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Abstract  Showing that an animal is hyperactive is not sufficient for it to be accepted as a 

model of ADHD. Based on behavioral, genetic and neurobiological data, the spontaneously 

hypertensive rat (SHR) obtained from Charles River, Germany (SHR/NCrl) is at present the 

best validated animal model of ADHD. One Wistar Kyoto substrain (WKY/NHsd) , obtained 

from Harlan, UK is its most appropriate control. Another WKY substrain (WKY/NCrl)  

obtained from Charles River, Germany is inattentive, has distinctly different genetics and 

neurobiology and provides a promising model for the predominantly inattentive subtype of 

ADHD (ADHD-I), if one wants to investigate categorical ADHD subtypes. In this case, also, 

the WKY/NHsd substrain should be used as control. Although other rat strains may behave 

like WKY/NHsd rats, neurobiological results indicate significant differences when compared 

to the WKY/NHsd substrain, making them less suitable as controls for the SHR/NCrl. Thus, 

there are no obvious behavioral differences amongst the various SHRs, but there are 

behavioral and neurobiological differences amongst the WKY strains. Finally, the use of 

WKY/NCrl, outbred Wistar, Sprague Dawley or other rat strains as controls for SHR/NCrl 

may produce spurious neurobiological effects and erroneous conclusions. Finally, model data 

yield support to independent hyperactivity and inattention dimensions in ADHD behavior. 

 

Key words   Animal models; Attention Deficit Disorder; Validation; Genetics, 

Neurophysiology; Neuroanatomy 
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Abbreviations 

ADHD  Attention-Deficit/Hyperactivity Disorder 

ADHD-C Attention-Deficit/Hyperactivity Disorder Combined subtype 

ADHD-H Attention-Deficit/Hyperactivity Disorder predominantly hyperactive- 

impulsive subtype 

ADHD-I Attention-Deficit/Hyperactivity Disorder predominantly inattentive subtype 

DA/OlaHsd Inbred rats from Harlan, UK 

IMAGE   International Multi-center ADHD Gene (project)  

LEW/NHsd:  Lewis rats from Harlan, UK 

PVG/Mol  Inbred hooded rats from Møllegaard Breeding Centre, Denmark  

RT-PCR  Real-Time Polymerase Chain Reaction 

SD/MolTac  Outbred Sprague Dawley rats from Møllegaard Breeding Centre, Denmark  

SD/NTac (NTac:SD) Taconic Sprague Dawley rats 

SHR  Spontaneously Hypertensive Rat  

SHR/N  Inbred SHR from NIH 

SHR/NCrl Inbred SHR from Charles River, Germany 

SHR/NMol Inbred SHR from Møllegaard Breeding Centre, Denmark 

SNP   Single Nucleotide Polymorphism 

SSLP  Simple Sequence Length Polymorphisms  

Wistar/Mol Outbred from Møllegaard Breeding Centre, Denmark 

WH/HanTac    (also known as: HanTac:WH) Outbred Wistar Hannover GALAS rats from 

Taconic Europe 

WHHA/Edh (now WKHA/N) Inbred rat from a cross between SHR and WKY with selection 

for high spontaneous activity and low systolic blood pressure at the University 

of Vermont College of Medicine, US.  
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WHHT/Edh (now WKHT/N): Inbred rat from a cross between SHR and WKY with selection 

for normal spontaneous activity and high systolic blood pressure at the 

University of Vermont College of Medicine, US. 

WKY/NHsd:   inbred WKY from Harlan Europe, UK 

WKY/N:   inbred WKY from NIH, US 

WKY/NicoCrlf:  inbred WKY from Charles River, France 

WKY/NMolTac  (also known as: WKY/NMol): WKY from Møllegaard Breeding 

Centre, Denmark 

 

Note. Strain nomenclature is based on the Rat Genome Database (Twigger et al. 2007; Rat 

Genome Database 2008). 

 

1 Introduction 

 

Attention-Deficit/Hyperactivity Disorder (ADHD) is a developmental disorder where all 

clinical criteria are behavioral. It is a heterogeneous disorder affecting about 5% of children 

(Faraone and Mick 2010) and its prevalence is similar in different cultures (Dwivedi and 

Banhatti 2005; Meyer et al. 2004; Rohde et al. 2005). The heterogeneity may be sorted along 

two independent behavioral dimensions: inattention and hyperactivity-impulsiveness (Lahey 

and Willcutt 2010). DSM-IV (American Psychiatric Association 2000) attempts to reduce the 

heterogeneity by subdividing ADHD into three subtypes: the predominantly inattentive 

subtype of ADHD (ADHD-I); the predominantly hyperactive-impulsive subtype (ADHD-H) 

and the combined subtype of Attention Deficit/Hyperactivity Disorder (ADHD-C). ADHD 

places the child at increased risk of school failure, juvenile delinquency, criminality, 
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substance abuse and HIV/AIDS as a consequence of sexual promiscuity and disregard for 

preventative measures (Barkley et al. 2004; Molina et al. 2002; Kahn et al. 2002). 

 

There have been many attempts to explain the origins of ADHD symptoms. A 

learning-theory perspective is gaining ground for the case of ADHD-C. The dynamic 

developmental theory of ADHD (Johansen et al. 2002; Johansen et al. 2009; Sagvolden et al. 

2005a; Johnson et al. 2009; Sagvolden and Archer 1989) suggests that less efficient 

dopamine-mediated reinforcement processes and deficient extinction of previously reinforced 

behavior may explain behavioral changes that are often described as either poor ‘executive 

functions’ (Tannock 1998) or as ‘response disinhibition’ (Barkley 1997). This learning-theory 

perspective predicts specific neuronal changes related to synaptic plasticity and long-term 

potentiation (LTP) (Sagvolden et al. 2005a).  

 

A reinforcer is not defined in terms of previous events, but in terms of the behavioral 

changes that follow the reinforcer. For a reinforcer to alter behavior, events need to occur 

within a limited time-frame, but the duration of this time-frame also depends on attentional 

and memory variables. This is important both in basic laboratory research, where it is often 

overlooked, and in analysis of ADHD, which is associated with poor attention and memory 

(Martinussen et al. 2005; Willcutt et al. 2005). 

 

Animal models are helpful in medical research (Sagvolden et al. 2009). There are 

many putative animal models of ADHD (Roessner et al. 2010; Pardey et al. 2009; Sagvolden 

et al. 2009; Vendruscolo et al. 2009; Sanabria and Killeen 2008; DasBanerjee et al. 2008; 

Heal et al. 2008; Kostrzewa et al. 2008). However, it is important to emphasize that the DSM-

IV definition of ADHD does not say ‘‘always hyperactive’’. Thus, although several molecular 
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and genetic manipulations may produce hyperactive animals (Vendruscolo et al. 2009; 

Ruocco et al. 2009; Yan et al. 2009; Dalley et al. 2009; Kostrzewa et al. 2008), hyperactivity 

alone is insufficient for the animal to qualify as a model of ADHD. It is important to consider 

whether children with ADHD would be hyperactive in a similar test or situation (Johansen et 

al. 2009).  

 

This review concentrates on the best-validated animal model of ADHD:  the 

spontaneously hypertensive rat (SHR) obtained from Charles River, Germany (SHR/NCrl) 

(Rat Genome Database 2008) (see the Abbreviations section) with the Wistar Kyoto rat, 

obtained from Harlan, UK (WKY/NHsd), as the reference strain in an animal model for 

ADHD-C. However, WKY rats obtained from Charles River, Germany (WKY/NCrl), are a 

promising model for the predominantly inattentive subtype of ADHD (ADHD-I) when the 

WKY/NHsd STRAIN is used as control. Use of both substrains as models of ADHD is 

potentially interesting even if ADHD is not regarded as separate subtypes, but as one disorder 

with the severity of symptoms varying along two independent dimensions: inattentiveness and 

hyperactivity-impulsiveness. 

 

2 Criteria for a valid animal model of ADHD 

 

Because the diagnosis of ADHD is based on behavior, the validation of animal models must 

also be based on behavior. If valid animal models were to be found, one would expect many 

of the same fundamental genetic and neurobiological alterations to be common in the human 

and the animal case. Thus, an ADHD animal model should mimic the fundamental behavioral 

characteristics of ADHD (face validity), conform to a theoretical rationale (construct validity), 

and predict correlates of ADHD in humans as regards behavior, genetics and neuronal 
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functions not shown previously in clinical settings (predictive validity) (Sagvolden 2000; 

Sagvolden et al. 2009). Although a variety of rat and mouse strains exhibit hyperactivity 

(Russell et al. 2005), few meet the complete set of criteria for model validation. 

 

2.1 Behavioral differences among strains of rats 

 

The SHR displays the major symptoms of ADHD (inattention, hyperactivity and impulsivity) 

that, like ADHD, develop over time when reinforcers are infrequent (Li et al. 2007; van den 

Bergh et al. 2006; Sagvolden 2000; Johansen et al. 2005b; Sagvolden et al. 2005b; Sagvolden 

et al. 1998). As in children with ADHD (Sonuga-Barke et al. 1992), SHRs are more sensitive 

to delayed reinforcement (Johansen and Sagvolden 2005; Johansen et al. 2005b), consistent 

with a steepened delay-of-reinforcement gradient found in SHR relative to controls (Johansen 

et al. 2007). This means that a reinforcer has to be given immediately following the correct 

behavior in order to be efficient in the SHR while reinforcers could be delayed somewhat in 

controls and still affect behavior. In addition, as in children with ADHD (Castellanos et al. 

2005; Aase et al. 2006), there is increased intra-individual variability and variability in the 

individual SHR ‘s behavior within the task, relative to controls (Perry et al. 2010a; Perry et al. 

2010b). 

 

There is systematic overactivity, impulsiveness and sustained attention deficit in the 

SHRs obtained from: NIH (SHR/N), the Møllegaard Breeding Centre, Denmark 

(SHR/NMol); Charles River, Italy (SHR/CrlIco); and from Charles River, Germany 

(SHR/NCrl). By contrast [to these SHRs] neither the hypertensive WHHT/Edh, nor the 

hyperactive WHHA/Edh substrains showed any systematic overactivity, impulsiveness or 
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sustained attention deficit, although the WHHA/Edh does appear to be overactive in fear-

provoking open-field tests (Sagvolden et al. 2009).  

 

The development of overactivity, impulsiveness and sustained attention deficit in the 

SHRs appear to be poorly correlated (see Figure 2 in (Sagvolden et al. 2005b)). Medication 

affects these behaviors differently in the SHR (Sagvolden 2006; Sagvolden and Xu 2008). 

Thus, it may appear that inattention and overactivity-impulsiveness are two independent 

behavioral dimensions in the SHR just as they may be in children with ADHD (Lahey and 

Willcutt 2010).  

 

Behaviorally, the WKY/NHsd, WKY/N and the WKY/NMolTac are all normal in that 

these WKY substrains may not differ behaviorally from either WH/HanTac Wistar rats; 

SD/MolTac; SD/NTac Sprague Dawley rats; hooded PVG/Mol rats; outbred Wistar/Mol rats; 

or the offspring of DA/OlaHsd females, time-mated with LEW/NHsd Lewis males (Harlan, 

UK) (Sagvolden 2000; Sagvolden et al. 2009). However, the WKY/NHsd substrain is the 

preferred control on the basis of genetic and neurobiological considerations (see below).  

 

2.2 Genetic differences among strains 

 

To investigate whether SHR/NCrl rats show changes in expression in systems relevant to 

ADHD, we (DasBanerjee et al. 2008) have analyzed ADHD candidate genes identified as a 

part of the International Multi-center ADHD Gene project (IMAGE), and their biological 

neighbors (collectively referred to as IMAGE genes) (Kuntsi et al. 2006). The IMAGE gene 

biological neighbors are defined as any gene that was part of the same gene or protein family 

as an IMAGE gene, or has a well-established direct relationship with an IMAGE gene.  
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The SHR/NCrl rats showed significant changes in a set of IMAGE genes: a number of 

these genes are relevant for a learning-theory perspective of ADHD-C. The dynamic 

developmental theory of ADHD (Johansen et al. 2009; Sagvolden et al. 2005a; Johnson et al. 

2009; Sagvolden and Archer 1989) suggests that defective interactions between dopamine and 

glutamate alter synaptic plasticity and long-term potentiation (LTP). On a behavioral level, 

such a faulty interaction may give rise to less efficient dopamine-mediated reinforcement 

processes and deficient extinction of previously reinforced behavior, and these differences 

could explain both inattention and overactivity-impulsiveness associated with ADHD 

(Sagvolden et al. 2005a). 

 

Some of these genes showed decreased expression across tissues in ~65-day-old 

SHR/NCrl rats compared with WKY/NHsd rats: these included the ionotropic glutamate 

NMDA binding protein (Grina), the NMDA-like 1A complex (Grinl1a); the NR2D subunit 

(Grin2d); the AMPA receptor subunit GluR-3 (Gria3); the alpha stimulating, olfactory type 

guanine nucleotide binding protein (Gnal/Golf); the norepinephrine transporter NET (Slc6a2); 

calmodulin 3 (Calm3); calcium/calmodulin-dependent protein kinases Camk1, Camk2a, and 

Camk2g); synaptotagmin III (Syt3); and syntaxin binding protein 1 (Stxbp1). Gnal (Golf) is 

coupled to the dopamine receptor, DRD1, and plays a major role in excitatory dopamine 

transmission in the striatum. Significant relationships have been observed between certain 

SNPs in Gnal and symptoms of inattention and hyperactivity/impulsivity in ADHD children 

(Laurin et al. 2008). 

 

In contrast, other genes showed increased expression (mRNA) in the SHR/NCrl rats 

compared to WKY/NHsd rats: these included the AMPA receptor subunit Glu-R2 subunit 

(Gria2); the NMDA subunits NR1 and NR2C (Grin1 and Grin2c); calcium/calmodulin-
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dependent protein kinase kinase 1 (Camkk1); catechol-O-methyltransferase (Comt); the 

dopamine transporter DAT1 (Slc6a3); the dopamine receptor D1 interacting protein 

(DRD1ip); the 5-hydroxytryptamine (serotonin) receptor (Htr3b); the calmodulin binding 

protein striatin (Strn); syntaxin 11 (Stx11); syntaxin 17 (Stx17); nicotinic cholinergic alpha 

polypeptide 9 receptor (Chrna9); mu opioid receptor 1 (Oprm1); hairy and enhancer of split 6 

(Hes6); and aquaporin 3 (Aqp3). A complete list of significantly altered genes is available in 

DasBanerjee et al. (DasBanerjee et al. 2008).  

 

Based on blood samples, no between-strain differences in DNA were observed for 

either the DRD2 or DRD4 genes, suggesting that neither gene is likely to mediate the 

behavioral differences between the WKY and SHR strains. In contrast, WKY/SHR 

differences were observed in the 3rd exon of DAT1. Whilst these mutations do not result in 

direct amino-acid changes to the DAT protein, it is possible that they mediate some other 

process that explains the differences in DAT expression and function in the two strains (Mill 

et al. 2005). 

 

The dopamine receptor (DRD1)-interacting protein (DRD1ip), calcyon, represents a 

brain-specific protein involved in DRD1/DRD5 receptor-mediated calcium signaling. In our 

data, the SHR/NCrl had a two-fold increase in expression of calcyon mRNA compared with 

WKY/NHsd rats. This is in agreement with a recent study which examined calcyon mRNA 

expression in the frontal-striatal circuitry of 3-, 5-, and 10-week-old SHR and WKY rats 

(Heijtz et al. 2007). Such a changed expression of DRD1ip may indicate an underlying 

disruption of reinforcement processes mediated by dopamine (Schultz 2010). 
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A major function of dopaminergic transmission is to modulate fast, ionotropic synaptic 

transmission mediated by the neurotransmitter glutamate. Thus, the observed changes in gene 

expression for subunits of both AMPA and NMDA glutamatergic receptors may profoundly 

affect neuronal function. Electrophysiological studies revealed two potential consequences of 

such changes (Jensen et al. 2009). Firstly, in male SHR/NCrl and WKY/NHsd rats, at 

postnatal day 28, the AMPA receptor–mediated transmission at the CA3-to-CA1 synapses 

was reduced in the stratum radiatum of the hippocampus. Secondly, the NMDAR containing 

Grin2b (aka GluN2B) subunits contributed substantially to induction of long-term potentiation 

in SHR/NCrl, but not in WKY/NHsd. In human ADHD, there is evidence for genetic 

polymorphism of both Grin2a and Grin2b subunits of the NMDA receptor (Turic et al. 2004; 

Dorval et al. 2007), which might mean that synaptic plasticity associated with learning, 

reinforcement and extinction may be altered in ADHD individuals as well (Sagvolden et al. 

2005a). 

 

Human and animal data indicate that the mu opioid receptor 1 (Oprm1) is associated 

with substance abuse disorders (Berrendero et al. 2002; Zhang et al. 2006). Individuals with 

ADHD show strong substance dependence (Faraone et al. 2007). Thus, it is possible that 

substance dependence in ADHD may be modulated by Oprm1. 

 

3 Applying validity criteria to animal research 

 

A large number of studies support the use of SHR as the best animal model of ADHD. 

However, there are also researchers who question the validity of the SHR/NCrl model 

(Ferguson and Cada 2003; van den Bergh et al. 2006). This section highlights a few important 
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factors that may have contributed to some of the inconsistencies in the literature regarding the 

value of SHR as an animal model of ADHD.  

 

3.1  WKY heterogeneity: SHR/NCrl and WKY/NCrl versus WKY/NHsd 

controls 

 

From a genetic point of view, the best candidate for a control strain is the progenitor strain of 

SHR/NCrl: i.e., the WKY.  However, the various WKY substrains are not equally suited to 

serve as controls due to genetic and behavioral differences. For instance, genome-wide 

analyses show that the WKY/NCrl rats are more similar to the SHR/NCrl than to the 

WKY/NHsd rats (Sagvolden et al. 2008). Behaviorally, WKY/NCrl rats are more similar to 

the WKY/NHsd strain in some tasks, but are more similar to SHR/NCrl in others. We will 

argue that the SHR/NCrl strain, with the WKY/NHsd substrain acting as controls, is the best 

animal model of ADHD-C if this subtype really exists or ADHD with individually highly 

variable dimensions of inattention and overactivity (Perry et al. 2010a; Perry et al. 2010b) in a 

dimensional view of ADHD (Lahey and Willcutt 2010). 

  

The newly described genetic and behavioral changes in the WKY/NCrl make this a 

promising model of ADHD-I (Sagvolden et al. 2008) if subtypes of ADHD exist. Both the 

WKY/NCrl and SHR/NCrl strains are inattentive relative to Sprague Dawley and 

Wistar/HanTac controls strains. However, WKY/NCrl rats are neither hyperactive nor 

impulsive, like the SHR/NCrl rat (Sagvolden et al. 2008). It is conceivable; however, that 

inattention is a phenomenon by itself and not necessarily associated with ADHD. Then, the 

WKY/NCrl might not be a model of ADHD, but of some other disorder mainly associated 

with inattention.  
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Independent of whether or not the WKY/NCrl is a model of ADHD, the heterogeneity 

between the WKY substrains makes it imperative that researchers provide information about 

the substrain and breeder used in their studies to enable empirical findings to be adequately 

evaluated by others.  

 

3.2  ADHD: defining features and situational factors  

 

One issue that might lead to disagreement regarding the validity of SHR/NCrl as an animal 

model of ADHD is how findings are interpreted and extrapolated. A defining feature of 

ADHD-C and of ADHD-H is hyperactivity. However, the DSM-IV definition of ADHD does 

not say “always hyperactive”, but includes statements like “have persisted for at least 

6 months to a degree that is maladaptive and inconsistent with the developmental level” or 

“present in more than two or more settings”. Some animal researchers seem to assume that 

ADHD is characterized by hyperactivity. Thus, if hyperactivity is not found in the animal 

model (in the specific test used in the present study), it is not a valid model of ADHD. These 

researchers fail to ask an additional, central question: “Are children with ADHD always 

hyperactive?” The answer to that question is “no” based on findings reported in the research 

literature, clinical experience, and reports from parents and teachers.  

 

As in people with ADHD, the degree of behavioral problems in SHR depends on the 

task. Thus, the conclusion that a particular animal model is not valid for studies of ADHD, 

based on results from one test, only, may simply be incorrect. This point emphasizes the 

importance of good, reliable, translational tests that can be used in the animal model as well 



 14 

as in children with ADHD to test the correspondence between ADHD hyperactivity and 

hyperactivity in the animal model.  

 

A second, related issue is the uncritical reliance on ADHD research literature when 

designing animal model studies. Such studies may refer to findings that report the presence of 

a particular behavioral change or cognitive deficit, which is then investigated in the animal 

model. Researchers may sometimes conclude that the results do not support continued use of 

an ADHD model because a behavioral change or cognitive deficit that has been reported in 

the ADHD literature is absent in the animal model. However, many behavioral measures and 

cognitive concepts studied in ADHD, e.g., many aspects of “executive functions”, are not 

defining features of the disorder. The literature on children diagnosed with ADHD is 

inconsistent regarding most of these cognitive or behavioral measures. Further, if a clinician 

observes a child with all the symptoms of ADHD, but without the behavioral change or 

specific cognitive deficit in question, (s)he would not automatically conclude that this child 

does not have ADHD. Thus, categorical conclusions on the validity of animal models based 

solely on one such measure may be erroneous. 

 

3.3  Age and development  

 

The lack of a positive response to medication is a final issue that sometimes is used as an 

argument against the SHR/NCrl model of ADHD. As the greater majority of patients with 

ADHD do respond positively, an animal model of ADHD should do the same. However, a 

positive response to medication is not a defining feature of ADHD: up to one in five children 

diagnosed with ADHD will similarly not respond positively (Faraone and Buitelaar 2010).  
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Several studies find that psychostimulants improve symptoms of inattention, 

hyperactivity and impulsivity in SHR/NCrl (Sagvolden et al. 1992; Wultz et al. 1990; Myers 

et al. 1982; Sagvolden and Xu 2008). When some researchers do not find ameliorating effects 

of medication in SHR/NCrl, it is important to consider whether the behavioral measures are 

improved by medication in children with ADHD. Further, we may need to adopt a 

developmental perspective. The effect of psychostimulant treatment in young and adolescent 

individuals may not be the same as in adults; medication may interact with brain development 

and neuronal pruning to produce its effects (Shaw et al. 2009; Bizot et al. 2007).  

 

In this developmental perspective, we examined the expression of genes involved in 

dopamine signaling and metabolism in the dorsal striatum and ventral mesencephalon of 

SHR/NCrl and WKY/NCrl, as well as three reference control strains (WKY/NHsd, 

WK/HanTac, and SD/NTac) using quantitative real time RT-PCR. In addition, we determined 

striatal dopamine transporter (DAT) density, by ligand binding assay, in the two ADHD-like 

strains at different developmental stages and after methylphenidate treatment. In adult rats, 

the mRNA expression of DAT and tyrosine hydroxylase was elevated in SHR/NCrl and 

WKY/NCrl rats compared to control strains: differences in DAT and tyrosine hydroxylation 

expression between SHR/NCrl and WKY/NCrl rats were also evident. During normal 

development, changes in striatal DAT densities occurred in both strains, with lower densities 

in WKY/NCrl than SHR/NCrl after postnatal day 25. Two-weeks of methylphenidate 

treatment, during different developmental stages, was associated with decreased striatal DAT 

density in both rat strains compared to the non-treated rats with more pronounced effects 

followed prepubertal treatment (Roessner et al. 2010).  
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Thus, use of old, hypertensive SHRs may potentially produce misleading results when 

studying SHR/NCrl as an animal model of ADHD. Hypertension can have deleterious effects 

on the brain function and produce spurious results. Studies of the SHR/NCrl model should 

preferably use young, prehypertensive animals to avoid this possible confound although 

young adults with ADHD may be hypertensive as well as obese (Fuemmeler et al. 2010). 

 

4 Implications for understanding ADHD 

 

The dynamic developmental theory of ADHD (Johansen et al. 2005a; Sagvolden et al. 2005a) 

suggests that reduced dopaminergic transmission changes fundamental behavioral selection 

mechanisms. This arises from deficient reinforcement of successful behavior, combined with 

deficient extinction (elimination) of unsuccessful behavior. In SHR/NCrl, neurobiological 

evidence for such factors is found both in the reduced dopamine efficacy (Sagvolden et al. 

2009; Roessner et al. 2010) and in altered long-term potentiation in hippocampal slices 

(Jensen et al. 2009).  

 

Such deficient selection mechanisms will slow the association (‘chunking’) of simple 

response units into longer, more elaborate chains of adaptive behavioral elements that 

function as higher-order behavioral units (Miller 1956; Aase and Sagvolden 2005; Aase et al. 

2006; Perry et al. 2010a; Perry et al. 2010b). Whenever behavioral units are chunked together 

into a chain of responses that is emitted in this context, each behavioral unit reliably precedes 

the next with high predictability. Consequently, deficient or slowed chunking of behavior will 

increase intra-individual variability. This is observed in children with ADHD and in the SHR 

(Aase and Sagvolden 2006; Johansen et al. 2009; Perry et al. 2010a; Perry et al. 2010b). 
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5 Conclusions 

 

There are no obvious behavioral differences amongst the various SHRs, but there are 

behavioral and neurobiological differences amongst the WKY strains. Several strains of rats 

may behave like WKY/NHsd rats, genetic studies indicate significant differences between 

various ‘normal’ strains. Thus, Sprague Dawley rats may be a poor control for the SHR/NCrl, 

particularly in neurobiological studies. Given that the Wistar WH/HanTac rats and 

WKY/NCrl deviate both genetically and behaviorally from the WKY/NHsd, the use of these 

strains as controls for SHRs may produce spurious neurobiological differences. Thus, 

WKY/NHsd is the most appropriate control for SHR/NCrl. As a consequence, data may be 

misinterpreted if researchers or readers do not pay attention to the strain or substrain that was 

used in a study.  

 

It is likely that lack of attention to such factors has led to erroneous conclusions in 

studies involving the SHR, WKY and other comparison strains, in model studies of ADHD. 

The SHR/NCrl is the best validated animal model of ADHD. Genetic and neurobiological 

data strengthen such a conclusion. Recent data suggest that the WKY/NCrl is inattentive, but 

it is unclear whether this substrain can be used as a model of ADHD.  

 

The availability of validated ADHD animal models has substantial implications for 

research. Unlike some disorders, such as schizophrenia or bipolar disorder (for which there 

exist brain tissue resource centers) brain tissue is not available for ADHD patients. Animal 

models provide a source of such tissue for studies of gene expression, epigenetics, 

neuroanatomy, cellular neurophysiology and other methods. Animal models of ADHD can 

also be used to search for ADHD genes using linkage or association analysis and to search for 
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gene-environment interactions by exposing susceptible animals to environmental toxins (e.g., 

polychlorinated biphenyls) suspected to be risk factors for ADHD (DasBanerjee et al. 2008; 

Holene et al. 1998; Kuehn 2010). The SHR/NCrl is clearly useful for these. 
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