Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Stem Bromelain Proteolytic Machinery: Study of the Effects of its Components on Fibrin (ogen) and Blood Coagulation

Author(s): Mohamed Azarkan*, Mariana Marta González, Rafaèle Calvo Esposito and María Eugenia Errasti*

Volume 27, Issue 11, 2020

Page: [1159 - 1170] Pages: 12

DOI: 10.2174/0929866527666200525163622

Price: $65

Abstract

Background: Antiplatelet, anticoagulant and fibrinolytic activities of stem bromelain (EC 3.4.22.4) are well described, but more studies are still required to clearly define its usefulness as an antithrombotic agent. Besides, although some effects of bromelain are linked to its proteolytic activity, few studies were performed taking into account this relationship.

Objective: We aimed at comparing the effects of stem bromelain total extract (ET) and of its major proteolytic compounds on fibrinogen, fibrin, and blood coagulation considering the proteolytic activity.

Methods: Proteolytic fractions chromatographically separated from ET (acidic bromelains, basic bromelains, and ananains) and their irreversibly inhibited counterparts were assayed. Effects on fibrinogen were electrophoretically and spectrophotometrically evaluated. Fibrinolytic activity was measured by the fibrin plate assay. The effect on blood coagulation was evaluated by the prothrombin time (PT) and activated partial thromboplastin time (APTT) tests. Effects were compared with those of thrombin and plasmin.

Results: Acidic bromelains and ananains showed thrombin-type activity and low fibrinolytic activity, with acidic bromelains being the least effective as anticoagulants and fibrinolytics; while basic bromelains, without thrombin-like activity, were the best anticoagulant and fibrinolytic proteases present in ET. Procoagulant action was detected for ET and its proteolytic compounds by the APTT test at low concentrations. The measured effects were dependent on proteolytic activity.

Conclusion: Two sub-populations of cysteine proteases exhibiting different effects on fibrin (ogen) and blood coagulation are present in ET. Using well characterized stem bromelain regarding its proteolytic system is a prerequisite for a better understanding of the mechanisms underlying the bromelain action.

Keywords: Ananas comosus, romeliaceae, anticoagulants, fibrinolytic activity, thrombin-like activity, cysteine protease, ananain.

Graphical Abstract
[1]
Heinicke, R.M.; Gortner, W.A. Stem bromelain-A new protease preparation from pineapple plants. Econ. Bot., 1957, 11(3), 225-234.[http://dx.doi.org/10.1007/BF02860437]
[2]
Harrach, T.; Eckert, K.; Maurer, H.R.; Machleidt, I.; Machleidt, W.; Nuck, R. Isolation and characterization of two forms of an acidic bromelain stem proteinase. J. Protein Chem., 1998, 17(4), 351-361.[http://dx.doi.org/10.1023/A:1022507316434] [PMID: 9619588]
[3]
Harrach, T.; Eckert, K.; Schulze-Forster, K.; Nuck, R.; Grunow, D.; Maurer, H.R. Isolation and partial characterization of basic proteinases from stem bromelain. J. Protein Chem., 1995, 14(1), 41-52.[http://dx.doi.org/10.1007/BF01902843] [PMID: 7779262]
[4]
Napper, A.D.; Bennett, S.P.; Borowski, M.; Holdridge, M.B.; Leonard, M.J.; Rogers, E.E.; Duan, Y.; Laursen, R.A.; Reinhold, B.; Shames, S.L. Purification and characterization of multiple forms of the pineapple-stem-derived cysteine proteinases ananain and comosain. Biochem. J., 1994, 301(Pt 3), 727-735.[http://dx.doi.org/10.1042/bj3010727] [PMID: 8053898]
[5]
Ritonja, A.; Rowan, A.D.; Buttle, D.J.; Rawlings, N.D.; Turk, V.; Barrett, A.J. Stem bromelain: Amino acid sequence and implications for weak binding of cystatin. FEBS Lett., 1989, 247(2), 419-424.[http://dx.doi.org/10.1016/0014-5793(89)81383-3] [PMID: 2714443]
[6]
Rowan, A.D.; Buttle, D.J.; Barrett, A.J. The cysteine proteinases of the pineapple plant. Biochem. J., 1990, 266(3), 869-875.
[7]
Matagne, A.; Bolle, L.; El Mahyaoui, R.; Baeyens-Volant, D.; Azarkan, M. The proteolytic system of pineapple stems revisited: Purification and characterization of multiple catalytically active forms. Phytochemistry, 2017, 138, 29-51.[http://dx.doi.org/10.1016/j.phytochem.2017.02.019
] [PMID: 28238440]
[8]
Hatano, K.; Kojima, M.; Tanokura, M.; Takahashi, K. Solution structure of bromelain inhibitor IV from pineapple stem: Structural similarity with Bowman-Birk trypsin/chymotrypsin inhibitor from soybean. Biochemistry, 1996, 35(17), 5379-5384.[http://dx.doi.org/10.1021/bi952754+] [PMID: 8611527]
[9]
Lenarcic, B.; Ritonja, A.; Turk, B.; Dolenc, I.; Turk, V. Characterization and structure of pineapple stem inhibitor of cysteine proteinases. Biol. Chem. Hoppe Seyler, 1992, 373(7), 459-464.[http://dx.doi.org/10.1515/bchm3.1992.373.2.459] [PMID: 1515075]
[10]
Rowan, A.D.; Buttle, D.J. Pineapple cysteine endopeptidases. Methods Enzymol., 1994, 244, 555-568.
[11]
Azarkan, M.; Feller, G.; Vandenameele, J.; Herman, R.; El Mahyaoui, R.; Sauvage, E.; Vanden Broeck, A.; Matagne, A.; Charlier, P.; Kerff, F. Biochemical and structural characterization of a mannose binding jacalin-related lectin with two-sugar binding sites from pineapple (Ananas comosus) stem. Sci. Rep., 2018, 8(1), 11508.[http://dx.doi.org/10.1038/s41598-018-29439-x] [PMID: 30065388]
[12]
de Lencastre Novaes, L.C.; Jozala, A.F.; Lopes, A.M.; de Carvalho Santos-Ebinuma, V.; Mazzola, P.G.; Pessoa, A., Junior Stability, purification, and applications of bromelain: A review. Biotechnol. Prog., 2016, 32(1), 5-13.[http://dx.doi.org/10.1002/btpr.2190] [PMID: 26518672]
[13]
Maurer, H.R. Bromelain: biochemistry, pharmacology and medical use. Cell. Mol. Life Sci., 2001, 58(9), 1234-1245.[http://dx.doi.org/10.1007/PL00000936] [PMID: 11577981]
[14]
Kasemsuk, T.; Saengpetch, N.; Sibmooh, N.; Unchern, S. Improved WOMAC score following 16-week treatment with bromelain for knee osteoarthritis. Clin. Rheumatol., 2016, 35(10), 2531-2540.[http://dx.doi.org/10.1007/s10067-016-3363-1] [PMID: 27470088]
[15]
de Souza, G.M.; Fernandes, I.A.; Dos Santos, C.R.R.; Falci, S.G.M. Is bromelain effective in controlling the inflammatory parameters of pain, edema, and trismus after lower third molar surgery? A systematic review and meta-analysis. Phytother. Res., 2019, 33(3), 473-481.[http://dx.doi.org/10.1002/ptr.6244] [PMID: 30484910]
[16]
Fusini, F.; Bisicchia, S.; Bottegoni, C.; Gigante, A.; Zanchini, F.; Busilacchi, A. Nutraceutical supplement in the management of tendinopathies: A systematic review. Muscles Ligaments Tendons J., 2016, 6(1), 48-57.[http://dx.doi.org/10.32098/mltj.01.2016.06] [PMID: 27331031]
[17]
Marzin, T.; Lorkowski, G.; Reule, C.; Rau, S.; Pabst, E.; Vester, J.C.; Pabst, H. Effects of a systemic enzyme therapy in healthy active adults after exhaustive eccentric exercise: A randomised, two-stage, double-blinded, placebo-controlled trial. BMJ Open Sport Exerc. Med., 2017, 2(1), e000191.[http://dx.doi.org/10.1136/bmjsem-2016-000191] [PMID: 28879033]
[18]
Seamont, D.; Vrcek, I.; Nakra, T.; Mancini, R. Arnica and bromelain for blepharoplasty-associated ecchymosis. Am. J. Cosmet. Surg., 2018, 35(3), 130-134.[http://dx.doi.org/10.1177/0748806817743904]
[19]
Baumueller, M.; Rau, S. Efficacy and tolerance of systemic enzyme therapy in the treatment of acute thrombophlebitis–A randomised double-blind controlled trial. J. Phlebol. Lymphology, 2018, 11(1), 7-12.[http://dx.doi.org/10.14303/1983-8905.1000050]
[20]
Loo, Y.L.; Goh, B.K.L.; Jeffery, S. An overview of the use of bromelain-based enzymatic Debridement (Nexobrid®) in deep partial and full thickness burns: Appraising the evidence. J. Burn Care Res., 2018, 39(6), 932-938.[http://dx.doi.org/10.1093/jbcr/iry009] [PMID: 29579268]
[21]
Beuth, J. Proteolytic enzyme therapy in evidence-based complementary oncology: Fact or fiction? Integr. Cancer Ther., 2008, 7(4), 311-316.[http://dx.doi.org/10.1177/1534735408327251] [PMID: 19116226]
[22]
Lee, J-H.; Lee, J-T.; Park, H-R.; Kim, J-B. The potential use of bromelain as a natural oral medicine having anticarcinogenic activities. Food Sci. Nutr., 2019, 7(5), 1656-1667.[http://dx.doi.org/10.1002/fsn3.999] [PMID: 31139378]
[23]
Ley, C.M.; Tsiami, A.; Ni, Q.; Robinson, N. A review of the use of bromelain in cardiovascular diseases. J. Chin. Integr. Med., 2011, 9(7), 702-710.[http://dx.doi.org/10.3736/jcim20110702] [PMID: 21749819]
[24]
Lotz-Winter, H. On the pharmacology of bromelain: An update with special regard to animal studies on dose-dependent effects. Planta Med., 1990, 56(3), 249-253.[http://dx.doi.org/10.1055/s-2006-960949] [PMID: 2203073]
[25]
Kaur, H.; Corscadden, K.; Lott, C.; Elbatarny, H.S.; Othman, M. Bromelain has paradoxical effects on blood coagulability: A study using thromboelastography. Blood Coagul. Fibrinolysis, 2016, 27(7), 745-752.[http://dx.doi.org/10.1097/MBC.0000000000000244
] [PMID: 25517253]
[26]
Cirelli, M.G.; Smyth, R.D. Effects of bromelain anti-edema therapy on coagulation, bleeding, and prothrombin times. J. New Drugs, 1963, 3(1), 37-39.[http://dx.doi.org/10.1002/j.1552-4604.1963.tb00060.x
] [PMID: 14021409]
[27]
Pirotta, F.; de Giuli-Morghen, C. Bromelain: Antiinflammatory and serum fibrinolytic activity after oral administration in the rat. Drugs Exp. Clin. Res., 1978, 4, 1-20.
[28]
Martín, N.; Guilabert, P.; Abarca, L.; Usua, G.M.; Serracanta, J.; Colomina, M.J. Coagulation abnormalities following nexoBrid use: A case report. J. Burn Care Res., 2018, 39(6), 1067-1070.[http://dx.doi.org/10.1093/jbcr/irx044] [PMID: 29931322]
[29]
Errasti, M.E.; Prospitti, A.; Viana, C.A.; Gonzalez, M.M.; Ramos, M.V.; Rotelli, A.E.; Caffini, N.O. Effects on fibrinogen, fibrin, and blood coagulation of proteolytic extracts from fruits of Pseudananas macrodontes, Bromelia balansae, and B. hieronymi (Bromeliaceae) in comparison with bromelain. Blood Coagul. Fibrinolysis, 2016, 27(4), 441-449.[http://dx.doi.org/10.1097/MBC.0000000000000531
] [PMID: 26886361]
[30]
Hale, L.P.; Greer, P.K.; Trinh, C.T.; James, C.L. Proteinase activity and stability of natural bromelain preparations. Int. Immunopharmacol., 2005, 5(4), 783-793.[http://dx.doi.org/10.1016/j.intimp.2004.12.007] [PMID: 15710346]
[31]
Azarkan, M.; Maes, D.; Bouckaert, J.; Thi, M.H.D.; Wyns, L.; Looze, Y. Thiolpegylation facilitates purification of chymopapain leading to diffraction studies at 1.4 Å resolution. J. Chromatogr. A, 1996, 749(1-2), 69-72.[http://dx.doi.org/10.1016/0021-9673(96)00360-3] [PMID: 8680598]
[32]
Azarkan, M.; Matagne, A.; Wattiez, R.; Bolle, L.; Vandenameele, J.; Baeyens-Volant, D. Selective and reversible thiol-pegylation, an effective approach for purification and characterization of five fully active ficin (iso)forms from Ficus carica latex. Phytochemistry, 2011, 72(14-15), 1718-1731.[http://dx.doi.org/10.1016/j.phytochem.2011.05.009
] [PMID: 21665232]
[33]
López, L.M.; Sequeiros, C.; Natalucci, C.L.; Brullo, A.; Maras, B.; Barra, D.; Caffini, N.O. Purification and characterization of macrodontain I, a cysteine peptidase from unripe fruits of Pseudananas macrodontes (Morr.) harms (Bromeliaceae). Protein Expr. Purif., 2000, 18(2), 133-140.[http://dx.doi.org/10.1006/prep.1999.1165] [PMID: 10686143]
[34]
Schägger, H. Tricine-SDS-PAGE. Nat. Protoc., 2006, 1(1), 16-22.[http://dx.doi.org/10.1038/nprot.2006.4] [PMID: 17406207]
[35]
Shivaprasad, H.V.; Rajaiah, R.; Frey, B.M.; Frey, F.J.; Vishwanath, B.S. ‘Pergularain e I’--a plant cysteine protease with thrombin-like activity from Pergularia extensa latex. Thromb. Res., 2010, 125(3), e100-e105.[http://dx.doi.org/10.1016/j.thromres.2009.10.002
] [PMID: 19853890]
[36]
Viana, C.A.; Oliveira, J.S.; Freitas, C.D.; Alencar, N.M.; Carvalho, C.P.; Nishi, B.C.; Ramos, M.V. Thrombin and plasmin-like activities in the latices of Cryptostegia grandiflora and Plumeria rubra. Blood Coagul. Fibrinolysis, 2013, 24(4), 386-392.[http://dx.doi.org/10.1097/MBC.0b013e32835d540b
] [PMID: 23314383]
[37]
Weisel, J.W.; Litvinov, R.I. Fibrin formation, structure and properties. Fibrous Proteins: Structures and Mechanisms., 2017, , 405-456.[http://dx.doi.org/10.1007/978-3-319-49674-0_13]
[38]
Gorkun, O.V.; Veklich, Y.I.; Weisel, J.W.; Lord, S.T. The conversion of fibrinogen to fibrin: Recombinant fibrinogen typifies plasma fibrinogen. Blood, 1997, 89(12), 4407-4414.[http://dx.doi.org/10.1182/blood.V89.12.4407] [PMID: 9192765]
[39]
Weisel, J.W.; Nagaswami, C. Computer modeling of fibrin polymerization kinetics correlated with electron microscope and turbidity observations: Clot structure and assembly are kinetically controlled. Biophys. J., 1992, 63(1), 111-128.[http://dx.doi.org/10.1016/S0006-3495(92)81594-1
] [PMID: 1420861]
[40]
Zubairova, L.D.; Nabiullina, R.M.; Nagaswami, C.; Zuev, Y.F.; Mustafin, I.G.; Litvinov, R.I.; Weisel, J.W. Circulating microparticles alter formation, structure, and properties of fibrin clots. Sci. Rep., 2015, 5, 17611.[http://dx.doi.org/10.1038/srep17611] [PMID: 26635081]
[41]
Oh-ishi, S.; Uchida, Y.; Ueno, A.; Katori, M. Bromelian, a thiolprotease from pineapple stem, depletes high molecular weight kininogen by activation of Hageman factor (Factor XIII). Thromb. Res., 1979, 14(4-5), 665-672.[http://dx.doi.org/10.1016/0049-3848(79)90121-X] [PMID: 483261]
[42]
Oh-ishi, S. Fluid phase activation of Hageman factor (factor XII) in citrated human plasma by bromelain: An application to the indirect enzymatic assay for Hageman factor. Thromb. Res., 1982, 27(5), 619-623.[http://dx.doi.org/10.1016/0049-3848(82)90309-7] [PMID: 6983741]
[43]
Orlandi-Mattos, P.E.; Aguiar, R.B.; da Silva Vaz, I.; Moraes, J.Z.; de Araujo Carlini, E.L.; Juliano, M.A.; Juliano, L. Enkephalin related peptides are released from jejunum wall by orally ingested bromelain. Peptides, 2019, 115, 32-42.[http://dx.doi.org/10.1016/j.peptides.2019.02.008] [PMID: 30836111]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy