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Background
As of February 26, 2021, 113 509 086 confirmed cases of novel coronavirus 2019 
(COVID-19) disease and 2,514,776 COVID-19-related deaths had been reported world-
wide. COVID-19 has been reported in 212 countries [1]. The World Health Organization 
classified COVID-19 as a global pandemic [2]. Due to the increasing number of cases, it 
is necessary to rapidly diagnose patients and assess the severity of the disease.

The current gold standard for the diagnosis of COVID-19 is reverse transcription-poly-
merase chain reaction (RT-PCR) analysis of respiratory specimens. However, due to inac-
curate methods when collecting samples via nasopharyngeal swabs, the false-negative rate 
is high [3]. Delays in the diagnosis of COVID-19 will cause the spread of the disease and the 
aggravation of a patient’s condition. Computed tomography (CT) is the main method for 
diagnosing and evaluating the severity of COVID-19 pneumonia [4, 5]. However, CT also 
has the following problems in lung-related diagnosis. First, CT-based diagnosis is costly and 

Abstract 

Background: Lung ultrasound (LUS) can be an important imaging tool for the diagno-
sis and assessment of lung involvement. Ultrasound sonograms have been confirmed 
to illustrate damage to a person’s lungs, which means that the correct classification and 
scoring of a patient’s sonogram can be used to assess lung involvement.

Methods: The purpose of this study was to establish a lung involvement assess-
ment model based on deep learning. A novel multimodal channel and receptive 
field attention network combined with ResNeXt (MCRFNet) was proposed to classify 
sonograms, and the network can automatically fuse shallow features and determine 
the importance of different channels and respective fields. Finally, sonogram classes 
were transformed into scores to evaluate lung involvement from the initial diagnosis to 
rehabilitation.

Results and conclusion: Using multicenter and multimodal ultrasound data from 104 
patients, the diagnostic model achieved 94.39% accuracy, 82.28% precision, 76.27% 
sensitivity, and 96.44% specificity. The lung involvement severity and the trend of 
COVID-19 pneumonia were evaluated quantitatively.

Keywords: Ultrasound, Lung involvement, Classification, COVID-19, Neural network

Open Access

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ 
licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/ zero/1. 0/) applies 
to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Hu et al. BioMed Eng OnLine           (2021) 20:27  
https://doi.org/10.1186/s12938‑021‑00863‑x BioMedical Engineering

OnLine

*Correspondence:   
yang.xiao@siat.ac.cn; zhang.
hui@zs-hospital.sh.cn; 
zhousu30@126.com
2 Department of Ultrasound, 
Ruijin Hospital, Shanghai 
Jiaotong University 
School of Medicine, 
Shanghai 200025, China
3 Department of Ultrasound, 
Shanghai Public 
Health Clinical Center, 
Shanghai 201508, China
6 Institute of Biomedical 
and Health Engineering 
Shenzhen Institutes 
of Advanced 
Technology, Chinese 
Academy of Sciences, 
Shenzhen 440305, China
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12938-021-00863-x&domain=pdf


Page 2 of 15Hu et al. BioMed Eng OnLine           (2021) 20:27 

involves radiation [6]. In unstable and critically ill patients, CT is not easy to perform. In 
addition, patients who are sensitive to radiation, such as pregnant women, need to avoid 
the radiation caused by CT. Second, it is of great clinical significance to determine whether 
there is pulmonary airway obstruction in patients with COVID-19 pneumonia. CT can 
only obtain static images and cannot evaluate the movement of gas in the bronchi and 
bronchiole in real time.

As a nonradiation medical imaging method, ultrasound is highly sensitive to the diagno-
sis of various lung diseases [7]. Studies have shown that lung ultrasonography (LUS) can be 
an important imaging tool for diagnosing common pneumonia and assessing the degree of 
lung involvement [8]. For example, Liu et al. proved the effectiveness of bedside LUS in the 
diagnosis of community-acquired common pneumonia. With CT as the gold standard, the 
diagnosis of community-acquired common pneumonia by LUS has reached 96.1% accu-
racy, and the diagnostic efficiency of LUS far exceeds that of chest X-ray [9]. LUS has been 
used as an effective imaging method for diagnosing common pneumonia in many institu-
tions. The advantages of LUS are that it is inexpensive, does not involve radiation, is easy to 
obtain, and can be checked at the bedside, which is especially useful for patients with severe 
pneumonia [10, 11].

Current studies [12–17] are more focused on the diagnosis and segmentation tasks 
of images. Few researchers examine the impact of COVID-19 on internal organ damage 
among patients, especially based on ultrasound images; internal organ damage is equally 
important for understanding COVID-19. The current challenge for COVID-19 is not the 
diagnosis, but the severity and drug intake. In general, the limitations and challenges of 
the current research are as follows: (1) method validation of multicenter data; (2) sufficient 
utilization of ultrasound data; and 3) evaluation of the impact of COVID-19 on internal 
organs and bodily functions.

To address the issues presented above, we proposed a novel multimodal channel and 
receptive field attention network combined with ResNeXt (MCRFNet) for assessing lung 
damage in COVID-19 patients. The network can automatically fuse shallow features and 
determine the importance of different channels and respective fields to classify the sono-
grams correctly. Sonogram classes were transformed into scores to evaluate lung involve-
ment from the initial diagnosis to rehabilitation. Proposed method can help doctors 
combine the scores with other indicators to evaluate the patient’s lung involvement. It is 
more beneficial to use this scoring system to improve the nursing level of patients with 
COVID-19.

Results
MCRFNet classification accuracy

We employed four widely used metrics to quantitatively evaluate the COVID-19 lung sono-
gram classification performances, including accuracy (Acc), precision (PP), sensitivity (Se), 
and specificity (Sp) [18, 19]. In general, a better classification performance will have higher 
Acc, PP, Se, and Sp. Acc describes the proportion of correctly classified images, which is 
expressed as follows:

(1)Acc =
TP + TN

TP + TN + FN + FP
× 100%
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where TP, TN, FP, and FN represent the number of true-positive predictions, true-neg-
ative predictions, false-positive predictions, and false-negative predictions, respectively. 
PP is useful for measuring the proportion of true-positive predictions of overall positive 
images and is defined as:

Se, which is a measure of the number of true-positive predictions and false-negative 
predictions, is defined as:

Finally, Sp considers the number of true-negative predictions and false-positive pre-
dictions, which is defined as:

Table 1 summarizes the method comparison and ablation experiment. We evaluated 
the classic classification of deep neural networks and several attention-oriented archi-
tectures. It can be observed that our proposed MCRFNet has noticeably higher per-
formance than other models, achieving Acc, PP, Se, and Sp values of 94.39%, 82.28%, 
76.27% and 96.44% on the three datasets, respectively. Compared with classic models, 
our model is specially designed for COVID-19 lung sonogram images, and attention-
guided architecture has advantages in ultrasound images. Attention-oriented mod-
els show better performance than classic models; however, no previous models have 
fused multimodal information or considered attention combining, which impacted 
their classification performance.

Table 1 shows the results of a comparison between models trained with or without 
the CRFA module and fusion module. Specifically, the model trained with the CRFA 
and fusion module yields a 0.028 improvement in Acc, a 0.0636 improvement in PP, 
a 0.0537 improvement in Se, and a 0.024 improvement in Sp, which greatly surpasses 
the baseline model.

To intuitively understand the fusion module, channel, and receptive field attention 
capability of MCRFNet, we used the Grad-CAM++ method to visualize the class 
activation mapping of the backbone and our proposed network [25]. Grad-CAM++ is 
commonly used to locate discriminative feature regions for perception, which makes 
the model interpretable. As shown in Fig. 1, the areas with bright colors indicate that 
the current region contributes the most to the classification. The results show that the 
backbone network focuses on the recognition of the B-line in a wider area, and our 
proposed network can better allow the network to focus on the line-shaped area or 
lung consolidation area. The samples are well recognized by ResNeXt, but there is still 
room for improvement. However, our MCRFNet can adaptively select the appropriate 
modal channel and suitable convolution kernel size. Finally, our MCRFNet performs 
better than ResNeXt due to the influence of the MCRF module.

(2)PP =
TP

TP + FP
× 100%

(3)Se =
TP

TP + FN
× 100%

(4)Sp =
TN

TN + FP
× 100%



Page 4 of 15Hu et al. BioMed Eng OnLine           (2021) 20:27 

Ta
bl

e 
1 

M
et

ho
d 

co
m

pa
ris

on
 a

nd
 a

bl
at

io
n 

ex
pe

rim
en

t o
n 

di
ffe

re
nt

 d
at

as
et

s

S 
St

or
k 

da
ta

se
t a

cc
ur

ac
y,

 M
 M

in
dr

ay
 d

at
as

et
 a

cc
ur

ac
y,

 P
 P

hi
lip

s 
da

ta
se

t a
cc

ur
ac

y,
 A

cc
 a

cc
ur

ac
y,

 P
P 

pr
ec

is
io

n,
 S

e 
se

ns
iti

vi
ty

, S
p 

sp
ec

ifi
ci

ty

M
et

ho
d

S 
(%

)
S&

M
 (%

)
S&

M
&P

 (%
)

A
cc

PP
Se

Sp
A

cc
PP

Se
Sp

A
cc

PP
Se

Sp

M
et

ho
d 

co
m

pa
ris

on

 V
G

G
 [2

0]
93

.1
5

73
.0

7
74

.6
2

96
.0

9
89

.8
7

76
.3

6
73

.0
5

94
.0

6
88

.8
1

73
.5

67
.3

7
93

.1
9

 R
es

N
et

 [2
1]

93
.1

9
73

.5
6

75
.5

5
96

.0
6

90
.6

3
77

.7
7

74
.9

4
94

.5
1

89
.4

1
74

.5
6

68
.7

8
93

.5
6

 R
es

N
eX

t (
ba

se
lin

e)
 [2

2]
93

.1
5

77
.8

2
74

.6
2

96
.3

1
91

.7
79

.9
8

77
.5

7
94

.9
4

90
.4

6
75

.9
2

70
.9

94
.0

4

 S
EN

et
-5

0 
[2

3]
92

.5
72

.1
6

73
.3

3
95

.6
5

93
.6

4
83

.1
6

83
.7

4
96

.2
8

92
.3

7
79

.7
1

75
.9

3
95

.3
3

 S
KN

et
-5

0 
[2

4]
92

.8
86

.3
2

76
.9

7
95

.7
9

92
.1

2
80

.4
5

78
.6

3
95

.4
91

.0
3

77
.2

1
72

.5
5

94
.5

5

A
bl

at
io

n 
ex

pe
rim

en
t

 w
/o

. C
RF

A
 a

nd
 w

/o
. f

us
io

n 
m

od
ul

e
93

.1
5

77
.8

2
74

.6
2

96
.3

1
91

.7
79

.9
8

77
.5

7
94

.9
4

90
.4

6
75

.9
2

70
.9

94
.0

4

 w
/o

. C
RF

A
 m

od
ul

e
93

.1
9

78
.0

9
75

.5
5

96
.3

4
92

.1
2

81
.2

1
78

.6
3

95
.1

7
90

.9
3

77
.1

4
71

.9
4

94
.3

 M
C

RF
N

et
97

.7
3

85
.7

2
88

.0
6

98
.6

9
96

.2
5

87
.2

83
.5

9
97

.7
4

94
.3

9
82

.2
8

76
.2

7
96

.4
4



Page 5 of 15Hu et al. BioMed Eng OnLine           (2021) 20:27  

The normalized confusion matrixes of classification on three datasets by our pro-
posed method are provided in Fig. 2. We observe that B2-line, B1&B2-line, and B1-line 
are partly misclassified as lower or higher level severity. Especially in the three datasets, 
misclassification is more obvious. The reasons for the performance degradation of mul-
tiple datasets will be discussed in the “Discussion” section. In short, the classification 
accuracy of the A-line and consolidation of the three datasets can reach nearly 100%. 
Misclassification generally occurs in the fusion classification of two categories: A&B-line 
and B1&B2-line.

Distribution of datasets

Figure 3 depicts the distribution of expert manual label classification of 5704 ultra-
sound images of 108 cases in three datasets. Specifically, the Stork, Mindray and 
Philips datasets have 2541 images of 43 cases, 2985 images of 51 cases, and 178 images 
of 14 cases, respectively, and we merged the first two and the first three datasets as 

Fig. 1 The Grad-CAM++ visualization results. The blue, red, and green backgrounds represent the Mindray 
dataset, Stork dataset, and Philips dataset, respectively. a Original input (the actual data are not marked with a 
red circle); b ResNeXt, and; c MCRFNet. The red circle is the lung consolidation area

Fig. 2 The normalized confusion matrixes of classification on three datasets by MCRFNet. The abscissa is the 
predicted label, and the ordinate is the true label
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two new datasets (Stork & Mindray, Stork & Mindray & Philips) to avoid imbalanced 
samples. These three datasets (Stork, Stork & Mindray, Stork & Mindray & Philips) 
are divided into training and test sets at a ratio of 2:1 for each category. The number 
of cases in the training set of the three datasets are: 29, 63, and 72, and the number of 
cases in the test set are 14, 31, and 36. We solved the overfitting problem by randomly 
flipping images, early stopping strategy, dropout, and L2 regularization.

Evaluation of the trend in the degree of lung involvement

After obtaining the trained MCRFNet, we independently tested the videos of 8 
patients (additional collected data), which were examined multiple times (4 times 
or more) from the initial diagnosis to rehabilitation, and we performed classification 
according to the method in the Establishment of Scoring Standards section. CO2 par-
tial pressure (PCO2) is a great indicator of respiratory function and is closely related 
to acid–base homeostasis, reflecting the amount of acid in the blood. The correlation 
between the score obtained and PCO2 was analyzed by Pearson correlation analysis, 
and the correlation is shown in Fig.  4. The Pearson correlation coefficient was 0.73 
(P < 0.001). In the graph, darker colors indicate a higher frequency of occurrence. The 
graph shows that the score of MCRFNet is in the range of 2.7–3.4, which has a higher 
correlation with PCO2.

In addition, two patients with multiple examinations of the MCRFNet score and PCO2 
are shown in Fig. 5. We followed the three lines of the parasternal line (PSL), anterior 
axillary line (AAL), and posterior axillary line (PAL) in the reference [26] to divide the 
left and right sides of the lungs into four areas (L1–L4 and R1–R4). Only one picture is 
shown in the figure, but in the actual scoring, we averaged the scores of multiple pictures 
after framing to obtain the specific score in the figure.

In short, our classification and scoring system not only reflects the degree of lung 
involvement of a patient, but also helps doctors combine this score with other indica-
tors to evaluate the patient’s lung disease and even the entire person’s condition. It is 
more beneficial to use this scoring system to improve the nursing level of patients with 
COVID-19 pneumonia and enhance their support for the clinical decision-making pro-
cess for the management cascade.

Fig. 3 Distribution of expert manual labels of 5704 ultrasound images in three datasets
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Discussion
The current challenge of COVID-19 is not its diagnosis, but its impact on internal 
organs. Recently, an increasing number of COVID-19-related diagnostic and segmen-
tation studies have been published, but the damaging effects of COVID-19 on the 
internal organs of the human body are more important. In this paper, we proposed 
a novel multimodal channel and receptive field attention network (MCRFNet) for 
assessing lung damage in COVID-19 patients.

Rouby et  al. assessed lung involvement by scoring eight areas’ sonograms [27], 
while the sonograms need to be manually identified by doctors, which is time-con-
suming and labor-intensive. There are also some studies on the automatic classifica-
tion of sonograms, but most of them are only for detecting the B-line of sonograms 
[28, 29]. Our MCRFNet can achieve fully automatic assessment of lung involvement 
in COVID-19 patients. The lung ultrasound images of these patients were classi-
fied into six types of sonograms, and the classification results were quantitatively 
scored to obtain the total scores of 8 regions. Then, a correlation analysis between 
the scores and PCO2, which is the most relevant to lung involvement, was obtained. 
Finally, a Pearson correlation coefficient of 0.73 was calculated, indicating that our 

Fig. 4 Scatter plot between the classification score of MCRFNet and CO2 partial pressure (PCO2)
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classification scores can reflect the lung involvement of COVID-19 patients. It is use-
ful to choose the correct treatment method based on the severity of the situation.

The reason for the performance decline after adding the Philips dataset is shown in 
Fig. 6. The Philips dataset comes from three different machines in two centers. Due to its 
contrast and resolution disparity with the Stork and Mindray datasets, our model mis-
classified some images into incorrect categories. It also means that the robustness and 
cross-domain adaptability of our model are not perfect; this limitation serves as a direc-
tion for future improvement. In terms of this problem, to make the classification model 
more robust, we used traditional methods to extract shallow features that are not sensi-
tive to imaging parameters and observed great performance.

Some attempts were made to verify the performance of the model. We tried to train 
with data from a single center, while data from another center were used for independent 

Fig. 5 Two patients had multiple examinations of the MCRFNet score and PCO2 from the initial diagnosis to 
rehabilitation
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testing. However, the Stork dataset has only 58 consolidation images; if we use the 
trained Stork model to predict Mindray’s consolidation data (1136 images), the accuracy 
of independent testing will be greatly reduced in this category of classification and vice 
versa.

For further study, we consider applying the lung consolidation attention area of our 
model to segment the lung consolidation part. The data in this experiment are obtained 
by an oblique scan, our model may be used for longitudinal scan in further study, mak-
ing the model robust to the scanning method. We will try to use the patient’s ultrasound 
video as input, and complete the direct assessment of the patient’s lung involvement 
through three-dimensional convolutional neural network (3D-CNN) [30] or long short-
term memory (LSTM) [31].

Conclusions
In this paper, we proposed a novel classification network named MCRFNet that utilizes 
multimodal fusion and channel and receptive field attention to classify lung sonograms. 
In addition, we scored the predicted categories that reflect the degree of lung involve-
ment in the patient and helped doctors to combine other indicators to assess disease 
trends in COVID-19 patients.

Methods
Ultrasound data acquisitions

In ultrasound imaging, the degree of lung involvement is related to several typical sono-
grams. The A-line is a horizontal reverberation artifact of the pleura caused by multiple 
reflections, representing the normal lung surface [32]. The B-line represents the inter-
lobular septum, which is denoted by a discrete laser-like vertical hyperechoic artifact 
that spreads to the end of the screen, and it can be represented as the B1-line [33]. The 
fusion B-line is a sign of pulmonary interstitial syndrome, which shows a large area filled 
with the B-line in the intercostal space, and it can be represented as the B2-line [26]. Pul-
monary consolidation is characterized by a liver-like echo structure of the lung paren-
chyma, with a thickness of at least 15 mm [27], as shown in Fig. 7.

We used three datasets from four medical centers to build and evaluate the model: 
ultrasound images collected by the Stork ultrasound system (Stork Healthcare Co., 
Ltd. Chengdu, China) at Ruijin Hospital, Mindray ultrasound system (Mindray Medi-
cal International Limited, Shenzhen, China) at Shanghai Public Health Center, Philips 

Fig. 6 Comparison of B1-line of Philips dataset from three different machines
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ultrasound system (Philips Medical Systems, Best, the Netherlands) at Wuhan Sixth 
People’s Hospital and Hangzhou Infectious Disease Hospital. The Stork dataset was 
collected with an H35C (2–5  MHz) convex array transducer, the Mindray dataset 
with an SC5-1 (1–5  MHz) convex array transducer, and the Philips dataset with an 
Epiq 5, Epiq 7 C5-1 (1–5 MHz) convex array transducer.

Multimodal generation and fusion

According to doctors’ experience in recognizing sonograms, parallel echo rays of the 
A-line, beam-like echo rays of the B-line, and the accumulation of exudate of lung 
consolidation are used as markers for classification. The gradient field is highly sensi-
tive to the parallel echo rays of the A-line, and K-means clustering can better high-
light the beam-like echo rays of the B-line [28]. As shown in Fig. 8a, we produced the 
gradient field and K-means clustering images as two new modalities for extracting 
shallow features.

There are many methods to fuse multimodal inputs, and concatenate-based fusion 
is an intuitive fusion method [34], but this method is more suitable for situations 
where each modality is equally important for classification. Extracting features first 
and then concatenating is also a very popular fusion method [35], while the number 
of parameters and GPU memory limit its application. In this paper, we proposed a 
brand-new fusion network, as shown in Fig. 8b; this network used the minimum net-
work parameters to achieve multimodal automatic weight distribution, thus under-
lining the embedding of the other two modalities on the original image. Two 1 × 1 
convolutions were used to update the weights of the K-means modality and gradient 
field modality in the easiest way. After elementwise summation, we highlighted it on 
the original image by elementwise multiplication with the original image and finally 
added it to the original image to obtain the final fusion input.

Fig. 7 Different ultrasound sonograms in lung examination
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ResNeXt with CRF attention block for classification

Shallow features were extracted by the traditional methods in “Multimodal generation 
and fusion” section. To extract deep features more effectively, we chose deep and wide 
ResNeXt as the backbone network for classification. ResNeXt [22] is a combination of 
ResNet [21] and Inception [36], which improves accuracy through wider or deeper net-
works. Each of its blocks is a measurable dimension in addition to the width and depth 
dimensions. It inherits the strategy of repeating layers of ResNet, but increases the 
number of paths and uses split conversion and merge strategies in a simple and scalable 
manner. ResNeXt with the CRF attention building block is shown in Fig. 8d. Our whole 
network replaces the building block in ResNeXt with our CRF attention building block. 
In detail, there is one first layer and three residual layers in our network, and every first 
layer and residual layer has one and three grassroots CRFA building blocks, respectively.

The CRF attention module comprised channelwise and receptive field attention 
modules, denoted as CA and RFA, respectively (Fig.  8c). The CA module attempts to 
assist the learning of layer-specific features and explores channelwise dependencies for 
the selection of useful features. Specifically, given an intermediate input feature chan-
nel set U ∈ RH×W×C , a squeeze operation is performed on the input image Fsq(U) , that 
is, global average pooling (GAP), to encode the entire spatial feature on a channel as a 
global feature:

The squeeze operation obtains the global description feature, and another operation is 
required to capture the relationship between the channels, namely, the excitation opera-
tion Fex(Fsq(U)):

(5)Fsq(U) =
1

W ×H

W
∑

i=1

H
∑

j=1

U(i, j), U ∈ RW×H×C

1 1
Conv

1 1
Conv

Sigmoid

Sigmoid

Fusion input

Element-wise Summation

Element-wise Multiplication

K-means Modality

Gradient field Modality

Original image

Or Or

Fusion  module

Global pooling

H
W

CA module

C

RFA module

C C

Kernel 3 3

GAP FC
Softmax

Input

1 1 Conv

Concatenate

1 1
Conv+BN

CA 
module

RFA 
module

1 1 Conv

Fusion module

1 1 Conv

3 3 Conv 3 3 Conv 3 3 Conv

Output

Total 32 pathsInput 
feature map

C
W

H

C
W

H

A-line

B2-line

B1-line

Consolidation

b

c Element-wise Summation

Element-wise Multiplication

a

d

Fig. 8 a Generated gradient field and K-means clustering modalities. The largest picture represents the 
most sensitive modal. b The proposed fusion module. c Details of CA and RFA module. d The MCRF block is 
integrated with a ResBlock in ResNeXt. The fusion module is only used in the first ResNeXt layer



Page 12 of 15Hu et al. BioMed Eng OnLine           (2021) 20:27 

where δ(·) and σ(·) are the ReLU activation and sigmoid function, respectively. ReLU is 
a ramp function which has gradient one for positive inputs and zero for negative inputs. 
Sigmoid function maps the input from 0 to 1. W1 ∈ R

c
16×c and W2 ∈ R

c
16×c are the learn-

ing weights of the two fully connected layers. The excitation operation can learn the 
nonlinear relationship between channels. Finally, the learned activation value of each 
channel (sigmoid activation) is multiplied by the original feature on U :

given the same input feature channel set U ∈ RH×W×C , we first conducted two transfor-
mations F̃ : U → Ũ ∈ RH×W×C and F̂ : U → Û ∈ RH×W×C with kernel sizes of 3 and 
5, respectively. Then, the results of multiple branches are combined by summing the ele-
ments as follows:

For the output features Ũ and Û , squeeze and excitation are performed, respectively, 
as in Eq. 2. Additionally, we used soft attention across channels to select different spatial 
scales of information, which is guided by the compact feature descriptor z:

where A,B ∈ R
C
16×C . The final feature map of RFA is obtained through the attention 

weights on various kernels as in the above equation.
With the CA and RFA modules, the CA and RFA results are further integrated with 

the add operation, as shown in Fig. 6d:

Detailed procedures are as follows: (1) extract the most common 6 types of datasets in 
Fig. 5 from the training set in equal proportions randomly to avoid an imbalanced sam-
ple and ensure that each category can be learned. (2) Augment the data by rotation and 
normalize the intensity of the image. (3) Select the classifier with the best performance 
and test it on the test set to obtain the corresponding prediction results.

Establishment of scoring standards

We predicted the patient’s per part ultrasound video of multiple examinations through the 
trained MCRFNet and classified and scored sonograms according to the paper [37]. A-line 
indicates that the patient is normally ventilated, with a score of 0; A&B-line indicates that 
the patient has mild lung ventilation loss, with a score of 1; B1-line indicates that the patient 
has moderate lung ventilation loss, with a score of 2; B1&B2-line indicates that the patient 
has severe lung loss of ventilation, with a score of 2.5; B2-line indicates that the patient has 
very severe loss of lung ventilation, with a score of 3; consolidation indicates that the patient 

(6)
Fex(Fsq(U)) = σ

(

W2δ
(

W1Fsq(U)
))

,

δ(x) = max (0, x), σ(x) =
1

1+ e−x

(7)ÛC = F(U , Fex(Fsq(U))) = U · Fex(Fsq(U)),U ∈ RW×H×C

(8)U=Ũ+Û

(9)ÛRF =
eAcz

eAcz + eBcz
Fex(Fsq(Ũ))+ (1−

eAcz

eAcz + eBcz
)Fex(Fsq(Û)),U ∈ RW×H×C

(10)U = ÛC + ÛRF
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has a solid lung change characterized by dynamic air bronchial signs, with a score of 4. 
After the classification result is quantified, the sum is divided by all the frames to obtain the 
final lung function severity score, which is 0 to 4.

Training strategy

For the Stork, Mindray, Stork & Mindray, and Stork & Mindray & Philips datasets, we used 
an independence test to verify the performance of the classifier. All the images were resized 
to 128 × 128, and a training batch consisted of 8 randomly selected images. We regularized 
the model by using dropout during training, and the neural network parameters were then 
trained by maximizing log-likelihood using the momentum optimizer with an initial learn-
ing rate of 0.1. Then, every 30 epochs, the learning rate dropped by 10 times, stochastically 
minimizing the cross-entropy between annotated labels and predictions. Our experiments 
were implemented using TensorFlow on a PC with an Intel Xeon E5, 64G RAM, Nvidia 
TITAN Xp 12G.
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