Skip to main content

Advertisement

Log in

Post-stroke rehabilitation in the peri-pandemic COVID-19 era

  • Review
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

The coronavirus disease 2019 (COVID-19), which arose in late 2019, caused extensive destruction, impacting a substantial proportion of the worldwide population and leading to millions of deaths. Although COVID-19 is mainly linked to respiratory and pulmonary complications, it has the potential to affect neurologic structures as well. Neurological involvement may manifest as minimal and reversible; however, a notable proportion of cases have exhibited pronounced neurological consequences, such as strokes. Endothelial inflammation, hypercoagulation, renin–angiotensin–aldosterone system alterations, and cardiogenic embolism are the pathophysiological mechanisms of stroke under COVID-19 circumstances. Physical activity and exercise have improved several aspects of post-stroke recovery, including cardiovascular health, walking capacity, and upper limb strength. They are commonly used to assist stroke survivors in overcoming their motor restrictions. Furthermore, stroke rehabilitation can incorporate a range of specific techniques, including body-weight-supported treadmill applications, constraint-induced movement therapy, robotic rehabilitation interventions, transcranial direct current stimulation, transcranial magnetic stimulation, and prism adaptation training. Under pandemic conditions, there were several barriers to neurological rehabilitation. The most significant of these were individual’s fear of infection, which caused them to postpone their rehabilitation applications and rehabilitation areas being converted into COVID-19 units. The primary emphasis had turned to COVID-19 treatment. Several valuable data and views were gained in reorganizing rehabilitation during the pandemic, contributing to establishing future views in this regard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zhang W, Ling L, Li J, Li Y, Liu Y (2023) Coronavirus disease 2019 and acute cerebrovascular events: a comprehensive overview. Front Neurol 14:1216978. https://doi.org/10.3389/fneur.2023.1216978

    Article  PubMed  PubMed Central  Google Scholar 

  2. Choi DH, Jung JY, Suh D, Choi JY, Lee SU, Choi YJ, Kwak YH, Kim DK (2021) Impact of the COVID-19 outbreak on trends in emergency department utilization in children: a multicenter retrospective observational study in Seoul Metropolitan Area. Korea J Korean Med Sci 36:e44. https://doi.org/10.3346/jkms.2021.36.e44

    Article  CAS  PubMed  Google Scholar 

  3. Pourciau P, Smith BC (2023) Stroke risk related to coronavirus disease-2019: what have we learned? Crit Care Nurs Clin N Am 35:53–65. https://doi.org/10.1016/j.cnc.2022.10.001

    Article  Google Scholar 

  4. Magalhães JP, Faria-Fortini I, Guerra ZF, Rodrigues NAG, Sant’Anna RV, Faria CDCM (2023) Changes in the clinico-functional characteristics of stroke patients in the acute phase during the COVID-19 pandemic. Einstein (Sao Paulo) 21:226. https://doi.org/10.31744/einstein_journal/2023AO0226

    Article  Google Scholar 

  5. Aguiar de Sousa D, van der Worp HB, Caso V, Cordonnier C, Strbian D, Ntaios G, Schellinger PD, Sandset EC, Organisation ES (2020) Maintaining stroke care in Europe during the COVID-19 pandemic: Results from an international survey of stroke professionals and practice recommendations from the European Stroke Organisation. Eur Stroke J 5:230–236. https://doi.org/10.1177/2396987320933746

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schlachetzki F, Theek C, Hubert ND, Kilic M, Haberl RL, Linker RA, Hubert GJ (2022) Low stroke incidence in the TEMPiS telestroke network during COVID-19 pandemic: effect of lockdown on thrombolysis and thrombectomy. J Telemed Telecare 28:481–487. https://doi.org/10.1177/1357633X20943327

    Article  PubMed  Google Scholar 

  7. Katsanos AH, Palaiodimou L, Zand R, Yaghi S, Kamel H, Navi BB, Turc G, Romoli M, Sharma VK, Mavridis D, Shahjouei S, Catanese L, Shoamanesh A, Vadikolias K, Tsioufis K, Lagiou P, Alexandrov AV, Tsiodras S, Tsivgoulis G (2021) The impact of SARS-CoV-2 on stroke epidemiology and care: a meta-analysis. Ann Neurol 89:380–388. https://doi.org/10.1002/ana.25967

    Article  CAS  PubMed  Google Scholar 

  8. Tan YK, Goh C, Leow AST, Tambyah PA, Ang A, Yap ES, Tu TM, Sharma VK, Yeo LLL, Chan BPL, Tan BYQ (2020) COVID-19 and ischemic stroke: a systematic review and meta-summary of the literature. J Thromb Thrombolysis 50:587–595. https://doi.org/10.1007/s11239-020-02228-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Syahrul S, Maliga HA, Ilmawan M, Fahriani M, Mamada SS, Fajar JK, Frediansyah A, Syahrul FN, Imran I, Haris S, Rambe AS, Emran TB, Rabaan AA, Tiwari R, Dhama K, Nainu F, Mutiawati E, Harapan H (2021) Hemorrhagic and ischemic stroke in patients with coronavirus disease 2019: incidence, risk factors, and pathogenesis—a systematic review and meta-analysis. F1000Res 10:34. https://doi.org/10.12688/f1000research.42308.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pezzini A, Padovani A (2020) Lifting the mask on neurological manifestations of COVID-19. Nat Rev Neurol 16:636–644. https://doi.org/10.1038/s41582-020-0398-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sbirkov Y, Dzharov V, Todorova K, Hayrabedyan S, Sarafian V (2022) Endothelial inflammation and dysfunction in COVID-19. Vasa 51:62–70. https://doi.org/10.1024/0301-1526/a000991

    Article  PubMed  Google Scholar 

  12. Zhang S, Zhang J, Wang C, Chen X, Zhao X, Jing H, Liu H, Li Z, Wang L, Shi J (2021) COVID-19 and ischemic stroke: mechanisms of hypercoagulability (Review). Int J Mol Med 47:21. https://doi.org/10.3892/ijmm.2021.4854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wiszniewska M, Sankowska M (2022) Stroke in the COVID-19 pandemic era. Postep Psychiatr Neurol 31:69–73. https://doi.org/10.5114/ppn.2022.116881

    Article  PubMed  PubMed Central  Google Scholar 

  14. Abou-Ismail MY, Diamond A, Kapoor S, Arafah Y, Nayak L (2020) The hypercoagulable state in COVID-19: Incidence, pathophysiology, and management. Thromb Res 194:101–115. https://doi.org/10.1016/j.thromres.2020.06.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mazzeffi MA, Chow JH, Tanaka K (2021) COVID-19 associated hypercoagulability: manifestations, mechanisms, and management. Shock 55:465–471. https://doi.org/10.1097/SHK.0000000000001660

    Article  CAS  PubMed  Google Scholar 

  16. Jang JG, Hur J, Choi EY, Hong KS, Lee W, Ahn JH (2020) Prognostic factors for severe coronavirus disease 2019 in Daegu. Korea J Korean Med Sci 35:e209. https://doi.org/10.3346/jkms.2020.35.e209

    Article  CAS  PubMed  Google Scholar 

  17. Wang CC, Chao JK, Wang ML, Yang YP, Chien CS, Lai WY, Yang YC, Chang YH, Chou CL, Kao CL (2020) Care for patients with stroke during the COVID-19 pandemic: physical therapy and rehabilitation suggestions for preventing secondary stroke. J Stroke Cerebrovasc Dis 29:105182. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105182

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ahmed S, Zimba O, Gasparyan AY (2020) Thrombosis in Coronavirus disease 2019 (COVID-19) through the prism of Virchow’s triad. Clin Rheumatol 39:2529–2543. https://doi.org/10.1007/s10067-020-05275-1

    Article  PubMed  PubMed Central  Google Scholar 

  19. Babajani F, Kakavand A, Mohammadi H, Sharifi A, Zakeri S, Asadi S, Afshar ZM, Rahimi Z, Sayad B (2021) COVID-19 and renin angiotensin aldosterone system: pathogenesis and therapy. Health Sci Rep 4:e440. https://doi.org/10.1002/hsr2.440

    Article  PubMed  PubMed Central  Google Scholar 

  20. Divani AA, Andalib S, Di Napoli M, Lattanzi S, Hussain MS, Biller J, McCullough LD, Azarpazhooh MR, Seletska A, Mayer SA, Torbey M (2020) Coronavirus Disease 2019 and Stroke: clinical manifestations and pathophysiological insights. J Stroke Cerebrovasc Dis 29:104941. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104941

    Article  PubMed  PubMed Central  Google Scholar 

  21. Long B, Brady WJ, Koyfman A, Gottlieb M (2020) Cardiovascular complications in COVID-19. Am J Emerg Med 38:1504–1507. https://doi.org/10.1016/j.ajem.2020.04.048

    Article  PubMed  PubMed Central  Google Scholar 

  22. Merkler AE, Diaz I, Wu X, Murthy SB, Gialdini G, Navi BB, Yaghi S, Weinsaft JW, Okin PM, Safford MM, Iadecola C, Kamel H (2018) Duration of heightened ischemic stroke risk after acute myocardial infarction. J Am Heart Assoc 7:e010782. https://doi.org/10.1161/JAHA.118.010782

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wollborn J, Karamnov S, Fields KG, Yeh T, Muehlschlegel JD (2022) COVID-19 increases the risk for the onset of atrial fibrillation in hospitalized patients. Sci Rep 12:12014. https://doi.org/10.1038/s41598-022-16113-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Quintero-Martinez JA, Hindy JR, Mahmood M, Gerberi DJ, DeSimone DC, Baddour LM (2022) A clinical profile of infective endocarditis in patients with recent COVID-19: A systematic review. Am J Med Sci 364:16–22. https://doi.org/10.1016/j.amjms.2022.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  25. Erre GL, Buscetta G, Paliogiannis P, Mangoni AA, Carru C, Passiu G, Zinellu A (2018) Coronary flow reserve in systemic rheumatic diseases: a systematic review and meta-analysis. Rheumatol Int 38:1179–1190. https://doi.org/10.1007/s00296-018-4039-8

    Article  PubMed  Google Scholar 

  26. Nouh A, Carbunar O, Ruland S (2014) Neurology of rheumatologic disorders. Curr Neurol Neurosci Rep 14:456. https://doi.org/10.1007/s11910-014-0456-6

    Article  PubMed  Google Scholar 

  27. Liou TH, Huang SW, Lin JW, Chang YS, Wu CW, Lin HW (2014) Risk of stroke in patients with rheumatism: a nationwide longitudinal population-based study. Sci Rep 4:5110. https://doi.org/10.1038/srep05110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Roldan PC, Greene ER, Qualls CR, Sibbitt WL Jr, Roldan CA (2019) Progression of atherosclerosis versus arterial stiffness with age within and between arteries in systemic lupus erythematosus. Rheumatol Int 39:1027–1036. https://doi.org/10.1007/s00296-019-04267-y

    Article  PubMed  Google Scholar 

  29. Pacholczak R, Bazan-Socha S, Iwaniec T, Zaręba L, Kielczewski S, Walocha JA, Musiał J, Dropiński J (2018) Endothelial dysfunction in patients with granulomatosis with polyangiitis: a case-control study. Rheumatol Int 38:1521–1530. https://doi.org/10.1007/s00296-018-4061-x

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ahmadi B, Bonakdar ZS, Hashemi SM, Sadrkabir SM, Karimifar M (2011) Endothelial dysfunction in Iranian lupus patients. Rheumatol Int 31:27–31. https://doi.org/10.1007/s00296-009-1212-0

    Article  PubMed  Google Scholar 

  31. Solomon DH, Avorn J, Katz JN, Weinblatt ME, Setoguchi S, Levin R, Schneeweiss S (2006) Immunosuppressive medications and hospitalization for cardiovascular events in patients with rheumatoid arthritis. Arthritis Rheum 54:3790–3798. https://doi.org/10.1002/art.22255

    Article  CAS  PubMed  Google Scholar 

  32. Ahmed S, Gasparyan AY, Zimba O (2021) Comorbidities in rheumatic diseases need special consideration during the COVID-19 pandemic. Rheumatol Int 41:243–256. https://doi.org/10.1007/s00296-020-04764-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hausmann JS, Kennedy K, Simard JF, Liew JW, Sparks JA, Moni TT, Harrison C, Larché MJ, Levine M, Sattui SE, Semalulu T, Foster G, Surangiwala S, Thabane L, Beesley RP, Durrant KL, Mateus EF, Mingolla S, Nudel M, Palmerlee CA, Richards DP, Liew DFL, Hill CL, Bhana S, Costello W, Grainger R, Machado PM, Robinson PC, Sufka P, Wallace ZS, Yazdany J, Sirotich E, COVID-19 Global Rheumatology Alliance (2021) Immediate effect of the COVID-19 pandemic on patient health, health-care use, and behaviours: results from an international survey of people with rheumatic diseases. Lancet Rheumatol 3:e707–e714. https://doi.org/10.1016/S2665-9913(21)00175-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ahmed S, Zimba O, Gasparyan AY (2021) COVID-19 and the clinical course of rheumatic manifestations. Clin Rheumatol 40:2611–2619. https://doi.org/10.1007/s10067-021-05691-x

    Article  PubMed  PubMed Central  Google Scholar 

  35. Abualfadl E, Ismail F, Shereef RRE, Hassan E, Tharwat S, Mohamed EF, Abda EA, Radwan AR, Fawzy RM, Moshrif AH, Noor RA, Senara S, Elazim MIA, Abaza NM, Raafat HA, El-Gazzar II, El-Hammady DH, Hammam N, Gheita TA, El-Mallah R, ECR COVID19-Study Group (2021) Impact of COVID-19 pandemic on rheumatoid arthritis from a Multi-Centre patient-reported questionnaire survey: influence of gender, rural-urban gap and north-south gradient. Rheumatol Int 41:345–353. https://doi.org/10.1007/s00296-020-04736-9

    Article  CAS  PubMed  Google Scholar 

  36. Shin YH, Shin JI, Moon SY, Jin HY, Kim SY, Yang JM, Cho SH, Kim S, Lee M, Park Y, Kim MS, Won HH, Hong SH, Kronbichler A, Koyanagi A, Jacob L, Smith L, Lee KH, Suh DI, Lee SW, Yon DK (2021) Autoimmune inflammatory rheumatic diseases and COVID-19 outcomes in South Korea: a nationwide cohort study. Lancet Rheumatol 3:e698–e706. https://doi.org/10.1016/S2665-9913(21)00151-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gasparyan AY, Ayvazyan L, Blackmore H, Kitas GD (2011) Writing a narrative biomedical review: considerations for authors, peer reviewers, and editors. Rheumatol Int 31:1409–1417. https://doi.org/10.1007/s00296-011-1999-3

    Article  PubMed  Google Scholar 

  38. Vahlberg B, Cederholm T, Lindmark B, Zetterberg L, Hellström K (2017) Short-term and long-term effects of a progressive resistance and balance exercise program in individuals with chronic stroke: a randomized controlled trial. Disabil Rehabil 39:1615–1622. https://doi.org/10.1080/09638288.2016.1206631

    Article  PubMed  Google Scholar 

  39. Jørgensen JR, Bech-Pedersen DT, Zeeman P, Sørensen J, Andersen LL, Schönberger M (2010) Effect of intensive outpatient physical training on gait performance and cardiovascular health in people with hemiparesis after stroke. Phys Ther 90:527–537. https://doi.org/10.2522/ptj.20080404

    Article  PubMed  Google Scholar 

  40. Smith PJ, Blumenthal JA, Hoffman BM, Cooper H, Strauman TA, Welsh-Bohmer K, Browndyke JN, Sherwood A (2010) Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med 72:239–252. https://doi.org/10.1097/PSY.0b013e3181d14633

    Article  PubMed  PubMed Central  Google Scholar 

  41. Aidar FJ, de Oliveira RJ, Silva AJ, de Matos DG, Mazini Filho ML, Hickner RC, Machado Reis V (2012) The influence of resistance exercise training on the levels of anxiety in ischemic stroke. Stroke Res Treat 2012:298375. https://doi.org/10.1155/2012/298375

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zedlitz AM, Rietveld TC, Geurts AC, Fasotti L (2012) Cognitive and graded activity training can alleviate persistent fatigue after stroke: a randomized, controlled trial. Stroke 43:1046–1051. https://doi.org/10.1161/STROKEAHA.111.632117

    Article  PubMed  Google Scholar 

  43. Billinger SA, Arena R, Bernhardt J, Eng JJ, Franklin BA, Johnson CM, MacKay-Lyons M, Macko RF, Mead GE, Roth EJ, Shaughnessy M, Tang A, American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; Council on Lifestyle and Cardiometabolic Health; Council on Epidemiology and Prevention; Council on Clinical Cardiology (2014) Physical activity and exercise recommendations for stroke survivors: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 45:2532–2553. https://doi.org/10.1161/STR.0000000000000022

    Article  PubMed  Google Scholar 

  44. Cumming TB, Thrift AG, Collier JM, Churilov L, Dewey HM, Donnan GA, Bernhardt J (2011) Very early mobilization after stroke fast-tracks return to walking: further results from the phase II AVERT randomized controlled trial. Stroke 42:153–158. https://doi.org/10.1161/STROKEAHA.110.594598

    Article  PubMed  Google Scholar 

  45. Hebert D, Lindsay MP, McIntyre A, Kirton A, Rumney PG, Bagg S, Bayley M, Dowlatshahi D, Dukelow S, Garnhum M, Glasser E, Halabi ML, Kang E, MacKay-Lyons M, Martino R, Rochette A, Rowe S, Salbach N, Semenko B, Stack B, Swinton L, Weber V, Mayer M, Verrilli S, DeVeber G, Andersen J, Barlow K, Cassidy C, Dilenge ME, Fehlings D, Hung R, Iruthayarajah J, Lenz L, Majnemer A, Purtzki J, Rafay M, Sonnenberg LK, Townley A, Janzen S, Foley N, Teasell R (2016) Canadian stroke best practice recommendations: Stroke rehabilitation practice guidelines, update 2015. Int J Stroke 11:459–484. https://doi.org/10.1177/1747493016643553

    Article  PubMed  Google Scholar 

  46. Joa KL, Han TR, Pyun SB, Rah UW, Park JH, Kim YH, Chun MH, Paik NJ, Yoo SD, Lee SG, Park SW, Lim SH, Jung HY (2015) Inpatient stroke rehabilitation outcomes in Korea derived from the Korean Brain Rehabilitation Centers’ online database system for the years 2007 to 2011. J Korean Med Sci 30:644–650. https://doi.org/10.3346/jkms.2015.30.5.644

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gezer H, Karaahmet OZ, Gurcay E, Dulgeroglu D, Cakci A (2019) The effect of aerobic exercise on stroke rehabilitation. Ir J Med Sci 188:469–473. https://doi.org/10.1007/s11845-018-1848-4

    Article  PubMed  Google Scholar 

  48. Flansbjer UB, Lexell J, Brogårdh C (2012) Long-term benefits of progressive resistance training in chronic stroke: a 4-year follow-up. J Rehabil Med 44:218–221. https://doi.org/10.2340/16501977-0936

    Article  PubMed  Google Scholar 

  49. Zhou Z, Zhou Y, Wang N, Gao F, Wei K, Wang Q (2015) A proprioceptive neuromuscular facilitation integrated robotic ankle–foot system for post stroke rehabilitation. Rob Auton Syst 73:111–122. https://doi.org/10.1016/j.robot.2014.09.023

    Article  Google Scholar 

  50. Nath D, Singh N, Saini M, Banduni O, Kumar N, Srivastava MVP, Mehndiratta A (2023) Clinical potential and neuroplastic effect of targeted virtual reality based intervention for distal upper limb in post-stroke rehabilitation: a pilot observational study. Disabil Rehabil. https://doi.org/10.1080/09638288.2023.2228690

    Article  PubMed  Google Scholar 

  51. Sultan N, Khushnood K, Qureshi S, Altaf S, Khan MK, Malik AN, Mehmood R, Awan MMA (2023) Effects of virtual reality training using Xbox Kinect on balance, postural control, and functional independence in subjects with stroke. Games Health J. https://doi.org/10.1089/g4h.2022.0193

    Article  PubMed  Google Scholar 

  52. Legault Z, Znaty A, Smith S, Boudrias MH (2021) Yoga interventions used for the rehabilitation of stroke, Parkinson’s disease, and multiple sclerosis: a scoping review of clinical research. J Altern Complement Med 27:1023–1057. https://doi.org/10.1089/acm.2021.0003

    Article  PubMed  Google Scholar 

  53. Zhang L, Zhang L, Yu X, Zhou H, Ding Y, Wang J (2023) Effect of Tai Chi Yunshou training on the balance and motor functions of stroke patients: a systematic review and meta-analysis of randomized controlled trials. Front Neurol 14:1178234. https://doi.org/10.3389/fneur.2023.1178234

    Article  PubMed  PubMed Central  Google Scholar 

  54. Barrett AM, Oh-Park M, Chen P, Ifejika NL (2013) Neurorehabilitation: Five new things. Neurol Clin Pract 3:484–492. https://doi.org/10.1212/01.CPJ.0000437088.98407.fa

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dai S, Piscicelli C, Clarac E, Baciu M, Hommel M, Pérennou D (2021) Balance, lateropulsion, and gait disorders in subacute stroke. Neurology 96:e2147–e2159. https://doi.org/10.1212/WNL.0000000000011152

    Article  PubMed  Google Scholar 

  56. Hesse S, Werner C, Bardeleben A, Barbeau H (2001) Body weight-supported treadmill training after stroke. Curr Atheroscler Rep 3:287–294. https://doi.org/10.1007/s11883-001-0021-z

    Article  CAS  PubMed  Google Scholar 

  57. Combs SA, Dugan EL, Passmore M, Riesner C, Whipker D, Yingling E, Curtis AB (2010) Balance, balance confidence, and health-related quality of life in persons with chronic stroke after body weight-supported treadmill training. Arch Phys Med Rehabil 91:1914–1919. https://doi.org/10.1016/j.apmr.2010.08.025

    Article  PubMed  Google Scholar 

  58. Mackay-Lyons M, McDonald A, Matheson J, Eskes G, Klus MA (2013) Dual effects of body-weight supported treadmill training on cardiovascular fitness and walking ability early after stroke: a randomized controlled trial. Neurorehabil Neural Repair 27:644–653. https://doi.org/10.1177/1545968313484809

    Article  PubMed  Google Scholar 

  59. Høyer E, Jahnsen R, Stanghelle JK, Strand LI (2012) Body weight supported treadmill training versus traditional training in patients dependent on walking assistance after stroke: a randomized controlled trial. Disabil Rehabil 34:210–219. https://doi.org/10.3109/09638288.2011.593681

    Article  PubMed  Google Scholar 

  60. Kwakkel G, Veerbeek JM, van Wegen EE, Wolf SL (2015) Constraint-induced movement therapy after stroke. Lancet Neurol 14:224–234. https://doi.org/10.1016/S1474-4422(14)70160-7

    Article  PubMed  PubMed Central  Google Scholar 

  61. Morris DM, Taub E, Mark VW (2006) Constraint-induced movement therapy: characterizing the intervention protocol. Eura Medicophys 42:257–268

    CAS  PubMed  Google Scholar 

  62. Fleet A, Page SJ, MacKay-Lyons M, Boe SG (2014) Modified constraint-induced movement therapy for upper extremity recovery post stroke: what is the evidence? Top Stroke Rehabil 21:319–331. https://doi.org/10.1310/tsr2104-319

    Article  PubMed  Google Scholar 

  63. Thrane G, Askim T, Stock R, Indredavik B, Gjone R, Erichsen A, Anke A (2015) Efficacy of constraint-induced movement therapy in early stroke rehabilitation: a randomized controlled multisite trial. Neurorehabil Neural Repair 29:517–525. https://doi.org/10.1177/1545968314558599

    Article  PubMed  Google Scholar 

  64. Corbetta D, Sirtori V, Castellini G, Moja L, Gatti R (2015) Constraint-induced movement therapy for upper extremities in people with stroke. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858

    Article  PubMed  PubMed Central  Google Scholar 

  65. Johnson MJ, Feng X, Johnson LM, Winters JM (2007) Potential of a suite of robot/computer-assisted motivating systems for personalized, home-based, stroke rehabilitation. J Neuroeng Rehabil 4:6. https://doi.org/10.1186/1743-0003-4-6

    Article  PubMed  PubMed Central  Google Scholar 

  66. Masiero S, Poli P, Rosati G, Zanotto D, Iosa M, Paolucci S, Morone G (2014) The value of robotic systems in stroke rehabilitation. Expert Rev Med Devices 11:187–198. https://doi.org/10.1586/17434440.2014.882766

    Article  CAS  PubMed  Google Scholar 

  67. Carmignano SM, Cerulli S, Chisari C, Colombo V, Dalise S, Fundarò C, Gazzotti V, Mazzoleni D, Mazzucchelli M, Melegari C, Merlo A, Stampacchia G, Boldrini P, Mazzoleni S, Posteraro F, Benanti P, Castelli E, Draicchio F, Falabella V, Galeri S, Gimigliano F, Grigioni M, Mazzon S, Molteni F, Morone G, Petrarca M, Picelli A, Senatore M, Turchetti G, Bonaiuti D, Italian Consensus Conference on Robotics in Neurorehabilitation (CICERONE) (2021) Robotic-assisted gait rehabilitation following stroke: a systematic review of current guidelines and practical clinical recommendations. Eur J Phys Rehabil Med 57:460–471. https://doi.org/10.23736/S1973-9087.21.06887-8

    Article  PubMed  Google Scholar 

  68. Babaiasl M, Mahdioun SH, Jaryani P, Yazdani M (2016) A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Disabil Rehabil Assist Technol 11:263–280. https://doi.org/10.3109/17483107.2014.1002539

    Article  PubMed  Google Scholar 

  69. Gomez Palacio Schjetnan A, Faraji J, Metz GA, Tatsuno M, Luczak A (2013) Transcranial direct current stimulation in stroke rehabilitation: a review of recent advancements. Stroke Res Treat 2013:170256. https://doi.org/10.1155/2013/170256

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kim SJ, Kim BK, Ko YJ, Bang MS, Kim MH, Han TR (2010) Functional and histologic changes after repeated transcranial direct current stimulation in rat stroke model. J Korean Med Sci 25:1499–1505. https://doi.org/10.3346/jkms.2010.25.10.1499

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hordacre B, McCambridge AB, Ridding MC, Bradnam LV (2021) Can transcranial direct current stimulation enhance poststroke motor recovery? Development of a theoretical patient-tailored model. Neurology 97:170–180. https://doi.org/10.1212/WNL.0000000000012187

    Article  PubMed  Google Scholar 

  72. Lee JH, Jeun YJ, Park HY, Jung YJ (2021) Effect of transcranial direct current stimulation combined with rehabilitation on arm and hand function in stroke patients: a systematic review and meta-analysis. Healthcare (Basel) 9:1705. https://doi.org/10.3390/healthcare9121705

    Article  PubMed  Google Scholar 

  73. Navarro-López V, Del Valle-Gratacós M, Fernández-Matías R, Carratalá-Tejada M, Cuesta-Gómez A, Molina-Rueda F (2021) The long-term maintenance of upper limb motor improvements following transcranial direct current stimulation combined with rehabilitation in people with stroke: a systematic review of randomized sham-controlled trials. Sensors (Basel) 21:5216. https://doi.org/10.3390/s21155216

    Article  PubMed  Google Scholar 

  74. Starosta M, Cichoń N, Saluk-Bijak J, Miller E (2022) Benefits from repetitive transcranial magnetic stimulation in post-stroke rehabilitation. J Clin Med 11:2149. https://doi.org/10.3390/jcm11082149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Xu AH, Sun YX (2020) Research hotspots and effectiveness of repetitive transcranial magnetic stimulation in stroke rehabilitation. Neural Regen Res 15:2089–2097. https://doi.org/10.4103/1673-5374.282269

    Article  PubMed  PubMed Central  Google Scholar 

  76. Dionísio A, Duarte IC, Patrício M, Castelo-Branco M (2018) The use of repetitive transcranial magnetic stimulation for stroke rehabilitation: a systematic review. J Stroke Cerebrovasc Dis 27:1–31. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.09.008

    Article  PubMed  Google Scholar 

  77. Chen X, Liu F, Lyu Z, Xiu H, Hou Y, Tu S (2023) High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) impacts activities of daily living of patients with post-stroke cognitive impairment: a systematic review and meta-analysis. Neurol Sci 44:2699–2713. https://doi.org/10.1007/s10072-023-06779-9

    Article  PubMed  Google Scholar 

  78. Corbetta M, Shulman GL (2011) Spatial neglect and attention networks. Annu Rev Neurosci 34:569–599. https://doi.org/10.1146/annurev-neuro-061010-113731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ueda M, Yuri T, Ueno K, Ishii R, Naito Y (2023) The neurophysiological features associated with unilateral spatial neglect recovery: a scoping review. Brain Topogr 36:631–643. https://doi.org/10.1007/s10548-023-00980-x

    Article  PubMed  Google Scholar 

  80. Fortis P, Ronchi R, Velardo V, Calzolari E, Banco E, Algeri L, Spada MS, Vallar G (2020) A home-based prism adaptation training for neglect patients. Cortex 122:61–80. https://doi.org/10.1016/j.cortex.2018.09.001

    Article  PubMed  Google Scholar 

  81. Yang YX, Wang LL, Du J, Luo YM, Xie YL, Zhang B, Zhang H (2023) Prism adaptation combined with eye movement training for unilateral spatial neglect after stroke: study protocol for a single-blind prospective, randomized controlled trial. Front Neurol 13:1081895. https://doi.org/10.3389/fneur.2022.1081895

    Article  PubMed  PubMed Central  Google Scholar 

  82. Chang MC, Park D (2020) How should rehabilitative departments of hospitals prepare for coronavirus disease 2019? Am J Phys Med Rehabil 99:475–476. https://doi.org/10.1097/PHM.0000000000001428

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lugo-Agudelo LH, Cruz Sarmiento KM, Spir Brunal MA, Velásquez Correa JC, Posada Borrero AM, Fernanda Mesa Franco L, Di Dio Castagna Ianini R, Ramírez Pérez Lis PA, Vélez CM, Patiño Lugo DF, Gutenbrunner C (2021) Adaptations for rehabilitation services during the COVID-19 pandemic proposed by scientific organizations and rehabilitation professionals. J Rehabil Med 53:jrm00228. https://doi.org/10.2340/16501977-2865

    Article  PubMed  Google Scholar 

  84. Woo H, Lee S, Lee HS, Chae HJ, Jung J, Song MJ, Lim SY, Lee YJ, Cho YJ, Kim ES, Kim HB, Lim JY, Song KH, Beom J (2022) Comprehensive rehabilitation in severely ill inpatients with COVID-19: a cohort study in a Tertiary Hospital. J Korean Med Sci 37:e262. https://doi.org/10.3346/jkms.2022.37.e262

    Article  PubMed  PubMed Central  Google Scholar 

  85. Yu C, Helwig EJ (2021) Role of rehabilitation amidst the COVID-19 pandemic: a review. J Transl Med 19:376. https://doi.org/10.1186/s12967-021-03048-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Choon-Huat Koh G, Hoenig H (2020) How should the rehabilitation community prepare for 2019-nCoV? Arch Phys Med Rehabil 101:1068–1071. https://doi.org/10.1016/j.apmr.2020.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  87. Saverino A, Baiardi P, Galata G, Pedemonte G, Vassallo C, Pistarini C (2021) The challenge of reorganizing rehabilitation services at the time of COVID-19 pandemic: a new digital and artificial intelligence platform to support team work in planning and delivering safe and high quality care. Front Neurol 12:643251. https://doi.org/10.3389/fneur.2021.643251

    Article  PubMed  PubMed Central  Google Scholar 

  88. Barker-Davies RM, O’Sullivan O, Senaratne KPP, Baker P, Cranley M, Dharm-Datta S, Ellis H, Goodall D, Gough M, Lewis S, Norman J, Papadopoulou T, Roscoe D, Sherwood D, Turner P, Walker T, Mistlin A, Phillip R, Nicol AM, Bennett AN, Bahadur S (2020) The Stanford Hall consensus statement for post-COVID-19 rehabilitation. Br J Sports Med 54:949–959. https://doi.org/10.1136/bjsports-2020-102596

    Article  PubMed  Google Scholar 

  89. Negm AM, Salopek A, Zaide M, Meng VJ, Prada C, Chang Y, Zanwar P, Santos FH, Philippou E, Rosario ER, Faieta J, Falvey JR, Kumar A, Reistetter TA, Dal Bello-Haas V, Bean JF, Bhandari M, Heyn PC (2022) Rehabilitation care at the time of coronavirus disease-19 (COVID-19) pandemic: a scoping review of health system recommendations. Front Aging Neurosci 13:781271. https://doi.org/10.3389/fnagi.2021.781271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Leochico CFD, Austria EMV, Gelisanga MAP, Ignacio SD, Mojica JAP (2023) Home-based telerehabilitation for community-dwelling persons with stroke during the COVID-19 pandemic: a pilot study. J Rehabil Med 55:jrm4405. https://doi.org/10.2340/jrm.v55.4405

    Article  PubMed  Google Scholar 

  91. Hillier S, Inglis-Jassiem G (2010) Rehabilitation for community-dwelling people with stroke: home or centre based? A systematic review. Int J Stroke 5:178–186. https://doi.org/10.1111/j.1747-4949.2010.00427.x

    Article  PubMed  Google Scholar 

  92. Laver KE, Adey-Wakeling Z, Crotty M, Lannin NA, George S, Sherrington C (2020) Telerehabilitation services for stroke. Cochrane Database Syst Rev 1:CD010255. https://doi.org/10.1002/14651858

    Article  CAS  PubMed  Google Scholar 

  93. Seron P, Oliveros MJ, Gutierrez-Arias R, Fuentes-Aspe R, Torres-Castro RC, Merino-Osorio C, Nahuelhual P, Inostroza J, Jalil Y, Solano R, Marzuca-Nassr GN, Aguilera-Eguía R, Lavados-Romo P, Soto-Rodríguez FJ, Sabelle C, Villarroel-Silva G, Gomolán P, Huaiquilaf S, Sanchez P (2021) Effectiveness of telerehabilitation in physical therapy: a rapid overview. Phys Ther 101:pzab053. https://doi.org/10.1093/ptj/pzab053

    Article  PubMed  PubMed Central  Google Scholar 

  94. Suso-Martí L, La Touche R, Herranz-Gómez A, Angulo-Díaz-Parreño S, Paris-Alemany A, Cuenca-Martínez F (2021) Effectiveness of telerehabilitation in physical therapist practice: an umbrella and mapping review with meta-meta-analysis. Phys Ther 101:pzab075. https://doi.org/10.1093/ptj/pzab075

    Article  PubMed  Google Scholar 

  95. Darcy B, Rashford L, Shultz ST, Tsai NT, Huizenga D, Reed KB, Bamberg SJM (2023) Gait device treatment using telehealth for individuals with stroke during the COVID-19 pandemic: nonrandomized pilot feasibility study. JMIR Form Res 7:e43008. https://doi.org/10.2196/43008

    Article  PubMed  PubMed Central  Google Scholar 

  96. Bezuidenhout L, Joseph C, Thurston C, Rhoda A, English C, Conradsson DM (2022) Telerehabilitation during the COVID-19 pandemic in Sweden: a survey of use and perceptions among physiotherapists treating people with neurological diseases or older adults. BMC Health Serv Res 22:555. https://doi.org/10.1186/s12913-022-07968-6

    Article  PubMed  PubMed Central  Google Scholar 

  97. Yang CL, Waterson S, Eng JJ (2021) Implementation and evaluation of the virtual graded repetitive arm supplementary program (GRASP) for individuals with stroke during the COVID-19 pandemic and beyond. Phys Ther 101:pzab083. https://doi.org/10.1093/ptj/pzab083

    Article  PubMed  PubMed Central  Google Scholar 

  98. Caughlin S, Mehta S, Corriveau H, Eng JJ, Eskes G, Kairy D, Meltzer J, Sakakibara BM, Teasell R (2020) Implementing telerehabilitation after stroke: lessons learned from canadian trials. Telemed J E Health 26:710–719. https://doi.org/10.1089/tmj.2019.0097

    Article  PubMed  Google Scholar 

  99. Sutter-Leve R, Passint E, Ness D, Rindflesch A (2021) The Caregiver experience after stroke in a COVID-19 environment: a qualitative study in inpatient rehabilitation. J Neurol Phys Ther 45:14–20. https://doi.org/10.1097/NPT.0000000000000336

    Article  PubMed  Google Scholar 

  100. Sahely A, Kai Ning Hew S, Ka Chan Y, Soundy A, Rosewilliam S (2023) Exploring the experiences of people who had a stroke and therapists who managed people with stroke during the COVID-19 pandemic: an exploratory qualitative study. PLoS ONE 18:e0282325. https://doi.org/10.1371/journal.pone.0282325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Park HY, Jung J, Park HY, Lee SH, Kim ES, Kim HB, Song KH (2020) Psychological consequences of survivors of COVID-19 pneumonia 1 month after discharge. J Korean Med Sci 35:e409. https://doi.org/10.3346/jkms.2020.35.e409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MIA, BFK, MY, OZ; data curation: MIA, BFK, MY, OZ; formal analysis: BFK; investigation: MIA, BFK, MY, OZ; methodology: MIA, BFK, MY, OZ; software: MIA, BFK, MY, OZ; and writing—review and editing: MIA, BFK, MY, OZ.

Corresponding author

Correspondence to Burhan Fatih Kocyigit.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

No requirement for ethics committee approval.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assylbek, M.I., Kocyigit, B.F., Yessirkepov, M. et al. Post-stroke rehabilitation in the peri-pandemic COVID-19 era. Rheumatol Int 44, 399–411 (2024). https://doi.org/10.1007/s00296-023-05520-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-023-05520-1

Keywords

Navigation