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1. ABSTRACT 
 

The microtubule-associated protein tau is the 
primary component of the intracellular filamentous deposits 
found in Alzheimer’s disease (AD) brain and also in a 
family of neurodegenerative diseases called ‘tauopathies’, 
where tau pathology is the primary, defining characteristic 
with little or no amyloid-beta (Abeta) pathology. It has 
been demonstrated that tau modifications such as 
hyperphosphorylation and truncation might be important 
events in the process leading to tau intracellular 
aggregation and neuronal cell death. The discovery of 
tau gene mutations in frontotemporal dementia with 
parkinsonism linked to chromosome 17 (FTDP-17) 
reinforced the predominant role attributed to tau 
proteins in the pathogenesis of neurodegenerative 
disorders. This review highlights recent findings 
concerning the normal metabolism and function of tau, 
as well as the abnormal processing and function of tau 
in AD and in the tauopathies. 

 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Tau is a family of microtubule-associated 
proteins (MAPs) that are abundant in the central nervous 
system (CNS), where it is expressed predominantly in 
axons (1). Although tau is mainly found in neurons, 
nonneuronal cells can express trace amounts. For instance, 
tau proteins are found in glial cells and oligodendrocytes (2, 
3) and also in several peripheral tissues such as heart, 
kidney, lung, muscle, pancreas, testis, and in fibroblasts (4-
6). Tau proteins play a fundamental role in stablilizing the 
neuronal cytoskeleton and facilitating neurite formation and 
stability. In addition to its role in stabilizing microtubules, 
over the past several years other tau functions such as roles 
in vesicular transport and axonal polarity have been 
identified and clearly indicate that tau is a multifunctional 
protein (7-9). Although the underlying mechanisms 
contributing to the pathological processing of tau in 
neurodegenerative conditions have not been fully 
elucidated, it is clear that tau becomes characteristically
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Figure 1. Schematic representation of six predominant isoforms and domains of tau found in human brain. The number of amino 
acids in each isoform and its abbreviation are indicated at the right. The six isoforms are generated by splicing in or out exons 2 
and 3 (E2 and E3) in the N-terminal region and exon 10 (R2 and flanking gray boxes) in the C-terminal region. E2 and E3 encode 
respective 29-amino acid insert and each microtubule-binding repeat, designated to R1 to R4, is 18-amino acid long. 
Psuedorepeat region R’, K369-S400 in 4R/2N tau isoform, is followed by microtubule-binding repeats. The splicing in or out 
exon 10 results in a tau form with or without R2, to yield isoforms with four (4R) or three (3R) microtubule-binding domains, 
respectively. Six isoforms of tau are present in adult human brain whereas only the shortest isoform (3R/0N) of tau is present in 
fetal brain. The N-terminal projection domain includes the acidic and proline-rich domains, and the C-terminal microtubule-
assembly domain includes microtubule-binding repeats, pseudorepeat, and C-terminal tail part. 
 
altered both functionally and structurally in Alzheimer’s 
disease (AD) and other tauopathies. The 1998 discovery 
that tau gene mutations cause frontotemporal dementia with 
parkinsonism linked to chromosome 17 (FTDP-17) 
increased interest in the mechanisms underlying the tau 
pathology in tau-related disorders (10-14). Although 
formation of filamentous intracellular aggregates of tau is a 
common pathological hallmark of these tau-related 
disorders, the role of insoluble filamentous aggregates as a 
toxic mediator in neuronal dysfunction and death is still not 
clear. Given that the correlation between aggregate 
presence and the incidence of disease does not necessarily 
dictate a causal relationship, the focus has been shifting to 
identify the toxic tau species during the entire fibrillogenic 
process from the soluble monomers through oligomers to 
the insoluble mature aggregates. There is increasing 
evidence that posttranslational processing of tau such as 
phosphorylation and limited proteolysis is driving forces in 
the formation of filamentous deposits. Due to these 
alterations, tau undergoes conformational changes as it 
transforms from an unfolded monomer to the structured 
polymer characteristic of aggregates. This review will 
cover recent advances in modifications of tau and their 
biological consequences. 
 
3. TAU GENE AND ALTERNATIVE SPLICING 
 

Human tau proteins are encoded by a single gene 
on chromosome 17q21 that consists of 16 exons. The 
majority of the tau isoforms in the CNS contain 8-11 exons 
due to alternative mRNA splicing of exons 2, 3, and 10 
generating six tau isoforms ranging from 352 to 441 amino 
acids in length (Figure 1) (15, 16). The interaction between 
tau and microtubules is mediated by three or four C-
terminal imperfect repeat domains (R1-R4, 31-32 amino 
acids each) encoded by exons 9-12 (15, 17, 18). Although 

the microtubule binding repeats are the functional portion 
of tau in terms of stabilizing the microtubules, the domains 
that flank these repeats play a critical role in regulating the 
ability of tau to bind to the microtubules. The proline-rich 
domain and pseudorepeat C-terminal domain R’, which are 
upstream and downstream of the repeats, respectively, 
strongly enhance the tau’s microtubule binding affinity (17, 
19).  

 
Alternative splicing of exon 10 produces tau 

isoforms with either three (exon 10-) or four (exon 10+) 
repeat domains, known as 3R and 4R tau, respectively 
(Figure 1). These three- or four-repeat domains contain 
imperfect 18-amino acid repeats separated by 13- or 14-
amino acid-long inter-repeat sequences (20). In addition, 
alternative splicing of exons 2 and 3 results in 3R and 4R 
isoforms without (0N) or with either 29 (1N) or 58 (2N) 
amino acid inserts. Exon 3 never appears independently of 
exon 2 (21). These two additional inserts are highly acidic 
and are followed by a basic proline-rich region. The N-
terminal part is referred to as the projection domain since it 
projects from the microtubule surface where it may interact 
with other cytoskeletal elements and plasma membrane 
(22-24). Projection domains may determine spacing 
between microtubules in the axon and may increase axonal 
diameter (25). In peripheral neurons, which often project a 
very long axon with a large diameter, an additional N-
terminal tau sequence encoded by exon 4a is present 
generating a specific tau isoform called ‘big tau’ (26, 27), 
suggesting that the N-terminal region of tau is crucial in the 
stabilization and organization of certain types of axons. In 
adult human brain, the ratio of 3R tau to 4R tau isoforms is 
about one and the 1N, 0N, and 2N isoforms comprise about 
54%, 37%, and 9%, respectively, of total tau (28). In 
addition, the alternative splicing of tau is developmentally 
regulated such that only the shortest tau isoform (3R/0N) is 
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expressed in fetal brain, whereas all six isoforms appear in 
the postnatal period of the human brain (29). It has been 
demonstrated that adult tau isoforms with 4R are more 
efficient at promoting microtubule assembly than the fetal 
isoform with 3R (17, 28, 30). Interestingly, the inter-region 
between repeats 1 and 2 (R1-R2 inter-region) and more 
specifically the peptide 274WVQIINKK281 within this 
sequence, is the most potent inducer of microtubule 
polymerization. This R1-R2 inter-region is unique to 4R 
tau, which is adult-specific. The absence of this region in 
3R, which is the only form expressed early in development, 
likely contributes to the cytoskeletal plasticity required of 
immature neurons (24, 31). As mentioned above, in the 
peripheral nervous system (PNS), inclusion of exon 4a in 
the amino-terminus results in the expression of 110 kDa tau 
protein termed ‘big tau’, or ‘high molecular weight tau’ 
(32-34). Novel isoforms of tau that lack the microtubule-
binding domains have been reported, which are due to the 
use of additional 3’ splice sites of exon 6 (35). Utilization 
of two additional splice sites results in frameshifts and 
produces tau molecules lacking the microtubule binding 
domains (35, 36). Exon 8 has so far only been found in 
bovine tau mRNA (37, 38).  
 
4. CONFORMATIONAL STRUCTURES OF TAU 
PROTEINS 
 

 Tau is normally highly soluble and is one of the 
longest natively unfolded proteins, lacking significant 
amounts of secondary structure over a sequence of 441 
amino acids in the longest human CNS isoform. Tau is an 
unusual protein that has long stretches of charged regions 
that are not conducive for intermolecular hydrophobic 
association (39). However, in AD brain as well as in other 
neurodegenerative disorders tau self-assembles into 
filamentous structures. Of the four microtubule binding 
repeats in tau, the predicted amino acids having beta-
structure are concentrated in R2 and R3 and can self-
assemble into filaments in vitro (40). Two hexapeptides 
within this region of tau, 275VQIINK280 and 306VQIVYK311, 
are capable of undergoing a conformational change from a 
random coil to a beta sheet structure (41). Recently, it has 
been reported that repeat domains R2-R4 contain residual 
beta-structure, which has the potential to serve as 
nucleation seeds for aggregation of tau into PHFs (42). 
However, it has been also reported that PHFs are comprised 
of alpha-helices (43).  

 
Truncation at both the amino- and carboxy-

termini has been demonstrated to directly influence the 
conformation into which the molecule folds and hence the 
ability of tau to polymerize into fibrils, at least in vitro.  In 
order to aggregate into filaments, the tau molecule must 
undergo a shift from an essentially unfolded random coil 
configuration to more compact status called the Alz50 state, 
where its amino-terminus comes into close proximity of the 
microtubule-binding repeats (44), suggesting that N-
terminal domain can facilitate the formation of fibrils. 
Conversely, the carboxy tail of the tau molecule inhibits 
filament formation (45). Tau constructs lacking the carboxy 
tail assembled much faster and to a greater extent than wild 
type. Tau truncated at Asp421, the site at which caspase 3 

cleaves tau, assembled more readily than the full-length tau 
(46, 47). 

 
Besides the truncation of the C-terminal domain, 

phosphorylation at Ser396/404 greatly enhances the rates of 
tau filament formation in vitro (45). In addition, it has been 
reported that in vitro abnormal hyperphosphorylation 
promotes the self-assembly of tau in to tangles of paired 
helical filaments (PHFs) and straight filaments by 
neutralizing the inhibitory basic charges of the flanking 
regions (48). Recently, it has been demonstrated that 
pseudophosphorylation (in which a Ser/Thr is mutated to an 
Asp or Glu to mimic phosphorylation (49, 50)) in the N-
terminal portion of tau up to amino acid 208 mainly 
suppressed tau aggregation, whereas mutations in the C-
terminal region mainly lead to enhanced aggregation (51). 
In particular, pseduophosphorylation of Ser422 
significantly facilitated the tau aggregation (51). In disease 
conditions where pathological alterations of tau occur in the 
form of abnormal phosphorylation, truncation, and/or 
mutations, tau can adopt a partial beta-structure, which then 
leads to the highly ordered morphology of the PHFs (41, 52, 
53).  

 
5. PHYSIOLOGICAL ROLE OF TAU 
 
5.1. Microtubule binding 

It has been unequivocally demonstrated that tau 
suppresses the dynamic instability of microtubules and thus 
promotes microtubule stability. The phosphorylation of tau 
at specific sites is the predominant mechanism by which 
tau function is regulated (54). It is becoming increasingly 
apparent that phosphorylation of a few specific sites plays a 
significant role in regulating tau-microtubule interactions. 
Phosphorylation of the KXGS motifs within the 
microtubule-binding repeats of tau strongly reduces the 
binding of tau to microtubules in vitro (55) and probably in 
vivo (56, 57). Since site-specific phosphorylation clearly 
modulates the function and intracellular localization of tau, 
inappropriate phosphorylation is probably a key event in 
the development of tau pathology. It has been demonstrated 
that phosphorylation of Ser262 significantly attenuates the 
ability of tau to bind microtubules in vitro (55). However in 
situ, phosphorylation of two or more KXGS motifs 
(especially Ser262 and Ser356) is required to decrease 
microtubule binding and facilitate the formation of cell 
processes (56). Microtubule-affinity-regulating kinase 
(MARK), cAMP-dependent protein kinase (PKA), and 
calcium/calmodulin-dependent protein kinase II might 
contribute to the phosphorylation of these sites in vivo (57-
62). Phosphorylation of Thr231 also plays a significant role 
in regulating tau-microtubule interactions. Thr231 is a 
primed glycogen synthase kinase 3 beta (GSK3beta) site on 
tau, which means that Ser235 must be phosphorylated first 
to get efficient phosphorylation of Thr231 (63). 
Phosphorylation of Thr231 greatly diminishes the ability of 
tau to bind microtubules in situ (64). Furthermore, when 
cell lysates were separated into soluble cytosolic and 
insoluble cytoskeletal fractions, almost all the tau 
phosphorylated at the Thr231 epitope was present in the 
soluble fraction (64, 65). In addition, phosphorylation of 
Thr231 inhibits the ability of tau to stabilize microtubules 
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in the cell as indicated by a reduction in the levels of 
acetylated tubulin, a marker of microtubule stability (66). 
By contrast, phosphorylation of tau at Ser396 and/or 
Ser404 did not significantly affect the ability of tau to bind 
microtubules (64). Phosphorylation of Thr231 thus appears 
to play a key role in regulating tau function in vivo. A 
significant consequence of tau hyperphosphorylation is a 
reduction in its ability to interact with microtubules. It has 
been demonstrated that the pool of tau able to bind to 
microtubules is significantly reduced in AD brain and the 
degree of impairment in microtubule binding correlates 
with the extent of tau pathology (67). Overall, although the 
phosphorylation of specific sites does significantly decrease 
tau’s ability to stabilize microtubules, it must be 
emphasized that phosphorylation of every site on tau does 
not equally affect tau’s microtubule-binding affinity. These 
data indicate that abnormal phosphorylation rather than 
hyperphosphorylation appears to play a key role in 
regulating tau function in microtubule binding. In addition, 
the majority of FTDP-17 missense mutations disrupt tau-
microtubule interactions reducing the ability of tau to 
promote microtubule assembly (68-71). 

 
As indicated above 4R tau binds microtubules 

more efficiently and more effectively stabilizes 
microtubules than 3R tau (17, 18, 28, 30). Further, it has 
been demonstrated that 4R tau not only binds microtubules 
with a greater affinity, but can also displace 3R tau from 
microtubules in situ suggesting that 4R tau preferentially 
associates with microtubules and outcompetes 3R tau for 
microtubule binding sites (72). In vivo, it has been shown 
that the developmentally regulated transition in expression 
from 3R to 4R tau correlates with increased microtubule 
stability and decreased cytoskeletal plasticity (29, 73). 
However, the preferential binding of 4R tau over 3R tau to 
microtubules may not simply due to the addition of one 
more repeat domain in 4R tau (31). The inter-repeat (IR) 
domain, which is located between microtubule binding 
domains 1 and 2 and present only in 4R, has been reported 
to provide a unique microtubule binding site with more 
than twice the binding affinity of any individual repeat 
through distinct binding sites from those bound by the 
repeats, suggesting that R1-R2 IR may establish an adult-
specific, high affinity anchor, which tethers the otherwise 
mobile tau to the tubulin to increase microtubule stability 
(31).  
 
5.2.   Neurite outgrowth 

Tau likely plays a key role in the axonal growth 
and in the establishment of neuronal polarity (74). Tau 
strongly promotes neurite outgrowth during differentiation 
(7, 75-77), and even in nonneuronal cells tau induces cell 
processes with a cytoskeletal organization reminiscent of 
neurites (56, 78-80). Early studies demonstrated that 
suppression of tau expression in cultured cerebellar neurons 
by using antisense oligonucleotides significantly attenuated 
neurite outgrowth (7, 81). However, a tau knockout mouse 
has no overt phenotype except for a decrease in the number 
of microtubules in small-caliber axons (82). This lack of 
phenotype is probably due to a redundancy of function 
and/or compensatory upregulation of other microtubule-
associated proteins (82, 83). Indeed, knocking out both 

MAP-1B and tau results in a severe dysgenesis of axonal 
tracts (corpus callosum, anterior commissure, etc), delayed 
neuronal migration resulting in a disruption of neuronal 
layer formation and disorganization of microtubules in 
growth cones (84). Furthermore, primary cultures of 
hippocampal neurons lacking tau exhibit decreased rates of 
neurite extension and inhibited neuronal polarization (i.e. 
the development of axons and dendrites) (83), defects that 
are more pronounced in the tau-MAP-1B double knockout 
model (84). During axonogenesis, tau function appears to 
be locally regulated by phosphorylation. Interestingly, there 
is a proximodistal gradient in tau phosphorylation at 
Ser199/202 and Thr205 along the nascent axon: tau in the 
cell body and proximal axon is ~80% phosphorylated at 
these sites (85). Furthermore, neurite outgrowth seems to 
require tau phosphorylation at KXGS motifs in a specific 
spatial and temporal manner, probably by MARK or PKA, 
resulting in the detachment of tau from microtubules and 
their destabilization (56, 86). The formation of neurites can 
be blocked if MARK2 is inactivated in N2a neuroblastoma 
cells (86). Further, neurite formation can be blocked if the 
target KXGS motifs on tau are rendered 
nonphosphorylatable by point mutations. Recently, it has 
been reported that overexpression of tau resulted in the 
stimulation of neurite outgrowth upon cAMP treatment in 
neuroblastoma cells (87). In contrast, there is indirect 
evidence that GSK3-mediated tau phosphorylation might 
facilitate neurite retraction (88). Interestingly, in support of 
tau’s involvement in neurite outgrowth, it has been reported 
that tau mediates neurite outgrowth by torsinA protein, 
which is an AAA+ ATPase (89, 90). GAG deletion 
mutations of torsinA results in the primary early-onset 
torsion dystonia (91, 92). 
 
5.3. Axonal transport 

Tau proteins regulate axonal traffic (8, 9). There 
is increasing evidence that tau may modulate motor-based 
transport along microtubules. Tau appears to interfere with 
the binding of kinesin and kinesin-like motors to 
microtubules leading to a preferential inhibition of plus-end 
directed transport (8). In mouse models in which tau is 
overexpressed in the central nervous system, there is almost 
always axonopathy, predominantly in spinal cord neurons 
(93-95). In these tau-overexpression mouse models, there is 
invariable evidence of axonal and myelin degeneration with 
axonal swellings that contain cytoskeletal elements (93-95). 
In addition, overexpression of the shortest human tau 
isoform significantly inhibits fast axonal transport in 
ventral root axons (95). Tau can inhibit kinesin-dependent 
fast axonal transport in cell culture models (8, 96), and this 
is probably the case in vivo when tau is overexpressed. The 
primary mechanism by which tau inhibits kinesin-
dependent transport is by reducing the attachment 
frequency of the motors. Tau has no effect on the speed or 
run length of kinesin once it is attached to the microtubules 
(97). Phosphorylation of tau modulates its affinity for 
microtubules and thus its ability to regulate motor activity. 
Overexpression of GSK3beta in mice transgenic for human 
tau significantly increases the phosphorylation state of tau 
and reduces the axonopathy compared with that in mice 
that overexpress human tau only. In the double-transgenic 
mice, there is also less motor impairment when compared 
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with the transgenics overexpressing the human tau alone 
(98, 99). This is probably because the increase in tau 
phosphorylation due to overexpression of GSK3beta 
decreases the affinity of tau for microtubules. This should 
make the tau in the GSK3beta-human tau double-transgenic 
mice less effective at competing with kinesin for binding 
sites, the net result being greater kinesin binding and a 
restoration of anterograde axonal transport. It has been 
demonstrated that in cell culture models, GSK3beta-
mediated tau phosphorylation is associated with proper 
anterograde organelle transport (100), providing further 
evidence that the control of axonal transport by tau is 
regulated by GSK3beta-mediated phosphorylation. 
Recently, it has been also demonstrated that overexpression 
of tau disrupts axonal transport causing vesicle aggregation 
and loss of locomotor function (101). However, co-
expression of constitutively active GSK-3beta enhances 
and GSK3beta inhibitors reverse both the axon transport 
and locomotor phenotypes, suggesting that the pathological 
effects of tau are phosphorylation-dependent (101).  
 
5.4. Signal transduction 

The interaction between tau and src family non-
receptor tyrosine kinases suggests that tau may play a role 
in signal transduction (102-104). The proline-rich domain 
of tau binds to SH3 domains from the src family non-
receptor tyrosine kinases such as src, fyn, and lck (104). 
Mapping the site of interaction on tau identified the PXXP 
sequence at 233Pro-Lys-Ser-Pro236 as the region for 
interaction with the fyn SH3 domain. Phosphorylation is 
likely to regulate the interaction, as peptide-binding data 
has shown that phosphorylation of tau at Thr231 decreased 
the its binding with fyn (105). Further, interaction of fyn 
and tau results in the tyrosine phosphorylation of tau at 
Tyr18. It has been demonstrated that in mouse Tyr18 is 
phosphorylated early in neuronal development but is not 
phosphorylated in the adult. Tyrosine phosphorylated tau 
has also been reported in human fetal brain (106). In 
contrast to the phosphorylation of tau on some serines and 
threonines, the Tyr18 phosphorylation did not impact on its 
microtubule association properties (107). Moreover, 
tyrosine phosphorylation is closely associated with highly 
regulated and dynamic signal transduction processes. In 
neuronal cells, the importance of tyrosine phosphorylation 
in growth cone function is well established (108, 109). 
Growth cones contain src and fyn (110, 111) and neurons 
cultured from mice deficient in either src or fyn were 
defective in neurite outgrowth in a substrate-dependent 
manner (112, 113). The tyrosine phosphorylation of tau 
leads to the speculation that tau may have a role in neuronal 
signal transduction. Since src family non-receptor kinases 
associate with lipid rafts through their N-terminal 
modifications of myristoylation and palmitoylation (114, 
115), it is conceivable that the SH3 domain interaction has 
a role in directing tau to lipid rafts. In oligodendrocytes, 
tau-fyn complexes have been found in lipid rafts and when 
the lipid rafts were abolished through the inhibition of 
sphingolipid synthesis by fumonisin B1, process outgrowth 
was inhibited suggesting a role for tau-fyn interaction in 
process outgrowth (102). However, it remains to be proven 
that the fyn-tau interaction is required for the lipid raft 
localization of tau. In addition, recruitment of tau to 

activated fyn in rafts appears to be an important step in 
myelination of oligodendrocytes (102). Indeed, tau mRNA 
is actively transported into the processes of 
oligodendrocytes and enriched at the turning and branching 
points, as well as in some growing tips (116), suggesting an 
essential role for tau in oligodendrocyte maturation.  
 
6. POSTTRANSLATIONAL MODIFICATIONS 
 
6.1.Phosphorylation 
6.1.1.Sites of phosphorylation 

There are 80 serine or threonine residues and 5 
tyrosine residues in the longest tau isoform found in the 
human CNS; therefore, almost 20% of the molecule has the 
potential to be phosphorylated (29). Using 
phosphorylation-dependent monoclonal antibodies against 
tau, mass spectrometry and sequencing, at least 30 
phosphorylation sites on tau have been reported including 
tyrosine residues (24, 117, 118). As described, 
phosphorylation of tau at specific sites clearly affects its 
function. Below we highlight the kinases and phosphatases 
that may be involved in dynamically modulating the 
phosphorylation states of tau, and how an imbalance in site 
specific phosphorylation result in a pathological change in 
the conformation of tau. 
 
6.1.2.Kinases  

 Although many potential kinases have been 
examined, only a few are considered to be good candidates 
for in vivo tau kinases. One likely tau kinase is GSK3beta 
(119). GSK3beta is expressed at high levels in brain (120), 
where it localizes to neurons (121), and thus is in an 
appropriate compartment to access tau. GSK3beta 
associates with microtubules (122) and, when this kinase is 
overexpressed in cells, the phosphorylation statue of tau 
dramatically increases at numerous sites (64, 123, 124). 
Immunoblot analyses have revealed that modest (20-50%) 
increases in expression of GSK3beta in the brains of 
transgenic mice result in increased tau phosphorylation at 
several sites (98, 125). Furthermore, treatment of cells with 
lithium, a selective inhibitor of GSK3, significantly 
attenuates tau phosphorylation (126-128). Chronic lithium 
treatment also decreases tau phosphorylation in mouse 
models in which mutant FTDP-17 tau is overexpressed 
(129, 130). These and other findings provide extremely 
strong evidence that tau is an in vivo substrate of GSK3beta, 
and that abnormal phosphorylation of tau by GSK3beta 
might contribute to the pathogenic processes in AD brain. 
However, GSK3beta phosphorylates and regulates 
numerous other proteins (131), and therefore the possibility 
remains that GSK3beta indirectly regulates tau 
phosphorylation in vivo. Nonetheless, of all the protein 
kinases known to phosphorylate tau in vitro, the strongest 
evidence so far is for tau being a substrate of GSK3beta in 
vivo. 

 
Another possible in vivo tau kinase is cyclin-

dependent kinase 5 (Cdk5). Cdk5 is a unique member of 
the Cdk family that is activated by interaction with the non-
cyclins, p35 and p39, which are regulatory proteins that are 
expressed almost exclusively in postmitotic neurons (132, 
133). P35 and p39 can be proteolyzed by the calcium-
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dependent protease calpain (134, 135), resulting in p25 and 
p29, respectively, which are more stable than p35 or p39 
and thus cause a more prolonged activation of Cdk5 (134-
137). In vitro, tau is a substrate of Cdk5, and most, if not all, 
of the sites on tau that are phosphorylated by Cdk5 are also 
phosphorylated by GSK3beta (138-141). Overexpression of 
Cdk5 and p25, but not p35, results in increased tau 
phosphorylation at specific sites (65, 137). However, other 
studies have found that upregulation of Cdk5 and p25 
increases Cdk5 activity but does not significantly increase 
tau phosphorylation in situ (142, 143). In addition, 
inhibition of Ckd5 in primary cortical neurons increases tau 
phosphorylation (144). Furthermore, in a p35 knockout 
mouse in which Cdk5 activity was significantly decreased, 
tau phosphorylation was increased. It is also interesting to 
note that in this p35 knockout mouse model GSK3beta 
activity was increased, suggesting that GSK3beta may be 
regulated by Cdk5 (145). Therefore, the role of Cdk5 in 
regulating tau phosphorylation in vivo needs to be 
evaluated further.  

 
Although the majority of sites on tau that are 

phosphorylated are Ser/Thr-Pro sites, Ser and Thr sites not 
followed by Pro residues are also phosphorylated. Data 
indicate that tau is phosphorylated by PKA in vivo. For 
example, treatment of brain slices (146) or cultured cells 
(147) with forskolin (an adenylyl cyclase activator) and 
rolipram (a cAMP phosphodiesterase inhibitor) results in a 
pronounced increase in tau phosphorylation. Activation of 
endogenous PKA can thus increase tau phosphorylation. 
Furthermore, many of the sites on tau that are 
phosphorylated in brain slices in response to increases in 
cAMP levels are those that are phosphorylated by PKA in 
vitro (146).  

 
MARK also likely regulates tau phosphorylation 

in vivo. MARK selectively phosphorylates a KXGS motif, 
which is present in each microtubule binding repeat of tau, 
as well as other microtubule-associated proteins (57, 148). 
Because tau is phosphorylated at KXGS motifs in vivo 
(Ser262 being the most prominently phosphorylated KXGS 
motif) (149), and MARK probably phosphorylates these 
epitopes more efficiently in situ than do other protein 
kinases (86), MARK could be an important in vivo tau 
kinase. In cultured cell models, MARK appears to regulate 
tau phosphorylation (86) and, in AD brain, MARK is 
associated with NFTs and co-localizes with phospho-
Ser262 staining (150). Although the ability of MARK to 
phosphorylate tau in a mouse model has not been examined 
directly, MARK phosphorylates tau at KXGS motifs in 
retinal ganglion cell axons (151). Furthermore, it has been 
recently showed that the Ser/Thr kinase PAR-1 kinase 
phosphorylates tau in vivo in flies (152). Microtubule-
affinity regulating kinase (MARK) is the mammalian 
homolog of Drosophila PAR-1. PAR-1/MARK has been 
demonstrated to be required for neurite outgrowth and 
neuronal polarity (86, 153).  

 
Overall, it is clear that GSK3beta, Cdk5, PKA, 

and MARK probably modulate tau phosphorylation in vivo 
at some level, either directly or indirectly. Many other 
kinases can increase tau phosphorylation in non-neuronal 

cell model systems when they are overexpressed. However, 
without validation in a true neuronal system in which the 
proteins are expressed in the appropriate context, the role of 
these kinases in modulating tau phosphorylation in vivo 
remain to be established. 
 
6.1.3. Phosphatases 

Phosphatases counterbalance the action of 
kinases. In vitro, tau is readily dephosphorylated by 
numerous protein phosphatases, including protein 
phosphatase 1 (PP1), 2A (PP2A), 2B (PP2B, calcineurin) 
and 5 (PP5) (154).  PP1 is targeted to microtubules by tau 
(155) and PP5 has been shown to dephosphorylate tau both 
in vitro and in situ when over-expressed in PC12 cells 
(156). Tau proteins from brain tissue or neuroblastoma 
cells are rapidly dephosphorylated by endogenous 
phosphatases (157-159). Given the fact that PP2A is 
directly linked to the microtubules by ionic interactions 
(160), the majority of studies have focused on the role of 
PP2A in regulating tau phosphorylation. The predominant 
brain isoform of PP2A, ABalphaC, binds directly to tau and 
is likely a major tau phosphatase (160, 161). It is also of 
interest to note that is has been hypothesized that Pin-1 
regulates phosphorylation of Thr231 by selectively binding 
to this site and facilitating the conversion of the cis pThr-
Pro motif to a trans conformation thus allowing 
dephosphorylation of the site by the predominant Pro-
directed PP2A (162). This is an interesting hypothesis; 
however, it should be noted that phosphorylation of 
peptides from this region of tau did not alter the 
equilibrium of cis-trans isomers (163). There is also data to 
suggest that there is reduced binding of PP2A to tau with 
FTDP-17 mutations, which could contribute to the increase 
in tau phosphorylation that occurs in FTDP-17 cases (164).  
 
6.1.4. Balance between kinases and phosphatases 

The state of phosphorylation of a phosphoprotein 
is a function of the balance between the activities of the 
protein kinases and the protein phosphatases that regulate 
its phosphorylation (52). Dynamic and site-specific 
phosphorylation of tau is essential for its proper functioning 
(54). These dynamic phosphorylation and 
dephosphorylation events at particular sites are achieved by 
a fine balance between the activities of specific kinases and 
phosphatases. There is increasing evidence that 
inappropriate phosphorylation of tau, which leads to tau 
dysfunction, results in decreased cell viability.  Indeed, in 
all neurodegenerative diseases in which tau pathology has 
been observed, the tau is abnormally phosphorylated (53). 
These diseases include the FTDP-17 cases, which are 
caused by mutations in the tau gene (11-13). 
Immunohistochemical studies have shown increased 
expression of several kinases, including Ca++/calmodulin-
dependent kinase, GSK3, PKA, Cdk-5, MAPK/ERK, 
SAPK/JNK, and casein kinase I, and co-localization with 
hyperphosphorylated tau deposits and NFTs in neurons in 
AD (58-62, 165). In addition, it has been reported that the 
expression and activities of some phosphatases are 
decreased in the affected area of AD brain (166-171). In 
particular, the activities of PP2A and PP1 are reduced by  
~20-30% in AD brain (168, 172). Interestingly, inhibition 
of PP2A activity by okadaic acid in cultured cells and in 
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metabolically active rat brain slices results in abnormal 
hyperphosphorylation of tau at several of the same sites as 
in AD, not only directly by a decrease in tau 
dephosphorylation, but also indirectly by promoting the 
activities of specific kinases (173-176). These observations 
suggest that a disturbance of the balance between the 
kinases and phosphatases in AD brain might underlie the 
abnormal hyperphosphorylation of tau and other neuronal 
proteins.  
 
6.1.5. Effects of phosphorylation of tau on its aggregate 
formation  

The tau that forms the fibrillar structures of the 
neurofilbrillary tangles (NFTs), is abnormally 
phosphorylated. Analysis of PHFs purified from AD brains 
has revealed that filamentous tau from AD brain contains 
all six CNS tau isoforms (34). In AD, tau filaments consist 
primarily of PHFs, with straight filaments being a minority 
species (48, 177, 178).  As indicated above, 
phosphorylation at specific sites can significantly increase 
the tendency of tau to aggregate. For example, 
pseudophosphorylation of Ser396 and Ser404 causes tau to 
be more fibrillogenic (45), and a tau construct in which 
Ser422 is mutated to Glu shows a significantly increased 
propensity to aggregate (51). Recently, it has been also 
reported that pseudophosphorylation of tau at Ser205, 
Thr205, and Thr212 enhances polymerization of tau into 
filaments (50, 179). In contrast, it has also been 
demonstrated that phosphorylation of tau at Ser262 and 
Ser214 does not prime tau for PHF assembly, but rather 
inhibits it, suggesting that abnormal phosphorylation of 
these sites on tau is not directly responsible for the 
pathological aggregation into PHFs (180). Along with the 
phosphorylation of specific residues, a number of FTDP-17 
mutations may promote aggregation of tau proteins, 
including R5L, K257T, I260V, G272V, deltaK280, P301L, 
P301S, Q336R, V337M, and R406W (181-187). The tau 
fibrillization pathway can be subdivided based on key steps. 
First, the microtubule binding function of tau must be 
neutralized so that tau protein can accumulate 
intracellularly in an assembly competent form (188), 
suggesting that aggregation of tau may be concentration-
dependent. Second, tau molecules must self-associate 
through their microtubule binding repeat regions to form 
the beta-sheet enriched filaments observed in tissue. When 
the critical concentration of tau molecules is achieved, 
unfolded monomer tau molecules, which have no 
substantial secondary structures, oligomerize leading to a 
conformational change to a beta-sheet enriched structure. 
The earliest secondary structure detectable with fluorescent 
dyes corresponds to tau aggregates associated with 
membranous structures (189, 190), suggesting that the 
folding of tau protein into beta-sheet containing species 
may be facilitated by interaction with intracellular 
membranes and organelles. The third step involves the 
nucleation of tau filaments and formation of mature NFTs. 
Filaments gradually replace amorphous deposits to 
dominate the tau immunostaining of cells (189, 190). 
Whereas some lesions develop predominantly straight 
filaments, late stage disease is dominated by PHF 
morphology, which may represent a minimal energy 
conformation (191). It has been reported that in biopsy 

specimens, individual PHFs appear in endwise association 
with membranes, consistent with surface-mediated 
nucleation and polar extension from stable tau-membrane 
complexes (192). Final steps include the loss of cell 
viability and formation of “ghost tangles”, which appear as 
extracellular fibrillar aggregates that retain the ability to 
bind the small molecule fluorophores thioflavin S and 
Congo red, and thiazine red (193-195). In the transition, 
NFTs undergo proteolytic modifications (196) and become 
highly insoluble (197). Together these data are consistent 
with an assembly pathway involving amorphous 
aggregation followed by facilitated fibrillization, with a 
role for phosphorylation and mutations from the earliest 
stage. The first detectable step for NFTs by 
immunohistochemistry using antibodies to different 
phosphorylated and non-phosphorylated tau epitopes 
involves the aggregation of tau protein into non-fibrillar 
deposits (198), called ‘pretangles’, which display a 
punctate staining pattern in the cytoplasm and are not 
reactive with beta-sheet-sensitive dyes such as thioflavin S 
or thiazine red (190). 

 
Although the PHFs, which are made up of 

abnormally phosphorylated tau, are one of the characteristic 
hallmarks of tauopathies, the role of aggregates as toxic 
mediators of neuronal dysfunction and death is still not 
clear. Indeed, the correlation between NFT presence and 
the incidence of disease does not necessarily dictate a 
causal relationship, and therefore the focus has been 
shifting to identify the toxic tau species during the entire 
fibrillogenic process from the soluble monomers through 
oligomers to the insoluble mature tangles (NFTs). Given 
that several animal models show cognitive deficits and 
impaired axonal transport in the absence of NFTs (9, 199, 
200), small soluble oligomers may be the toxic species 
leading to neuronal dysfunction and degeneration (201). A 
recent study supported this idea by demonstrating that 
suppression of transgenic tau expression restored memory 
function and stabilized neuronal cell populations whereas 
NFTs continued to accumulate, suggesting that NFTs are 
not sufficient to cause cognitive decline or neuronal death 
(202). Furthermore, other studies suggested that NFTs 
might represent a protective compensatory response aimed 
at reducing reactive oxygen species (ROS)-associated 
damage (203). However, although benign and/or protective 
at the beginning, established NFTs may secondarily 
sequester normal cellular proteins, thus directly altering 
cellular physiology leading to secondary neuronal damage. 
This may be a nonspecific process because protein 
aggregates are inherently sticky. Whether the monomers, 
oligomers, or NFTs (mature filaments) are the important 
toxic moieties, the question of what causes tau to aggregate 
and what kinetic profile is responsible must be addressed. 
 
6.2. Proteolysis 

Proteolysis is a key mechanism for maintaining 
the intracellular environment relatively free of misfolded 
proteins (204). Although, in vitro, tau has been reported to 
be a substrate for a number of proteases such as trypsin, 
chymotrypsin, cathepsin D, calpains, caspases, proteasomal 
proteases, double-stranded DNA-stimulated protease, and 
thrombin (205-211), the proteases that degrade tau in brain 
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are still unclear. Although tau in AD and other tauopathies 
is present predominantly as an intact full-length molecule 
(212-216), tau in AD NFTs has been shown to be truncated 
both at Glu391 and Asp421 (47, 217). However, what 
percentage of tau is truncated at these sites at what stage of 
neurofibrillary pathology in AD brain has not been reported. 
It has been suggested that truncated tau, albeit not a large 
amount, may play a significant role in the neuronal cell 
death and PHF formation given that truncated tau at 
Asp421 (due to caspase-cleavage) have been shown to be 
associated with apoptosis in cultured cells (218, 219), and 
that truncated tau at Glu391 was shown to be the major 
constituent of the minimal PHF core (189, 220-223) and is 
present in AD brains but not in age-matched controls (222). 

 
A candidate family of proteases that may play a 

significant role in abnormal proteolysis of tau are the 
caspases. It has been demonstrated that caspases play a 
critical role in Aβ-induced neuronal apoptosis (224, 225) 
and are activated in apoptotic neurons in AD brain (226-
231). In addition, the cleavage of tau at Asp421 by caspase-
3 has been detected both in neurons treated with pre-
aggregated Aβ and in AD brains (47, 232). Truncated tau at 
Asp421 has been demonstrated to cause neuronal death and 
also play a significant role in the nucleation-dependent 
filament formation of tau (219).  

 
Another possible in vivo tau protease family is 

the calpains, which are calcium-activated proteases. It has 
been previously shown that calpain may be abnormally 
activated in AD patients compared with age-matched 
controls (233). In addition, activated calpain-2 colocalized 
with tau filaments in AD and frontotemporal dementia 
brains (234). Recently, it has been reported that pre-
aggregated Abeta induced the generation of 17 kDa tau 
fragment in vitro and in cultured hippocampal neurons and 
that inhibitors of calpain completely prevented the 
formation of the 17 kDa fragment and significantly reduced 
Abeta-induced neuronal death (235). It is also reported that 
thrombin can cleave human recombinant tau at multiple 
arginine and lysine sites (205), but the role of this protease 
in degrading tau in vivo remains unclear.  

 
Recently, it has been demonstrated that 

truncation at both the amino- and carboxy-termini directly 
influences fibril formation of tau, and the aggregation of 
tau appears to involve an ordered series of phosphorylation 
and cleavage events (44). During the process of 
neurofibrillary tangle evolution, it has been proposed that 
tau undergoes conformational changes and becomes 
progressively truncated at both its amino- and carboxy-
termini. The Alz50 conformation of tau, which is a folded 
state of tau in which the N-terminal part of tau interacts 
with the microtubule-binding domains, appears first in 
pretangle neurons but persists in neurons containing NFTs 
as well (236). Subsequently, both carboxy and amino 
truncation events ensue. Many Alz50-positive NFTs are 
also reactive to Tau-C3, the antibody that specifically 
recognizes tau truncated at Asp421 (237). Tau-C3 
reactivity also co-localizes with Tau-66-positive structures, 
which recognize a conformation of tau that requires N-
terminal cleavage. Once in the Tau-66 state, tau is cleaved 

even more extensively in the NFTs, becoming positive for 
MN423, an antibody that reacts with tau truncated at 
Glu391. A high incidence of colocalization of MN423 and 
Tau-66 suggests that the more extensive C-terminal 
truncation is a somewhat later event (237). However, the 
presence of C-terminally Asp421-trucated tau in pretangle 
neurons suggests a role for caspase cleavage in the 
initiation of polymer formation (238).  

 
The effect of phosphorylation of tau on its 

proteolysis is still not well understood. PHF-tau is more 
resistant to proteolysis by calpain than normal tau and fetal 
tau, indicating that phosphorylation decreases the 
sensitivity of tau to calpain (209, 239). On the other hand, 
fetal tau is more vulnerable to proteolysis by cathepsin D 
than unmodified recombinant tau, suggesting that 
phosphorylation increases susceptibility of tau to cathepsin 
D (208). Phosphorylation of tau by PKA attenuates calpain-
mediated proteolysis of tau in vitro (240), and there is 
evidence that this the case in situ (147). It has also been 
reported that phosphorylation of recombinant tau with a 
double-stranded DNA-dependent protein kinase accelerates 
thrombin-mediated proteolysis (241).  

 
In vitro, tau proteins can be directly degraded by 

the proteasome without being ubiquitylated (242) and 
proteasomal processing of tau is bi-directional, proceeding 
from both N- and C-termini (210). However, it also has 
been reported that tau is not normally degraded by the 
proteasome (243).  There have been no reports thus far 
indicating that tau under normal conditions becomes 
ubiquitylated.  However, SDS-insoluble PHFs contain 
ubiquitin (244) and ubiquitin is found in the filamentous 
components of several neurodegenerative diseases such as 
AD, Parkinson’s disease, Pick’s disease, and progressive 
supranuclear palsy, all of which involve abnormalities in 
cytoskeletal structures (245). It has been reported that there 
is a several fold increase in ubiquitin levels in the cortex of 
AD patients’ brains and ubiquitin levels correlated strongly 
with the extent of neurofibrillary pathology in the cortex. In 
contrast, the cerebellum, which does not undergo 
significant neurofibrillary changes, contained normal levels 
of ubiquitin in AD (246). The accumulation of 
ubiquitylated of tau appears to be a late event in the 
development of neurofibrillary pathology, as it occurs after 
the formation of NFTs (247, 248). In addition, most PHF-
tau is mono-ubiquitylated (247), which is not a signal for 
ubiquitin-mediated degradation (249, 250).   

 
Refolding and elimination of unfolded or 

misfolded protein is mediated by molecular chaperones 
such as Hsc/Hsp70 and Hsp90. The ubiquitin-proteasome 
system (UPS) is mediated by an energy-dependent process 
and concerted action of a number of molecules including 
specific ubiquitin ligases (251-253). A dysfunction of the 
UPS has been proposed in numerous neurological disorders 
such as AD, Huntington’s disease, Parkinson’s disease, and 
Angelman’s syndrome (254-259). A dysfunction of the 
UPS in AD brains has been suggested, given the data that 
proteasome activity is decreased in AD brains (260) and 
that PHF-tau extracted from AD brains has been shown to 
be able to inhibit the proteasome in vitro (261). It has been 
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demonstrated that tau extracted from AD brains is a target 
of the E3 ubiquitin ligase carboxyl terminus of the heat 
shock cognate (Hsc)-70-interacting protein (CHIP) (262) 
and of the E2 ubiquitin-conjugating enzyme (Ubc) H5B 
(263). CHIP binds to the constitutively expressed Hsc70, 
the heat-inducible Hsp70, and also to Hsp90 through 
multiple tetratricopeptide (TPR) repeats and inhibits the 
folding activity of the chaperones (251, 264). CHIP 
possesses a U box motif, which cooperates with an E2 
ubiquitin-conjugating enzyme and an E3 ubiquitin ligase in 
the formation of multiubiquitin chains, indicating that the 
CHIP participates in ubiquitylation reactions. The CHIP 
protein has been reported to act as a key regulator to target 
misfolded proteins from chaperones to the proteasome (265, 
266). In fact, CHIP promotes the ubiquitination of 
chaperone substrates including tau and stimulates their 
degradation by the UPS (251, 263, 267). It has been 
reported that CHIP associates with tau through the 
microtubule-binding domain (263). In a cell culture model 
expressing GSK3beta and tau, the amount of cell death was 
significantly decreased with the co-expression of CHIP, 
and ubiquitylated phosphorylated tau was most abundant in 
CHIP-co-expressing cells whereas phosphorylated non-
ubiquitylated tau was most abundant in CHIP-deficient 
cells. These results suggest that accumulation of soluble 
phosphorylated tau is toxic, while insoluble ubiquitylated 
phosphorylated tau is less toxic. CHIP appears to 
ubiquitylate phosphorylated-tau not only for degradation in 
the proteasome, but also to move tau into a segregated 
insoluble fraction, possibly for prevention of cell death 
(263, 268). 
 
6.3. Other modifications 
6.3.1. Glycosylation and other modifications 

O-glycosylation is a dynamic and abundant 
posttranslational modification that consists of the addition 
of an O-linked N-acetylglucosamine (O-GlcNAc) residue 
on Ser or Thr residues in the proximity of Pro residues 
(269). Although the functional significance of O-GlcNAc 
modification is not yet fully understood, it is implicated 
in transcriptional regulation, protein degradation, cell 
activation, cell cycle regulation, and the proper assembly 
of mutimeric protein complexes (270). This modification 
is often reciprocal to phosphorylation (271). It occurs in 
neurofilaments (272) and microtubule-associated proteins 
including MAP2 and tau proteins (273-275). The number 
of O-GlcNAcylated sites on tau proteins is lower than the 
number of phosphorylation sites. Site-specific or 
stoichiometric changes in O-GlcNAcylation may 
modulate tau function. In fact, phosphorylation and O-
GlcNAcylation may have opposite effects. For instance, 
O-GlcNAcyation of tau proteins and other microtubule-
associated proteins suggests a role for O-GlcNAc in 
mediating their interactions with tubulin. O-
GlcNAcylation may also play a role in subcellular 
localization and degradation of tau proteins (271, 273, 
274). It has also been reported that hyperphosphorylated 
tau proteins in AD brain are N-glycosylated (in contrast 
to O-glycosylation) and that glycan(s) may maintain the 
helicity of PHF or facilitate the subsequent abnormal 
hyperphosphorylation of tau in AD brain (206, 276, 277).  

There is also evidence that the enzyme 
transglutaminase II can incorporate polyamines into tau 
both in vitro and in situ (278). Polyamination of tau had no 
effect on microtubule binding even though one of the major 
Gln residues that are modified by transglutaminase lies 
within the microtubule-binding domain (279). However, 
tau that is polyaminated by transglutaminase is 
significantly less susceptible to degradation by the calpain 
(278). PHF-tau can undergo deamidation (a reaction that 
transglutaminases can catalyze (280)) and contains the 
amino acid isomer L-isoaspartate (281, 282). Since protein 
isomerization can enhance the aggregation process, this 
modification could contribute to the pathogenesis of AD 
(283, 284). Protein L-isoaspartyl methyltransferase (PIMT), 
which may be involved in the repair of isomerized proteins, 
colocalizes with NFTs in AD brain. These findings suggest 
a possible role of protein isomerization in the abnormal 
aggregation of tau in AD (281-284). 

 
7. TAU IN ALZHEIMER’S DISEASE 
 

AD is characterized clinically by a progressive 
loss of memory and cognitive functions, resulting in a 
severe dementia. Neuropathologically, AD is defined by 
the accumulation of two types of insoluble fibrous 
materials, which are the extracellular Abeta protein in the 
form of senile plaques and intracellular NFTs made of 
abnormally and hyperphosphorylated tau. Although these 
two lesions are often present in the same area of the AD 
brain, the relationship between the two pathologies has not 
been clearly established. Recently, it has been 
demonstrated that Abeta-induced caspase activation leads 
to tau cleavage and generates tangle-like morphology, 
suggesting that Abeta accumulation is an early event that 
may precede PHF formation of tau (219). A potential link 
between senile plaques and NFTs involves the Abeta-
induced activation of putative tau kinases leading to tau 
phosphorylation. Indeed, tau hyperphosphorylation has 
been attributed to the increased activity of kinases, such 
GSK3beta or MAP kinase, in either young or mature 
hippocampal neurons treated with pre-aggregated Abeta 
(285-287). Neurons from tau knockout mice are resistant to 
Abeta-induced neurotoxicity (288) and suppression of tau 
overexpression in transgenic mice prevents further declines 
in memory function (202), suggesting that tau plays a 
fundamental role in the pathogenic events that occur in AD 
brain. Although the role of NFTs as a toxic mediator in 
neuronal dysfunction and death in AD is still not clear, the 
tau aggregation is closely related with the pathology of AD 
(203), and there is increasing data to suggest that a 
conformational change in tau that precedes the formation of 
PHFs and NFTs may be the toxic entity as described above 
(9, 199-202).  
 
8. TAU IN FTDP-17 
 
FTDP-17 describes a collection of autosomal dominant 
inherited tauopathies with overlapping clinical and 
pathological characteristics. Common clinical features 
include behavioral changes, disinhibition, language deficits, 
dementia, and progressive parkinsonism with an adult-age 
onset (289-293). These symptoms are neuropathologically
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Table 1. Tau mutations identified in FTDP-17 
Mutation Type Location E10 splicing MT assembly Reference 
R5H Missense E1 No change Decreased 307 
R5L Missense E1 No change Decreased 308 
K257T Missense E9, R1 No change Decreased 309, 310 
I260V Missense E9, R1 No change ND 187 
L266V Missense E9, R1 No change Decreased 311 
G272V Missense E9, R1 No change Decreased 11 
E9+33 Intronic I9 ND ND 71 
N279K Missense E10, IR1-2 Increased No effect 14, 312, 313 
deltaK280 Deletion E10, IR1-2 Decreased Decreased 71 
L284L Silent E10, IR1-2 Increased No effect 314 
N296N Silent E10, R2 Increased No effect 315 
deltaN296 Deletion E10, R2 Increased Decreased 316, 317 
N296H Missense E10, R2 Increased Decreased 317, 318 
P301L Missense E10, R2 No change Decreased 11, 319 
P301S Missense E10, R2 No change Decreased 320, 321 
S305N Missense E10, IR2-3 Increased No effect 313, 314, 322 
S305S Silent E10, IR2-3 Increased No effect 323, 324 
E10+3 Intronic I10 Increased No effect 13 
E10+11 Intronic I10 Increased No effect 325 
E10+12 Intronic I10 Increased No effect 326 
E10+13 Intronic I10 Increased No effect 11 
E10+14 Intronic I10 Increased No effect 11 
E10+16 Intronic I10 Increased No effect 11 
L315R Missense E11 No change Decreased 327 

 
accompanied by frontal and temporal lobe atrophy with 
major neuronal loss, gray and white matter gliosis and 
superficial laminar spongiosis and by the presence of 
abundant filamentous tau pathology in nerve cells and for 
some in glial cells (13, 294). To date, all analyzed cases of 
FTDP-17 are characterized by the presence of an abundant 
filamentous pathology, consisting of hyperphosphorylated 
tau protein. However, the morphology, isoform 
composition, and distribution of tau filaments and deposits 
appear to vary according to the type of mutation (Table 1). 

 
The vast majority of tau mutations are missense, 

deletion or silent mutations in the coding region, or intronic 
mutations located close to the splice-donor site of the intron 
following exon 10. Most coding-region mutations are 
located in exons 9-12 or in exon 13 near the microtubule-
binding region and two mutations in exon 1 of tau (R5H 
and R5L). Mutations in exon 1 (R5H and R5L), exon 9 
(K257T, I260V, L266V and G272V), exon 11 (L315R, 
S320R), exon 12 (V337M, E342V, S352L and K369I) and 
exon 13 (G389R and R406W) affect all six tau isoforms. 
By contrast, mutants in exon 10 (N279K, deltaK280, 
L284L, N296N, deltaN296, N296H, P301L, P301S, S305N 
and S305S) affect only 4R tau isoforms or their expression 
levels. The intronic mutations identified to date are located 
in the intron following exon 10 at positions +3, +11, +12, 
+13, +14, +16, +19 and +29 (with the first nucleotide of the 
splice-donor site designated +1) that alter their regulation 
of exon 10 splicing and thus the ratio of 4R/3R tau proteins. 
Mutations in the tau gene result in one of three effects on 
tau. The first effect is to decrease the ability of tau to 
interact with microtubules, thereby hindering its ability to 
stabilize microtubules and promote microtubule assembly. 

The second effect of certain tau mutations is to alter exon 
10 splicing, with the majority of mutations resulting in 
increased exon 10 splicing (inclusion into tau mRNA), 
thereby increasing the synthesis of 4R tau. However, one 
mutation, deltaK280, has been reported to decrease exon 10 
splicing (71). Lastly, missense mutations, as well as 
deltaK280 increase tau filament formation in vitro (181, 
186, 295). For example the deltaK280 and P301L 
mutations directly influence tau aggregation by augmenting 
the formation of beta-structures around 306VQIVYK311 and 
275VQIINK280 tau motifs (181). Tau mutations that inhibit 
microtubule assembly generally are missense mutations in 
or near the highly conserved microtubule-binding repeat 
domains. Mutations of tau gene and their involvement in 
FTDP-17 emphasize the fact that abnormal tau proteins 
may play a central role in the etiopathogenesis of 
neurodegenerative disorders, without any Abeta 
involvement. Although the etiology, clinical symptoms, 
pathologic findings and the biochemical composition of tau 
inclusions in AD and FTDP-17 are different, substantial 
similarities in the tau alterations exists between these 
tauopathies. 
 
9. TAU IN OTHER NEURODEGENERATIVE 
DISEASES 
 

Intraneuronal neurofibrillary lesions, which are 
made of tau, are also the defining characteristic of a 
number of other neurodegenerative diseases and the most 
prominent of which are progressive supranuclear palsy 
(PSP), corticobasal degeneration (CBD), and Pick’s disease 
(PiD) (53, 296). Like FTDP-17, the major pathology in 
these disorders is the formation of intranuclear NFTs in the
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Figure 2. Role of abnormal phosphorylation and truncation of tau in neuronal cell death. In normal brain where the majority of 
tau is associated with microtubules, there are balanced and dynamic changes in tau phosphorylation allowing for appropriate 
neuronal function. Several protein kinases and phosphatases likely work in concert to appropriately regulate tau phosphorylation. 
In particular, phosphorylation at Ser262 and Thr231 likely play key roles in regulating tau-microtubule interactions. However, in 
pathological conditions such as AD and other tauopathies, tau becomes abnormally hyperphosphorylated. Dysregulation in the 
balance of the activities of specific kinases and phosphatases may be one of the causes of hyperphosphorylation of tau. 
Especially, phosphorylation of the critical microtubule regulatory sites significantly leads to the increased levels of free tau that is 
not bound to microtubules. Free tau could undergo further inappropriate phosphorylation events at fibrillogenic sites such as 
Ser396/404. Cleavage by caspases at Asp421 increases the fibrillogenic properties of tau. Furthermore, N-glycosylation of tau, 
which is found in AD brain, makes tau a more favorable substrate for further phosphorylation by other protein kinases and 
resistant for dephosphorylation by phosphatases. The resultant abnormally hyperphosphorylated tau exerts detrimental effects; it 
is not only unable to bind to microtubule but also sequesters normal tau leading to the inhibition of assembly and disruption of 
microtubules (loss of function). The breakdown of the microtubule network compromises vital cellular functions such as axonal 
transport, neurite outgrowth, and signal transduction. In addition, abnormal hyperphosphorylation and caspase cleavage of tau 
significantly facilitate tau-tau interactions leading to the formation of oligomers and subsequently tau filaments (PHFs). Although 
still controversial, oligomers are considered to mediate cytotoxic effects of abnormal tau by sequestering intracellular 
components and hindering cellular transport leading to the dysfunction of affected neurons (gain of function) whereas PHFs are 
inert or even cytoprotective. Accordingly, it is considered that abnormal phosphorylation and proteolysis of tau result in the 
impairment of neuronal function and eventually cell death through complex events. 

 
absence of Abeta-deposits. However, contrary to FTDP-17, 
which is a family of genetic disorders, these tauopathies are 
sporadic in nature. For a more thorough review of 
tauopathies see Lee et al. (53, 296). 
 
10. SUMMARY AND PERSPECTIVE 
 

 Over the past several years, substantial progress 
has been made in our understanding of how modifications 
of tau affect tau function. Figure 2 illustrates the proposed 

stepwise changes in tau modifications that may contribute 
to the demise of the affected neurons (Figure 2). It is 
evident that specific, coordinated phosphorylation events 
are crucial for the appropriate functioning of tau. However, 
it still remains to be determined which protein kinases 
phosphorylate tau in vivo and how the dynamics of these 
processes are regulated. It is also evident that tau is 
abnormally modified when tau pathology occurs in a 
neurodegenerative disease. Given that the phosphorylation 
of specific sites on tau can inhibit its ability to bind 
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microtubules efficiently and increase its ability to 
polymerize and that amino- and carboxy-terminal 
truncation of tau modulate its filament formation, it is 
likely the abnormal post-translational events play a key role 
in tau pathogenic processes. It has been suggested that the 
modification-induced loss of function (i.e. impairment of 
microtubule-binding), as well as the toxic gain of function 
(i.e. an increased propensity to oligomerize), synergize to 
reduce the levels of functional tau and thus disrupt normal 
microtubule-based functions, which could contribute to the 
demise of the cell. Given the previous findings that 
transgenic mice expressing human tau have consistently 
demonstrated neurological deficits and that neuron loss, 
and that the burden of NFTs correlates well with the 
progression of the disease in humans with AD (95, 297-
300), the deleterious effects of tau pathology were thought 
to be responsible to a toxic gain of function by 
neurofibrillary tangles. However, a recent study suggested 
that the neurodegenerative sequellae of pathological tau 
may not primarily due to the formation of NFTs (202). The 
authors generated an inducible tau transgenic mouse model 
in which the expression of human tau with the P301L 
FTDP-17 mutation was regulated by tetracycline. With the 
expression of mutant tau, these transgenic mice developed 
memory impairments, overt pathological tau deposits and 
gross brain atrophy with abundant neurofibrillary tangles. 
However, when the P301L mutant tau expression was 
turned off, mice showed improved memory function and a 
rescue of neurological loss, but the accumulation of 
neurofibrillary tangles continued, suggesting that toxic gain 
of function of NFTs is not sufficient to explain cognitive 
decline or neuronal death in this model of tauopathy (202). 
Recently, it has been reported that the tau-mediated 
neuronal cell death is caused by the inability of affected 
cells to properly regulate their microtubule dynamics due to 
misregulation by tau (301, 302), favoring the alternative 
loss of function hypothesis in tau-mediated neuronal cell 
death (303). It has also been demonstrated that mutations 
leading to the reduced tau activity or, at the other extreme, 
to overly active tau activity resulted in the under- or over-
stabilized microtubules, respectively, which in turn 
invariably lead to the neuronal cell death, suggesting that 
improperly regulated microtubules cannot perform their 
normal essential cellular functions (303). Increased 
microtubule dynamics can be observed in taxol-resistant 
cells (304), in the FTDP-17 missense mutations (303), and 
in cells expressing hyperphosphorylated tau (18, 305). In 
addition, overly suppressed microtubule dynamics can be 
observed in the FTDP-17 RNA splicing mutations in which 
4R is over-expressed and 3R is under-expressed (18, 306). 
It is evident that abnormal modifications such as 
phosphorylation and truncation play a key role in the 
pathogenesis of AD and other tauopathies. What remains 
unclear are the specific protein kinases and phosphatases 
that mediate abnormal phosphorylation in tau, and the 
specific proteases that produce amino- and carboxy-
terminal truncated tau. What also remains to be elucidated 
are the specific functional changes in tau that are 
responsible for the pathological outcomes. Is it the 
phosphorylation-induced deficits in microtubule binding, 
the increased presence of tau fibrils, or other changes in tau 
localization and binding partners? Clearly, more work is 

needed to fully elucidate the role of site-specific 
phosphorylation in the normal functioning of tau and how 
these processes are perturbed and contribute to a 
pathogenic chain of events in the disease state. 
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