dynamical affinity between Jupiter and the
ocean; thus, the turbulence concepts discussed above
could also apply to the Jovian circulation. Estimates of
the Jovian radius of deformation (1000-5000 km) are
compatible with the existence of relatively small eddies
which, as in the ocean, occupy O(1072) of the domain.
Low values of the Rossby number suggest that Jupiter
may have little or no tropical regime, being geostrophic
to within 2° of the equator, as the ocean, rather than
to within 30°, as the atmosphere.

Baroclinic 1nstab1hty probably operates sporadically
and nonuniformly in its maintenance of the eddy fields
of all three systems. Zonal momentum increases occur
only every 10 days in the atmosphere and every few
hundred days on Jupiter so exchanges may also be
barotropic or quasi-barotropic on occasion.

The absence of efficient turbulent damping of the
larger atmospheric eddies is a primary feature of
terrestrial meteorology and can -be- accredited to the
geostrophic nature of the flow. Yet the atmosphere,
whose Ekman layer extends over one-tenth of the
troposphere with a time scale of 5 days, must be
characterized as strongly dissipative in comparison
with the ocean, whose surface layer only extends over
1/500 of the depth with a dissipative time scale of the
order of 500 days.

Two-dimensional turbulence models have been
applied to the terrestrial atmosphere to try to explain
the steep spectral slope observed at wavenumbers larger
than k,=7. Atmospheric spectra tend to be flat for
k<5 (Leith, 1971), and this can be attributed to either
the strong damping of surface drag (Lilly, 1972) or to
blocking by the Rhines effect; a drag length scale
Lp=Urp=10*km and a Rhlnes wavenumber of kg=
indicate that both processes are significant. The oceanic
spectrum remains steep on the largest scales, so no
energy can be cascading out of the large oceanic gyres.

Certain features observed in the Jovian and oceanic
eddies imply the operation of the dynamics of §-
modified two-dimensional turbulence. In Fig. 1 the
smallest resolvable scale does not dominate the eddy
size. The presence of distinctive scales suggests a wave
dynamics and the sharp patterns and habitual longevity
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of the eddies reflect the inability of a two-dimensional
flow to cascade energy to smaller scales.

The only simple calculation we can make for Jupiter
involves evaluating the Rhines eddy radius Lg=wks™
in correspondence with the widths of the jet streams.
For equatorial and midlatitude rms values of U of 100
and 20 m s, Lg has values of 2X10% and 1X 104 km,
respectively.* These estimates plus their latitudinal
variation agree with observation. The broader Saturnian
bands are consistent with the higher velocities believed
to be present in that atmosphere. For the Earth with
U=20m st and B=1.6X10"8 km™ s71, Ls=4500 km
gives a reasonable estimate of jet width, despite the
complexity caused by strong surface drag.

The precise length scale Lg should not be confused
with the quantity (U//8)* that arises in scale analysis of
the planetary vorticity equation (e.g., Batchelor, 1967) ;
the former (latitudinal) length scale derives from a
balance of nonlinear and linear terms, whereas the
simple (longitudinal) length scale usually occurs for
linear processes. Long (1961) and Hide (1969) have .
related the simpler scale to the width of the Jovian
equatorial jet but with no physical rationale given.
Barotropy and the scale (U/B)* were first involved in
the Jovian context for a linear process, Rayleigh shear
instability, by Haurwitz (1949) and later for one of the
two barotropic stability criteria (Hess and Panofsky,
1951 ; Ingersoll and Cuzzi, 1969).

In summary, two regimes of planetary circulation
can be discerned among the three systems. These can
be characterized 1) for the Earth’s atmosphere, as
strongly dissipative (at the surface) with moderate 8
effects, Le., kg=k,~kp; and 2) for the ocean and
Jupiter, as weakly dissipative with strong g effects, i.e.,
kp<kg<k, Although Jupiter provides the simpler
example of the second regime, a separate polar state
may exist on that planet. The cause of this may lie in
the weakness of the eddy energy supply and in the
exponential, rather than periodic, form of Rossby waves
in high latitudes—both factors could prevent the
completion of the wetve—turbulence interaction.

5. Singular solutions

" In contrast to describing the global circulation
{Sections 3 and 4) specific solutions can be constructed
for examining local aspects of the system, e.g., vortex
shapes (Great Red Spot). Such solutions have value
only if their functioning within the total scheme is
known. The two major categories of restricted solutions
involve steady state and steady wave approximations.

a. Steady-state solutions

The necessary and sufficient condition for permanent
horizontal motion requires that the barotropic vorticity
equation have solutions in which the absolute vorticity

48=0.5%X10"8, 0.36X 1078 km™ 571
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F16. 1. Comparison of oceanic and Jovian eddies and waves. Top: Sea surface temperature
patternsin the Gulf Stream near Cape Hatteras. Darker areas are warm. Courtesy R. Legeckis,
National Environmental Satellite Service of NOAA. Bottom : Northern latitude cloud patterns
on Jupiter. Courtesy of T. Gehrels, Pioneer II, NASA photograph.
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remains constant along a streamline. The first-integral
solution, ¢+ f=0Q(¥), for such flows was noted by
Lagrange (1781), Stokes (1842) and Ertel (1943).
Arnold’s (1965) theorem—that if dQ/dy >0, then stable
states exist—provides the only general result for this
form of solution.

The behavior of this class of solutions has been
examined by selecting specific forms for the function
Q®); but in practical problems Q(¥) is usually un-
known. Although steady-state solutions should be non-
linear in general, the specific forms usually taken for
Q@) are basically linear. The simplest case, Q(¥) con-
stant, - yields elliptical vortices when B=0 (e.g.,
Batchelor, 1967) and modified ellipses when B70
(Godske et al., 1957).

Concerning the relevance of Q(y) type solutions to
two-dimensional turbulence cascades, Bretherton and
Haidvogel (1976) have shown that, when 870, there
is no correspondence between the respective steady and
minimum enstrophy states. Thus Q(y) solutions do not
provide an appropriate description of turbulent 8 plane
circulations. This conclusion also negates the applica-
tion of steady-state solutions to the Jovian Great Red
Spot (Ingersoll, 1973), in response to suggestions
(Golitsyn, 1970) that the object could be a free vortex.
Amold’s theorem indicates that these solutions are also
unstable.

b. Steady nonlinear waves

Superimposable, permanent wave solutions, governed

by a simple extension of steady-state integral solu-
tions—¥ =y+cy, ¢+ f=Q[¥(x—ct, y) ] —exist for the
planetary vorticity equation (Ertel, 1943 ; Craig, 1945;
Neamtan, 1946), where ¢ is the wave speed. Their super-
imposability arises from a choice of Q= —k*¥ that
yields essentially linear equations (Thompson, 1948).
Analogous baroclinic solutions (Kuo, 1959) yield eddies
resembling the model Jovian ones.
. Attempts to deal with real wave nonlinearity have
proceeded along two quite separate paths, determined
purely by the magnitudes of geometrical wave parame-
ters (Benney, 1971): one set contains the triad reso-
nance theory that relates to two-dimensional turbulence
(Rhines, 1975); the other produces a special class of
steady waves, solitons, described by the Korteweg-
DeVries (KdV) equation. In the physics of the KdV
scheme a mean flow supports a small wave that gives
rise to small nonlinear effects that are weakly dispersed
by other waves. In the turbulence scheme large non-
linear effects lead to steep waves that are sirongly
dispersed and feed energy into the mean flow. The
energy flows in the two schemes are directly opposed
to one another so the dynamics of the KdV equation
does not relate to two-dimensional turbulence.

The original planetary solitons obtained by Long
(1964), for a zonal flow with a weak uniform shear,
were oval in form—the meridional shear is necessary
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for soliton existence (Benney, 1966; Clarke, 1971).
More complex mean flows, e.g., #=tanhy, yield more
complex forms, e.g., modified ellipses, that have been
equated with the Great Red Spot (Maxworthy and
Redekopp, 1976a,b).

As a model of the Great Red Spot the soliton theory
has serious limitations: 1) the stability characteristics of
multiple-jet flows differ considerably from those of a
single jet (Haltiner and Song, 1962) so reevaluation is
necessary; 2) the meridional length scales [dependent
on #%(y)] are considerably smaller than Lg or the ob-
served vortex; 3) the one-dimensional (longitudinal)
KdV equation cannot explain meridional uniqueness;
4) the physical relevance of the KdV equation, with its
special balance of weak but matched phase and ampli-
tude dispersions, requires a remarkable form of stability
that is difficult to justify (Benjamin, 1974)—particu-
larly for a turbulent atmosphere.

c. Jovian gyres

Closed contours in the absolute vorticity field
normally characterize a turbulent regime, open con-
tours a wave regime. Jovian gyres, by their proximity
in size to the transitional scale k5!, are complex inter-
mediate phenomena. Although ellipses and ovals appear
to be the preferred eddy shapes in many quasi-linear
models, the assumptions behind their formation remain
speculative.

6. Forced barotropic model

We begin our numerical studies by examining those
quasi-barotropic responses that produce circulations
with large-scale flow features comparable to those of
the terrestrial and Jovian atmospheres. We are particu-
larly interested in isolating and understanding mecha-
nisms that produce zonality and jet formation and in
defining their relationship to the Rhines and Kuo
processes. To achieve the appropriate motions, a quasi-
barotropic model with an implicit representation of
baroclinic forcing effects will be formulated.

a. Equations

The two-dimensional, nondivergent, barotropic vor-
ticity equation for fluid motion on a rotating sphere
(e.g., Silberman, 1954) may be written in the form

fi+¢z(§-+f)y_¢u§z=VV2§+F—Dy (8)
F=m+ (m—z‘py) w )

where

% prograde longitudinal coordinate [[=a¢]

¥ northward latitudinal coordinate [ =4 sinf]

a planetary radius

(6,¢) latitude, longitude

m secf, a mapping factor

B northward gradient of Coriolis term [ =2%/am]
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f Coriolis term [=2Qy/a]

¢ vertical vorticity component [ =mv,— (#/m),]
(u,p) velocities in (x,y) directions [ = —y,/m, mj. ]
\% Laplacian operator {=m?( )z.+[( ),/m*],}

v horizontal mixing coefficient

F forcing term

D time scale of Ekman drag

D surface drag (D1={/7p, Dy=¢ sint/7p).

The coordinates defined above were selected because
of their suitability for finite-difference calculations in
the spherical domain. In particular, they produce equal
area grids, efficient in polar regions, and lead to advec-
tion Jacobians suited to the Arakawa (1966) difference
forms. The energy- and enstrophy-conserving properties
of the latter are essential for the accurate and stable
simulation of turbulent flows. The Appendix contains
details of the numerical scheme.

b. Boundary conditions

Integrations were made for various global sectors,
with periodic boundaries at longitudes ¢=0, ®, and
with impermeable boundaries, =y/=0, at latitudes
0= 0_,0+. .

The following problems exist in selecting the most
appropriate lateral boundary conditions for the finite-
difference equations: 1) truncation errors (at the walls)
between the ¢, { variables prevent the definition (to
second-order accuracy) of the Poisson equation for the
¥ component and of a unique % value; 2) to fulfil the
conservation properties of the Arakawa Jacobian the
¢+ equation must be used at the sidewalls—this excludes
use of a physical slip condition {z=0 (where the sub-
script B denotes boundary values); and 3) specific
interest in high-Reynolds’ number flow suggests the
desirability of a numerical scheme that, on taking the
limit »=0, yields the preferred inviscid flow method.

In designing boundary conditions, constraints on the
global angular momentum can only be approached
implicitly through integrals relating it to the basic
variables ¢, {. These are '

/ miidy=3(0_)—F(0s), (10)
/Edy=Mo__—Mo+, (11)
/ PEdy=F0)—FO) [T, (12)

where M= —y,/m? is a measure of the angular momen-
tum ({=—M,) and (-) denotes the zonal mean. The
weighting function

0
midy
o

7()=
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reduces to y in the 8 plane approximation. Egs. (11)
and (12) cannot be realized in the finite-difference
domain, due to the indefineable (to second-order
accuracy) ¥, boundary terms. Thus the angular
momentum’ constraint inherent in Eq. (12) cannot be
achieved exactly.

The need to prevent the artificial sidewalls from
contributing to the angular momentum and vorticity
of the flow requires that computational, rather than
physical, conditions be imposed. Thus, we attain a state
of wall-neutrality by setting »¢,=0 in the {, equation on
the sidewalls, to guarantee vorticity integrity, and by
using one of the following conditions on 5 for the
Poisson equation to try to conserve global angular
momentum :

Bounbary Conprrion 1 (BC1): ¢5=0.

BounparY CoNpITION 2 (BC2): ¢:(05) —¢.(6-)

04

=— [ #dy.

a_
Bounbary Conprrion 3 (BC3): ¢, =0, defined using
| Eq. (11)—
see Appendix.

The second condition allows s to be predicted and it
conserves global angular momentum to within the
accuracy of the sidewall truncation errors. With the
BC1 and BC3 schemes, global angular momentum is
conserved to a tolerable level for the relatively short-
term, weakly dissipative calculations. Solutions are
relatively insensitive to the boundary condition scheme
because of the dynamical insignificance of the constant
¥p term.

¢. Dissipation and resolution

The value of the viscosity coefficient » is chosen in
relation to the high numerical resolution (~128?)
necessary for turbulence simulation. Optimum viscosity
values exist at each resolution, being such as to produce
a spectrum in which all scales of motion contributing
to the enstrophy dissipation rate are resolved. Failure
to use adequate viscosity or resolution leads to un-
realistic solutions that display an equipartitioned
spectrum, i.e., one in which energy is randomly and
equally distributed in all modes.

The viscosity resolution requirement is achieved by
examining flow spectra and by monitoring a macro-
scopic turbulent Reynolds number

Re=3u/vi}, (13)
where n=—p{V3 is the enstrophy dissipation rate.
Smaller scales become less accurately treated as Rr
increases in a fixed resolution calculation. However,
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Fi1c. 2. Examples of random phase stochastic forcing fields F used in cases E1-E7. Vertical axis is y coordinate from 6= —80°, 80°.
Horizontal axis is longitude over 180°. Contours are shaded by selected grid points in regions where they are zero or negative.

. (a) Case E1 and E3. Contour interval AF= 10710 572,
(b) Case E2. AF=4X10"10¢572,
(c) Case E4. AF=2X10"10572,
(d) Case E5. AF=2X10"1°5"2,
(e) Case E6. AF=2X10710g72,
(f) Case E7. AF=1X10"1°572,

large-scale features of the flow field remain essentially
independent of the Reynolds number® and can be

5 This result allows changes in the » value to be made during a
calculation if necessary.

accurately represented at Rr values two or three times
larger than the optimum values of 150, 350, 1100 that
hold for resolutions of 64?, 1282, 2562, respectively
(Herring et al., 1974). All calculations lie within this
acceptable range of Rr values.
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d. Forcing formulation

To sustain a turbulent flow and produce stationary
solutions requires a forcing mechanism F(r,f). The
problem is to deduce what forms of F are most appro-
priate to the planetary circulations.

If in a baroclinic two-layer model, the stream-
functions for the nondivergent flows in these layers are
written as ¥+ and y—o, then the governing equation

for the barotropic component can be written (Lorenz,
1962)

VtJ W, VY+f)
Vi Vi
=—J(0,V0) ——+—+yViy. (1)

D ™D

To represent baroclinic flows as forced barotropic ones
requires that F be chosen to imitate the baroclinic
Jacobian term J (s, V%) and also in strong drag cases to
take account of the baroclinic drag component V?s/7p.
This problem is related to that of turbulence theory
where approximations and closure schemes are designed
to represent such nonlinear interactions. Unlike turbu-
lence theory, however, we deal with the barotropic
nonlinear terms in toto and parameterize only the
baroclinic component.

The stochastic treatment of nonlinear interactions has
shown that phase relations among individual spectral
components become increasingly random (Kraichnan,
1958, 1961), that this random coupling can be described
by simple Markovian models (Leith, 1971; Kraichnan,
1971; Frisch et al., 1974), and that randomly fluctuating
forcing functions can maintain such exchanges
(Edwards, 1964). This suggests that a Markovian
random forcing formulation for F(r,t) could provide a
reasonable representation of the baroclinic Jacobian
term. In this way the forced baroclinic model can be
made to provide a probabalistic analog of the deter-
ministic atmospheres. This stochastic approach to
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meteorological questions dates back to Lorenz (1953),
with significant contributions by Epstein (1969) and
Mak (1969).

Simple turbulent states can occur when the forcing
is defined by the Langevin equation (e.g., Yaglom,
1962), the most elementary Markovian process with
space and time variation, i.e.,

oF
(15)

This equation provides a model for such statistical
physics problems as Brownian motion (Chandrasekhar,
1943). For finite-difference calculations this equation
can be written (Lilly, 1969), for F at time step #, as

Fn=RnFn-1+ (I—R"z)%ﬁ‘ﬂr (16) |

where R,= (1—At/27r)/ (14 At/ 27F) is a dimensionless
(memory) coefficient, , the random modifier of F,, and
7r the autocorrelation time-scale of the random se-
quence. Specifying a time-scale #»= (7rAf/2)* produces
the simple form of (16), where At is the time step.

The source function F, is generated by selecting
(normalized) random coefficients for a Fourier mode
representation

F=3 Py exp(ikr)

that has wavenumbers k restricted to those x lying on
a rectangular, rather than a circular surface, in wave-
number space. This specification allows for the aniso-
tropic atmospheric situation where the predominant
latitudinal and longitudinal wavenumbers «,, k; are
determined by different dynamical processes: «, by the
baroclinic radius of deformation and «, by combinations
of the radius of deformation and the barotropic environ-
ment.’ Terms capable of directly inducing mean or

¢ Specifying «y is a limitation of the forced barotropic model.

TasLE 1. Terrestrial barotropic calculations. Details of four locally and three globally forced flows: 87 denotes region of forcing and
Kz, ky the wavenumber range of the forcing over the intergration domain. In case E4 , an auxiliary forcing function of ampli-
tude 0.2X107% 572 yields the westerly flow #~(1—cos6). Rr is a typical value of the turbulent Reynolds number and () the final rms

velocity. Other parameters are 2=6360 km, 2=0.729X 1074 s, 6_

=—80°, 6,.=80° ®=180° r#=105 s. Resolution is 128X128. Drag

form D, used. BC denotes boundary condition scheme (see Section 6b).

|F| ™ v (u) At
4 (10° (105  (km? (m  (10°
Case |6F| Kz Ky s72) s) s Rr s1) $) BC Characteristic
E1 30-60° 4 1 10 = 0.1 400 26 6 BC1 Simple local forcing
E2 30-60° 3,5 1,3 6 ) 0.1 400 29 4 BC1 Complex local forcing
E3 30-60° 4 1 10 5 0.05 800 29 5 BC1 Simple local forcing
with drag
E4 17-37° 4 1 10 5 0.1 300 22 5 BC2 Simple local forcing with
mean flow and drag
E5 0-80° 4 3 6 ® 0.1 900 50 S BCS Symmetric global forcing
E6 —80-80° 4 3 8 ®© 0.1 700 50 5 BCt Asymmetric global forcing
- E7 —80-80° 4 5 6 ) 0.1 700 42 5 BC1 Trans-equatorial global

forcing
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D>

B

(e) (f)

F16. 3. Case El streamfunction evolution. Midlatitude forcing, contour interval (a)-(d) Ay =10 km? s, (e)~(1) 4¥=15 km? s
Corresponding mean zonal flow on right-hand side has scale =%*=100 m s™, zero value at center line. Spherical projection has longi-
tudinal positions for abscissa x'=a(1 —cosf cos¢) and ordinate ¥’ =g sind. Negative function values are shaded by selected grid points.
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D

D

Same notation in all figures. Streamfunction and % shown at days (a) 4.1, (b) 5.5, (¢) 6.2, (d) 6.9, (e) 10.3, (f) 11.7, (g) 13.1, (h) 144,

@) 16.5, (j) 18.6, (k) 20.7, (1) 31.0.
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(e)

Fic. 4. Case El, vorticity evolution. Contour interval A{=4X10"5 s7%. Negative values are shaded
by selected grid points. Coordinates are #’=x, 3’ =a sinf. Domain is one-fourth of integration region:
9=0, 80°, ¢ =90, 180°. Reference axis (dotted line) denotes middle of forcing zone and 4c has a stream-
function contour superimposed. Vorticity is shown at days (a) 3.4, (b) 4.8, (c) 6.2, (d) 6.9, (e) 8.2, (f) 10.3.



AvucusT 1978 GARETH P.

boundary flows are omitted, i.e., #=0. This type of
forcing produces flows analogous to those created by
mechanical or thermal processes that can stir the
atmosphere at fixed x and 7r scales.

For Jovian studies, this type of forcing provides an
ideal, minimally constrained set of assumptions about
the source of energy. The calculations show that small
values of x most effectively produce realistic flows, and
this leads us to regard F as a representation of baro-
clinic instability and not of convection, which would
require a large value of x. However, other interpreta-
tions are possible if alternative mechanisms, producing
large eddy fields, can be discovered.

For the Earth, when F is constrained to zonal belts,
vorticity concentrations can be produced in the form
conceived by Kuo (1951) as depicting the operation of
baroclinic instability.

7. Terrestrial solutions

The barotropic prediction equations (8), (9) and (16)
‘were integrated with a variety of forcing configurations
(Fig. 2) for terrestrial values of a and Q. The selected
sample of solutions (Table 1) illustrates the simplest
conditions under which terrestrial circulations can
occur, cases E1-E4, and some of the main alternative
response forms, cases ES-E7. All calculations begin
with a fluid at rest and use a viscosity value that gives
~as high a Reynolds number as is compatible with the
resolution, in order to yield inviscid-type solutions
rather than equilibrated flows.

a. E1: The basic case—inhomogeneous forcing

The vorticity forcing function in Fig. 2a provides a
simple representation of the action of baroclinic eddies
in midlatitudes. The forcing eddies randomly vary their
longitudinal positions while fluctuating in amplitude
below an upper limit, chosen to give a flow with velocity
scale of 20 m s™* in the first week.

The main steps in the formation of midlatitude
westerlies and tropical easterlies are shown by the
streamfunction field of Fig. 3, and in greater detail by
the vorticity field of Fig. 4. To identify physical effects
comparison is made with a solution obtained under
similar conditions but with 2=0 (Figs. 6 and 7).

Although the initial flow development directly reflects
the forcing through the production of matching cyclones
and anticyclones” along the reference axis as shown in
Figs. 3a and 4a, the fluid filters out the random phase
behavior; as a result, the eddies do not move longi-

7 The term cyclone (anticyclone) is used to denote regions in
the Northern Hemisphere where ¢ is a minimum (maximum)
and ¢ is a maximum (minimum) and vice versa in the Southern
Hemisphere.
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tudinally.® The eddies act as a wave maker for the un-
forced zone where Rossby waves with the same wave-
number as the forcing set in. The westward propagation
is most rapid at the equator due to the maximum value
of B there. The differential wave propagation orients
the phase lines (zero amplitude contours) westward
from the reference axis.

The eddies strengthen under the persistent forcing,
become deformed by nonlinearity and move north—south
under the influence of 8 (Figs. 3b and 4b). The tendency
for cyclones (anticyclones) to move poleward (equator-
ward) to latitudes of similar absolute vorticity, as
predicted by Kuo (1951), initiates a poleward vorticity
and momentum transfer. The alignment of eddies along
a southwest-northeast axis by the § term produces the
classical shape required for such transfers.

The onset of net final flows and continuous sets of
cyclones and anticyclones mark the completion of
vortex partitioning at 6.2 days (Fig. 3c). Eddy tilt
increases, and significant shear layers form on the
eastern side of the cyclones (Fig. 4c). Such concentra-
tions are a feature of two-dimensional enstrophy
cascades, but this anisotropic distribution can only be
attributed to the simultaneous eddy motion and re-
orientation caused by the 8 effects. The superimposed
¥ contour in Fig. 4c indicates the close relation between
(momentum transferring) ‘“‘sawtooth” streamfunction
formations and vorticity shear layers.

The development and rapid cascade of energy into
the zonal mode is caused by the initiation of Rossby
wave propagation within the forced zone, an event that
also activates the eastward propagation of the vortices
(Figs. 3d and 4d). The flow after 7 days consists of a
60 m s~ westerly jet in the higher (forced) latitudes
balanced by a comparable easterly jet on the adjacent
equatorward side. Following this buildup of midlatitude
zonal currents, the flow enters a second phase (lasting
two weeks) during which steep Rossby waves transfer
the momentum of the easterly jet to the equator and
back again (Figs. 3e-3l).

By 8.2 days, eddies of like sign have joined together,
but their shear layers still retain a relation with the
generation of momentum transferring tropical Rossby
waves (Fig. 4e)—evidence in support of such a connec-
tion is provided by the simultaneous disappearance of
shear layers and momentum transfer at later stages
(Fig. 4f). The saw-toothed westerly propagating waves
have the appropriate forms for transferring easterly
momentum equatorward, or westerly momentum pole-
ward, but the chain of events indicates that the former
is occurring. By 10.3 days, sufficient easterly momen-
tum has been transferred equatorward to créate a 14

8 This result (somewhat biased by having chosen a relatively
small 7r) suggests that the atmosphere’s barotropic component
may not respond to the more rapid baroclinic changes, just as the
ocean fails to react to the higher frequencies of wind stress.
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F16. 5. Case El, kinetic energy bispectrum at 31 days.
Abscissa is wavenumber.

m s~! uniform easterly flow, of the form predicted by
Eq. (4) (Fig. 3e).

Momentum begins to accumulate at the equator
(Fig. 3f) with a 28 m s~ peak occurring at 13.1 days
when the waves display a neutral form (Fig. 3g). As
easterly momentum begins to return to midlatitudes,
the mean zonal flow reverts to early forms—cf. Figs. 3e,
3f with 3h, 3i—but with the wave patterns reversed.

The returning energy eventually interacts with a
midlatitude flow that has remained relatively constant.
The exchange does not restore the original easterly jet,
but instead puts energy into higher wavenumber com-
ponents (Fig. 3j). This enhances the anticyclonic gyres
to a maximum and makes the westerly jet undular
(Fig. 3k). The circulation then becomes complex, and
the further evolution cannot be deciphered easily. The
final, partially equilibrated, configuration consists of a
basic westerly—-easterly zonal flow form (Fig. 31). The
discrete Rossby wave propagation at . disappears as
the spectrum fills in to a sharply peaked 2~ to k~°
form (Fig. 5).

b. E1: Implication ‘

The solution described above provides an example of‘

a simple nonlinear process that produces zonal flows in
response to energy sources that are neither as simple as
those of linear instability nor as chaotic as those of full
turbulence. The flow scenario thus prompts the follow-
ing (limited) explanation for the preferred atmospheric
momentum characteristics, in response to the problem
posed by Lorenz (1967, 1969). (see Section 3d).

Forcing effects (cyclogenesis) in midlatitudes create
a set of cyclones and anticyclones within that zone. The
behavior of these developing eddies is controlled by
three B-related mechanisms and by the nonlinear two-
dimensional cascade process. Flow develgpment can be
broken down into the following five stages:

1) As the eddies are created, the vortex partitioning
process (the first 8 mechanism) moves them to
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latitudes with their own absolute vorticity and
aligns them into a southwest-northeast configura-
tion. This creates the easterly and westerly
momentum zones and preferred eddy shapes.

2) The eddies generate external Rossby waves (the
second 8 mechanism) in the unforced zone. These
waves are initially weak but their differential
phase propagation appears to reinforce the pre-
ferred eddy orientation.

3) Simultaneously, but more slowly, the enstrophy
cascade creates vorticity shear layers and distorts
the eddies. These anisotropic eddies make the
external Rossby waves anisotropic and thence
capable of transferring momentum equatorward.

4) The energy decascade generates and is retarded by
internal (to the forced zone) Rossby waves (the
third 8 mechanism), as in the Rhines effect. This
interaction terminates eddy development and
enhances the westerly jet.

5) The blocking by internal waves forces significant
energy to go into the external waves, the latter
only become strong after the establishment of a
wave regime in the forced zone. This transfer
creates the tropical easterlies and a more obvious
westerly jet in midlatitudes.

The E1 circulation can be interpreted only partly in
terms of the Kuo and Rhines effects. The presence of
inhomogeneous forcing with a meridional scale «,~k%;g .
and the generation’ of separate sets of Rossby waves
define a more complex phenomenon than the theories -
consider. Further resolution of the angular momentum
problem requires a more penetrating analysis of such
phenomena.

¢. E1 subcase: Q=0

To support our interpretation of the El solution,
particularly as regards the role of 8, the case was re-
evaluated with @ set to zero; the results are shown in
Figs. 6 and 7. The development of the rotating and
nonrotating flows diverges after 4 days. The enstrophy
cascade controls the nonrotating flow to produce pre-
dominantly “cyclonic” eddies and an uneven vorticity
clustering (Figs. 6a and 7a)—the eddies extend further
latitudinally in the absence of 8. The “cyclones” con-
tinue to strengthen, coalesce and transfer energy into
the largest scales (Figs. 6b and 6c), while the vorticity
elements move into the quiescent tropical region where
they remain and decay (Figs. 7b—7d).

The resulting westerly and easterly zonal circulation
should be regarded as a .domain-sized eddy: the end
product of a two-dimensional cascade energized by
forcing with limited harmonic content. Such solutions
may be relevant to the circulations of Venus and the
Sun, but the forcing mechanism needs reinterpretation.
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d. E2: Complex inhomogeneous forcing

To examine the sensitivity of the circulation to forc-
ing composition, we consider the solution E2 produced
by forcing with a richer component mix (Fig. 2b) than
in the simple E1 state. Although the details of flow
evolution differ from those of E1, the equilibrating
circulation at one month, shown in Fig. 8, is very
similar. Over the long term nonlinear barotropic
exchanges fill out the spectrum, regardless of any
baroclinic process (or its imitation) doing likewise.
Thus, the simpler forcing form of E1 provides an
adequate facsimile of baroclinic processes, justifying
the single-mode forcing adhered to in the remaining
examples.

e. E3: Surface drag—inhomogeneous forcing

In the atmosphere, surface drag and details of flow
equilibration become important for time scales greater
than a few days. Introducing a strong drag into the E1
scheme produces a circulation that differs from that of
the non-drag case. Initially, westerly jet formation
occurs in the forced zone but the easterly counterflow
and anticyclones persist (Fig. 9a). Eventually, this
configuration disintegrates into a flow with a final mean
zonal flow similar to that of E1. However, energy re-
mains in larger wavenumbers due to the blocking of the
decascade by the drag and large gyres prevail.

J. E4: Supplementary forcing

The enigmatic result in E3—that under more realistic
conditions the circulation becomes less realistic—can be
attributed to the drag formulation. The baroclinicity of
the atmosphere and the geostrophic constraint impart
a vertical structure, to both mean flow and disturbances,
resulting in a surface dissipation not easily represented
by a one layer model. The issue can be resolved by
allowing an implicit representation of the baroclinic
drag component, Vi%/rp in Eq. (14), via a supple-
mentary forcing function that produces the appropriate
secondary flow component. This baroclinic drag term
can inject energy into the barotropic flow at the largest
scales of motion, thereby modifying the barotropic 8
drag blocking effects. .

As an example, case E4 has an adjunct forcing that
produces a simple westerly flow and a stochastic forcing
centered about the peak of this flow (Fig. 2c)—both
forcing components have amplitudes that yield com-
parable flow maxima. Together, the forcing fields pro-
duce a stable, predominantly zonal flow configuration,
consisting of weak tropical easterlies and a westerly jet
with a maximum poleward of the forcing axis.

g Global forcing

Having reproduced terrestrial-type circulations for a
situation with known forcing, we must now consider
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more general response properties, to cover circumstances
where the forcing must be implicitly inferred. For
convenience, only one class of solutions will be pre-
sented: that produced by simple homogeneous eddy
forcing fields whose interhemispheric symmetry varies.
Emphasis is on initial development, not equilibrium,
and flow configuration is conditional on amplitude. At
higher energy levels kg tends to zero and flows take on
an alternative, less zonal climatic form.

h. ES: Symmetric global forcing

Forcing that is symmetric about the equator (Fig. 2f)
produces a circulation with a distinctive equatorial jet
of 100 m s~! and a broad midlatitude easterly belt
(Fig. 11). The vorticity field exhibits the cross-
equatorial wave mode that maintains the equatorial jet.
As in cases E1-E4, the dominance of wave propagation
means that the vorticity field displays little of the fine-
structure associated with two-dimensional turbulence
cascades.

i. E6: Asymmetric global forcing

Equatorially asymmetric forcing (Fig. 2e) produces
a circulation with tropical westerlies and midlatitude
easterlies as shown in Fig. 12a. However, the westerly
current does not have a distinctive jet form, as is
reflected in the absence of a cross equatorial vorticity
transfer in Fig. 12b—and its decline right at the equator
indicates that the flow is produced in the zone near the
equator, not at it.

j. E7: Cross-equatorial global forcing

For transequatorial forcing (Fig. 2f), the mean
circulation in Fig. 13 has a smooth oscillatory variation
in latitude. Equatorial westerlies occur again in response
to the cross-equatorial vorticity transfer. The three
westerly and two easterly jets are very similar to each
other in magnitude and form and are separated by large
rotating gyres.

Unlike the locally forced flows, which can be under-
stood using the ideas of Kuo (1951), the development
of globally forced circulations can only be described in
terms of the less specific Rhines effect. Although alter-
nating east-west flow appears to be the universal
characteristic, the correlation between the forcing zones
and flow remains obscure. The ease with which equa-
torial westerly jets can be produced by hemispherically
symmetric forcing is of significance for various astro-
physical problems, the full solution of which needs only
the identification of an appropriate vorticity source.

8. Jovian solutions

The main difficulty in applying the forced barotropic
model to the Jovian atmosphere lies in estimating the
scale and distribution of the driving and the character
of the underlying surface. We have opted for the
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F16. 6. El subcase, 2=0, streamfunction evolution. Notation as in Fig. 3. AV=10 km? s7, *=100 m s™1
Shown at day (a) 5.5, (b) 6.2, (c) 6.9, (d) 10.3.

simplicity of homogeneous forcing, as either homoge-
neous or inhomogeneous forcing gives the same funda-
mental easterly-westerly zonal flow. Although calcula-
tions were made with a range of parameters, only the
results in Table 2 are for those displaying large-scale
circulations resembling Jupiter’s.

To get some idea of the purely inertial trend of eddy
fields in a rotating atmosphere, we first calculate the
response of an unforced but initially energetic flow.
Theory suggests that zonality is an inertial tendency
but its specific manifestation in the absence of forcing
is unknown.

a. Ji: Free inertial response

As shown in Fig. 14a, an initial flow field, Yo=v.4,
was constructed with random phase orientation and

wavenumbers restricted to ko= 7-9 (over the integration
domain). The amplitude was such as to give an initial
energy level with | U| =20 mi s~ and a relative vorticity
parameter value B=8L%/U=50, appropriate to the
Jovian regime.

Integrating the vorticity equation, with ¢4-as the
initial state and with Jovian values of radius and rota-
tion, produces after 115 days the flow shown in Fig. 14b.
Nonlinear exchanges have produced larger scale eddies
of a predominantly longitudinal orientation. Although
weak alternating zonal currents occur at higher lati-
tudes, the flow is not as zonal as in the forced and

" observed cases, even though the bands have an Lg scale.

Calculation with different initial states—varying the
spectral composition and flow amplitude—did not
produce flows of any greater resemblance to Jupiter
than J1. Although a trend toward zonality appears at
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Fic. 7. E1 subcase, =0, vorticity evalution. Notation as in Fig. 3. Af=4X107% 571,
Shown at days (a) 4.8, (b) 6.2, (c) 6.9, (d) 10.3.

certain energy levels, the production of zonal jets really
requires an active energy source. However, once proper
jets have been established they can exist freely (see
Part 2).

b. J2: Global forced response

Case J2 examines the response of an atmosphere of
Jupiter’s radius and rotation rate to global forcing
eddies (Fig. 15) that yield an energy level comparable
to that observed. The resulting solution (outlined in
Williams, 1975a,b) is the best example of a Jovian
circulation obtained with the forced-barotropic model.

As shown in Fig. 16a in the early stages of flow
evolution, the motion reflects the forcing. As the energy
level increases and energy decascades to larger scales,
Rossby-wave propagation sets in at some latitudes
(Fig. 16b), and soon becomes global (Fig. 16¢). During

this transitional stage, from days 23-46, the Rossby
waves are steep, indicating that nonlinearity and wave
propagation are equally important—as in the Rhines
effect. ‘ :

The transition is rapid, and eddies cease growing as
an organized mean zonal flow comes into being (Fig.
16d). Alternating zonal currents, of scale Lg, develop
from the waves, with the associated currents and waves
moving in the same directions. The coherent phase
behavior of Rossby waves provides the necessary
organization of the randomly phased eddies to generate
mean flows. The ovals at latitude 22° are about half the
size of the Great Red Spot; they occur where zonal
motion vanishes so would not provide a tracer of atmo-
spheric motion. The flow eventually equilibrates, by
lateral dissipation, into a series of highly stable, alter-
nating zonal currents of 50 m s magnitude, with little
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F16. 8. Case E2, y at 31 days, richer forcing mix.
AY=20 km? s »*=100 m g1

(b)

F1c. 9. Case E3, ¢ at (a) 23 days and (b) 43.1 days. As in El
but with surface drag. Ay =20 km? s}, %*=100 m s~

Fic. 10. Case E4, ¢ at 43 days, baroclinic supplementary forcing.
Additional dotted profile indicates flow form produced by extra
forcing component. Ay =20 km? s, 4*=100 m s

change occurring from about 120 days to the final
294 days (Figs. 16e and 16f).

The corresponding energy bispectra also reflect the
steps in flow evolution. In the initial development
(Fig. 17a), the spectrum displays a sharp peak at the
forcing scale k=7, followed by a spread of energy to a
k=35 peak as the eddies grow in size (Fig. 17b). The
onset of Rossby waves reduces the wavenumber cascade
so the spectrum remains peaked at about k=5 (Fig.
17c¢). The later, slower evolution of the spectra mainly
illustrates the growth of the zonal flow and the gradual
transfer of energy into large scales as the flow gains
strength (Figs. 17d and 17¢). At the end, the three
hemispheric jets dominate the spectrum, with smaller
energy scales decaying at the theoretically conjectured

© k4 state.

¢. J3: Equatorial jet

An equatorial jet does not occur in the J2 case pri-
marily because the integration domain is hemispheric.
We know from the terrestrial solutions ES-E7 that
equatorial jets can easily be produced, provided the
driving eddies are symmetric about the equator. An
alternative possibility for Jupiter is that an enhance-
ment of forcing in the equatorial region can create jets
there. This is shown in Case J3 (Fig. 18), in which the
forcing amplitude is doubled in the region of +7°
latitude. Jets produced by sharp local increases in F
tend to drift about the equator; a combination of en-
hancement and symmetry in the equatorial forcing
produces a more rooted flow.

- Other calculations failed to produce solutions of any
greater similarity to Jupiter’s circulation than the
above. In particular, varying the forcing wavenumber _
gave similar results for values of k=5-8 over the 45°
domain. At larger « the flows were less organized, but
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this could be due to resolution limitations. Solutions
were not sensitive to values of the autocorrelation time
7r in the 1-10 day range.

d. Discussion

The production of zonal jets and their resemblance
(Fig. 16) to the Jovian state is significant considering
that only the Jovian geometry, rotation rate, kinetic
energy level and driving scale have been imposed.
Although the forced-barotropic model appears to pro-
duce the main features of the Jovian circulation, the
model is only approximate, for as we shall see in the
baroclinic model (Part 2) the forcing in a multiple-jet
flow is latitudinally inhomogeneous and intermittent.
Thus the Jovian circulation should be considered as
akin to multiple sets of E1 rather than of E7 flows.

D

F16. 11. Case E5. (a) ¥ and (b) ¢ at 17 days. Hemispherically
symmetric forcing (a) AY=20 km? s, #*=100 m s, (b)
Ar=4X1075 g1,

WILLIAMS 1419

Fic. 12. Case E6. (a) ¢ and (b) ¢ at 17 days. Hemispherically
asymmetric forcing (a) A¢y=20 km? s, #*=100 m s, (b)
Ar=4X10"5g571,

The absence of surface drag in the Jovian cases leads
to greater zonality in the jets whereas in the terrestrial
solutions E3, E4 the drag blocks energy in wavenumbers
14 and causes the jets to be less zonal.

e. Cloud formation

Perhaps the most remarkable aspect of the Jovian
circulation lies in the visibility of the motions—the
constituent gases provide excellent tracers. Although
the barotropic model says nothing directly about
vertical motion, a barotropic mechanism exists that
could produce clouds: Ekman pumping (Charney and
Eliassen, 1949). The association of the main cloud bands
with the large-scale jet stream flows supports such a
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(b)

FiG. 13. Case ET. (a)y and (b) at 17 days. Transequatorial forcing.
(a) Ay =20 km? s}, #*=100 m s, (b) Ay =4X10"5 51,

possibility, but ignorance about the lower interface
undermines the suggestion.

In the Ekman process the vertical motion w and
large-scale vorticity are related at a lower boundary by

h
w=—orf,
fro

(17)

where 7 is the depth of the atmosphere. Thus, the
alternating jet streams could frictionally induce a
system of alternating cells at some “surface” level,
with the Jovian water clouds, if they exist, providing
the necessary interface. Ekman layers cannot form at

® Boundary layers that form at non-solid surfaces (Hide, 1964)
may also be relevant.
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the equator, allowing a possible separate cloud line to
form there due to the singularity; such cloud lines are
observed. [For the earth, Eq. (17) correctly yields a
three-cell system as observed, with the Hadley cell
being induced in response to externally driven tropical
easterlies—in a moist atmosphere, however, the reverse .
occurs.)

The relation between wand ¢ in (17) correctly implies
the existence of differentially rotating bands. From the
observed differential rotation, it further suggests that
motion is downward in zones, upward in belts. On the
other hand, implicit inferpretation of spectroscopic data
suggests that motion is upward in zones, downward in
belts. Agreement occurs if Ekman layers form on an
upper surface, but it is more likely that the data analysis
is incorrect or that other processes prevail.

9. Concluding summary

Solutions that display certain morphological and
dynamical similarity (where known) with the observed
terrestrial and Jovian circulations have been produced
by a simple stochastically forced barotropic vorticity-
transfer model. The generation of zonal currents by
eddy action, rather than vice-versa, contrasts with the
dynamics described by instability theory. The results
indicate that, for both atmospheres, barotropic (me-
chanical) processes control large-scale features, baro-
clinic (thermodynamical) processes the energy supply
and more subtle behavior.

Application of the model to the Earth produced flows
with a westerly jet in the forced zone and a uniform
easterly wind elsewhere. Although this angular momen-
tum partitioning can be explained in terms of two-
dimensional cascades and differential Rossby wave
propagation, the relationship with the Rhines effect is
complicated by the inhomogeneity of the responsible
eddy field. However, by maximum simplification of the
forcing such processes can be examined in greater
detail—even though they are still nonlinear—than
when a more complete simulation is made.

For Jupiter, the solutions support the hypothesis
that the zonality and scale of the bands, the oval shaped
disturbances and the waves are all essentially charac-
teristics of the quasi-barotropic vorticity exchanges
occurring in the two-dimensional turbulence of a rapidly
rotating planet. The equatorial jet is considered to be
of the same form as the other jets and not a separate
phenomenon. This turbulence model for the Jovian
circulation is made plausible by the fact that the main
features depend only on inertial processes—not on
parameterizations—and that the model also applies
to the Earth. However, barotropic or quasi-barotropic
models carinot explain the Great Red Spot; the reason
for this becomes apparent in Part 2 where the gyre is
shown to be the warm core of a neutral baroclinic wave.

Concerning the Earth-Jupiter connection, the
multiple Jovian jets can be thought of (roughly) as
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TaBLE 2. Jovian barotropic calculations. Parameter values for Jovian calculations together with ¢=0.7X 105 km, 2=0.176X 10351,
D2 and BC3 drag and boundary conditions systems. Resolutions is 128 X 128 except for J3, where 256 points are used over 6.

Final
|F\ v Al (u)
Case (s2) (kzyky) Yo Ko (km?s™1) Rr 6_, 0, 3 (s) (ms™)
J1 ] — Y4 7-9 0.2 500 —60°, 60° 90° 2500 12
J2 8xi1o™ 5,5 — — 0.5 350 0, 80° 45° 2000 32
J3 8X 10711* 515 — — 0.5 200 —80°, 80° 45° 2000 65

* Forcing doubled over =:7° latitude about equator, transition by erf function.

repetitions of the basic jet stream and trade winds of
the Earth’s atmosphere. This contention is supported
by calculations with the baroclinic model showing that
multiple jets occur in the terrestrial regime when the
planetary rotation rate is increased (see Part 3).
Surface drag is a key item in understanding differ-
ences between the two planetary regimes. The strong
drag on the Earth’s circulation prevents a completely
zonal end state from being achieved, whereas its

F16. 14. Case J1. y at (a) 0 days and (b) 115 days. Computa-
tional sector is repeated for global display. Ay =40 km? s,
#*=100 m 71, .

absence or weakness on Jupiter allows energy to
cascade more fully into the zonal flow. Yet, the presence
of some drag in the Jovian atmosphere may be indicated
by the large-scale cloud formation if Ekman pumping
is the responsible mechanism.

The production of zonal states by processes other
than the axisymmetric instability mechanisms, clears
the way for consideration of the non-axisymmetric
energy releasing processes.

APPENDIX
Numerical Procedure for Barotropic Model

1) The independent variables x,y correspond to
points projected onto a cylinder at the equator. The dis-
cretization x= (t—1)Ax, y=(j—1)Ay, i=1,2, ..., M,
7=1,2, ..., L, produces equi-spaced grid points in
y(=asind) that correspond to more widely spaced
locations in @ as the poles are approached. This desirable
feature results, for example, in our only having to halve
the time step when the integration domain is increased
from 60° to 85°.

&'l {2k
SO0
gaé:
enis

Lok s
i

Fic. 15. Case J2. Forcing field F at 73.6 days.
AF=5X10"1 g2,
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F16. 16. Case J2. Streamfunction at days (a) 4.6, (b) 23.0, (cj 46.0, (d) 73.3, (e) 161, (f) 294.4. u* =100 m 571, (a)—(d) Av =40 km? s7%,
(e)-(f) Av =80 km? s1. Computational sector is repeated for global display. A cine version of this solution is available.
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Fi1c. 17. Case J2. Kinetic energy bispectrum at days (a) 4.6, (b) 13, (c) 23, (d) 46,
(e) 74, (f) 294. Abscissa is wavenumber.

2) Eq. (8) becomes, in central difference notation

8l HT (¥, 1) =v[mPeut 46, (m%5,8)]

+F—(¢/7p). (A1)
All quantities are at the central time level #, except for
the diffusion and drag terms which are evaluated at

n—1. For the Jacobian term, a form of Arakawa’s
(1966) expression (45) is used in the interior and of his

expressions (73) and (74) for predicting { on the
latitudinal walls. These formulations preserve integrals
of kinetic energy and enstrophy.

3) The streamfunction is obtained by solving the
Poisson equation

M2, +6, (m25,0) =¢. (A2)

4) To solve (A2) exactly, the eigenfunction expansion
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Fic. 18. Case J3. ¢ at 147 days. Equatoridlly enhanced forcing
AY=40 km ¢, u* =100 m s1. Computational sector is repeated
for global display. , '

is made

2

=5 Y0,

a=0

a G 2 A\¢} 2ra )
“(t)_F“(M—1) COS[M—1(¢_ )]’

a=01 1) ce (M_l)/zy

2\ [ 2r M1
) -sin[ (i—l)(a— )]
M—1 M—1 2 /)

M—1
=(T)+1, oo M=2,

(A3)

H, ()= (

where i=1,2, ..., M. To=2"%for «a=0and (M—1)/2
(where M is restricted to odd integers of the form
4m+1), but T'.=1 otherwise. Substitution of (A3) into
(A2) yields

8y (m=20, %) — [m?/ (Ax)* \ye= e, (A4)

where

27
A= 2[1—-cos :|,
. M-1

: 2x M-1
Ao= Z[I—ccs (a ):I,
M-1 2

a=(M+1)/2, .., M~2.

a=0,1, ) (M_l)/27

5) To solve the difference equation (A4) it is written
out as

—A5+1+BA5—C5-1=D;, (AS)
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- where
< i= 17

2

( mity Ay\?

Bj= 1+~——+>\“<-—> mytmy,
mzj_} Ax

mity
= 2
mi—3

Dj= —Ay*mi445%

This equation is solved by using the backward recursion
forms E;, F; defined as

Vi=v¥i. B+ F;,
E;= (B;—C;E; 1),
F;=E;(Dj+C;F;_.).

(A6)

To apply the boundary conditions we write ¢ =gy,
The boundary condition systems BC1 and BC2 (Section
6) have ¢=constant, ¥’ =0 on both lateral walls, so the
conditions on (A5) are that ¢*=0 when a0 and
Y=y (M—1)t for the zeroth mode. The zeroth mode
equation degenerates to a simple integral if the velocity
condition system BC3 is applied, so that only the condi-
tion at one boundary can be imposed, the other is
achieved implicitly.

6) Definition of a value of ¢, at the boundaries, for
diagnostic purposes or for boundary condition system
BC3, is possible through the consistency equations

1. e
1= mA —§1+*————), (A7)
neme G it (2y)"
1 L—¥i1
UL= —mLAy(—f L+_l_;___£bl_)’ (A8)
2 mr—4*(4y)*

derived from the vorticity integral condition equation
(11) and the Poisson equation along the lines of
Arakawa’s (1966) Egs. (79.1) and (79.2).

7) The trigonometric transforms (A3) and its inverse
are evaluated using the so-called fast Fourier trans-
forms. Computations were made using vectorized code
on a four-pipe Texas Instruments ASC computer, With
the parallel processing of such a computer the relative
efficiency of the various Fourier transforms differs from

TaBLE Al. Time steps (min3).

Resolution Barotropic Baroclinic model
r*x model (Parts 2 and 3)
20482 1 Not possible

10242 5 1
512*128 60 ) 30
256%256 70 35
256*128 100 50
200 100

1282
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that on a serial computer: the efficiency of vectorization
increases with larger arrays and this can offset the gain
of Fourier techniques that employ reductions in array
size. As a result it is preferable to use the standard
transform for M <65, the Lanczos fourfold way
(Williams, 1969) for M <265 and the Cooley-Tukey
transform for M > 265, each being optimal in its range.

8) An indication is given in Table Al of the approxi-
mate computational capability (in 1975) of the ASC for
the barotropic and two-level baroclinic model of Part 2.
Disc transfers are involved.

When predictions of the form {"={» 14 (A¢)"2A¢
are required the accuracy in calculating the tendency
declines as resolution increases. So although high resolu-
tion calculations ideal for turbulence exploration are
now possible, the accuracy of the computer is insuffi-
cient for calculating the very small tendencies involved
with the highest resolutions. Procedures for modifying
machine truncation characteristics (Kurihara and
Tuleya, 1974) assist in marginal cases.

9) When it becomes necessary to add a random
perturbation to induce longitudinal development in a
zonal flow, this is accomplished by adding a small
random vorticity to the latest value of ¢’. This avoids
disruption of the streamfunction and integral
constraints.

10) The accuracy of the numerical method and
program was tested, in what is now standard procedure,
by following the known propagation of the analytic
Rossby-Haurwitz wave given by Phillips (1959).
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