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We report that the energy metabolism shifts to anaerobic glycolysis as an adaptive response to oxidative
stress in the primary cultures of skin fibroblasts from patients with MERRF syndrome. In order to unravel
the molecular mechanism involved in the alteration of energy metabolism under oxidative stress, we treated
normal human skin fibroblasts (CCD-966SK cells) with sub-lethal doses of H2O2. The results showed that
several glycolytic enzymes including hexokinase type II (HK II), lactate dehydrogenase (LDH) and glucose
transporter 1 (GLUT1) were up-regulated in H2O2-treated normal skin fibroblasts. In addition, the glycolytic
flux of skin fibroblasts was increased by H2O2 in a dose-dependent manner through the activation of AMP-
activated protein kinase (AMPK) and phosphorylation of its downstream target, phosphofructokinase 2
(PFK2). Moreover, we found that the AMPK-mediated increase of glycolytic flux by H2O2 was accompanied
by an increase of intracellular NADPH content. By treatment of the cells with glycolysis inhibitors, an
AMPK inhibitor or genetic knockdown of AMPK, respectively, the H2O2-induced increase of NADPH was
abrogated leading to the overproduction of intracellular ROS and cell death. Significantly, we showed that
phosphorylation levels of AMPK and glycolysis were up-regulated to confer an advantage of survival for
MERRF skin fibroblasts. Taken together, our findings suggest that the increased production of NADPH by
AMPK-mediated increase of the glycolytic flux contributes to the adaptation of MERRF skin fibroblasts and
H2O2-treated normal skin fibroblasts to oxidative stress.
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1. Introduction

Mitochondrial diseases are mostly caused by defects in the en-
zymes involved in mitochondrial respiration and oxidative phosphor-
ylation (OXPHOS) [1]. Consequently, mitochondrial dysfunction is
associated with an increase of intracellular reactive oxygen species
(ROS) level and a decrease of ATP content in affected tissue cells [2–
4]. MERRF (myoclonic epilepsy and ragged-red fibers) syndrome is
one of the major mitochondrial diseases that has been associated
with an A to G transition at nucleotide position 8344 (A8344G muta-
tion) in the tRNALys gene of mtDNA [5]. Abnormalities in the amino-
acylation by tRNALys lead to premature termination of translation
and result in an impairment of mitochondrial protein synthesis [6].
Biochemical studies of MERRF syndrome revealed a great reduction
in the activities of respiratory enzyme Complexes I and IV in skeletal
muscle and cultured skin fibroblasts accompanied with increased in-
tracellular levels of ROS [3,7]. It has thus been suggested that oxida-
tive stress and oxidative damage play an important role in the
pathophysiology of MERRF syndrome [8,9]. Previously, we demon-
strated that several nuclear DNA-encoded regulatory factors, particu-
larly PKC-δ, were up-regulated in response to the pathogenic mtDNA
mutation-elicited oxidative stress, resulting in a compensatory in-
crease of mitochondrial biogenesis [10,11]. Nevertheless, it has
remained unclear as to how cells harboring an mtDNA mutation reg-
ulate their major pathways of metabolism to cope with energy defi-
ciency. Therefore, we investigated the energy metabolism in the
primary cultures of skin fibroblasts from normal subjects and patients
with MERRF syndrome.

To restore the cellular energetic status in human cells with mito-
chondrial dysfunction, AMP-activated protein kinase (AMPK) can
switch on other ATP-generating pathways such as glycolysis and
amino acid oxidation, while simultaneously switching off ATP-utilizing
pathways such as fatty acid synthesis and gluconeogenesis [12]. AMPK,
a heterotrimeric enzyme, is a key regulator of cellular energy metabo-
lism consisting of the catalytic α-subunits (α1 or α2), β-regulatory
subunits (β1 or β2) and AMP binding subunits (γ1, γ2 or γ3) [13]. It
has been reported that AMPK is activated by phosphorylation of the
catalytic subunits at Thr172 [14], which ismediated by a tumor suppres-
sor, LKB1 kinase, and several Ca2+/calmodulin-dependent protein
kinases (CaMKs) [15,16]. Recent studies also showed that AMPK can
be activated by reactive oxygen/nitrogen species (ROS/RNS) [17]. The
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activation of AMPK by ultraviolet (UV) irradiation, hydrogen peroxide
(H2O2), nitric oxide (NO) and peroxynitrite (•ONOO−), respectively,
has been reported in various human cell lines [18–20]. However, it is
unknown as to whether AMPK activation induced by ROS or RNS has
an effect on the major pathways of energy metabolism in skin
fibroblasts.

It has been reported that the redistribution of glucose metabolites
is involved in the regulation of antioxidant defense system [21,22].
The carbon flux through the oxidative branch of the pentose phos-
phate pathway (PPP) is viewed as a part of the antioxidant defense
system due to the generation of reduced nicotinamide adenine dinu-
cleotide phosphate (NADPH) by glucose 6-phosphate dehydrogenase
(G6PD) [23]. NADPH is considered as a critical source of reducing
equivalent, which contributes to the maintenance of the antioxidant
defense capability and glutathione (GSH) regeneration [24]. The
NADPH-dependent antioxidant enzymes including the thioredoxin
and glutaredoxin systems play important roles in the maintenance
of redox homeostasis owing to the regulation of thiol-disulfide
exchange [25,26]. Although manipulating the carbohydrate source
of the culture medium can interfere with the intracellular NADPH
production via the PPP [27], it remains unclear whether the increase
of the glycolytic flux can contribute to an increase of the intracellular
NADPH content of human cells.

In order to unravel the molecular mechanism involved in the reg-
ulation of energy metabolism for the cell survival under oxidative
stress, we first investigated the alteration of glucose metabolism in
sub-lethal H2O2-treated normal human skin fibroblasts (CCD-966SK
cells) and in the primary culture of skin fibroblasts from MERRF
patients. We observed that an increase of the glycolytic flux was
regulated by AMPK, which was accompanied by elevation of intracel-
lular NADPH and GSH contents in skin fibroblasts against oxidative
stress. We consider that AMPK-mediated metabolic switch and anti-
oxidant response are essential for the cell survival in affected tissues
harboring a pathogenic mtDNA mutation, which may play an impor-
tant role in the pathophysiology of mitochondrial diseases such as
MERRF syndrome.

2. Materials and methods

2.1. Cell cultures

The primary cultures of skin fibroblasts from normal subjects (N1–
N4, average age of 21.3±3.8 years), MERRF patients (M1–M4, average
age of 19.3±5.5 years) and a normal human skin fibroblast cell line
(CCD-966SK, ATCC number: CRL-1881) were cultured at 37 °C in a hu-
midified chamber filled with 5% CO2. Cells were cultured in Dulbecco's
modified Eagle's medium (DMEM, Gibco, Invitrogen Corp., Carlsbad,
CA, USA) containing 10% fetal bovine serum (FBS, Biological Industries,
Kibbutz Beit Haemek, Israel) and antibiotics (Biological Industries,
Kibbutz Beit Haemek, Israel) composed of 100 U/ml penicillin G and
100 μg/ml streptomycin sulfate, respectively. The primary cultures of
skin fibroblasts were used at passages 3 to 5 and the molecular diagno-
sis of MERRF skin fibroblasts revealed an A8344G mutation in mtDNA
(M1: 53.6±7.9%, M2: 78.3±7.2%, M3: 84.2±3.8%, M4: 72.2±11.3%),
but not in normal skin fibroblasts [11].

2.2. Chemicals and antibodies

An AMPK inhibitor (Compound C), N-acetylcysteine (NAC), 2'-
deoxy-D-glucose (2DG), antimycin A (AnA), and 6-aminonicotina-
mide (6AN) were purchased from Sigma-Aldrich Chemical Co. (St.
Louis, MO, USA) and H2O2 was procured fromMerck (Darmstadt, Ger-
many). The antibodies against glycolytic enzymes (GPI, PFK1, PFK2,
LDH, PDH, PDK and phosphorylated PFK2 at Ser466) were supplied
by Santa Cruz Biotechnology (Santa Cruz, CA, USA), and GLUT1, HK
II, GAPDH and β-actin antibodies were purchased from Millipore
(Billerica, MA, USA). The antibodies specific to AMPK-1α and phos-
phorylated AMPK-1α (Thr172) were acquired from Cell Signaling
Technologies (Beverly, MA, USA). The antibodies against G6PD,
GPx-1, GR, Trx-1, and Prx-1, respectively, were purchased from
AbFrontier Co., Ltd. (Seoul, Korea).

2.3. Knockdown of AMPK-1α

The small hairpin RNA (shRNA) plasmids for the AMPK-1α gene
(shAMPK) and luciferase control gene (shLuci) were obtained from
the RNAi Core Facility at Academia Sinica, Taipei, Taiwan. The shLuci
and shAMPK-1α constructs were made by using the pLKO plasmid
(http://www.addgene.org/plko) and the target sequences were 5′-
CAAATCACAGAATCGTCGTAT-3′ and 5′-GCCTGGCTATGGAACTAAATA-3′,
respectively. With TurboFectTM in vitro transfection reagent (Fermentas
Life Science, Vilnius, Lithuania), 2 μg/ml of shAMPK could effectively
abolish the AMPK-1α expression in human skin fibroblasts at 24, 48,
and 72 h, respectively, according to the protocol recommended by the
manufacturer.

2.4. Determination of intracellular H2O2 content

The intracellular H2O2 content in skin fibroblasts was measured by
incubating cells with the probe 2′,7′-dichlorofluorescin diacetate
(DCFH-DA) at 20 μM, 37 °C for 20 min (Molecular Probes, Eugene,
OR, USA). After trypsinization, cells were resuspended in 0.5 ml of
PBS buffer (pH 7.4), and subjected to analysis on a flow cytometer
(Model EPICS XL-MCL, Beckman-Coulter, Miami, FL, USA). The excita-
tion wavelength was set at 488 nm and the intensity of emitted fluo-
rescence of a total of 10,000 cells at 525 nm was recorded on channel
FL1. Data were acquired and analyzed using the EXPO32TM software
(Beckman-Coulter, Miami, FL, USA), and the intracellular H2O2 con-
tents in the treated cells are presented as relative values compared
to that of the cells without H2O2 treatment.

2.5. Measurement of bioenergetic parameters

An XF24 Analyzer (Seahorse Bioscience, North Billerica, MA, USA)
was used to measure the bioenergetic function of the primary culture
of skin fibroblasts [28]. The XF24 Analyzer can create a transient 7-μl
chamber to the cells cultured in a 24-well microplate, and the oxygen
consumption rate (OCR) and extracellular acidification rate (ECAR)
were monitored real-time in an incubation chamber at 37 °C. Briefly,
a seeding density of 16,000 skin fibroblasts per well was chosen and
the culture medium was replaced 1 h prior to measurement by the
assay medium that contained un-buffered DMEM (pH 7.4). The pro-
gram of Seahorse XF24 Analyzer was set according to the manufac-
turer's recommendation and the data are expressed in pmol/min/104

cells for OCR and in mpH/min/104 cells for ECAR to allow comparison
between independent experiments.

2.6. Determination of mitochondrial oxygen consumption

The rate of mitochondrial oxygen consumption was measured on
an Oxygen Meter 782 (Strathkelvin Instruments, Scotland, UK) with
a water circulation system to maintain the assay condition at 37 °C
as described previously [29]. Briefly, about 106 cells were suspended
in 330 μl assay buffer (125 mM sucrose, 65 mM KCl, 2 mM MgCl2,
20 mM phosphate buffer, pH 7.2), and then transferred to the incuba-
tion chamber. After recording the rate of oxygen consumption for
5 min, 20 μl of 25 mM KCN was added to the chamber to inhibit mito-
chondrial respiration and the non-mitochondrial oxygen consump-
tion rate was recorded for another 3 min. The rate of oxygen
consumption was calculated by the SI 782 Oxygen System software
version 3.0, and was normalized by the cell number after subtracting
the rate of non-mitochondrial oxygen consumption.

http://www.addgene.org/plko
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2.7. Measurement of intracellular ATP content

The intracellular ATP content in skin fibroblasts was measured by
the Bioluminescent Somatic Cell Assay Kit (Sigma-Aldrich) according
Fig. 1. Increase of oxidative stress and anaerobic glycolysis in skin fibroblasts from patients w
(M1–M4) and four age-matched normal skin fibroblasts (N1–N4) were used. (A) Intracellu
intensity in the skin fibroblasts of normal subjects and in MERRF skin fibroblasts are shown
Seahorse XF24 Analyzer and (D) the mean values of lactate production rate were determi
Western blot, the expression of glycolytic enzymes in skin fibroblasts of normal subjects an
from three independent Western blots, the expression levels of glycolytic enzymes were no
was constructed on the basis of the mean values of proteins expression levels in skin fibrob
means±S.D. of the results from three independent experiments (*, pb0.05, ** pb0.01 vs. t
to a method described previously [30]. Briefly, an aliquot of 50 μl cell
suspension (106 cells) was mixed with 150 μl Somatic Cell Releasing
Reagent to release the intracellular ATP. One half (100 μl) of themixture
was then transferred to a black 96-well plate (OptiPlateTM, Packard
ith MERRF syndrome. The primary culture of skin fibroblasts from four MERRF patients
lar H2O2 content was determined by DCF staining and (B) the mean values of the DCF
in histogram. (C) The mean values of OCR and ECAR were measured in real-time by a

ned in skin fibroblasts from normal subjects and MERRF patients, respectively. (E) By
d MERRF skin fibroblasts were determined, respectively. (F) By densitometric analysis
rmalized to the corresponding β-actin expression level. The representative histogram
lasts of normal subjects and MERRF skin fibroblasts, respectively. Data are presented as
he indicated group).



Fig. 2. Metabolic shift from mitochondrial respiration to anaerobic glycolysis in H2O2-treated normal skin fibroblasts. After exposure of CCD-966SK cells with 250 μM H2O2 for
90 min, the cells were washed with PBS and incubated with the complete culture medium for 24, 48 and 72 h, respectively. (A) The rate of mitochondrial oxygen consumption,
(B) the intracellular ATP content, (C) the rate of lactate production, and (D) the rate of [3H]-2-deoxy-glucose ([3H]-2DG) uptake were determined. (E) Western blot for the mea-
surement of the expression of the glycolytic enzymes in CCD-966SK cells after induction with H2O2 stress for 24, 48 and 72 h, respectively. (F) The representative histogram was
constructed on the basis of the results from three independent Western blots and data are presented as means±S.D. (*, pb0.05, **, pb0.01 vs. the indicated group).
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Fig. 3. Enhanced glycolytic flux as a response to H2O2 toxicity in normal skin fibro-
blasts. (A) After treatment of CCD-966SK cells with various concentrations of H2O2,
the rates of mitochondrial oxygen consumption and [3H]-2DG uptake in CCD-966SK
cells were determined at 72 h, respectively. (B) By pre-treatment of CCD-966SK cells
with 1 and 2 mM NAC followed by addition of 250 μM H2O2, the rates of mitochondrial
oxygen consumption, the rates of [3H]-2DGuptake and (C) lactate productionwere deter-
mined at 72 h, respectively. Data are presented as means±S.D. of the results from three
independent experiments (* and #, pb0.05, ** and ##, pb0.01 vs. the indicated group).
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Biosciences, Groningen, The Netherlands), which contained 100 μl ATP
Assay Mix. The luminescence intensity was then measured by the
Victor2TM 1420 multilabel counter machine (PerkinElmer Life Sciences
Inc., Boston, MA, USA). The ATP standards ranging from 0 to 300 pmol
were used and each ATP value was normalized by the cell number.

2.8. Determination of the glucose uptake rate

The glucose uptake rate of skin fibroblasts was measured by the
addition of a [3H]-labeled glucose analog, 2′-deoxy-D-[2,6-3H] glucose
([3H]-2DG) to the assay medium. Briefly, cells were cultured in a 6-
well plate and washed with the Krebs–Ringer phosphate buffer (KRP,
pH 7.4) containing 130 mM NaCl, 5 mM KCl, 1.3 mM CaCl2, 1.3 mM
MgSO4, and 10 mM Na2HPO4. After washing with the KRP, the 6-well
plate was placed in a shaker maintained at 37 °C with a water bath.
The reaction was carried out by the addition of [3H]-2DG (final concen-
tration at 0.2 mM, 7.5 mCi/μmol) for 20 min at 37 °C and stopped by the
addition of ice-cold 20 mM glucose solution for another 5 min. The so-
lution was then removed by suction and rapidly washed three times
with ice-cold PBS. Finally, 1 ml of 2% SDS was added to the plate and
the extract was counted for the radioactivity by Tri-Carb 2900TR
equipped with a Beta counter (GMI Inc., Ramsey, MN, USA).

2.9. Determination of lactate production rate

The rate of lactate production was measured by a Lactate Reagent
kit (Trinity Biotech, Bray, Ireland). Briefly, cells in a 6-well plate were
incubated with the fresh culture medium for 8 h, and an aliquot of
10 μl of medium was then transferred to a 96-well plate to mix with
the Lactate Reagent. The absorbance at 540 nm of a product generated
by the reaction was measured by an ELISA reader PowerWavex 340
(Bio-Tek Instruments, Winooski, VT, USA). The amount of lactate
produced by cells during the incubation period of time was calculated
according to the standard curve constructed by lactate standards. The
rate of lactate production was normalized by the cell number and
divided by the length of incubation time.

2.10. Western blot analysis

An aliquot of 50 μg proteins was separated on 10% SDS-PAGE and
blotted onto a piece of the PVDF membrane (Amersham-Pharmacia
Biotech Inc., Buckinghamshire, UK). After blocking by 5% skim milk
in the TBST buffer (50 mM Tris–HCl, 150 mM NaCl, 0.1% Tween 20,
pH 7.4) for 1 h, the membrane was incubated for another 1 h with a
primary antibody at room temperature. After washing 3 times with
the TBST, the blot was incubated with a horseradish peroxidase
(HRP)-conjugated secondary antibody for 1 h at room temperature.
An enhanced chemiluminescence detection kit (Amersham-Pharmacia
Biotech Inc., Buckinghamshire, UK) was used to detect the protein
signals with a Fuji X-ray film (Fuji Film Corp., Tokyo, Japan), and the
signals were quantified by ImageScanner III with the LabScan 6.0
software (GE Healthcare BioSciences Corp., Piscataway, NJ, USA).

2.11. Determination of cell viability

Cell viability was measured by the Trypan blue exclusion assay, and
the cellswere counted by using a haemocytometer. The number of viable
cells was determined on the basis of their exclusion of 0.4% Trypan blue
(Sigma-Aldrich, St. Louis, MO, USA). The relative cell viability was nor-
malized by the value of cells without H2O2 treatment, and is expressed
as mean±S.D. of the results from three independent experiments.

2.12. Determination of the intracellular NADPH content

Intracellular NADPH content was measured by an NADPH quantifi-
cation kit (K347-100, BioVision Inc., Mountain View, CA, USA). Briefly,

image of Fig.�3
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about 106 cells were harvested by trypsinization and lysed in 50 μl of
0.1 N NaOH followed by neutralization with the addition of 50 μl of
0.1 N HCl. An aliquot of 900 μl extraction buffer was added to the sam-
ple and incubated at 4 °C for 20 min. The sample was then incubated at
60 °C for 1 h to completely destroy NADP+, leaving NADPH intact. After
incubation of the sample with the NADPH developer buffer at room
temperature for 1 h, the absorbance at 450 nm was measured by an
ELISA reader PowerWavex 340 (Bio-Tek Instruments, Winooski, VT,
USA). A standard curve for NADPH (0–100 pmol) was established and
the intracellular NADPH content was calculated and normalized by
the cell number.

2.13. Measurement of intracellular GSH contents

The amount of GSH was measured by the Bioxytech GSH-400
quantification kit (Oxis Internation, Inc., Portland, OR). Briefly,
about 106 cells were harvested by trypsinization and lysed in
350 μl of 5% metaphosphoric acid (MPA) followed by centrifugation
at 3,000×g for 10 min at 4 °C. The GSH content was determined from
50 μl of MPA extract (supernatant) which was incubated in the pres-
ence of 5-5′-dithiobis-2-nitrobenzoic acid (DTNB), NADPH and GR
according to the manufacturer's protocol. The change in absorbance
at 400 nm over 3 min was measured on a Hitachi U-3410 UV/VIS
Fig. 4. Essential of increased glycolytic flux for normal skin fibroblasts to cope with H2O2 and
H2O2 at 24 h, CCD-966SK cells were incubated with 5 mM galactose in a glucose-free mediu
containing medium, respectively, for another 48 h. (A) The cell viability was determined by
DCF staining. Data were normalized to the control without H2O2 treatment. (C) The pri
(n=4) were incubated, respectively, with 5 mM galactose in a glucose-free medium follo
and (D) the mean values of cell viability and intracellular H2O2 content are shown in the hi
periments (*, pb0.05, **, pb0.01 vs. the indicated group).
spectrophotometer (Hitachi High Technologies Corp., Japan) for
both samples and standards (0 to 3.0 μmol of GSH). The GSH level
was normalized by the protein concentration and expressed as
nmol/mg protein.

2.14. Statistical analysis

Statistical analysis was performed by using theMicrosoft Excel 2007
statistical package and the data are presented asmeans±S.D. of the re-
sults obtained from three independent experiments. The significance
level of the difference between the control and the experimental groups
was determined by the Student's t test. A differencewas considered sta-
tistically significant when the p valueb0.05 (* and #) and p valueb0.01
(** and ##), respectively.

3. Results

3.1. Increased oxidative stress and anaerobic glycolysis in skin fibroblasts
from patients with MERRF syndrome

The intracellular H2O2 content and the bioenergetic function were
determined for the primary cultures of skin fibroblasts from four age-
matched normal subjects (N1–N4, normal skin fibroblasts) and four
for the survival of MERRF skin fibroblasts. After induction of oxidative stress by 250 μM
m, 20 mM 2DG (an HK inhibitor) and 1 mM AnA (a Complex III inhibitor) in a glucose-
Trypan blue exclusion assay and (B) the intracellular H2O2 content was measured by

mary cultures of skin fibroblasts from normal subjects (n=4) and MERRF patients
wed by determination of the cell viability and the intracellular H2O2 content at 48 h
stogram. Data are presented as means±S.D. of the results from three independent ex-

image of Fig.�4


Fig. 5. Up-regulation of the phosphorylated AMPK and PFK2 in H2O2-treated normal skin fibroblasts and MERRF skin fibroblasts. (A) By Western blot, the phosphorylation levels of
AMPK-1α and PFK2 were evaluated after treatment of CCD-966SK cells with 250 μM H2O2 at 24, 48 and 72 h, respectively. (B) Phosphorylated AMPK-1α and PFK2 in CCD-966SK
cells was examined after treatment of cells with various concentrations of H2O2 at 72 h. By densitometric analysis from three independent Western blots, the ratios of pAMPK-1α /
AMPK-1α and pPFK2/PFK2, respectively, are shown in the following panel. (C) After addition of 250 μM H2O2 to CCD-966SK cells for 90 min, the intracellular H2O2 content was
measured at 24, 48 and 72 h. (D) The intracellular H2O2 content was determined at 72 h after treatment of CCD-966SK cells with different concentrations of H2O2 for 90 min.
(E) By Western blot, the phosphorylation levels of AMPK-1α and PFK2 were determined in the primary culture of skin fibroblasts from normal subjects (n=4) and MERRF patients
(n=4). Densitometric scan was analyzed from three independent Western blots for the ratios of pAMPK-1α/AMPK-1α and pPFK2/PFK2 and the results are shown in the right
panel. Data are presented as means±S.D. of the results from three independent experiments (*, pb0.05, **, pb0.01 vs. the indicated group).
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MERRF patients (M1–M4, MERRF skin fibroblasts), respectively. The
results showed that the intracellular H2O2 contents in MERRF skin
fibroblasts were significantly higher than those of controls (Fig. 1A
and B). In addition, by using the Seahorse XF24 Analyzer, we found
a decrease of OCR, but an increase of ECAR in MERRF skin fibroblasts
as compared with those of normal skin fibroblasts (Fig. 1C). Moreover,
the rate of lactate production was significantly increased in MERRF
skin fibroblasts as compared with normal subjects (Fig. 1D). On the
other hand, Western blot revealed that the expression levels of
glycolytic enzymes including lactate dehydrogenase (LDH), hexokinase
type II (HK II) and glucose transporter 1 (GLUT1) were increased, but
the expression of pyruvate dehydrogenase (PDH) was decreased in
MERRF skin fibroblasts as compared with those of normal controls
(Fig. 1E and F).

3.2. Metabolic shift from mitochondrial respiration to anaerobic
glycolysis in H2O2-treated normal skin fibroblasts

Based on the observed increase in the intracellular H2O2 contents
and glycolytic phenotype in MERRF skin fibroblasts (Fig. 1), we rea-
soned that energy metabolism in skin fibroblasts may be perturbed
by oxidative stress. In order to unravel the molecular mechanism in-
volved in the regulation of glucose metabolism under oxidative stress,
we treated the normal human skin fibroblasts (CCD-966SK cells) with
sub-lethal doses of H2O2 and examined the alterations of mitochon-
drial respiration and anaerobic glycolysis. After treatment of CCD-
966SK cells with sub-lethal doses of H2O2 (62.5, 125, 250 and
500 μM) for 90 min, no significant changes of caspase 3 activity and
the proportion of sub-G0 cells were found at 72 h (Supplementary
Fig. 1). In addition, after treatment of CCD-966SK cells with 250 μM
H2O2 for 90 min, we found that the rate of mitochondrial oxygen con-
sumption and intracellular ATP levels were substantially decreased at
24, 48 and 72 h, respectively (Fig. 2A and B). Nevertheless, the rates of
lactate production and the [3H]-2DG uptake by CCD-966SK cells were
significantly increased at 48 and 72 h after exposure of H2O2 (Fig. 2C
and D). Furthermore, by using the Seahorse XF24 Analyzer, we found
that the OCR was remarkably decreased at 24 h, but the ECAR was
significantly increased at 48 and 72 h after addition of H2O2 to
CCD-966SK cells (Supplementary Fig. 2). Moreover, as revealed by
Western blot, the protein expression levels of glycolytic enzymes
including GLUT1, HK II, PFK1 and LDH, respectively, were increased
after treatment of CCD-966SK cells with 250 μM H2O2 at 24, 48 and
72 h, respectively (Fig. 2E and F). On the other hand, we also observed
that by treatment of CCD-966SK cells with 125 μM or higher doses of
H2O2 for 90 min, the rate of mitochondrial oxygen consumption was
decreased and the rate of [3H]-2DG uptake was increased in a dose-
dependent manner at 72 h (Fig. 3A). However, by pre-treatment of
CCD-966SK cells with 1 and 2 mM N-acetylcysteine (NAC) for 1 h,
followed by exposure to 250 μM H2O2 for 90 min, the H2O2-induced
increase in the rates of [3H]-2DG uptake and lactate production
were attenuated at 72 h (Fig. 3B and C).

3.3. Contribution of anaerobic glycolysis to the survival of H2O2-treated
normal skin fibroblasts and MERRF skin fibroblasts

In order to examine whether the enhanced glycolysis is essential
for cell survival under oxidative stress, we inhibited glycolysis and
determined the cell viability. After addition of 250 μM H2O2 to CCD-
Fig. 6. Regulation of glycolytic flux by AMPK in H2O2-treated normal skin fibroblasts and ME
inhibitor (AMPKi) for 1 h, followed by addition of 250 μMH2O2 for 90 min, the rate of [3H]-2
analyzed by Western blot at 72 h. (B) After treatment with 250 μM H2O2 in shLuci- and shA
the phosphorylation levels of AMPK-1α and PFK2 were analyzed by Western blot at 72 h. By
pAMPK-1α /AMPK-1α and pPFK2/PFK2 are shown in the following panels, respectively. (C) U
AMPKi for 1 h and by knockdown of AMPK-1α gene, respectively, followed by addition of 2
ment of the primary culture of skin fibroblasts from normal subjects (n=4) and MERRF pa
were determined, respectively. Data are presented as means±S.D. of the results from three
966SK cells for 24 h, we replaced the glucose-supplemented DMEM
with a galactose-containing DMEM followed by culture of the cells
for another 48 h. Upon inhibition of glycolysis, the cells could obtain
their energy from oxidation of a non-carbohydrate source such as glu-
tamine in mitochondria [21]. The results showed that the cell viability
was substantially decreased in H2O2-treated CCD-966SK cells that
were cultured in a glucose-free medium supplemented with 5 mM
galactose (Fig. 4A). Besides, after exposure of CCD-966SK cells to
H2O2 for 24 h, we treated the cells with 2′-deoxy-glucose (2DG, an
HK inhibitor) and antimycin A (AnA, a Complex III inhibitor) in a
glucose-containing medium, respectively, for another 48 h. The re-
sults indicated that the cell viability was further decreased in H2O2-
treated CCD-966SK cells under the inhibition of glycolysis by 2DG,
but inhibition of mitochondrial function by AnA exerted little
effect on cell viability (Fig. 4A). Moreover, we observed that the
H2O2-induced intracellular ROS level in CCD-966SK cells was further
elevated only by the inhibition of glycolysis (Fig. 4B). On the other
hand, we inhibited glycolysis in the primary culture of skin fibroblasts
fromMERRF patients (n=4) and normal subjects (n=4), respectively,
by additionwith 5 mMgalactose in a glucose-freemedium for 48 h. The
results showed that the cell viability was lower and the intracellular
ROS level was higher in MERRF skin fibroblasts as compared with
those of normal skin fibroblasts (Fig. 4C and D).

3.4. Increase of glycolytic flux by AMPK activation in H2O2-treated
normal skin fibroblasts and MERRF skin fibroblasts

It has been shown that activation of AMPK is involved in the reg-
ulation of glycolysis in human cells by phosphorylating its down-
stream target, PFK2 against oxidative stress [31]. Hence, we
investigated whether AMPK activation directly participates in the reg-
ulation of energy metabolism in skin fibroblasts under oxidative stress.
As revealed by Western blot, phosphorylation levels of AMPK-1α and
PFK2 were induced at 24, 48, and 72 h, respectively, after incubation
of CCD-966SK cells with 250 μM H2O2 for 90 min (Fig. 5A). Besides, by
treatment of CCD-966SK cells with H2O2 at 125 μMor higher concentra-
tions for 90 min, the phosphorylated forms of AMPK-1α and PFK2were
increased at 72 h in a dose-dependent manner (Fig. 5B). On the other
hand, we observed the accumulation of ROS in H2O2-treated CCD-
966SK cells at 24, 48 and 72 h (Fig. 5 C). In addition, the intracellular
ROS content was increased in a dose-dependent manner after addition
of various concentrations of H2O2 to CCD-966SK cells at 72 h (Fig. 5D).
Finally, we examined the activation of AMPK and PFK2 in MERRF skin
fibroblasts and the results showed that the ratios of the phosphorylated
forms of AMPK-1α and PFK2 relative to AMPK-1α and PFK2, respective-
ly, were substantially increased in MERRF skin fibroblasts as compared
with those of the normal skin fibroblasts (Fig. 5E).

To clarify whether the H2O2-induced AMPK-1α activation contrib-
utes to the enhanced glycolysis in skin fibroblasts, we pre-treated
CCD-966SK cells with Compound C, an AMPK inhibitor (AMPKi) fol-
lowed by exposure to H2O2. The results showed that by pre-treatment
of CCD-966SK cells with 20 μM AMPKi for 1 h, the H2O2-induced
phosphorylation of AMPK-1α and PFK2 was abrogated at 72 h and
the rate of [3H]-2DG uptake was significantly diminished (Fig. 6A).
In addition, to address specifically the role of AMPK, we transfected
the CCD-966SK cells with a shRNA of AMPK-1α to knockdown
AMPK-1α. Western blot revealed that the expression of AMPK-1α
was decreased in cells transfected with AMPK-1α-shRNA (shAMPK-
RRF skin fibroblasts. (A) By pre-treatment of CCD-966SK cells with 10 or 20 μM AMPK
DG uptake was determined and the phosphorylation levels of AMPK-1α and PFK2 were
MPK-1α-transfected cells for 90 min, the rate of [3H]-2DG uptake was determined and
densitometric analysis of three independent Western blots from A and B, the ratios of
pon inhibition of AMPK activation in CCD966SK cells by pre-treatment of the cells with
50 μM H2O2 for 90 min, the rate of lactate production was determined. (D) After treat-
tients (n=4) with 20 μM AMPKi for 24 h, the mean values of lactate production rates
independent experiments (*, pb0.05, **, pb0.01 vs. the indicated group).
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1α), but not in luciferase-shRNA (shLuci) transfected cells, and the
inhibition of AMPK-1α expression did not affect the expression of
PFK2 (Fig. 6B). After treatment of shAMPK-1α-transfected cells with
250 μM H2O2 for 90 min, the H2O2-induced phosphorylation of
AMPK-1α and PFK2 was abolished at 72 h and the H2O2-induced
Fig. 7. Essential role of AMPK activation for the survival of H2O2-treated normal skin fibr
CCD966SK cells by pre-treatment with AMPKi for 1 h and by knockdown of AMPK-1α gen
(B and D) the intracellular H2O2 content were measured at 72 h. (E) After treatment of the
(n=4) with 10, 20 and 40 μM AMPKi for 24 h, the cell viability was determined, respective
mary culture of skin fibroblasts from normal subjects (n=4) and MERRF patients (n=4), re
means±S.D. of the results from three independent experiments (*, pb0.05, **, pb0.01 vs.
increase in the rate of [3H]-2DG uptake was diminished at 72 h
(Fig. 6B). Besides, the H2O2-induced increase of lactate production
was also attenuated in cells pre-treated with 20 μM AMPKi for 1 h
and in shAMPK-1α-transfected cells, respectively (Fig. 6C). Further-
more, by using Seahorse XF24 Analyzer, we confirmed that the
oblasts and MERRF skin fibroblasts. (A and C) After inhibition of AMPK activation in
e, respectively, followed by addition of 250 μM H2O2 for 90 min, the cell viability and
primary culture of skin fibroblasts from normal subjects (n=4) and MERRF patients
ly. (F) The mean values of the intracellular H2O2 contents were determined in the pri-
spectively, after treatment of the cells with 20 μMAMPKi for 24 h. Data are presented as
the indicated group).
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Fig. 8. Regulation of intracellular NADPH production by AMPK in H2O2-treated normal
skin fibroblasts and in MERRF skin fibroblasts. (A) After induction of oxidative stress by
250 μM H2O2 at 24 h, CCD-966SK cells were incubated either with 5 mM galactose in a
glucose-free medium or 200 μM 6-AN (a G6PD inhibitor) for another 48 h to determine
the intracellular NADPH content. After inhibition of AMPK activation in CCD-966SK
cells by pre-treatment of the cells with 20 μM AMPKi for 1 h or (B) by knockdown of
AMPK-1α gene followed by treatment of the cells with 250 μMH2O2 for 90 min, the in-
tracellular NADPH content was measured at 72 h. (C) The mean value of intracellular
NADPH level was determined for the primary culture of skin fibroblasts from normal
subjects (n=4) and MERRF patients (n=4), respectively, after treatment of the cells
with 20 μM AMPKi for 24 h. Data are presented as means±S.D. of the results from
three independent experiments (*, pb0.05, **, pb0.01 vs. the indicated group).
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H2O2-induced increase of ECAR was abolished in the cells with AMPK-
1α knockdown as compared with the scramble control
(Supplementary Fig. 3). On the other hand, we showed that after
inhibition of AMPK in the primary culture of skin fibroblasts by
20 μM AMPKi for 24 h, the rate of lactate production in MERRF skin
fibroblasts (n=4) was substantially decreased, but there was no
such change in skin fibroblasts from age-matched normal subjects
(n=4) (Fig. 6D).

3.5. AMPK-mediated increase of glycolytic flux in oxidative stressed skin
fibroblasts

To examine the essential role of AMPK activation in skin fibro-
blasts to cope with oxidative stress, we had pre-treated CCD-966SK
cells with 20 μM AMPKi for 1 h followed by addition of 250 μM H2O2

for 90 min, and then determined the cell viability and intracellular
ROS level at 72 h. The results showed that cells with inactivated
AMPK were far more sensitive to H2O2-induced oxidative stress,
which resulted in significant decrease of cell viability and increase
of the intracellular ROS level (Fig. 7A and B). Likewise, the cell viabil-
ity was also substantially decreased in shAMPK-1α-transfected cells
by exposure to 250 μM H2O2, which were accompanied by an eleva-
tion of intracellular ROS level (Fig. 7C and D). On the other hand,
we showed that after inhibition of AMPK in the primary culture of
skin fibroblasts from MERRF patients (n=4) and normal subjects
(n=4) by treatment with AMPKi (10, 20 and 40 μM) for 24 h,
MERRF skin fibroblasts became more susceptible to death as com-
pared with normal skin fibroblasts (Fig. 7E). Besides, the intracellular
H2O2 content was increased in MERRF skin fibroblasts after treatment
of the cells with 20 μM AMPKi for 24 h, but there was no such change
in skin fibroblasts from normal subjects (Fig. 7F).

3.6. AMPK-mediated increase of the glycolytic flux contributed to the
elevation of intracellular NADPH in H2O2-treated normal skin fibroblasts
and MERRF skin fibroblasts

It has been reported that the redistribution of glucose metabolites
can regulate the intracellular NADPH production via PPP [21,22]. We
then investigated whether AMPK-mediated increase of glycolytic
flux in skin fibroblasts could contribute to an increase of the intracel-
lular NADPH. We first observed that enhanced glycolytic flux by H2O2

was accompanied by an increase of intracellular NADPH content in
CCD-966SK cells, but the H2O2-induced increase of intracellular
NADPH content was diminished in CCD-966SK cells that were treated
with 200 μM 6-aminonicotinamide (6AN, a G6PD inhibitor) (Fig. 8A).
In addition, we inhibited glycolytic flux either by culture of CCD-
966SK cells in a glucose-free medium containing 5 mM galactose or
by pre-treatment of CCD-966SK cells with 20 μM AMPKi for 1 h, the
H2O2-induced increase of intracellular NADPH content was abolished
at 72 h (Fig. 8A). Furthermore, an increase in the intracellular NADPH
content by H2O2 was abrogated in shAMPK-1α-transfected cells as
compared with shLuci-transfected cells (Fig. 8B). On the other hand,
we showed that the intracellular NADPH content in MERRF skin
fibroblasts (n=4) was higher than those of the skin fibroblasts
from normal subjects (n=4). After treatment of MERRF skin fibro-
blasts with 20 μM AMPKi for 24 h, the intracellular NADPH content
was significantly decreased, but there was no obvious change in the
skin fibroblasts from normal subjects (n=4) (Fig. 8C).

3.7. Up-regulation of NADPH-mediated antioxidant enzymes expression
and GSH level in H2O2-treated normal skin fibroblasts and MERRF skin
fibroblasts

To examine whether H2O2-induced increase of NADPH level
affected the antioxidant capacity, we investigated the protein expres-
sion levels of NADPH-dependent antioxidant enzymes including

image of Fig.�8


244 S.-B. Wu, Y.-H. Wei / Biochimica et Biophysica Acta 1822 (2012) 233–247
glutathione peroxide 1(GPx-1), glutathione reductase (GR), thiore-
doxin 1 (Trx-1) and peroxiredoxin 1 (Prx-1) in H2O2-treated CCD-
966SK cells. The results showed that GPx-1, GR, Trx-1 and Prx-1
were up-regulated at 72 h after addition of CCD-966SK cells to
250 μM H2O2 (Fig. 9A). Besides, we also found that H2O2-induced
GSH production was reduced in 6-AN-treated cells and in transfected
cells with AMPK-1α knockdown, respectively (Fig. 9B). Significantly,
we showed that the intracellular GSH contents in MERRF skin fibro-
blasts (n=4) were higher than those of the normal controls
(n=4), but this increase was suppressed by treatment of cells with
20 μM AMPKi for 24 h (Fig. 9C).

4. Discussion

In this study, we showed for the first time that the energymetabolism
inMERRF skin fibroblasts wasmore dependent on anaerobic glycolysis as
comparedwith the skin fibroblasts from age-matched normal subjects by
Fig. 9. Up-regulation of NADH-mediated antioxidant system in H2O2-treated normal skin fi

250 μM H2O2 for 90 min, the expression levels of proteins including GPx-1, GR, Trx-1 and P
dent Western blots, the proteins expression levels in CCD-966SK cells were normalized to
duction of oxidative stress by addition of 250 μM H2O2 at 24 h, CCD-966SK cells were incu
intracellular GSH level was also examined in shLuci-transfected and shAMPK-1α-transfec
20 μM AMPKi for 24 h, the mean value of intracellular GSH level for the primary culture of
mined. Data are presented as means±S.D. of the results from three independent experime
using the Seahorse XF24 Analyzer (Fig. 1). Clinically, the levels of lactate
and pyruvate in serum from patients withMERRF syndrome are often el-
evated at rest and increased excessively aftermoderate exercise [32]. Our
findings are also in agreement with previous reports that transmitochon-
drial cytoplasmic hybrid cells (cybrids) with a pathogenic mtDNA muta-
tion were highly dependent on anaerobic glycolysis for energy supply
[33–35]. Most importantly, we found that the phosphorylation of
AMPK-1α and PFK2, one of the main regulatory steps in glycolysis, were
up-regulated in MERRF skin fibroblasts as compared to the skin fibro-
blasts from age-matched normal subjects (Fig. 5E). The activation of
AMPK in MERRF skin fibroblasts was involved in the regulation of the in-
tracellular NADPH andGSHproduction (Figs. 8C and 9C). It is noteworthy
that intracellular GSH content was reported to be increased in affected
tissues of MERRF patients and may be considered as an initial sign of re-
spiratory chain dysfunction [36].

It has been demonstrated that human cells exhibit a broad spec-
trum of responses to oxidative stress, depending on the stress
broblasts and in MERRF skin fibroblasts. (A) After treatment of CCD-966SK cells with
rx-1 were determined by Western blot. By densitometric analysis from three indepen-
the β-actin expression level, and the results are shown in the right panel. (B) After in-
bated with 200 μM 6AN for another 48 h to determine the intracellular GSH level. The
ted cells after addition to 250 μM H2O2 at 72 h. (C) After treatment of the cells with
skin fibroblasts from normal subjects (n=4) and MERRF patients (n=4) were deter-
nts (*, pb0.05, ** pb0.01 vs. the indicated group).
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level [37]. In the present study, we treated CCD-966SK cells with a
sub-lethal dose of H2O2 for a short time to induce oxidative stress,
in which no apoptotic cells were observed. However, the intracellular
ROS level was increased to 1.27-fold and the doubling-time of skin fi-
broblasts was increased from 32.7±2.2 h (control) to 43.2±5.1 h
(H2O2-treated). It is noteworthy that oxidative stress plays a vital
role in affected tissues of MERRF patients who usually display slow
deteriorating clinical courses [38,39]. Therefore, examination of the
cellular response to oxidative stress induced by a sub-lethal dose of
H2O2 can provide useful information to unravel the molecular basis of
the pathophysiology of mitochondrial diseases or age-related neurode-
generative diseases [11,40–42]. In addition, a better understanding of
the oxidative stress response of human cells is of clinical importance
in therapeutic interventions of the disease progression.

We demonstrated for the first time that the AMPK-mediated in-
crease of glycolysis in skin fibroblasts was essential for the survival of
cells under oxidative stress (Fig. 10). Although our findings are in line
with the previous reports that AMPK-mediated activation of glycolysis
was required for the protection of astrocytes and cardiomyocytes, re-
spectively against oxidative stress [43,44], the action mechanism of
AMPK in cells under oxidative stress has remained equivocal. Cao and
coworkers demonstrated that persistent treatment of skin fibroblast
with 250 μM H2O2 for 24 h, the AMPK activation by ROS caused the
inhibition of the mammalian target of rapamycin (mTOR) signaling
that led to apoptosis of skin fibroblasts [45]. Therefore, we consider
that the roles that AMPK played may be dictated by the degree of intra-
cellular ROS contents.

It was reported that the intracellular NADPH production was
effected by G6PD [46,47]. The expression of G6PD was regulated by
oxidants-induced oxidative stress due to the presence of an oxidative
stress response element in the promoter region of the G6PD gene,
which is similar to that found in manganese-containing superoxide
dismutase (Mn-SOD) [48]. Nevertheless, the up-regulation of G6PD
protein expression by H2O2 was observed in shAMPK-1α-
transfected cells suggesting that the expression of G6PD was not
regulated by AMPK (Supplementary Fig. 4). In light of the recent re-
port that the G6PD activity can be regulated by reversible tyrosine
phosphorylation [49], whether AMPK can activate the G6PD by
Fig. 10. A proposed scheme of AMPK activation for the cell survival under oxidative
stress. Under oxidative stress, AMPK is activated to trigger the glycolytic flux, which
contributes to the increased production of NADPH via the PPP in human skin fibro-
blasts. The AMPK-mediated increase of intracellular NADPH level, a major source of
the reducing equivalents, further participates in the antioxidant defense system to
counteract the oxidative stress for cell survival.
post-translational modification to increase NADPH production is
worthy of further investigation.

Although glycolysis and PPP are parallel pathways in glucose me-
tabolism, the redistribution of glycolytic flux can regulate the PPP
activity for the generation of NADPH [21,22]. The findings of this
study further suggest that the increase of glycolytic flux exerted by
AMPK activation can regulate the intracellular NADPH production.
On the other hand, the intracellular NADH level was increased in
both shAMPK-1α-transfected cells and scramble controls after treat-
ment with H2O2, which suggested that the generation of NADH was
not regulated by AMPK (Supplementary Fig. 5A). Indeed, under the
normal glycolytic flux, pyruvate conversion into lactate by LDH at
the expense of oxidation of NADH can recover NAD+ in the cytosol
for glycolysis to continue. Besides, we consider that the increase of
NADH level in H2O2-treated normal skin fibroblasts may be resulted
from defective mitochondria, which decreased the utilization of
NADH substrate. Accordingly, we observed that the NADH level in
MERRF skin fibroblasts was higher than that of the skin fibroblasts
of normal subjects, but was not altered by treatment with AMPK
inhibitor (Supplementary Fig. 5B).

Glycolysis is well-regulated by a coordination of several transcrip-
tion factors including AMPK, AKT, c-MYC, HIF-1α and p53 [50–52]. In
addition, the up-regulation of glucose transporter, glycolytic enzymes
and regulatory enzymes are also required for the increase of glycolytic
activity. In this study, we observed that several glycolytic enzymes
(GLUT1, HKII, PFK1 and LDH) were up-regulated in H2O2-treated
normal skin fibroblasts at 24 h, but the glycolytic fluxwere significantly
increased at 48 and 72 h. This phenomenon could be explained by a
scenario that the metabolic shift to glycolysis in skin fibroblasts is a
gradual process after treatment of cells with a sub-lethal dose of H2O2.
Recently, it has been reported that AMPK can up-regulate the protein
expression of GLUT1 in epithelial cells to stimulate glycolysis in
response to inhibition of OXPHOS [53]. Therefore, whether AMPK-
mediated increased of glycolytic flux in skin fibroblasts could be regu-
lated by its direct/indirect up-regulation of the expression of GLUT1 or
other glycolytic enzymes remains to be further examined.

On the other hand, recent studies have suggested that activation
of AMPK is involved in the up-regulation of several antioxidant en-
zymes [54,55]. AMPK can directly phosphorylate the forkhead tran-
scription factor (FOXO) to promote its nuclear translocation and the
formation of subsequent transcription activation complex [56]. The
activation of the AMPK–FOXO pathway can reduce oxidant-induced
ROS production by up-regulating the expression of thioredoxin and
peroxiredoxin [57,58]. Our previous studies revealed that several
antioxidant enzymes were up-regulated in MERRF skin fibroblasts
[2,11]. Therefore, whether the activation of AMPK in MERRF skin
fibroblasts is involved in the up-regulation of antioxidant enzymes
warrants further investigation.

In conclusion, we have demonstrated that AMPK is involved in the
up-regulation of the glycolytic flux and contributes to the increased
production of NADPH via the PPP, which is essential for the survival
of MERRF skin fibroblasts and H2O2-treated normal skin fibroblasts
(Fig. 10). The findings of this study have provided new information
for us to better understand the response to oxidative stress of
human skin fibroblasts and shed a new light in unraveling the molec-
ular basis of the pathophysiology of mitochondrial diseases such as
MERRF syndrome.

Supplementary materials related to this article can be found
online at doi:10.1016/j.bbadis.2011.09.014.

List of abbreviations

MERRF myoclonic epilepsy and ragged-red fibers
OCR oxygen consumption rate
ECAR extracellular acidification rate
ROS/RNSreactive oxygen/nitrogen species
AMPK AMP-activated protein kinase

image of Fig.�10


246 S.-B. Wu, Y.-H. Wei / Biochimica et Biophysica Acta 1822 (2012) 233–247
PPP pentose phosphate pathway
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AnA antimycin A
NAC N-acetylcysteine
AMPKi AMPK inhibitor
shLuci shRNA for luciferase gene
shAMPK-1α shRNA for AMPK-1α gene
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