
      

Supplementary Information 
Idealised emission scenarios: 
We generate carbon dioxide emission scenarios by assuming the fractional rate of change 
in emissions fE initially continues close to the rate observed since 1980 (1.7% 
increase/year in the black and red lines in figure 1a, between 1.3 and 3% increase/year in 
the orange lines: see figure S3a) [31]. After a certain date t1, fE is reduced at a constant 
rate, passing zero (stable emissions) after t2 years and continuing to fall until it reaches a 
maximum rate of decline fE = -t3

-1.  
 
Varying t1 from 2010 to 2050 (5 values), t2 from 5 to 25 years (5 values) and t3 from 10 to 
190 years (10 values), gives 250 scenarios: the black lines in Fig. 1a (a representative 
subset plotted for clarity). Varying t1 to t3 over a finer grid, varying the initial growth rate 
and selecting scenarios with cumulative emissions within 1% of 1TtC gives the orange 
lines. We include emission reduction rates of up to 10% per year, as our focus is on the 
range of behaviours of the climate system, but it should be noted that such high rates of 
reduction are generally considered prohibitively expensive.  
 
For each setting of model carbon cycle parameters, historical anthropogenic (fossil and 
land-use-change) emissions are scaled to give the observed rate of increase in 
atmospheric CO2 over 1961-2000 [31] and the same scaling factor applied to future 
emissions. Hence in computing warming commitments, we assume that the fractional 
error in past emissions persists into the future, or equivalently that all values of CWC are 
referenced to our best-estimate of the cumulative CO2 emissions over 1750-2000 (0.44 
TtC).    
 
Constraining climate and carbon cycle response: 
We take two approaches to quantifying the range of uncertainty in Cumulative Warming 
Commitment (CWC) consistent with currently-available information: first, we assess the 
range of CWCs that are consistent with climate observations and the constraints of a very 
simple climate model; and second, we assess the range of CWCs we expect from 
currently-available Earth System Models (ESMs), using the HadSCCCM1 model to 
emulate the behaviour of these more complex models. ESMs are typically tuned so that 
some aspects of their behaviour replicate the historic or present day observed climate, but 
unlike our very simple climate model ensemble, the ensemble of more complex models is 
not explicitly designed to span the full range of behaviour consistent with observations.  
 
To assess the range of CWCs consistent with climate observations, we require a 
representation of the coupled climate-carbon-cycle system that captures the essential 
behaviour of more complex models (and hence, it is hoped, the Earth system itself), but 
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also sufficiently simple for key parameters to be constrained directly. For the global 
temperature anomaly, T(t), response to carbon dioxide concentrations C(t), we use a 
conventional energy balance model coupled to a diffusive ocean [32]: despite its 
simplicity, such a model allows multiple time-scales in the response, which is essential if 
we are to interpret the constraints provided by recent trends. 
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The constants a1 and a3 are fixed to values corresponding to a 75m ocean mixed layer, 
70% ocean coverage and forcing on doubling carbon dioxide of 3.74Wm-2, while a0 (the 
feedback parameter which determines ECS) and a2 (which controls downward diffusion 
of surface temperature anomalies) are allowed to vary. The introduction of additional 
complexity, such as upwelling or a variable land-sea temperature difference, results in 
over-parameterization due to the low number of reasonably unambiguous observational 
constraints available for a model that only simulates global quantities. 
 
The climate response of the model is constrained by the linear temperature trend 
attributable to the increase in greenhouse gases over the 20th Century based on 
“fingerprint” attribution results (the blue curve in figure S1a) [21] and the effective heat 
capacity of the atmosphere-land-ocean system (figure S1b) which is implied by the 
combination of observed surface warming [33] and total ocean heat uptake over the 
period 1955-98 [34]. To convert total warming induced by long-lived greenhouse gases 
into CO2-induced warming, we use CO2 and non-CO2 forcing timeseries which give 2000 
values of 1.47 and 0.85 Wm-2 respectively, consistent with refs. [21,30] and unit 
efficacies, following the majority of studies constraining ECS and transient climate 
response (TCR) cited in ref. [1]. Revised estimates of forcing and efficacies [35] might 
reduce our estimate of the fraction of past greenhouse-gas-attributable warming that is 
due to CO2, reducing CWC by a corresponding factor. This would, however, also require 
a revision of observationally-constrained estimates of ECS and TCR. Since these are not 
the focus of this study, we prefer to use figures consistent with the studies cited in ref. [1] 
which may give a conservatively high estimate of CWC, noting that other neglected 
uncertainties, such as the possibility of a0 changing over time, could introduce a bias in 
the opposite sense.  
 
We use the best-guess value for ocean heat uptake from [34]: more recent estimates of 
upper ocean heat content increase suggest somewhat higher values [36], but these are still 
well within our confidence interval. To facilitate reproduction of our results and tracing 
the origins of uncertainties, we use parameterized likelihood functions which closely 
approximate the errors provided by the sources. In all cases, if X is the observable 
quantity of interest, we assume fractional errors in X, or errors in log(X), are normally 
distributed with mean zero and standard error σlog(X): this assigns the same likelihood to 
equal fractional errors in both directions. The dots on figures S1a and S1b show the 
relative likelihoods generated by random variations of a0 and a2 in equation (1) when 
forced by observed greenhouse gas increases and likelihoods are assigned to computed 
surface temperature trends over the full 20th Century and effective heat capacities over 
1958-98. The overall likelihood of a given parameter combination is given by the product 
of the likelihoods of the two constraints, as the observational errors are assumed to be 
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independent, but the density of dots under the likelihood profile is arbitrary. See ref. [19] 
for an explanation of the principle of likelihood profiling. 
 
We can plot these likelihoods against any output of the model: figure S1c shows the 
implied likelihood profile for ECS, or the equilibrium warming response to stabilizing 
atmospheric CO2 at double its pre-industrial concentration. Upper and lower horizontal 
dotted lines show likelihood thresholds corresponding to the 17-83% and 5-95% 
asymptotic confidence intervals. In the language of the IPCC, it is “likely” and “very 
likely” that the range over which the likelihood profiles exceed these thresholds covers 
the correct (but unknown) values of the quantities plotted on the abscissa in figures S1 
and S2: note the exact correspondence between this range and the nominal 5-95% 
confidence interval from ref. [21], shown by red and green diamonds in fig. S1a. The key 
advantage of the likelihood profile is that it makes clear the information provided by the 
data and is not sensitive to the manner in which parameters are sampled in the model (the 
density of dots in figures S1 and S2), in contrast to a Bayesian posterior: provided the 
ensemble is large enough to delineate the likelihood profile, this derived profile is 
insensitive to the density of points underneath it. If a forecast quantity is simply 
proportional to one of the observed quantities used to constrain the model and 
independent of all the others, then the confidence interval for that forecast quantity will 
be a correspondingly scaled version of the confidence interval on that observed quantity. 
Past greenhouse-gas attributable warming, for example, explains much of the variation in 
CWC, so there is a direct link between these confidence intervals (which, as noted in the 
main text, would be even more direct if we could assume a negligible ZEC). Likelihood 
profiling is not new to climate research: it is one way of expressing “optimal 
fingerprinting” as used by the detection and attribution community and exploring its 
implications for climate forecasts [21].  
 
The range of values of ECS that lie above the lower threshold gives a 5-95% confidence 
interval of 2.0-4.8oC, consistent with refs. [1,2]. The upper bound on any estimated 
interval for ECS is particularly sensitive to details of the analysis because of the non-
linear relationship between observable quantities and ECS which creates the “fat tail” on 
the likelihood profile for the latter. A key physical assumption in this model is that the 
feedback parameter a0 is constant: introducing the possibility of climate-state-dependent 
feedbacks further increases uncertainty in ECS. It would also increase uncertainty in 
CWC, but to a lesser extent because of the shorter timescales involved in CWC.  
 
Representing the carbon cycle is more challenging because there are more sources of 
complexity and weaker observational constraints. We use a simple box-diffusion model, 
assuming, first, that the long-term (millennial timescale) equilibrium CO2 level C3 
increases with cumulative emissions [4]: 

Eb
dt

dC
3

3 =           (2) 

where E is the net (anthropogenic and natural) emission rate in ppm-equivalent-per-year 
and b3 corresponds to the Revelle Buffer Factor. This is held constant at 0.1 to reproduce 
the 1000-year response of current ESMs [29]: estimates of CWC are insensitive to b3, 
whereas the response to a “stabilisation” emission scenario depends on it strongly. CO2 
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levels equilibrated between the atmosphere, land-biosphere and upper-ocean exceed this 
long-term value by an amount C2 which relaxes towards zero through advection into the 
deep ocean: 

201
2 CbEb

dt

dC
−=          (3) 

where b1+b3=0.35 is the level to which the atmospheric CO2 anomaly would fall after a 
unit pulse injection in the absence of deep-ocean advection and b0

-1 represents an 
adjustable time-constant of order 200 years. Finally, penetration of atmospheric CO2 
anomalies into the land-biosphere and ocean thermocline is represented by diffusion: 
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where C1 is the excess atmospheric CO2 over the short-term equilibrium level C2+C3, 
b1+b3+b4=0.85 is the level to which the atmospheric CO2 anomaly would fall within a 
year of a unit pulse injection and b2 represents an adjustable diffusivity. Atmospheric 
CO2 levels are given by the sum C=C1+C2+C3. With appropriate choices of parameters, 
this model can reproduce the response of more complex ESMs to a pulse injection of CO2 
with significantly fewer adjustable parameters than conventional impulse-response 
models [37] (impulse-response models replace equation (4) with a set of equations 
identical to equation (3)). Including an explicit diffusive term means that CO2 levels do 
not fall as rapidly following a cessation of emissions as they do in an impulse-response 
model with the same number of free parameters [38], reflecting the behaviour of some 
more complex models more faithfully [18]. We represent emissions E by the sum of 
anthropogenic emissions and a linear temperature feedback:  

TbEE a ′+= 5           (5) 
where T′ is the temperature anomaly above an exponentially-weighted running mean of 
the preceding century, representing the timescale over which anomalous sources and 
sinks re-equilibrate. We use historical temperatures until 2000 and computed 
temperatures thereafter for T′, adjusting the baseline to ensure continuity. More complex 
representations of the impact of rising temperatures on carbon uptake or release by soils, 
vegetation and the upper ocean give an overall feedback that is close to linear over small 
temperature changes [16], but this linearization is unlikely to be valid for temperature 
anomalies greater than 3-4oC.  
 
For any given values of b0 and b5, b2 is constrained by the observed increase in 
atmospheric CO2 from 1961-2000 [31] divided by total anthropogenic emissions over the 
same period [40,41] (the “net airborne fraction” shown in figure S2a), with natural 
emissions b5T′ driven by observed temperature anomalies about the 1900-1920 average. 
The range is dominated by current uncertainty in land-use-change emissions: we use 
land-use emissions from ref. [41] and assume the fractional uncertainty quoted in ref. 
[42] interpreted as a 5-95% interval. Note that [42] report this range as a “likely” (one 
standard error) interval, but this gives a 5-95% interval that includes negative land-use-
change emissions, which we believe overstates the uncertainty.  
 
Lacking direct observational constraints on temperature feedbacks in the carbon cycle, 
we constrain b5 by driving the model with historical emissions followed by the CO2 
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component of the SRES A2 emissions scenario from 1750-2100 both with, CA2(t), and 
without, C′A2(t), the temperature feedback term. The contribution of temperature 
feedback to the net airborne fraction, (CA2(2100)-C′A2(2100))/C′A2(2100), is compared to 
corresponding values from the C4MIP experiment (coloured symbols in Fig. S2b: colours 
correspond to the models shown in Fig. 2). The estimated likelihood profile (blue curve 
in Fig. S2b) is obtained by taking the mean of the C4MIP ensemble as the best-guess and 
assuming the largest fractional departure from that mean represents two standard errors. 
For this comparison we use best-fit values of a0 and a2: adjusting these to match those of 
the C4MIP models has little impact on estimates of b5. Finally, we impose a likelihood 
profile for b0 consistent with the range of reported values of the long-term response to 
pulse-injection experiments: see fig. S2c [29]. 
 
The response of this simple climate model to the range of emission scenarios shown in 
figure 1a of the main text, with best-fit values of parameters, is shown in fig. S3: panel a 
shows the fractional rates of change used to generate the emissions shown in fig. 1a of 
the main text, panel b shows atmospheric CO2 concentrations and panel c shows the 
temperature response, with the same colour coding throughout. Red and orange lines 
correspond to scenarios with a total cumulative CO2 emission of 1 TtC: despite the large 
range in peak and 2050 emissions across these scenarios, they give a very small range of 
CO2 concentrations in the late 21st century (the red and all the oranges curves are almost 
indistinguishable in fig S3b) and an even smaller range of temperatures (fig S3c): hence 
the timing as well as the peak warming is insensitive to the timing of emissions (for a 
given emissions total).  
 
The dotted black lines in figs S3 panels b & c show the best guess (and the shaded bar 
and symbols at 0.44 TtC in Fig. 2 of the main text show the range of uncertainty) in 
response to a complete cessation of emissions in 2000, the Zero Emissions Commitment 
or ZEC. It is noticeable that CO2 concentrations and hence temperatures take of order a 
century to decline significantly: while our best-fit ZEC is relatively small, consistent with 
refs. [4,25], we obtain much larger overshoots because we allow a larger range of 
uncertainty in ECS which in turn feeds back onto the carbon cycle. This behaviour arises 
because we have described the short-timescale carbon sinks as a diffusive process, driven 
by gradients in CO2 partial pressure rather than absolute CO2 anomalies. Hence, as soon 
as CO2 levels stop rising, these short-timescale sinks rapidly equilibrate, leaving only 
slow advection into the deep ocean, (competing with the positive carbon-cycle feedback), 
as the sole draw-down mechanism. This may give a relatively pessimistic view of the 
ZEC, but it is consistent with our physical understanding of how some carbon sinks work, 
and hence cannot be ruled out. Systematic studies of the response to realistic peaking and 
declining emissions with more complex models should clearly be a priority.  
 
Since fractional errors in (or errors in the logarithm of) the quantities used to constrain 
the model are all assumed to be normal, we can compare the impact of each of these 
constraints on our estimate of SWC simply by reducing their estimated fractional 
uncertainty (standard error in log(X)) either by a constant amount (we use 0.05) or by a 
constant fraction (we use 50%). Results are shown in the Table. Both relative and 
absolute reductions in fractional uncertainty in 20th century warming attributable to 
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greenhouse gases have a substantial impact on uncertainty in CWC. A halving of 
uncertainty in greenhouse gas attributable warming has been predicted by 2020, simply 
through the strengthening signal [43]. Halving fractional uncertainty in the temperature 
feedback on the carbon cycle also reduces uncertainty in CWC by a substantial (but 
smaller) amount primarily because uncertainty in this feedback is currently very large. 
Since this is currently an almost entirely model-based quantity, the experience of research 
into ECS suggests that such a reduction in uncertainty may take decades of research. 
Current fractional uncertainty in net airborne fraction is only slightly over 0.05, so 
subtracting 0.05 (i.e. largely eliminating uncertainty in this quantity) reduces uncertainty 
in CWC, but halving fractional uncertainty in this quantity has no detectable impact. 
Reducing uncertainty in the other constraints, either in relative and absolute terms, also 
has no significant impact on uncertainty in CWC.  
 
The HadSCCCM1 model [10] consists of climate and carbon cycle components, each 
tuned to the response of more complex ESMs of intermediate complexity and GCM-
carbon-cycle models used in the C4MIP study [15,16]. The tuning was carried out using 
results from an experiment that begins in the pre-industrial period, follows historic 
carbon emission estimates up to 2000 then SRES A2 emissions to 2100. No other 
greenhouse gas forcing changes were included. Whilst the C4MIP ensemble illustrates the 
range of behaviour of current ESMs, it is not a comprehensive assessment of model 
uncertainty: unlike our first simple climate model, parameters in the C4MIP experiment 
have not been varied systematically to span the range of behaviour consistent with recent 
observations. The climate component of HadSCCCM1 also closely follows equation (1). 
Free parameters controlling ECS and ocean heat uptake are found where possible through 
a least-squares fit to 1850-2100 global temperatures simulated by the C4MIP models. In 
eight cases, however, the optimum fit was not well defined, in which case literature 
values for ECS for that climate model were adopted, and the ocean heat uptake parameter 
found by fitting [15]. Note that since the C4MIP simulations are driven by the SRES A2 
scenario to 2100, the fit is dominated by model behaviour over the 21st Century. 
 
The ocean carbon cycle component of HadSCCCM1 consists of two parts. The first is a 
diffusive flux of carbon through the ocean surface which depends on the difference in 
concentration of carbon dioxide between the atmosphere and the ocean mixed layer. The 
second step is the carbon removal from the mixed layer into the deep ocean and is 
estimated using a linear impulse response function with multiple time modes [37]. The 
only parameter we alter in the ocean carbon cycle (again through comparison against the 
C4MIP simulations) is the depth of the mixed layer as seen by the carbon cycle.  
 
The terrestrial carbon cycle model has both vegetation and soil components stores. The 
vegetation carbon content is a balance between global average net primary productivity 
(parameterized as a function of atmospheric carbon dioxide, which asymptotes to a 
maximum value multiplied by a quadratic function of temperature rise in order to 
represent the effect of climate change) and vegetation carbon turnover. The vegetation 
carbon turnover time, which governs the rate at which vegetation carbon is lost to the soil 
in the form of litter, is a function of vegetation carbon. The soil carbon is then a balance 
between the litter supply and respiration loss, the latter a function of soil temperature and 
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carbon content; the soil temperature response is frequently parameterised as a “Q10” 
dependence (e.g. [39]). As in the temperature and ocean model, these carbon fluxes are 
calibrated against the corresponding diagnostics from the more complex models in the 
C4MIP simulations, in this case the net primary productivity, soil respiration and 
vegetation and carbon stores. A more comprehensive description of the HadSCCCM1 
model set up and validation of its performance against the tuning dataset are available in 
refs. [10,15]. 
   
In a final piece of analysis, we diagnose average (or, equivalently, time-integrated) 
warming over the 2000-2500 period: this is expected to be more important for certain 
impacts, such as ice sheet melting, than peak warming. We present these values in Figure 
S4, plotted against cumulative carbon emissions. Figure S4 has very strong similarities to 
figure 2 in the main text: we conclude that not only peak temperature but also mean long-
term warming is determined by cumulative emissions, and not the particular shape of the 
emissions profile. The small difference between peak warming and long-term average 
warming highlights again that, once cumulative emissions have committed us to a certain 
level of warming, recovery may take many centuries. 
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Reduction in fractional 
uncertainty in CWC due to 
reducing fractional 
uncertainty σlog(X) by 

Climate system 
property, X 

Most likely 
value of X 

5-95% 
confidence 
interval 

0.05 50% 

20th century 
warming trend 
attributable to GHGs 

0.97 oC/century 0.73-1.27 
oC/century  

18% 29% 

Effective heat 
capacity 1955-98 
 

0.70 GJ/oC 0.38-1.30 GJ/oC 1% 3% 

Net airborne fraction 
(AF) 1960-2000 
 

0.43 0.39-0.47 5% 0% 

Contribution of 
temp. feedback to 
net AF 1766-2100 

0.17 0.07-0.39 5% 13% 

Rate constant for 
advection of CO2 
into deep ocean 

200 years 133-302 years 0% 0% 

Table: Summary of constraints on simple climate model. Columns 4 & 5 show impact 
of reducing fractional uncertainties in constraints on the fractional uncertainty in CWC, 
expressed as the percentage change in the ratio between the upper and lower bounds on 
the 5-95% confidence interval. 
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Figure S1: Likelihood profiles for the temperature component of the simple climate 
model. Dots show relative likelihood of random combinations of parameters a0 and a2. 
Blue curves in panel (a) show likelihood of the 20th century warming trend attributable to 
the observed greenhouse gas increase, blue, green and red diamonds show best-fit and 5-
95% range from ref. [21]. Blue curve in panel (b) shows likelihood of effective heat 
capacity of the atmosphere/land/ocean system over 1955-1998. Best estimate from refs. 
[33] and [35] and likelihood profile obtained by summing (in quadrature) fractional errors 
in pentadal surface warming and ocean heat uptake from refs. [33] and [35] respectively. 
Blue curve in panel (c) shows the likelihood profile for climate sensitivity implied by 
these constraints: for comparison, blue, green and red diamonds show best-guess and 
“likely” (17-83%) uncertainty range in sensitivity from ref. [1]. 
 
 

 
Figure S2: Likelihood profiles for carbon cycle component of simple climate model. 
Dots show relative likelihood of random combinations of parameters b0, b2 and b5. Blue 
curve in panel (a) shows estimated likelihood profile for net Airborne Fraction (AF) over 
the period 1961-2000 based on atmospheric CO2 measurements at Mauna Loa [31] and 
anthropogenic CO2 emissions from fossil fuel burning [40] and land-use change [41] 
allowing for fractional uncertainty in land-use-change emissions [42].  Blue symbol 
shows most likely net AF while green and red diamonds show range based on “likely” 
land-use-change emissions from ref. [42]. Blue curve in panel (b) shows estimated 
likelihood profile for the contribution of temperature feedbacks to the net AF 1750-2100 
under the A2 emissions scenario, with coloured symbols showing the corresponding 
quantity from the C4MIP experiments. Panel (c) shows the estimated likelihood profile 
for b0

-1, the time-constant for advection of carbon into the deep ocean. 
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Figure S3: Rates of change of emissions used to generate idealized scenarios and 
responses with best-fit parameters. Panel a: fractional rates of change of emissions 
used to generate the idealized emission scenarios shown in figure 1a, main text. Panels b 
& c: Response of simple climate model with best-fit values of model parameters. Note 
the small range of CO2 concentrations and even smaller range of temperature responses 
to the orange emission profiles shown in panel a, all of which have the same cumulative 
CO2 emission. Dotted line shows best-fit response assuming zero emissions after 2000: 
both CO2 and temperatures take over a century to decline. 
 

 
Figure S4: As figure 2 in main text, but plotting mean warming over the period 
2000-2500 against cumulative CO2 emissions.  
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