Skip to main content

Oxidative Stress-Induced Mitochondrial Dysfunction and Asthma

  • Chapter
  • First Online:
Oxidative Stress in Lung Diseases

Abstract

Asthma is a well-recognized global concern with ever-increasing prevalence and economic burden worldwide. Genetic susceptibility and exposure to environmental triggers such as allergens, pollutants, infectious agents and even lifestyle choices are well-established modulators of the disease. Recent studies show that irrespective of the nature of causal trigger (allergic or nonallergic), mitochondria and its dysfunction is a central player in asthma pathogenesis. This chapter discusses the studies and mechanisms through which mitochondria plays its role in causing asthma pathogenesis. Under allergic asthma conditions, immune response and epithelial barrier functions are the key players modulating the function of mitochondria. Other mechanism that leads to the development of obese-asthma phenotype involves disruption of cellular bioenergetics via modulating nitric oxide levels, calcium homeostasis, etc. Repair, reprogramming and/or replacement of the dysfunctional mitochondria are some of the possible therapeutic strategies for better management of asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

12/15-LOX:

12/15-lipoxygenase

12-S-HETE:

12-S-hydroxyeicosatetraenoic acid

13-S-HODE:

13-S-hydroxyoctadecadienoic acid

ADMA:

Asymmetric dimethylarginine

AMP:

Adenosine monophosphate

ATP:

Adenosine triphosphate

CaMKII:

Ca2+/calmodulin-dependent protein kinase II

CLR:

C-type lectin receptors

DAMP:

Damage-associated molecular pattern

DC :

Dendritic cell

DRP1:

Dynamin-related protein 1

eNOS:

Endothelial nitric oxide synthase

ETC:

Electron transport chain

FADH2:

2-Dihydro flavin adenine dinucleotide

HDM:

House dust mite

IgE:

Immunoglobulin E

IL :

Interleukins

LPS:

Lipopolysaccharide

MCU:

Mitochondrial calcium uniporter

MetS:

Metabolic syndrome

MHC II:

Major histocompatibility complex class II

MSC:

Mesenchymal stem cell

mtDNA:

Mitochondrial DNA

NADH:

Nicotinamide adenine dinucleotide (reduced)

NADPH:

Nicotinamide adenine dinucleotide phosphate (reduced)

nDNA:

Nuclear DNA

NF-kβ:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NFP:

N-Formyl peptides

NLR:

Nucleotide-binding domain/leucine-rich repeat receptor

NLRP3:

Nod-like receptor family pyrin domain containing 3

NO:

Nitric oxide

NRF-1:

Nuclear respiratory factor-1

OONO:

Peroxynitrite

OPA1:

Optic atrophy protein 1

OVA:

Ovalbumin

PAMP:

Pathogen-associated molecular pattern

PBMCs:

Peripheral blood mononuclear cells

PC :

Phosphatidylcholine

PGC-1α:

Peroxisome proliferator-activated receptor-gamma coactivator

PKC-δ:

Protein kinase C delta type

PQQ:

Pyrroloquinoline quinone

PRR:

Pathogen recognition receptor

RLR:

Retinoic acid-inducible gene (RIG-1)-like receptors

ROS:

Reactive oxygen species

siRNA:

Small interfering RNA

TCR:

T-cell receptor

TFAM:

Mitochondrial transcription factor A

Th2:

Type 2 T helper cells

TLR:

Toll-like receptor

TNF-α:

Tumour necrosis factor alpha

TRPV1:

Transient receptor potential cation channel subfamily V member 1

UQCRC2:

Ubiquinol-cytochrome c reductase core protein II

References

  1. Holgate ST, Wenzel S, Postma DS, Weiss ST, Renz H, Sly PD (2015) Asthma. Nat Rev Dis Prim 1:15025. https://doi.org/10.1038/nrdp.2015.25

    Article  PubMed  Google Scholar 

  2. Wenzel SE (2012) Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med 18:716–725. https://doi.org/10.1038/nm.2678

    Article  CAS  PubMed  Google Scholar 

  3. Mabalirajan U, Ghosh B (2013) Mitochondrial dysfunction in metabolic syndrome and asthma. J Allergy 2013:1–12. https://doi.org/10.1155/2013/340476

    Article  Google Scholar 

  4. Bhatraju NK, Agrawal A (2017) Mitochondrial dysfunction linking obesity and asthma. Ann Am Thorac Soc 14:S368–S373. https://doi.org/10.1513/AnnalsATS.201701-042AW

    Article  PubMed  Google Scholar 

  5. Iyer D, Mishra N, Agrawal A (2017) Mitochondrial function in allergic disease. Curr Allergy Asthma Rep 17:29. https://doi.org/10.1007/s11882-017-0695-0

    Article  CAS  PubMed  Google Scholar 

  6. Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148:1145–1159. https://doi.org/10.1016/j.cell.2012.02.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. López-Armada MJ, Riveiro-Naveira RR, Vaamonde-García C, Valcárcel-Ares MN (2013) Mitochondrial dysfunction and the inflammatory response. Mitochondrion 13:106–118. https://doi.org/10.1016/j.mito.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  8. Sorrentino V, Menzies KJ, Auwerx J (2018) Repairing mitochondrial dysfunction in disease. Annu Rev Pharmacol Toxicol 58:353–389. https://doi.org/10.1146/annurev-pharmtox-010716-104908

    Article  CAS  PubMed  Google Scholar 

  9. Agrawal A, Mabalirajan U, Ahmad T, Ghosh B (2011) Emerging interface between metabolic syndrome and asthma. Am J Respir Cell Mol Biol 44:270–275. https://doi.org/10.1165/rcmb.2010-0141TR

    Article  CAS  PubMed  Google Scholar 

  10. Mukherjee AB, Zhang Z (2011) Allergic asthma: influence of genetic and environmental factors. J Biol Chem 286:32883–32889. R110.197046 [pii]10.1074/jbc.R110.197046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Minnicozzi M, Sawyer RT, Fenton MJ (2011) Innate immunity in allergic disease. Immunol Rev 242:106–127. https://doi.org/10.1111/j.1600-065X.2011.01025.x

    Article  CAS  PubMed  Google Scholar 

  12. Kay AB, Kaplan AP, Bousquet J, Holt PG (2008) Allergy and allergic diseases. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  13. Kraneveld AD, van der Kleij HPM, Kool M, van Houwelingen AH, Weitenberg ACD, Redegeld FAM, Nijkamp FP (2002) Key role for mast cells in nonatopic asthma. J Immunol 169:2044–2053

    Article  CAS  PubMed  Google Scholar 

  14. Archibald JM (2015) Endosymbiosis and eukaryotic cell evolution. Curr Biol 25:R911–R921. https://doi.org/10.1016/j.cub.2015.07.055

    Article  CAS  PubMed  Google Scholar 

  15. Lill R, Hoffmann B, Molik S, Pierik AJ, Rietzschel N, Stehling O, Uzarska MA, Webert H, Wilbrecht C, Mühlenhoff U (2012) The role of mitochondria in cellular iron–sulfur protein biogenesis and iron metabolism. Biochim Biophys Acta, Mol Cell Res 1823:1491–1508. https://doi.org/10.1016/J.BBAMCR.2012.05.009

    Article  CAS  PubMed  Google Scholar 

  16. Chandel NS (2014) Mitochondria as signaling organelles. BMC Biol 12:34. https://doi.org/10.1186/1741-7007-12-34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hamanaka RB, Chandel NS (2010) Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 35:505–513. https://doi.org/10.1016/j.tibs.2010.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yun J, Finkel T (2014) Mitohormesis. Cell Metab 19:757–766. https://doi.org/10.1016/j.cmet.2014.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312. https://doi.org/10.1126/SCIENCE.281.5381.1309

    Article  CAS  PubMed  Google Scholar 

  20. Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12:9–14. https://doi.org/10.1038/nrm3028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Archer SL (2013) Mitochondrial dynamics – mitochondrial fission and fusion in human diseases. N Engl J Med 369:2236–2251. https://doi.org/10.1056/NEJMra1215233

    Article  CAS  PubMed  Google Scholar 

  22. Jovaisaite V, Auwerx J (2015) The mitochondrial unfolded protein response – synchronizing genomes. Curr Opin Cell Biol 33:74–81. https://doi.org/10.1016/j.ceb.2014.12.003

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464:104–107. https://doi.org/10.1038/nature08780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kouzaki H, Iijima K, Kobayashi T, O’Grady SM, Kita H (2011) The danger signal, extracellular ATP, is a sensor for an airborne allergen and triggers IL-33 release and innate Th2-type responses. J Immunol 186:4375–4387. https://doi.org/10.4049/jimmunol.1003020

    Article  CAS  PubMed  Google Scholar 

  25. Chakraborty K, Raundhal M, Chen BB, Morse C, Tyurina YY, Khare A, Oriss TB, Huff R, Lee JS, St Croix CM, Watkins S, Mallampalli RK, Kagan VE, Ray A, Ray P (2017) The mito-DAMP cardiolipin blocks IL-10 production causing persistent inflammation during bacterial pneumonia. Nat Commun 8:13944. https://doi.org/10.1038/ncomms13944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Raby BA, Klanderman B, Murphy A, Mazza S, Camargo CA, Silverman EK, Weiss ST (2007) A common mitochondrial haplogroup is associated with elevated total serum IgE levels. J Allergy Clin Immunol 120:351–358. https://doi.org/10.1016/j.jaci.2007.05.029

    Article  CAS  PubMed  Google Scholar 

  27. Zifa E, Daniil Z, Skoumi E, Stavrou M, Papadimitriou K, Terzenidou M, Kostikas K, Bagiatis V, Gourgoulianis KI, Mamuris Z (2012) Mitochondrial genetic background plays a role in increasing risk to asthma. Mol Biol Rep 39:4697–4708. https://doi.org/10.1007/s11033-011-1262-8

    Article  CAS  PubMed  Google Scholar 

  28. Schauberger EM, Ewart SL, Arshad SH, Huebner M, Karmaus W, Holloway JW, Friderici KH, Ziegler JT, Zhang H, Rose-Zerilli MJ, Barton SJ, Holgate ST, Kilpatrick JR, Harley JB, Lajoie-Kadoch S, Harley ITW, Hamid Q, Kurukulaaratchy RJ, Seibold MA, Avila PC, Rodriguez-Cintrón W, Rodriguez-Santana JR, Hu D, Gignoux C, Romieu I, London SJ, Burchard EG, Langefeld CD, Wills-Karp M (2011) Identification of ATPAF1 as a novel candidate gene for asthma in children. J Allergy Clin Immunol 128:753–760.e11. https://doi.org/10.1016/j.jaci.2011.04.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Konrádová V, Copová C, Suková B, Houstĕk J (1985) Ultrastructure of the bronchial epithelium in three children with asthma. Pediatr Pulmonol 1:182–187

    Article  PubMed  Google Scholar 

  30. Mabalirajan U, Dinda AK, Kumar S, Roshan R, Gupta P, Sharma SK, Ghosh B (2008) Mitochondrial structural changes and dysfunction are associated with experimental allergic asthma. J Immunol 181:3540–3548

    Article  CAS  PubMed  Google Scholar 

  31. Aguilera-Aguirre L, Bacsi A, Saavedra-Molina A, Kurosky A, Sur S, Boldogh I (2009) Mitochondrial dysfunction increases allergic airway inflammation. J Immunol 183:5379–5387. https://doi.org/10.4049/jimmunol.0900228

    Article  CAS  PubMed  Google Scholar 

  32. Lambrecht BN, Hammad H (2012) The airway epithelium in asthma. Nat Med 18:684–692. https://doi.org/10.1038/nm.2737

    Article  CAS  PubMed  Google Scholar 

  33. Sebag SC, Koval OM, Paschke JD, Winters CJ, Comellas AP, Grumbach IM (2018) Inhibition of the mitochondrial calcium uniporter prevents IL-13 and allergen-mediated airway epithelial apoptosis and loss of barrier function. Exp Cell Res 362:400–411. https://doi.org/10.1016/j.yexcr.2017.12.003

    Article  CAS  PubMed  Google Scholar 

  34. Yang L, Na C-L, Luo S, Wu D, Hogan S, Huang T, Weaver TE (2017) The phosphatidylcholine transfer protein Stard7 is required for mitochondrial and epithelial cell homeostasis. Sci Rep 7:46416. https://doi.org/10.1038/srep46416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim SR, Kim DI, Kim SH, Lee H, Lee KS, Cho SH, Lee YC (2014) NLRP3 inflammasome activation by mitochondrial ROS in bronchial epithelial cells is required for allergic inflammation. Cell Death Dis 5:e1498. https://doi.org/10.1038/cddis.2014.460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gross O, Thomas CJ, Guarda G, Tschopp J (2011) The inflammasome: an integrated view. Immunol Rev 243:136–151. https://doi.org/10.1111/j.1600-065X.2011.01046.x

    Article  CAS  PubMed  Google Scholar 

  37. Kepp O, Galluzzi L, Kroemer G (2011) Mitochondrial control of the NLRP3 inflammasome. Nat Immunol 12:199–200. https://doi.org/10.1038/ni0311-199

    Article  CAS  PubMed  Google Scholar 

  38. Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–225. https://doi.org/10.1038/nature09663

    Article  CAS  PubMed  Google Scholar 

  39. Sebag SC, Koval OM, Paschke JD, Winters CJ, Jaffer OA, Dworski R, Sutterwala FS, Anderson ME, Grumbach IM (2017) Mitochondrial CaMKII inhibition in airway epithelium protects against allergic asthma. JCI Insight 2:e88297. https://doi.org/10.1172/jci.insight.88297

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chodaczek G, Bacsi A, Dharajiya N, Sur S, Hazra TK, Boldogh I (2009) Ragweed pollen-mediated IgE-independent release of biogenic amines from mast cells via induction of mitochondrial dysfunction. Mol Immunol 46:2505–2514. https://doi.org/10.1016/j.molimm.2009.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cahoon J, Anathy V (2015) Endoplasmic reticulum – mitochondrial interactions in house dust mite induced inflammation. UVM College of Arts and Sciences College Honors Theses

    Google Scholar 

  42. Syyong HT, Pascoe CD, Zhang J, Arsenault BA, Solomon D, Elliott WM, Hackett TL, Walker DC, Paré PD, Seow CY (2015) Ultrastructure of human tracheal smooth muscle from subjects with asthma and nonasthmatic subjects. Standardized methods for comparison. Am J Respir Cell Mol Biol 52:304–314. https://doi.org/10.1165/rcmb.2014-0176OC

    Article  CAS  PubMed  Google Scholar 

  43. Delmotte P, Yang B, Thompson MA, Pabelick CM, Prakash YS, Sieck GC (2012) Inflammation alters regional mitochondrial Ca2+ in human airway smooth muscle cells. Am J Phys Cell Physiol 303:C244–C256. https://doi.org/10.1152/ajpcell.00414.2011

    Article  CAS  Google Scholar 

  44. Beuther DA (2010) Recent insight into obesity and asthma. Curr Opin Pulm Med 16:64–70. https://doi.org/10.1097/MCP.0b013e3283338fa7

    Article  PubMed  Google Scholar 

  45. Farzan S (2013) The asthma phenotype in the obese: distinct or otherwise? J Allergy 2013:602908. https://doi.org/10.1155/2013/602908

    Article  Google Scholar 

  46. Appleton SL, Adams RJ, Wilson DH, Taylor AW, Ruffin RE, North West Adelaide Health Study T (2006) Central obesity is associated with nonatopic but not atopic asthma in a representative population sample. J Allergy Clin Immunol 118:1284–1291. https://doi.org/10.1016/j.jaci.2006.08.011

    Article  PubMed  Google Scholar 

  47. Wasir JS, Misra A, Vikram NK, Pandey RM, Gupta R (2008) Comparison of definitions of the metabolic syndrome in adult Asian Indians. J Assoc Physicians India 56:158–164

    CAS  PubMed  Google Scholar 

  48. Brisbon N, Plumb J, Brawer R, Paxman D (2005) The asthma and obesity epidemics: the role played by the built environment – a public health perspective. J Allergy Clin Immunol 115:1024–1028. https://doi.org/10.1016/j.jaci.2005.02.020

    Article  PubMed  Google Scholar 

  49. Kent BD, Lane SJ (2012) Twin epidemics: asthma and obesity. Int Arch Allergy Immunol 157:213–214. https://doi.org/10.1159/000329874

    Article  PubMed  Google Scholar 

  50. Lee EJ, In KH, Ha ES, Lee KJ, Hur GY, Kang EH, Jung KH, Lee SY, Kim JH, Lee SY, Shin C, Shim JJ, Kang KH, Yoo SH (2009) Asthma-like symptoms are increased in the metabolic syndrome. J Asthma 46:339–342. https://doi.org/10.1080/02770900802660931

    Article  PubMed  Google Scholar 

  51. Park S, Choi NK, Kim S, Lee CH (2018) The relationship between metabolic syndrome and asthma in the elderly. Sci Rep 8:9378. https://doi.org/10.1038/s41598-018-26621-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shore SA (2007) Obesity and asthma: lessons from animal models. J Appl Physiol 102:516–528. https://doi.org/10.1152/japplphysiol.00847.2006

    Article  CAS  PubMed  Google Scholar 

  53. Shore SA (2010) Obesity, airway hyperresponsiveness, and inflammation. J Appl Physiol 108:735–743. https://doi.org/10.1152/japplphysiol.00749.2009

    Article  PubMed  Google Scholar 

  54. Campbell CD, Mohajeri K, Malig M, Hormozdiari F, Nelson B, Du G, Patterson KM, Eng C, Torgerson DG, Hu D, Herman C, Chong JX, Ko A, O’Roak BJ, Krumm N, Vives L, Lee C, Roth LA, Rodriguez-Cintron W, Rodriguez-Santana J, Brigino-Buenaventura E, Davis A, Meade K, LeNoir MA, Thyne S, Jackson DJ, Gern JE, Lemanske RF Jr, Shendure J, Abney M, Burchard EG, Ober C, Eichler EE (2014) Whole-genome sequencing of individuals from a founder population identifies candidate genes for asthma. PLoS One 9:e104396. https://doi.org/10.1371/journal.pone.0104396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Anderson GG, Cookson WO (1999) Recent advances in the genetics of allergy and asthma. Mol Med Today 5:264–273

    Article  CAS  PubMed  Google Scholar 

  56. Koppelman GH, Stine OC, Xu J, Howard TD, Zheng SL, Kauffman HF, Bleecker ER, Meyers DA, Postma DS (2002) Genome-wide search for atopy susceptibility genes in Dutch families with asthma. J Allergy Clin Immunol 109:498–506

    Article  CAS  PubMed  Google Scholar 

  57. Aral C, Akkiprik M, Caglayan S, Atabey Z, Ozişik G, Bekiroglu N, Ozer A (2011) Investigation of relationship of the mitochondrial DNA 16189 T>C polymorphism with metabolic syndrome and its associated clinical parameters in Turkish patients. Hormones (Athens) 10:298–303

    Article  Google Scholar 

  58. S-HH J, Lu M-Y, Bai R-K, Liao Y-C, Trieu RB, Yu M-L, Wong L-JC (2010) A common mitochondrial polymorphism 10398A>G is associated metabolic syndrome in a Chinese population. Mitochondrion 10:294–299. https://doi.org/10.1016/j.mito.2010.01.001

    Article  CAS  Google Scholar 

  59. Nunemaker CS, Chen M, Pei H, Kimble SD, Keller SR, Carter JD, Yang Z, Smith KM, Wu R, Bevard MH, Garmey JC, Nadler JL (2008) 12-Lipoxygenase-knockout mice are resistant to inflammatory effects of obesity induced by Western diet. Am J Physiol Endocrinol Metab 295:E1065–E1075. https://doi.org/10.1152/ajpendo.90371.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sears DD, Miles PD, Chapman J, Ofrecio JM, Almazan F, Thapar D, Miller YI (2009) 12/15-lipoxygenase is required for the early onset of high fat diet-induced adipose tissue inflammation and insulin resistance in mice. PLoS One 4:e7250. https://doi.org/10.1371/journal.pone.0007250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cole BK, Kuhn NS, Green-Mitchell SM, Leone KA, Raab RM, Nadler JL, Chakrabarti SK (2012) 12/15-Lipoxygenase signaling in the endoplasmic reticulum stress response. Am J Physiol Endocrinol Metab 302:E654–E665. https://doi.org/10.1152/ajpendo.00373.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cole BK, Morris MA, Grzesik WJ, Leone KA, Nadler JL (2012) Adipose tissue-specific deletion of 12/15-lipoxygenase protects mice from the consequences of a high-fat diet. Mediat Inflamm 2012:851798. https://doi.org/10.1155/2012/851798

    Article  CAS  Google Scholar 

  63. Mabalirajan U, Rehman R, Ahmad T, Kumar S, Singh S, Leishangthem GD, Aich J, Kumar M, Khanna K, Singh VP, Dinda AK, Biswal S, Agrawal A, Ghosh B (2013) Linoleic acid metabolite drives severe asthma by causing airway epithelial injury. Sci Rep 3:1349. https://doi.org/10.1038/srep01349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nisoli E, Clementi E, Carruba MO, Moncada S (2007) Defective mitochondrial biogenesis. Circ Res 100:795–806. https://doi.org/10.1161/01.RES.0000259591.97107.6c

    Article  CAS  PubMed  Google Scholar 

  65. Holguin F, Fitzpatrick A (2010) Obesity, asthma, and oxidative stress. J Appl Physiol 108:754–759. https://doi.org/10.1152/japplphysiol.00702.2009.—Obesity

    Article  PubMed  Google Scholar 

  66. Carlstrom M, Larsen FJ, Nystrom T, Hezel M, Borniquel S, Weitzberg E, Lundberg JO (2010) Dietary inorganic nitrate reverses features of metabolic syndrome in endothelial nitric oxide synthase-deficient mice. Proc Natl Acad Sci U S A 107:17716–17720. https://doi.org/10.1073/pnas.1008872107

    Article  PubMed  PubMed Central  Google Scholar 

  67. Mabalirajan U, Ahmad T, Leishangthem GD, Joseph DA, Dinda AK, Agrawal A, Ghosh B (2010) Beneficial effects of high dose of L-arginine on airway hyperresponsiveness and airway inflammation in a murine model of asthma. J Allergy Clin Immunol 125:626–635. https://doi.org/10.1016/j.jaci.2009.10.065

    Article  CAS  PubMed  Google Scholar 

  68. Monti LD, Casiraghi MC, Setola E, Galluccio E, Pagani MA, Quaglia L, Bosi E, Piatti P (2013) L-arginine enriched biscuits improve endothelial function and glucose metabolism: a pilot study in healthy subjects and a cross-over study in subjects with impaired glucose tolerance and metabolic syndrome. Metabolism 62:255–264. https://doi.org/10.1016/j.metabol.2012.08.004

    Article  CAS  PubMed  Google Scholar 

  69. Singh S, Bodas M, Bhatraju NK, Pattnaik B, Gheware A, Parameswaran PK, Thompson M, Freeman M, Mabalirajan U, Gosens R, Ghosh B, Pabelick C, Linneberg A, Prakash YS, Agrawal A (2016) Hyperinsulinemia adversely affects lung structure and function. Am J Phys Lung Cell Mol Phys 310:L837–L845. https://doi.org/10.1152/ajplung.00091.2015

    Article  Google Scholar 

  70. Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M, Gomes AP, Ward TM, Minor RK, Blouin M-J, Schwab M, Pollak M, Zhang Y, Yu Y, Becker KG, Bohr VA, Ingram DK, Sinclair DA, Wolf NS, Spindler SR, Bernier M, de Cabo R (2013) Metformin improves healthspan and lifespan in mice. Nat Commun 4:2192. https://doi.org/10.1038/ncomms3192

    Article  CAS  PubMed  Google Scholar 

  71. Calixto MC, Lintomen L, André DM, Leiria LO, Ferreira D, Lellis-Santos C, Anhê GF, Bordin S, Landgraf RG, Antunes E (2013) Metformin attenuates the exacerbation of the allergic eosinophilic inflammation in high fat-diet-induced obesity in mice. PLoS One 8:e76786. https://doi.org/10.1371/journal.pone.0076786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xu W, Ghosh S, Comhair SAA, Asosingh K, Janocha AJ, Mavrakis DA, Bennett CD, Gruca LL, Graham BB, Queisser KA, Kao CC, Wedes SH, Petrich JM, Tuder RM, Kalhan SC, Erzurum SC (2016) Increased mitochondrial arginine metabolism supports bioenergetics in asthma. J Clin Invest 126:2465–2481. https://doi.org/10.1172/JCI82925

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mabalirajan U, Ahmad T, Leishangthem GD, Dinda AK, Agrawal A, Ghosh B (2010) L-arginine reduces mitochondrial dysfunction and airway injury in murine allergic airway inflammation. Int Immunopharmacol 10:1514–1519. https://doi.org/10.1016/j.intimp.2010.08.025

    Article  CAS  PubMed  Google Scholar 

  74. Mabalirajan U, Ahmad T, Rehman R, Leishangthem GD, Dinda AK, Agrawal A, Ghosh B, Sharma SK (2013) Baicalein reduces airway injury in allergen and IL-13 induced airway inflammation. PLoS One 8:e62916. https://doi.org/10.1371/journal.pone.0062916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mabalirajan U, Dinda AK, Sharma SK, Ghosh B (2009) Esculetin restores mitochondrial dysfunction and reduces allergic asthma features in experimental murine model. J Immunol 183:2059–2067. https://doi.org/10.4049/jimmunol.0900342

    Article  CAS  PubMed  Google Scholar 

  76. Aich J, Mabalirajan U, Ahmad T, Khanna K, Rehman R, Agrawal A, Ghosh B (2012) Resveratrol attenuates experimental allergic asthma in mice by restoring inositol polyphosphate 4 phosphatase (INPP4A). Int Immunopharmacol 14:438–443. https://doi.org/10.1016/j.intimp.2012.08.017

    Article  CAS  PubMed  Google Scholar 

  77. Bajpai P, Darra A, Agrawal A (2018) Microbe-mitochondrion crosstalk and health: an emerging paradigm. Mitochondrion 39:20–25. https://doi.org/10.1016/j.mito.2017.08.008

    Article  CAS  PubMed  Google Scholar 

  78. Chowanadisai W, Bauerly KA, Tchaparian E, Wong A, Cortopassi GA, Rucker RB (2010) Pyrroloquinoline quinone stimulates mitochondrial biogenesis through cAMP response element-binding protein phosphorylation and increased PGC-1alpha expression. J Biol Chem 285:142–152. https://doi.org/10.1074/jbc.M109.030130

    Article  CAS  PubMed  Google Scholar 

  79. Rucker R, Chowanadisai W, Nakano M (2009) Potential physiological importance of pyrroloquinoline quinone. Altern Med Rev 14:268–277

    PubMed  Google Scholar 

  80. Reddy PH (2011) Mitochondrial dysfunction and oxidative stress in asthma: implications for mitochondria-targeted antioxidant therapeutics. Pharmaceuticals (Basel) 4:429–456. https://doi.org/10.3390/ph4030429

    Article  CAS  Google Scholar 

  81. Gvozdjáková A, Kucharská J, Bartkovjaková M, Gazdíková K, Gazdík FE (2005) Coenzyme Q10 supplementation reduces corticosteroids dosage in patients with bronchial asthma. Biofactors 25:235–240

    Article  PubMed  Google Scholar 

  82. Agrawal A, Mabalirajan U (2016) Rejuvenating cellular respiration for optimizing respiratory function: targeting mitochondria. Am J Physiol Cell Mol Physiol 310:L103–L113. https://doi.org/10.1152/ajplung.00320.2015

    Article  Google Scholar 

  83. Zhu Y-G, Hao Q, Monsel A, Feng X-M, Lee J-W (2013) Adult stem cells for acute lung injury: remaining questions and concerns. Respirology 18:744–756. https://doi.org/10.1111/resp.12093

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ahmad T, Mukherjee S, Pattnaik B, Kumar M, Singh S, Kumar M, Rehman R, Tiwari BK, Jha KA, Barhanpurkar AP, Wani MR, Roy SS, Mabalirajan U, Ghosh B, Agrawal A (2014) Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J 33:994–1010. https://doi.org/10.1002/embj.201386030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag Agrawal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakraborty, S., Khanna, K., Agrawal, A. (2020). Oxidative Stress-Induced Mitochondrial Dysfunction and Asthma. In: Chakraborti, S., Parinandi, N., Ghosh, R., Ganguly, N., Chakraborti, T. (eds) Oxidative Stress in Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-32-9366-3_6

Download citation

Publish with us

Policies and ethics