Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

A new conifer-inhabiting species of Ceratocystis from Norway

Publication: Botany
19 November 2010

Abstract

A new species, Ceratocystis norvegica J. Reid & Hausner sp. nov., is described from Norway. Based on morphological criteria and analyses of rDNA internal transcribed spacer and small subunit rDNA sequences, strains collected from galleries of the bark beetle Ips typographus on Picea abies (L.) H. Karst, were shown to be distinct both from members of the Ceratocystis coerulescens complex and from other species described previously from conifers. Ceratocystis norvegica has the following defining characteristics: convergent ostiolar hyphae; a sharply defined temperature optimum at 20 °C; an apparent lack of a conidial state; and ascospores that on germination produce either self-fertile or self-sterile strains.

Résumé

Les auteurs décrivent une nouvelle espèce, le Ceratocystis norvegica J. Reid & Hausner sp. nov., provenant de Norvège. À partir de critères morphologiques et d'analyses d'ITS du rADN et de séquences rSSU, on démontre que des souches récoltées à partir de galeries du scolyte Ips typographus sur Picea abies se distinguent à la fois des membres du complexe Ceratocystis coerulescens et d'autres espèces déjà décrites à partir d'autres conifères. Le Ceratocystis norvegica possède les caractéristiques suivantes : hyphes ostiolaires convergents; une température optimale de 20  °C nettement déterminée; une absence apparente de stade conidien; et des ascospores qui produisent après germination, des souches soit auto fertiles ou soit auto stériles.

Get full access to this article

View all available purchase options and get full access to this article.

References

Bakshi, B.K. 1950. Fungi associated with Ambrosia beetles. Trans. Br. Mycol. Soc. 33(1–2): 111–120.
Bakshi, B.K. 1951. Studies on four species of Ceratocystis, with a discussion on fungi causing sapstain in Britain. Commonwealth Mycol. Inst. Mycol. Pap. 35: 1–16.
Berbee, M.L., and Taylor, J.W. 1992a. Two ascomycete classes based on fruiting-body characters and ribosomal DNA sequence. Mol. Biol. Evol. 9(2): 278–284.
Berbee, M.L., and Taylor, J.W. 1992b. Convergence in ascospore discharge mechanism among pyrenomycete fungi based on 18S ribosomal RNA gene sequence. Mol. Phylogenet. Evol. 1(1): 59–71.
Berbee, M.L., and Taylor, J.W. 1992c. 18S ribosomal RNA gene sequence characters place the human pathogen Sporothrix schenckii in the genus Ophiostoma. Exp. Mycol. 16: 87–91.
Berbee, M.L., and Taylor, J.W. 1993. Dating the evolutionary radiations of the true fungi. Can. J. Bot. 71: 1114–1127.
Chen, B.S., Chen, C.H., Bowman, B.H., and Nuss, D.L. 1996. Phenotypic changes associated with wild-type and mutant hypovirus RNA transfection of plant pathogenic fungi phylogenetically related to Cryphonectria parasitica. Phytopathology, 86(3): 301–310.
Chen, W., Shearer, C.A., and Crane, J.L. 1999. Phylogeny of Ophioceras spp. based on morphological and molecular data. Mycologia, 91(1): 84–94.
Chung, W.-H., Kim, J.-J., Yamaoka, Y., Uzunovic, A., Masuya, H., and Breuil, C. 2006. Ophiostoma breviusculum sp. nov. (Ophiostomatales, Ascomycota) is a new species in the Ophiostoma piceae complex associated with bark beetles infesting larch in Japan. Mycologia, 98(5): 801–814.
Desper, R., and Gascuel, O. 2002. Fast and accurate phylogeny reconstruction algorithms based on the minimum-evolution principle. J. Comput. Biol. 9(5): 687–705.
Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39(4): 783–791.
Felsenstein, J. 2006. PHYLIP (Phylogeny Inference Package) version 3.6c [computer program]. Distributed by the author. Department of Genetics, University of Washington, Seattle, Wash.
Gargas, A., and Taylor, J.W. 1995. Phylogeny of Discomycetes and early radiations of the apothecial Ascomycotina inferred from SSU rDNA sequence data. Exp. Mycol. 19(1): 7–15.
Harrington, T.C., and McNew, D.L. 1998. Partial interfertility among the ceratocystis species on conifers. Fungal Genet. Biol. 25(1): 44–53.
Harrington, T.C., and Wingfield, M.J. 1998. The Ceratocystis species on conifers. Can. J. Bot. 76(8): 1446–1457.
Harrington, T.C., Steimel, J., Wingfield, M.J., and Kile, G.A. 1996. Isozyme variation and species delimitation in the Ceratocystis coerulescens complex. Mycologia, 88(1): 104–113.
Harrington, T.C., Pashenova, N.V., McNew, D.L., Steimel, J., and Konstantinov, M.Y. 2002. Species delimitation and host specialization of Ceratocystis laricicola and C. polonica to larch and spruce. Plant Dis. 86(4): 418–422.
Hasegawa, M., Kishino, H., and Yano, T.-A. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22(2): 160–174.
Hausner, G., and Reid, J. 2004. The nuclear small subunit ribosomal genes of Sphaeronaemella helvellae, Sphaeronaemella fimicola, Gabarnaudia betae, and Cornuvesica falcata: phylogenetic implications. Can. J. Bot. 82(6): 752–762.
Hausner, G., and Wang, X. 2005. Unusual compact rDNA gene arrangements within some members of the Ascomycota: evidence for molecular co-evolution between ITS1 and ITS2. Genome, 48(4): 648–660.
Hausner, G., Reid, J., and Klassen, G.R. 1992. Do galeate-ascospore members of the Cephaloascaceae, Endomycetaceae and Ophiostomataceae share a common phylogeny? Mycologia, 84(6): 870–881.
Hausner, G., Reid, J., and Klassen, G.R. 1993a. On the phylogeny of Ophiostoma, Ceratocystis s.s., and Microascus, and relationships within Ophiostoma based on partial ribosomal DNA sequences. Can. J. Bot. 71: 1249–1265.
Hausner, G., Reid, J., and Klassen, G.R. 1993b. Ceratocystiopsis: a reappraisal based on molecular criteria. Mycol. Res. 97(5): 625–633.
Hausner, G., Eyjólfsdóttir, G.G., and Reid, J. 2003. Three new species of Ophiostoma and notes on Cornuvesica falcata. Can. J. Bot. 81(1): 40–48.
Hausner, G., Iranpour, M., Kim, J.-J., Breuil, C., Davis, C.N., Gibb, E.A., Reid, J., Loewen, P.C., and Hopkin, A.A. 2005. Fungi vectored by the introduced bark beetle Tomicus piniperda in Ontario, Canada, and comments on the taxonomy of Leptographium lundbergii, Leptographium terebrantis, Leptographium truncatum, and Leptographium wingfieldii. Can. J. Bot. 83: 1222–1237.
Hibbett, D.S. 1996. Phylogenetic evidence for horizontal transmission of group I introns in the nuclear ribosomal DNA of mushroom-forming fungi. Mol. Biol. Evol. 13(7): 903–917.
Hibbett, D.S., Pine, E.M., Langer, E., Langer, G., and Donoghue, M.J. 1997. Evolution of gilled mushrooms and puffballs inferred from ribosomal DNA sequences. Proc. Natl. Acad. Sci. U.S.A. 94(22): 12002–12006.
Issakainen, J., Jalava, J., Eerola, E., and Campbell, C.K. 1997. Relatedness of Pseudallescheria, Scedosporium and Graphium pro parte based on SSU rDNA sequences. J. Med. Vet. Mycol. 35: 389–398.
Loppnau, P.A., and Breuil, C. 2003. Species level identification of conifer associated Ceratocystis sapstain fungi by PCR–RFLP on a β-tubulin gene fragment. FEMS Microbiol. Lett. 222(1): 143–147.
Mankin, A.S., Skryabin, K.G., and Rubtsov, P.M. 1986. Identification of ten additional nucleotides in the primary structure of yeast 18S rRNA. Gene, 44(1): 143–145.
Marin, M., Preisig, O., Wingfield, B.D., Kirisits, T., Yamaoka, Y., and Wingfield, M.J. 2005. Phenotypic and DNA sequence data comparisons reveal three discrete species in the Ceratocystis polonica species complex. Mycol. Res. 109(10): 1137–1148.
Marin, M.M., Preisig, O., Wingfield, B.D., Kirisits, T., and Wingfield, M.J. 2009. Single sequence repeat markers reflect diversity and geographic barriers in Eurasian populations of the conifer pathogen Ceratocystis polonica. For. Pathol. 39(4): 249–265.
Massoumi Alamouti, S., Tsui, C.K., and Breuil, C. 2009. Multigene phylogeny of filamentous ambrosia fungi associated with ambrosia and bark beetles. Mycol. Res. 113(8): 822–835.
Minter, D.W. 1987. The significance of conidiogenesis in pleoanamorphy. In Pleomorphic fungi. Edited by J. Sugiyama. Kodansha, Tokyo and Elsevier, Amsterdam. pp. 241–262.
Minter, D.W., Sutton, B.C., and Brady, B.L. 1983. What are phialides anyway? Trans. Br. Mycol. Soc. 81(1): 109–120.
Montoya, M.M., and Wingfield, M.J. 2006. A Review of Ceratocystis sensu stricto with special reference to the species complexes C. coerulescens and C. fimbriata. Rev. Fac. Nac. Agron. Medellín, 59: 3045–3075.
Moreau, C. 1952. Coexistence des formes Thielaviopsis et Graphium chez une souche de Ceratocystis major (van Beyma) nov. comb. Rev. Mycol. (Paris) Suppl. Col. 17(17): 17–25.
Nicholas, K.B., Nicholas, H.B., Jr., and Deerfield, D.W., II. 1997. GeneDoc: analysis and visualization of genetic variation. EMBNEW. NEWS, 4: 14.
Nirenberg, H.I., Feiler, U., and Hagedorn, G. 2002. Description of Colletotrichum lupini comb. nov. in modern terms. Mycologia, 94(2): 307–320.
Okada, G., Seifert, K.A., Takematsu, A., Yamaoka, Y., Miyazaki, S., and Tubaki, K. 1998. A molecular phylogenetic reappraisal of the Graphium complex based on 18S rDNA sequences. Can. J. Bot. 76(9): 1495–1506.
Olchowecki, A., and Reid, J. 1974. Taxonomy of the genus Ceratocystis in Manitoba. Can. J. Bot. 52(7): 1675–1711.
Page, R.D. 1996. TreeView: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12(4): 357–358.
Paulin, A.E., and Harrington, T.C. 2000. Phylogenetic placement of anamorphic species of Chalara among Ceratocystis and other ascomycetes. Stud. Mycol. 45: 169–186.
Paulin-Mahady, A.E., Harrington, T.C., and McNew, D. 2002. Phylogenetic and taxonomic evaluation of Chalara, Chalaropsis, and Thielaviopsis anamorphs associated with Ceratocystis. Mycologia, 94(1): 62–72.
Rayner, R.W. 1970. A mycological colour chart. Commonwealth Mycological Institute, Kew, UK.
Redfern, D.B., Stoakley, J.T., Steele, H., and Minter, D.W. 1987. Dieback and death of larch caused by Ceratocystis laricicola sp.nov. following attack by Ips cembrae. Plant Pathol. 36(4): 467–480.
Rubtsov, P.M., Musakhanov, M.M., Zakharyev, V.M., Krayev, A.S., Skryabin, K.G., and Bayev, A.A. 1980. The structure of the yeast ribosomal RNA genes. I. The complete nucleotide sequence of the 18S ribosomal RNA gene from Saccharomyces cerevisiae. Nucleic Acids Res. 8(23): 5779–5794.
Schmidt, H.A., Strimmer, K., Vingron, M., and von Haeseler, A. 2002. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics, 18(3): 502–504.
Siemaszko, W. 1939. Fungi associated with bark-beetles in Poland [Zespoly gryzbów fowarzyszacych kornikom polskim]. Planta Pol. 7: 1–54.
Sogin, M.L., Miotto, K., and Miller, L. 1986. Primary structure of the Neurospora crassa small subunit ribosomal RNA coding region. Nucleic Acids Res. 14(23): 9540.
Spatafora, J.W., and Blackwell, M. 1994. The polyphyletic origins of ophiostomatoid fungi. Mycol. Res. 98(1): 1–9.
Suh, S.O., Noda, H., and Blackwell, M. 2001. Insect symbiosis: derivation of yeast-like endosymbionts within an entomopathogenic filamentous lineage. Mol. Biol. Evol. 18(6): 995–1000.
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25(24): 4876–4882.
Ueda-Nishimura, K., and Mikata, K. 2000. Two distinct 18S rRNA secondary structures in Dipodascus (Hemiascomycetes). Microbiology, 146(5): 1045–1051.
Upadhyay, H.P. 1981. A monograph of Ceratocystis and Ceratocystiopsis. University of Georgia Press, Athens, Ga.
van Wyk, M., Roux, J., Barnes, I., Wingfield, B.D., Chhetri, H.H., and Wingfield, M.J. 2004. Ceratocystis bhutanensis sp. nov., associated with the bark beetle Ips schmutzenhoferi on Picea spinulosa in Bhutan. Stud. Mycol. 50: 365–379.
van Wyk, M., Roux, J., Barnes, I., Wingfield, B.D., and Wingfield, M.J. 2006. Molecular phylogeny of the Ceratocystis moniliformis complex and description of C. tribiliformis sp. nov. Fungal Divers. 21: 181–201.
Wingfield, M.J., Harrington, T.C., and Solheim, H. 1997. Two species in the Ceratocystis coerulescens complex from conifers in western North America. Can. J. Bot. 75: 827–834.
Witthuhn, R.C., Wingfield, B.D., Wingfield, M.J., Wolfaardt, M., and Harrington, T.C. 1998. Monophyly of the conifer species in the Ceratocystis coerulescens complex using DNA sequence data. Mycologia, 90(1): 96–100.
Witthuhn, R.C., Wingfield, B.D., Wingfield, M.J., and Harrington, T.C. 1999. PCR based identification and phylogeny of species of Ceratocystis sensu stricto. Mycol. Res. 103(6): 743–749.
Witthuhn, R.C., Harrington, T.C., Steimel, J.P., Wingfield, B.D., and Wingfield, M.J. 2000. Comparison of isozymes, rDNA spacer regions, and MAT-2 DNA sequences as phylogenetic characters in the analysis of the Ceratocystis coerulescens complex. Mycologia, 92(3): 447–452.
Xia, X., and Xie, Z. 2001. DAMBE: software package for data analysis in molecular biology and evolution. J. Hered. 92(4): 371–373.

Information & Authors

Information

Published In

cover image Botany
Botany
Volume 88Number 11November 2010
Pages: 971 - 983

History

Received: 2 February 2010
Accepted: 28 September 2010
Version of record online: 19 November 2010

Permissions

Request permissions for this article.

Key Words

  1. Ceratcystis
  2. new species
  3. coerulescens complex
  4. Ips typographus

Mots-clés

  1. Ceratocystis
  2. nouvelle espèce
  3. complexe coerulescens
  4. Ips typographus

Authors

Affiliations

J. Reid
Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
M. Iranpour
Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
S. M. Rudski
Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
P. C. Loewen
Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Fungal Communities of the Pine Wilt Disease Complex: Studying the Interaction of Ophiostomatales With Bursaphelenchus xylophilus
2. Ceratocystis norvegica
3. Identification of sapstain fungi from Scots pine pallets and assessment of their staining ability
4. Landscape‐scale genetic differentiation of a mycangial fungus associated with the ambrosia beetle, Xylosandrus germanus (Blandford) (Curculionidae:Scolytinae) in Japan
5. Evaluation of antifungal, phosphate solubilisation, and siderophore and chitinase release activities of endophytic fungi from Pistacia vera
6. Three genera in the Ceratocystidaceae are the respective symbionts of three independent lineages of ambrosia beetles with large, complex mycangia
7. Redefining Ceratocystis and allied genera
8. Multigene phylogenies of Ophiostomataceae associated with Monterey pine bark beetles in Spain reveal three new fungal species
9. Evolutionary dynamics of introns and their open reading frames in the U7 region of the mitochondrial rnl gene in species of Ceratocystis
10. Associations of Conifer-Infesting Bark Beetles and Fungi in Fennoscandia

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Botany

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media