Skip to main content

Advertisement

Log in

Turn-on detection of glutathione S-transferase based on luminescence resonance energy transfer between near-infrared to near-infrared core-shell upconversion nanoparticles and organic dye

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Glutathione S-transferase (GST) is a detoxification enzyme of the liver and kidney. Based on the toxicological effect of GST, it is of great significance to develop a rapid and sensitive detection method for GST. In this work, a new luminescence resonance energy transfer (LRET) system has been designed to detect glutathione S-transferase in the near-infrared (NIR) region by utilizing NaGdF4:Yb3+,Tm3+@NaYF4 upconversion nanoparticles (UCNPs) as the donor and NIR dye-806@Glutathione (IR806@GSH) as the acceptor. NaGdF4:Yb3+,Tm3+@NaYF4 UCNPs were synthesized by a coprecipitation method and surface modification of NOBF4. The donor (positively charged) interacted with the acceptor (negatively charged) via electrostatic interactions to bring them into close proximity; then, LRET occurred and the luminescence was quenched. In the presence of GST, GST can specifically interact with the GSH of IR806@GSH molecule, making IR806@GSH far away from the donor surface, inhibiting the LRET, and restoring the luminescence of the UCNPs. There was a good linear relationship between the luminescence recovery intensity of UCNPs and GST concentration, ranging from 0.11 to 14.19 nM, and the detection of limit was 0.06 nM. The method has been used in the detection of GST in human serum samples and is expected to have potential applications in the biological field.

A luminescence resonance energy transfer system was developed for determination of glutathione S-transferase in the near-infrared region by utilizing NaGdF4:Yb3+,Tm3+@NaYF4 upconversion nanoparticles as the donor and NIR dye-806@Glutathione as the acceptor

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Misquitta SA, Colman RF. Communication between the two active sites of glutathione S-transferase A1-1, probed using wild-type-mutant heterodimers. Biochemistry. 2005;44(24):8608–19.

    Article  CAS  PubMed  Google Scholar 

  2. Fujikawa Y, Urano Y, Komatsu T, Hanaoka K, Kojima H, Terai T, et al. Design and synthesis of highly sensitive fluorogenic substrates for glutathione S-transferase and application for activity imaging in living cells. J Am Chem Soc. 2008;130(44):14533–43.

    Article  CAS  PubMed  Google Scholar 

  3. Huang Y, Liu QL, Wang YQ, He N, Zhao RF, Choo J, et al. Gold nanorods functionalized by a glutathione response near- infrared fluorescent probe as a promising nanoplatform for fluorescence imaging guided precision therapy. Nanoscale. 2019;11(25):12220–9.

    Article  CAS  PubMed  Google Scholar 

  4. Voelker AE, Viswanathan R. Self-catalyzed immobilization of GST-fusion proteins for genome-encoded biochips. Bioconjug Chem. 2013;24(8):1295–301.

    Article  CAS  PubMed  Google Scholar 

  5. Zalazar L, Alonso CA, De Castro RE, Cesari A. An alternative easy method for antibody purification and analysis of protein-protein interaction using GST fusion proteins immobilized onto glutathione-agarose. Anal Bioanal Chem. 2014;406(3):911–4.

    Article  CAS  PubMed  Google Scholar 

  6. Ren S, Zhou F, Xu C, Li B. Simple method for visual detection of glutathione S-transferase activity and inhibition using cysteamine-capped gold nanoparticles as colorimetric probes. Gold Bull. 2015;48(3–4):147–52.

    Article  CAS  Google Scholar 

  7. Zhou W, Shultz JW, Murphy N, Hawkins EM, Bernad L, Good T, et al. Electrophilic aromatic substituted luciferins as bioluminescent probes for glutathione S-transferase assays. Chem Commun (Camb). 2006;(44):4620–2.

  8. Nauen R, Stumpf N. Fluorometric microplate assay to measure glutathione S-transferase activity in insects and mites using monochlorobimane. Anal Biochem. 2002;303(2):194–8.

    Article  CAS  PubMed  Google Scholar 

  9. Păunescu E, Soudani M, Martin P, Scopelliti R, Lo Bello M, Dyson PJ. Organometallic glutathione S-transferase inhibitors. Organometallics. 2017;36(17):3313–21.

    Article  Google Scholar 

  10. He N, Bai S, Huang Y, Xing YL, Chen LX, Yu FB, et al. Evaluation of glutathione S-transferase inhibition effects on idiopathic pulmonary fibrosis therapy with a near-infrared fluorescent probe in cell and mice models. Anal Chem. 2019;91(8):5424–32.

    Article  CAS  PubMed  Google Scholar 

  11. Qin L, He XW, Chen LX, Zhang YK. Turn-on fluorescent sensing of glutathione S-transferase at near-infrared region based on FRET between gold nanoclusters and gold nanorods. ACS Appl Mater Interfaces. 2015;7(10):5965–71.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Z, Shikha S, Liu J, Zhang J, Mei Q, Zhang Y. Upconversion nanoprobes: recent advances in sensing applications. Anal Chem. 2019;91(1):548–68.

    Article  CAS  PubMed  Google Scholar 

  13. Liu L, Zhang H, Song D, Wang Z. An upconversion nanoparticle-based fluorescence resonance energy transfer system for effectively sensing caspase-3 activity. Analyst. 2018;143(3):761–7.

    Article  CAS  PubMed  Google Scholar 

  14. Lin SL, Chen ZR, Chang CA. Nd3+ sensitized core-shell-shell nanocomposites loaded with IR806 dye for photothermal therapy and up-conversion luminescence imaging by a single wavelength NIR light irradiation. Nanotheranostics. 2018;2(3):243–57.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rabouw FT, Prins PT, Villanueva-Delgado P, Castelijns M, Geitenbeek RG, Meijerink A. Quenching pathways in NaYF4:Er3+,Yb3+ upconversion nanocrystals. ACS Nano. 2018;12(5):4812–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang JM, Huang Y, Jin L, Rosei F, Vetrone F, Claverie JP. Efficient Upconverting multiferroic Core@Shell photocatalysts: visible-to-near-infrared photon harvesting. ACS Appl Mater Interfaces. 2017;9(9):8142–50.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang ZY, Liu Y, Fang YR, Cao BS, Huang JD, Liu KC, et al. Near-infrared-plasmonic energy upconversion in a nonmetallic heterostructure for efficient H-2 evolution from ammonia borane. Adv Sci. 2018;5(9).

  18. Liu Y, Chen M, Cao T, Sun Y, Li C, Liu Q, et al. A cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury. J Am Chem Soc. 2013;135(26):9869–76.

    Article  CAS  PubMed  Google Scholar 

  19. Wu X, Zhang Y, Takle K, Bilsel O, Li Z, Lee H, et al. Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano. 2016;10(1):1060–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen GY, Damasco J, Qiu HL, Shao W, Ohulchanskyy TY, Valiev RR, et al. Energy-cascaded upconversion in an organic dye-sensitized core/shell fluoride nanocrystal. Nano Lett. 2015;15(11):7400–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Niu XJ, Chen HY, Wang YQ, Wang WH, Sun XY, Chen LX. Upconversion fluorescence-SERS dual-mode tags for cellular and in vivo imaging. ACS Appl Mater Interfaces. 2014;6(7):5152–60.

    Article  CAS  PubMed  Google Scholar 

  22. Cen Y, Deng WJ, Yang Y, Yu RQ, Chu X. Core-shell-shell multifunctional nanoplatform for intracellular tumor-related mRNAs imaging and near-infrared light triggered photodynamic-photothermal synergistic therapy. Anal Chem. 2017;89(19):10321–8.

    Article  CAS  PubMed  Google Scholar 

  23. Li HX, Dong H, Yu MM, Liu CX, Li ZX, Wei LH, et al. NIR ratiometric luminescence detection of pH fluctuation in living cells with hemicyanine derivative-assembled upconversion nanophosphors. Anal Chem. 2017;89(17):8863–9.

    Article  CAS  PubMed  Google Scholar 

  24. Andresen E, Resch-Genger U, Schaferling M. Surface modifications for photon-upconversion-based energy-transfer nanoprobes. Langmuir. 2019;35(15):5093–113.

    Article  CAS  PubMed  Google Scholar 

  25. Muhr V, Wurth C, Kraft M, Buchner M, Baeumner AJ, Resch-Genger U, et al. Particle-size-dependent forster resonance energy transfer from upconversion nanoparticles to organic dyes. Anal Chem. 2017;89(9):4868–74.

    Article  CAS  PubMed  Google Scholar 

  26. Su QQ, Feng W, Yang DP, Li FY. Resonance energy transfer in upconversion nanoplatforms for selective biodetection. Acc Chem Res. 2017;50(1):32–40.

    Article  CAS  PubMed  Google Scholar 

  27. Chen HQ, Guan YY, Wang SZ, Ji Y, Gong MQ, Wang L. Turn-on detection of a cancer marker based on near-infrared luminescence energy transfer from NaYF4:Yb,Tm/NaGdF4 core-shell upconverting nanoparticles to gold nanorods. Langmuir. 2014;30(43):13085–91.

    Article  CAS  PubMed  Google Scholar 

  28. Wu YM, Cen Y, Huang LJ, Yu RQ, Chu X. Upconversion fluorescence resonance energy transfer biosensor for sensitive detection of human immunodeficiency virus antibodies in human serum. Chem Commun. 2014;50(36):4759–62.

    Article  CAS  Google Scholar 

  29. Wang YH, Wu ZJ, Liu ZH. Upconversion fluorescence resonance energy transfer biosensor with aromatic polymer nanospheres as the lable-free energy acceptor. Anal Chem. 2013;85(1):258–64.

    Article  CAS  PubMed  Google Scholar 

  30. Liu YX, Jiang AQ, Jia Q, Zhai XJ, Liu LD, Ma LY, et al. Rationally designed upconversion nanoprobe for simultaneous highly sensitive ratiometric detection of fluoride ions and fluorosis theranostics. Chem Sci. 2018;9(23):5242–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang F, Deng R, Liu X. Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes. Nat Protoc. 2014;9(7):1634–44.

    Article  CAS  PubMed  Google Scholar 

  32. Wang H, Lu Y, Wang L, Chen H. Detection of tyramine and tyrosinase activity using red region emission NaGdF4:Yb,Er@NaYF4 upconversion nanoparticles. Talanta. 2019;197:558–66.

    Article  CAS  PubMed  Google Scholar 

  33. Gao N, Ling B, Gao Z, Wang L, Chen H. Near-infrared-emitting NaYF4:Yb,Tm/Mn upconverting nanoparticle/gold nanorod electrochemiluminescence resonance energy transfer system for sensitive prostate-specific antigen detection. Anal Bioanal Chem. 2017;409(10):2675–83.

    Article  CAS  PubMed  Google Scholar 

  34. Liu Q, Sun Y, Li CG, Zhou J, Li CY, Yang TS, et al. F-18-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly. ACS Nano. 2011;5(4):3146–57.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang J, Jin Z, Hu XX, Meng HM, Li J, Zhang XB, et al. Efficient two-photon fluorescent probe for glutathione S-transferase detection and imaging in drug-induced liver injury sample. Anal Chem. 2017;89(15):8097–103.

    Article  CAS  PubMed  Google Scholar 

  36. Chang L, He X, Chen L, Zhang Y. A novel fluorescent turn-on biosensor based on QDs@GSH-GO fluorescence resonance energy transfer for sensitive glutathione S-transferase sensing and cellular imaging. Nanoscale. 2017;9(11):3881–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by NSFC (21675002) and the Education Commission Natural Science Foundation of Anhui Province (KJ2017ZD25).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunchun Liu or Lun Wang.

Ethics declarations

The serum and urine samples used in the study were approved by Academic Ethics Committee of Anhui Normal University. All healthy volunteers gave informed consent.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Yang, X., Liu, Y. et al. Turn-on detection of glutathione S-transferase based on luminescence resonance energy transfer between near-infrared to near-infrared core-shell upconversion nanoparticles and organic dye. Anal Bioanal Chem 412, 5843–5851 (2020). https://doi.org/10.1007/s00216-020-02808-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02808-0

Keywords

Navigation