Skip to main content
Log in

Fabrication of carbon nanotube and dysprosium nanowire modified electrodes as a sensor for determination of curcumin

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Two sensitive sensors for determination of curcumin (CM) were described. CM can be detected using multiwall carbon nanotube (MWCNT)-modified electrodes and dysprosium nanowire carbon paste electrode using the technique of adsorptive stripping voltammetry (AdSV) in stationary solution and the fast Fourier transform voltammetry at the flowing solution. Both electrodes did show less passivation effect that occurs on the unmodified electrodes and displayed better stability and reproducibility. This electrode enabled selective determination of CM in the presence of interfering species. Under optimized conditions, CM could be detected over a linear range with a detection limit of 5.0 × 10−9 mol L−1 and 5.0 × 10−10 mol L−1 for the traditional square wave and fast Fourier transform square wave voltammetry (FFTSWV) with RSD between 0.2 and 0.5%. Comparison with other reported methods showed these studies are about 100 times more sensitive than previous ones. Good selectivity and high sensitivity obtained by Square wave voltammetry can open new possibilities of direct CM determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aggarwal BB, Shishodia S (2006) Biochem Pharmacol 71:1397

    Article  CAS  Google Scholar 

  2. Hyunsung C, Chun Y-S, Kim S-W, Kim M-S, Park J-W (2006) Molecul Pharmacol (American Soc Pharmacol Experiment Therapeuti) 70:1664

    Google Scholar 

  3. Shukla PK, Khanna VK, Ali MM, Khan MY, Srimal RC (2008) Neurochem Res 33:1036–1043

    Article  CAS  Google Scholar 

  4. Stix G, Scientific American, 2007 (in press)

  5. Srivastava KC, Bordia A, Verma SK (1995) Prostaglandins Leukot Essent Fatty Acids 52:223

    Article  CAS  Google Scholar 

  6. Hatcher H, Planalp R, Cho J, Torti FM, Torti SV (2008) Cell Mol Life Sci 65:1631

    Article  CAS  Google Scholar 

  7. Unnikrishnan MK, Rao MNA (1995) Mol Cell Biochem 146:35

    Article  CAS  Google Scholar 

  8. Sugiyama Y, Kawakishi S, Osawa T (1996) Biochem Pharmacol 52:519

    Article  CAS  Google Scholar 

  9. Youssef KM, El-Sherbeny MA (2005) Arch Pharm Chem Life Sci 338:181

    Article  CAS  Google Scholar 

  10. Chen A, Xu J (2005) Am J Physiol Gastrointest Liver Physiol 288:447

    Article  Google Scholar 

  11. Kapoor S, Priyadarsini KI (2001) Biophys Chem 92:119

    Article  CAS  Google Scholar 

  12. Ravindranath V, Chandrasekhara N (1980) Toxicology 16:259

    Article  CAS  Google Scholar 

  13. Chan MMY, Huang HI, Fenton MR, Fong D (1998) Biochem Pharmacol 55:1955

    Article  CAS  Google Scholar 

  14. Shankar TNB, Shanta NV, Ramesh HP, Murthy IAS, Murthy VS (1980) Ind J Exp Biol 18:73

    CAS  Google Scholar 

  15. Soni KB, Kuttan R (1992) Ind J Physiol Pharmacol 36:273

    CAS  Google Scholar 

  16. Che G, Lakshmi BB, Fisher ER, Martin CR (1998) Nature 393:346

    Article  CAS  Google Scholar 

  17. Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, Rossi DD, Rinzler AG, Jaschinski O, Roth S, Kertesz M (1999) Science 284:1340

    Article  CAS  Google Scholar 

  18. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Science 287:622

    Article  CAS  Google Scholar 

  19. Luo H, Shi Z, Li N, Gu Z, Zhuang Q (2001) Anal Chem 71:4527

    Google Scholar 

  20. Wu K, Fei J, Hu S (2003) Anal Biochem 318:100

    Article  CAS  Google Scholar 

  21. Wang J, Musameh M, Lin Y (2003) J Am Chem Soc 125:2408

    Article  CAS  Google Scholar 

  22. Gong KP, Dong Y, Xiong SX, Chen Y, Mao LQ (2004) Biosens Bioelectron 20:253

    Article  CAS  Google Scholar 

  23. Wu KB, Hu SS (2004) Microchim Acta 144:131

    Article  CAS  Google Scholar 

  24. Walter EC, Favier F, Penner RM (2002) Anal Chem 74:1546

    Article  CAS  Google Scholar 

  25. Murray BJ, Newberg JT, Walter EC, Li Q, Hemminger JC, Penner RM (2005) Anal Chem 77:5205

    Article  CAS  Google Scholar 

  26. Im Y, Lee C, Vasquez RP, Bangar MA, Myung NV, Menke EJ, Penner RM, Yun M (2006) Small 2:356

    Article  CAS  Google Scholar 

  27. Li CZ, He HX, Bogozi A, Bunch JS, Tao N (2000) J Appl Phys Lett 76:1335

    Google Scholar 

  28. Bogozi A, Lam O, He H, Li C, Tao NJ, Nagahara LA, Amlani I, Tsui R (2001) J Am Chem Soc 123:4585

    Article  CAS  Google Scholar 

  29. Liu Z, Searson PC (2006) J Phys Chem B 110:4318

    Article  CAS  Google Scholar 

  30. Myung S, Heo K, Lee M, Choi Y-H, Hong S-H, Hong S (2007) Nanotechnology 18:2053

    Article  Google Scholar 

  31. Keating CD, Natan M (2003) J Adv Mater 15:451

    Article  CAS  Google Scholar 

  32. Basu M, Seggerson S, Henshaw J, Jiang J, Cordona RD, Lefave C, Boyle PJ, Miller A, Pugia M, Basu S (2004) Glycoconjugate J 21:487

    Article  CAS  Google Scholar 

  33. Stoermer RL, Cederquist KB, McFarland SK, Sha MY, Penn SG, Keating CD (2006) J Am Chem Soc 128:16892

    Article  CAS  Google Scholar 

  34. Byun KM, Kim SJ, Kim D (2005) Opt Express 13:3737

    Article  Google Scholar 

  35. Durkan C, Welland ME (2000) Phys Rev B 61:14215

    Article  CAS  Google Scholar 

  36. Liu L, Song J (2006) Anal Biochem 354:22

    Article  CAS  Google Scholar 

  37. Norouzi P, Ganjali MR, Daneshgar P (2007) Sens Actuators B 123:1125

    Article  Google Scholar 

  38. Norouzi P, Ganjali MR, Daneshgar P, Alizadeh T, Mohammadi A (2007) Anal Biochem 360:175–181

    Article  CAS  Google Scholar 

  39. Norouzi P, Ganjali MR, Daneshgar P (2007) J Pharmacol Toxicol Methods 55:289

    Article  CAS  Google Scholar 

  40. Norouzi P, Ganjali MR, Moosavi-movahedi AA, Larijani B (2007) Talanta 73:54

    Article  CAS  Google Scholar 

  41. Norouzi P, Ganjali MR, Zare M, Mohammadi A (2007) J Pharm Sci 96:2009

    Article  CAS  Google Scholar 

  42. Norouzi P, Ganjali MR, Akbari-Adergani B (2007) Acta Chim Slov 53:499

    Google Scholar 

  43. Nabi Bidhendi G, Norouzi P, Daneshgar P, Ganjali MR (2007) J Hazard Mater 143:264

    Article  CAS  Google Scholar 

  44. Daneshgar P, Norouzi P, Ganjali MR, Ordikhani-seyedlar A, Eshraghi H (2009) Coll Surface B 68:27–32

    Article  CAS  Google Scholar 

  45. Daneshgar P, Norouzi P, Ganjali MR, Zamani HA (2009) Talanta 77:1075

    Article  CAS  Google Scholar 

  46. Stanic Z, Voulgaropoulos A, Girousi S (2008) Electroanalysis 20:1263

    Article  CAS  Google Scholar 

  47. Nicholson RS, Shain I (1964) Anal Chem 36:706

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The financial support of Research Council of University of Tehran and Iran National Science Foundation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parviz Norouzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daneshgar, P., Norouzi, P., Moosavi-Movahedi, A.A. et al. Fabrication of carbon nanotube and dysprosium nanowire modified electrodes as a sensor for determination of curcumin. J Appl Electrochem 39, 1983–1992 (2009). https://doi.org/10.1007/s10800-009-9908-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-009-9908-0

Keywords

Navigation