Advertisement

Abstract

Prefrontal neurons engaged by working memory tasks express a sequence of phasic and tonic activations linked to a train of sensory, mnemonic, and response-related events. Here, we report that the dopamine D2 receptor selectively modulates the neural activities associated with memory-guided saccades in oculomotor delayed-response tasks yet has little or no effect on the persistent mnemonic-related activity, which is instead modulated by D1 receptors. This associates the D2 receptor with a specific component of working memory circuitry and fractionates the modulatory effects of D1 and D2 receptors on the neural machinery of a cognitive process.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

File (wang.som.pdf)

References and Notes

1
A. H. Tranet al., Proc. Natl. Acad. Sci. U.S.A.99, 8986 (2002).
2
J. H. Baiket al., Nature377, 424 (1995).
3
A. Usielloet al., Nature408, 199 (2000).
4
M. Luciana, R. A. Depue, P. Arbisi, A. Leon, J. Cogn. Neurosci.4, 58 (1992).
5
M. A. Mehta, R. Swainson, A. D. Ogilvie, B. J. Sahakian, T. W. Robbins, Psychopharmacology (Berlin) 159, 10 (2001).
6
I. Creese, D. R. Burt, S. H. Snyder, Science192, 481 (1976).
7
P. Seeman, T. Lee, M. Chau-Wong, K. Wong, Nature261, 717 (1976).
8
M. S. Lidow, P. S. Goldman-Rakic, D. W. Gallager, P. Rakic, Neuroscience40, 657 (1991).
9
S. M. Nicola, D. J. Surmeier, R. C. Malenka, Annu. Rev. Neurosci.23, 185 (2000).
10
M. S. Lidow, F. Wang, Y. Cao, P. S. Goldman-Rakic, Synapse28, 10 (1998).
11
D. J. Brookset al., Ann. Neurol.31, 184 (1992).
12
N. D. Volkowet al., Nature386, 830 (1997).
13
C. M. Anderson, A. Polcari, S. B. Lowen, P. F. Renshaw, M. H. Teicher, Am. J. Psychiatry159, 1322 (2002).
14
I. Feinberg, Schizophr. Bull.4, 636 (1978).
15
C. Frith, Lancet346, 615 (1995).
16
S. Funahashi, C. J. Bruce, P. S. Goldman-Rakic, J. Neurophysiol.61, 331 (1989).
17
G. V. Williams, P. S. Goldman-Rakic, Nature376, 572 (1995).
18
G. V. Williams, S. G. Rao, P. S. Goldman-Rakic, J. Neurosci.22, 2843 (2002).
19
J. M. Fuster, G. E. Alexander, Science173, 652 (1971).
20
M. V. Chafee, P. S. Goldman-Rakic, J. Neurophysiol.79, 2919 (1998).
21
P. S. Goldman-Rakic, Neuron14, 477 (1995).
22
J. C. Stoof, J. W. Kebabian, Nature294, 366 (1981).
23
M. A. Sommer, R. H. Wurtz, Science296, 1480 (2002).
24
I. Tanibuchi, P. S. Goldman-Rakic, J. Neurophysiol.89, 1067 (2003).
25
I. A. Ilinsky, M. L. Jouandet, P. S. Goldman-Rakic, J. Comp. Neurol.236, 315 (1985).
26
R. Kim, K. Nakamo, A. Jayaraman, M. B. Carpenter, J. Comp. Neurol.169, 263 (1976).
27
J. C. Lynch, J. E. Hoover, P. L. Strick, Exp. Brain Res.100, 181 (1994).
28
C. J. Bruce, M. E. Goldberg, J. Neurophysiol.53, 603 (1985).
29
A. F. Arnsten, J. X. Cai, J. C. Steere, P. S. Goldman-Rakic, J. Neurosci.15, 3429 (1995).
30
M. Wang, S. Vijayraghavan, P. S. Goldman-Rakic, unpublished data.
31
Experiments were conducted in accordance with the Yale University Animal Care and Use Committee and NIH guidelines. Supported by National Institute of Mental Health grants P50 MH44866 and P50 MH068789. We thank A. Arnsten, D. McCormick, and H. Friedman for reading this manuscript and for their critical comments and G. Leydon for help in developing Spike2 scripts.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 303 | Issue 5659
6 February 2004

Submission history

Received: 4 September 2003
Accepted: 10 December 2003
Published in print: 6 February 2004

Permissions

Request permissions for this article.

Notes

Supporting Online Material
www.sciencemag.org/cgi/content/full/303/5659/853/DC1
Materials and Methods
Fig. S1

Authors

Affiliations

Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA.
Susheel Vijayraghavan
Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA.
Patricia S. Goldman-Rakic
Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA.

Notes

*
To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Dopamine regulates attitude toward risk, Science, 383, 6678, (32-33), (2024)./doi/10.1126/science.adm8641
    Abstract
  2. A multi-faceted role of dual-state dopamine signaling in working memory, attentional control, and intelligence, Frontiers in Behavioral Neuroscience, 17, (2023).https://doi.org/10.3389/fnbeh.2023.1060786
    Crossref
  3. Spatiotemporal Alterations in Working Memory-Related Beta Band Neuromagnetic Activity of Patients With Schizophrenia On and Off Antipsychotic Medication: Investigation With MEG, Schizophrenia Bulletin, (2023).https://doi.org/10.1093/schbul/sbac178
    Crossref
  4. Repetitive transcranial magnetic stimulation rescues simulated space complex environment–induced emotional and social impairments by enhancing neuronal excitability in the medial prefrontal cortex, Cerebral Cortex, (2023).https://doi.org/10.1093/cercor/bhad027
    Crossref
  5. Behavioral and Neuroanatomical Consequences of Cell-Type Specific Loss of Dopamine D2 Receptors in the Mouse Cerebral Cortex, Frontiers in Behavioral Neuroscience, 15, (2022).https://doi.org/10.3389/fnbeh.2021.815713
    Crossref
  6. AgRP neurons control structure and function of the medial prefrontal cortex, Molecular Psychiatry, 27, 10, (3951-3960), (2022).https://doi.org/10.1038/s41380-022-01691-8
    Crossref
  7. Magnocellular and parvocellular contributions to brain network dysfunction during learning and memory: Implications for schizophrenia, Journal of Psychiatric Research, 156, (520-531), (2022).https://doi.org/10.1016/j.jpsychires.2022.10.055
    Crossref
  8. Nicotine promotes the utility of short-term memory during visual search in macaque monkeys, Psychopharmacology, 239, 9, (3019-3029), (2022).https://doi.org/10.1007/s00213-022-06186-6
    Crossref
  9. Decision-Making, Dorsolateral Prefrontal Cortex, (401-435), (2022).https://doi.org/10.1007/978-981-19-7268-3_7
    Crossref
  10. Working Memory and Prefrontal Functions, Dorsolateral Prefrontal Cortex, (103-226), (2022).https://doi.org/10.1007/978-981-19-7268-3_3
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media