Skip to main content
Log in

Curcumin- A Bio-based Precursor for Smart and Active Food Packaging Systems: A Review

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The current scenario of global trends impacts the way in which food is consumed and packed, meaning that change is inevitable and just around the horizon in terms of making food packaging eco-friendlier and more sustainable. Scientific advancements over the past decades have led to a wide spectrum of solutions to this problem in terms of smart, active, and antimicrobial packaging systems. The increasing demand for sustainability paves the way as a golden opportunity for these systems as they have the ability to incorporate biobased precursors like curcumin through advancements in the field of the invisible enabler, biochemistry. Investigating the properties of curcumin as a bioagent can change the dynamics of the current food packaging industry, owing to its non-toxic and eco-friendly nature and a plethora of pharmacological properties. Curcumin is the principal curcuminoid of the golden spice turmeric. Being derived from a ferulic acid, it shows excellent antimicrobial properties against bacterial pathogens like Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli, and fungal cultures such as Penicillium spp. and Candida albicans. This makes it a potential agent in the food packaging industry and used as a natural food additive, dietary supplement, and pH indicator. Curcumin encapsulation has been explored with polymer matrices like polyvinyl alcohol [PVOH], low-density polyethylene [LDPE], polyvinyl acetate [PVAC], polylactic acid [PLA], etc. It has also been studied with metals like zinc as a complex which demonstrated an increase in the bioavailability of curcumin. This article aims to further explore the potential applications of curcumin in eco-friendly and antimicrobial packaging systems, and understand its importance as a bioagent.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Nogueira GF, de Oliveira RA, Velasco JI, Fakhouri FM (2020) Methods of incorporating plant-derived bioactive compounds into films made with agro-based polymers for application as food packaging: a brief review. Polymers. https://doi.org/10.3390/polym12112518

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bojorges H, Ríos-Corripio MA, Hernández-Cázares AS, Hidalgo-Contreras JV, Contreras-Oliva A (2020) Effect of the application of an edible film with turmeric (Curcuma longa L.) on the oxidative stability of meat. Food Sci Nutr 8(8):4308–4319. https://doi.org/10.1002/FSN3.1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fabra MJ, Falcó I, Randazzo W, Sánchez G, López-Rubio A (2018) Antiviral and antioxidant properties of active alginate edible films containing phenolic extracts. Food Hydrocoll 81:96–103. https://doi.org/10.1016/J.FOODHYD.2018.02.026

    Article  CAS  Google Scholar 

  4. Chen L, Song Z, Zhi X, Du B (2020) Photoinduced antimicrobial activity of curcumin-containing coatings: molecular interaction, stability and potential application in food decontamination. ACS Omega 5(48):31044–31054. https://doi.org/10.1021/ACSOMEGA.0C04065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Suzihaque MUH, Jamian AS (2019) Development of intelligent food packaging from turmeric (Curcuma longa). Int J Eng Adv Technol. https://doi.org/10.35940/ijeat.A3037.109119

    Article  Google Scholar 

  6. Shankar S, Rhim J-W (2018) Bionanocomposite films for food packaging applications. Reference module in food science. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-08-100596-5.21875-1

    Chapter  Google Scholar 

  7. Chauhan A, Chauhan P (2013) Natural fibers and biopolymer. J Chem Eng Process Technol. https://doi.org/10.4172/2157-7048.s6-001

    Article  Google Scholar 

  8. Almasi H, Jahanbakhsh Oskouie M, Saleh A (2020) A review on techniques utilized for design of controlled release food active packaging. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2020.1783199

    Article  PubMed  Google Scholar 

  9. Becerril R, Nerín C, Silva F (2020) Encapsulation systems for antimicrobial food packaging components: an update. Molecules 25(5):1134. https://doi.org/10.3390/MOLECULES25051134

    Article  CAS  PubMed Central  Google Scholar 

  10. Nicoletti M, del Serrone P (2017) Intelligent and smart packaging. Future Foods. https://doi.org/10.5772/intechopen.68773

    Article  Google Scholar 

  11. Zhang J, Zou X, Zhai X, Huang XW, Jiang C, Holmes M (2019) Preparation of an intelligent pH film based on biodegradable polymers and roselle anthocyanins for monitoring pork freshness. Food Chem 272:306–312. https://doi.org/10.1016/J.FOODCHEM.2018.08.041

    Article  CAS  PubMed  Google Scholar 

  12. Kunnumakkara AB et al (2019) Is curcumin bioavailability a problem in humans: lessons from clinical trials. Expert Opin Drug Metab Toxicol 15(9):705–733. https://doi.org/10.1080/17425255.2019.1650914

    Article  CAS  PubMed  Google Scholar 

  13. Zhang X et al (2021) Antimicrobial and UV blocking properties of composite chitosan films with curcumin grafted cellulose nanofiber. Food Hydrocoll 112:106337. https://doi.org/10.1016/J.FOODHYD.2020.106337

    Article  CAS  Google Scholar 

  14. Giménez B, López de Lacey A, Pérez-Santín E, López-Caballero ME, Montero P (2013) Release of active compounds from agar and agar-gelatin films with green tea extract. Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2012.05.014

    Article  Google Scholar 

  15. Cheng Y, Ge C, Lodge J, Santhanam K, Lu L (2014) Evaluation of natural plant powders with potential use in antimicrobial packaging applications. J Appl Packag Res 6(2):4

    Google Scholar 

  16. Khan MR, Sadiq MB, Mehmood Z (2020) Development of edible gelatin composite films enriched with polyphenol loaded nanoemulsions as chicken meat packaging material. CyTA J Food 18(1):137–146. https://doi.org/10.1080/19476337.2020.1720826

    Article  CAS  Google Scholar 

  17. Rachmawati H, Yanda YL, Rahma A, Mase N (2016) Curcumin-loaded PLA nanoparticles: formulation and physical evaluation. Sci Pharm 84(1):191–202. https://doi.org/10.3797/SCIPHARM.ISP.2015.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baldino L, Cardea S, Reverchon E (2017) Biodegradable membranes loaded with curcumin to be used as engineered independent devices in active packaging. J Taiwan Inst Chem Eng 71:518–526. https://doi.org/10.1016/J.JTICE.2016.12.020

    Article  CAS  Google Scholar 

  19. Hanafi, Sirait SM, Irawan C, Rochaeni H (2018) Poly(lactic acid) packaging modified curcumin as bioactive substance in tea drink (Camelia sinensis). Asian J Chem. https://doi.org/10.14233/ajchem.2018.20953

    Article  Google Scholar 

  20. Siviero A et al (2015) Curcumin, a golden spice with a low bioavailability. J Herb Med 5(2):57–70. https://doi.org/10.1016/J.HERMED.2015.03.001

    Article  Google Scholar 

  21. Farooqui T, Farooqui AA (2019) Curcumin for neurological and psychiatric disorders: neurochemical and pharmacological properties. Academic Press, Cambridge. https://doi.org/10.1016/C2017-0-02649-6

    Book  Google Scholar 

  22. Jayaprakasha GK, Jaganmohan Rao L, Sakariah KK (2006) Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chem 98(4):720–724. https://doi.org/10.1016/J.FOODCHEM.2005.06.037

    Article  CAS  Google Scholar 

  23. Popuri AK, Pagala B (2013) Extraction of curcumin from turmeric roots. Int J Innov Res Stud 2(5):289–299

    Google Scholar 

  24. Kilfoyle BE, Kaushik D, Terebetski JL, Bose S, Michniak-Kohn BB (2011) The use of quercetin and curcumin in skin care consumer products. Formulating, packaging, and marketing of natural cosmetic products. Wiley, Hoboken, pp 259–286. https://doi.org/10.1002/9781118056806.CH14

    Chapter  Google Scholar 

  25. Goel A, Kunnumakkara AB, Aggarwal BB (2008) Curcumin as ‘curecumin’: from kitchen to clinic. Biochem Pharmacol 75(4):787–809. https://doi.org/10.1016/J.BCP.2007.08.016

    Article  CAS  PubMed  Google Scholar 

  26. Slika L, Patra D (2020) A short review on chemical properties, stability and nano-technological advances for curcumin delivery. Expert Opin Drug Deliv. https://doi.org/10.1080/17425247.2020.1702644

    Article  PubMed  Google Scholar 

  27. Her C, Venier-Julienne M-C, Roger E (2018) Improvement of curcumin bioavailability for medical applications. Med Aromat Plants. https://doi.org/10.4172/2167-0412.1000326

    Article  Google Scholar 

  28. Zahran RF, Geba ZM, Tabll AA, Mashaly MM (2020) Therapeutic potential of a novel combination of curcumin with Sulfamethoxazole against carbon tetrachloride-induced acute liver injury in Swiss albino mice. J Genet Eng Biotechnol 18(1):1–16. https://doi.org/10.1186/S43141-020-00027-9

    Article  Google Scholar 

  29. Anand P et al (2008) Biological activities of curcumin and its analogues (congeners) made by man and mother nature. Biochem Pharmacol 76(11):1590–1611. https://doi.org/10.1016/J.BCP.2008.08.008

    Article  CAS  PubMed  Google Scholar 

  30. Kunnumakkara AB, Anand P, Aggarwal BB (2008) Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett 269(2):199–225. https://doi.org/10.1016/J.CANLET.2008.03.009

    Article  CAS  PubMed  Google Scholar 

  31. Teiten M-H, Dicato M, Diederich M (2014) Hybrid curcumin compounds: a new strategy for cancer treatment. Molecules 19(12):20839–20863. https://doi.org/10.3390/MOLECULES191220839

    Article  PubMed  PubMed Central  Google Scholar 

  32. Amutha M, Sivasakthi J, Gubendran A, Dhanasekaran P, Imayatharasi R (2017) Studies on metal chelating property and pharmaceutical applications of curcumin metal complex. IOSR J Pharm Biol Sci. https://doi.org/10.9790/3008-1203017277

    Article  Google Scholar 

  33. Paulucci VP, Couto RO, Teixeira CCC, Freitas LAP (2013) Optimization of the extraction of curcumin from Curcuma longa rhizomes. Rev Bras 23(1):94–100. https://doi.org/10.1590/S0102-695X2012005000117

    Article  CAS  Google Scholar 

  34. Braga MEM, Leal PF, Carvalho JE, Meireles MAA (2003) Comparison of yield, composition, and antioxidant activity of turmeric (Curcuma longa L.) extracts obtained using various techniques. J Agric Food Chem. https://doi.org/10.1021/jf0345550

    Article  PubMed  Google Scholar 

  35. Shirsath SR, Sable SS, Gaikwad SG, Sonawane SH, Saini DR, Gogate PR (2017) Intensification of extraction of curcumin from Curcuma amada using ultrasound assisted approach: effect of different operating parameters. Ultrason Sonochem 38:437–445. https://doi.org/10.1016/J.ULTSONCH.2017.03.040

    Article  CAS  PubMed  Google Scholar 

  36. Gökdemir B, Baylan N, Çehreli S (2020) Application of a novel ionic liquid as an alternative green solvent for the extraction of curcumin from turmeric with response surface methodology: determination and optimization study. Anal Lett 53(13):2111–2121. https://doi.org/10.1080/00032719.2020.1730394

    Article  CAS  Google Scholar 

  37. Priyanka, Khanam S (2018) Influence of operating parameters on supercritical fluid extraction of essential oil from turmeric root. J Clean Prod 188:816–824. https://doi.org/10.1016/J.JCLEPRO.2018.04.052

    Article  CAS  Google Scholar 

  38. Dandekar DV, Gaikar VG (2006) Hydrotropic extraction of curcuminoids from turmeric. Sep Sci Technol 38(5):1185–1215. https://doi.org/10.1081/SS-120018130

    Article  CAS  Google Scholar 

  39. Mandal V, Mohan Y, Hemalatha S (2008) Microwave assisted extraction of curcumin by sample-solvent dual heating mechanism using Taguchi L9 orthogonal design. J Pharm Biomed Anal 46(2):322–327. https://doi.org/10.1016/j.jpba.2007.10.020

    Article  CAS  PubMed  Google Scholar 

  40. Bener M, Özyürek M, Güçlü K, Apak R (2016) Optimization of microwave-assisted extraction of curcumin from Curcuma longa L. (turmeric) and evaluation of antioxidant activity in multi-test systems. Rec Nat Prod 10(5):542

    CAS  Google Scholar 

  41. Ravindranath V, Chandrasekhara N (1980) Absorption and tissue distribution of curcumin in rats. Toxicology 16(3):259–265. https://doi.org/10.1016/0300-483X(80)90122-5

    Article  CAS  PubMed  Google Scholar 

  42. Hudiyanti D, Al Khafiz MF, Anam K, Siahaan P, Suyati L (2021) Assessing encapsulation of curcumin in cocoliposome: in vitro study. Open Chem 19(1):358–366. https://doi.org/10.1515/CHEM-2021-0036

    Article  CAS  Google Scholar 

  43. Zheng B, Zhang X, Lin H, McClements DJ (2019) Loading natural emulsions with nutraceuticals using the pH-driven method: formation & stability of curcumin-loaded soybean oil bodies. Food Funct 10(9):5473–5484. https://doi.org/10.1039/C9FO00752K

    Article  CAS  PubMed  Google Scholar 

  44. Barzegar A (2012) The role of electron-transfer and H-atom donation on the superb antioxidant activity and free radical reaction of curcumin. Food Chem 135(3):1369–1376. https://doi.org/10.1016/J.FOODCHEM.2012.05.070

    Article  CAS  PubMed  Google Scholar 

  45. Wang YJ et al (1997) Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal 15(12):1867–1876. https://doi.org/10.1016/S0731-7085(96)02024-9

    Article  CAS  PubMed  Google Scholar 

  46. Syed HK, Bin Liew K, Loh GO, Peh KK (2015) Stability indicating HPLC–UV method for detection of curcumin in Curcuma longa extract and emulsion formulation. Food Chem 170:321–326. https://doi.org/10.1016/J.FOODCHEM.2014.08.066

    Article  CAS  PubMed  Google Scholar 

  47. Chignell CF, Bilskj P, Reszka KJ, Motten AG, Sik RH, Dahl TA (1994) Spectral and photochemical properties of curcumin. Photochem Photobiol. https://doi.org/10.1111/j.1751-1097.1994.tb05037.x

    Article  PubMed  Google Scholar 

  48. Nardo L, Andreoni A, Masson M, Haukvik T, Tønnesen HH (2011) Studies on curcumin and curcuminoids. XXXIX. Photophysical properties of bisdemethoxycurcumin. J Fluoresc 21(2):627–635. https://doi.org/10.1007/s10895-010-0750-x

    Article  CAS  PubMed  Google Scholar 

  49. H. Hjorth Tønnesen (2004) Photostability of drugs and drug formulations, 2nd edn. www.crcpress.com. Accessed 19 Sep 2021

  50. Nardo L, Paderno R, Andreoni A, Másson M, Haukvik T, Tønnesen HH (2008) Role of H-bond formation in the photoreactivity of curcumin. Spectroscopy 22(2–3):187–198. https://doi.org/10.3233/SPE-2008-0335

    Article  CAS  Google Scholar 

  51. Esatbeyoglu T, Ulbrich K, Rehberg C, Rohn S, Rimbach G (2015) Thermal stability, antioxidant, and anti-inflammatory activity of curcumin and its degradation product 4-vinyl guaiacol. Food and Funct. https://doi.org/10.1039/c4fo00790e

    Article  Google Scholar 

  52. Dahmke IN, Boettcher SP, Groh M, Mahlknecht U (2014) Cooking enhances curcumin anti-cancerogenic activity through pyrolytic formation of ‘deketene curcumin.’ Food Chem. https://doi.org/10.1016/j.foodchem.2013.11.102

    Article  PubMed  Google Scholar 

  53. Suresh D, Gurudutt KN, Srinivasan K (2009) Degradation of bioactive spice compound: curcumin during domestic cooking. Eur Food Res Technol. https://doi.org/10.1007/s00217-008-0993-9

    Article  Google Scholar 

  54. Vanbeneden N, Saison D, Delvaux F, Delvaux FR (2008) Decrease of 4-vinylguaiacol during beer aging and formation of apocynol and vanillin in beer. J Agric Food Chem. https://doi.org/10.1021/jf8019453

    Article  PubMed  Google Scholar 

  55. Boettler U et al (2011) Coffee constituents as modulators of Nrf2 nuclear translocation and ARE (EpRE)-dependent gene expression. J Nutr Biochem. https://doi.org/10.1016/j.jnutbio.2010.03.011

    Article  PubMed  Google Scholar 

  56. Tønnesen HH, Másson M, Loftsson T (2002) Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int J Pharm 244(1–2):127–135. https://doi.org/10.1016/S0378-5173(02)00323-X

    Article  PubMed  Google Scholar 

  57. Stohs SJ, Chen O, Ray SD, Ji J, Bucci LR, Preuss HG (2020) Highly bioavailable forms of curcumin and promising avenues for curcumin-based research and application: a review. Molecules 25(6):1397. https://doi.org/10.3390/MOLECULES25061397

    Article  CAS  PubMed Central  Google Scholar 

  58. Priyadarsini KI (2014) The chemistry of curcumin: from extraction to therapeutic agent. Molecules 12:20091–20112. https://doi.org/10.3390/MOLECULES191220091

    Article  Google Scholar 

  59. Ghosh M, Singh ATK, Xu W, Sulchek T, Gordon LI, Ryan RO (2011) Curcumin nanodisks: formulation and characterization. Nanomedicine: Nanotechnol. Biol. Med. 7(2):162–167. https://doi.org/10.1016/J.NANO.2010.08.002

    Article  CAS  Google Scholar 

  60. Hewlings SJ, Kalman DS (2017) Curcumin: a review of its effects on human health. Foods 6(10):92. https://doi.org/10.3390/FOODS6100092

    Article  PubMed Central  Google Scholar 

  61. Zhang D (2020) Curcumin-a review of its antibacterial effect. Biomed J Sci Tech Res. https://doi.org/10.26717/bjstr.2020.26.004286

    Article  Google Scholar 

  62. Zheng D et al (2020) Antibacterial mechanism of curcumin: a review. Chem Biodivers. https://doi.org/10.1002/cbdv.202000171

    Article  PubMed  Google Scholar 

  63. de Moraes Carvalho D, Takeuchi KP, Geraldine RM, de Moura CJ, Torres MCL (2015) Production, solubility and antioxidant activity of curcumin nanosuspension. Food Sci Technol 35(1):115–119. https://doi.org/10.1590/1678-457X.6515

    Article  Google Scholar 

  64. Anand P et al (2010) Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem Pharmacol 79(3):330–338. https://doi.org/10.1016/j.bcp.2009.09.003

    Article  CAS  PubMed  Google Scholar 

  65. Mohanty C, Das M, Sahoo SK (2012) Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin. Expert Opin Drug Deliv 9(11):1347–1364. https://doi.org/10.1517/17425247.2012.724676

    Article  CAS  PubMed  Google Scholar 

  66. Kurien BT, Singh A, Matsumoto H, Scofield RH (2007) Improving the solubility and pharmacological efficacy of curcumin by heat treatment. Assay Drug Dev Technol 5(4):567–576. https://doi.org/10.1089/adt.2007.064

    Article  CAS  PubMed  Google Scholar 

  67. Bhawana, Basniwal RK, Buttar HS, Jain VK, Jain N (2011) Curcumin nanoparticles: Preparation, characterization, and antimicrobial study. J Agric Food Chem 59(5):2056–2061. https://doi.org/10.1021/jf104402t

    Article  CAS  PubMed  Google Scholar 

  68. Wang Y, Lu Z, Wu H, Lv F (2009) Study on the antibiotic activity of microcapsule curcumin against foodborne pathogens. Int J Food Microbiol 136(1):71–74. https://doi.org/10.1016/j.ijfoodmicro.2009.09.001

    Article  CAS  PubMed  Google Scholar 

  69. Wang YF et al (2012) Food preservation effects of curcumin microcapsules. Food Control 27(1):113–117. https://doi.org/10.1016/j.foodcont.2012.03.008

    Article  CAS  Google Scholar 

  70. Gul FZ, Basheer M (2016) Curcumin as natural bioactive compound of medicinal plant Curcuma longa to combat against different diseases. J Ayurvedic Herb Med 2:192–199

    Article  Google Scholar 

  71. Tylewicz U, Nowacka M, Martín-García B, Wiktor A, Gómez Caravaca AM (2018) Target sources of polyphenols in different food products and their processing by-products. Polyphenols: properties, recovery, and applications. Elsevier, Amsterdam, pp 135–175. https://doi.org/10.1016/B978-0-12-813572-3.00005-1

    Chapter  Google Scholar 

  72. He Y, Yue Y, Zheng X, Zhang K, Chen S, Du Z (2015) Curcumin, inflammation, and chronic diseases: how are they linked? Molecules. https://doi.org/10.3390/molecules20059183

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mahmood K, Zia KM, Zuber M, Salman M, Anjum MN (2015) Recent developments in curcumin and curcumin based polymeric materials for biomedical applications: a review. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2015.09.026

    Article  PubMed  Google Scholar 

  74. Gupta SC et al (2011) Multitargeting by curcumin as revealed by molecular interaction studies. Nat Prod Rep. https://doi.org/10.1039/c1np00051a

    Article  PubMed  PubMed Central  Google Scholar 

  75. Guo YL, Li XZ, Kuang CT (2011) Antioxidant pathways and chemical mechanism of curcumin. Adv Mater Res. https://doi.org/10.4028/www.scientific.net/AMR.236-238.2311

    Article  Google Scholar 

  76. Rai D, Singh JK, Roy N, Panda D (2008) Curcumin inhibits FtsZ assembly: an attractive mechanism for its antibacterial activity. Biochem J 410(1):147–155. https://doi.org/10.1042/BJ20070891

    Article  CAS  PubMed  Google Scholar 

  77. Rudrappa T, Bais HP (2008) Curcumin, a known phenolic from i, attenuates the virulence of Pseudomonas aeruginosa PAO1 in whole plant and animal pathogenicity models. J Agric Food Chem. https://doi.org/10.1021/jf072591j

    Article  PubMed  Google Scholar 

  78. Tyagi P, Singh M, Kumari H, Kumari A, Mukhopadhyay K (2015) Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS ONE. https://doi.org/10.1371/journal.pone.0121313

    Article  PubMed  PubMed Central  Google Scholar 

  79. Liu Y, Cai Y, Jiang X, Wu J, Le X (2016) Molecular interactions, characterization and antimicrobial activity of curcumin–chitosan blend films. Food Hydrocoll 52:564–572. https://doi.org/10.1016/J.FOODHYD.2015.08.005

    Article  CAS  Google Scholar 

  80. Ma Q, Du L, Wang L (2017) Tara gum/polyvinyl alcohol-based colorimetric NH3 indicator films incorporating curcumin for intelligent packaging. Sens Actuators B 244:759–766. https://doi.org/10.1016/J.SNB.2017.01.035

    Article  CAS  Google Scholar 

  81. Roșu MC et al (2017) Cytotoxicity of methylcellulose-based films containing graphenes and curcumin on human lung fibroblasts. Process Biochem 52:243–249. https://doi.org/10.1016/J.PROCBIO.2016.10.002

    Article  Google Scholar 

  82. Wang S et al (2019) Packaging films formulated with gelatin and anthocyanins nanocomplexes: physical properties, antioxidant activity and its application for olive oil protection. Food Hydrocoll 96:617–624. https://doi.org/10.1016/J.FOODHYD.2019.06.004

    Article  CAS  Google Scholar 

  83. Jafarzadeh S, Jafari SM, Salehabadi A, Nafchi AM, Uthaya Kumar US, Khalil HPSA (2020) Biodegradable green packaging with antimicrobial functions based on the bioactive compounds from tropical plants and their by-products. Trends Food Sci Technol 100:262–277. https://doi.org/10.1016/J.TIFS.2020.04.017

    Article  CAS  Google Scholar 

  84. Genskowsky E, Puente LA, Pérez-Álvarez JA, Fernandez-Lopez J, Muñoz LA, Viuda-Martos M (2015) Assessment of antibacterial and antioxidant properties of chitosan edible films incorporated with maqui berry (Aristotelia chilensis). LWT Food Sci Technol 64(2):1057–1062. https://doi.org/10.1016/J.LWT.2015.07.026

    Article  CAS  Google Scholar 

  85. Mirjalili M, Abbasipour M (2013) Comparison between antibacterial activity of some natural dyes and silver nanoparticles. J Nanostruct Chem. https://doi.org/10.1186/2193-8865-3-37

    Article  Google Scholar 

  86. Christensen GD et al (1985) Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol. https://doi.org/10.1128/jcm.22.6.996-1006.1985

    Article  PubMed  PubMed Central  Google Scholar 

  87. Collinson SK, Clouthier SC, Doran JL, Banser PA, Kay WW (1996) Salmonella enteritidis agfBAC operon encoding thin, aggregative fimbriae. J Bacteriol. https://doi.org/10.1128/jb.178.3.662-667.1996

    Article  PubMed  PubMed Central  Google Scholar 

  88. Chapman MR et al (2002) Role of Escherichia coli curli operons in directing amyloid fiber formation. Science. https://doi.org/10.1126/science.1067484

    Article  PubMed  PubMed Central  Google Scholar 

  89. Doran JL et al (1993) DNA-based diagnostic tests for Salmonella species targeting agfA, the structural gene for thin, aggregative fimbriae. J Clin Microbiol. https://doi.org/10.1128/jcm.31.9.2263-2273.1993

    Article  PubMed  PubMed Central  Google Scholar 

  90. McCrate OA, Zhou X, Cegelski L (2013) Curcumin as an amyloid-indicator dye in E. coli. Chem Commun. https://doi.org/10.1039/c2cc37792f

    Article  Google Scholar 

  91. Michels L et al (2021) Electronic and structural properties of the natural dyes curcumin, bixin and indigo. RSC Adv. https://doi.org/10.1039/d0ra08474c

    Article  PubMed  PubMed Central  Google Scholar 

  92. Agrawal S, Goel RK (2016) Curcumin and its protective and therapeutic uses. Natl J Physiol Pharm Pharmacol. https://doi.org/10.5455/njppp.2016.6.3005201596

    Article  Google Scholar 

  93. Antony B, Merina B, Iyer V, Judy N, Lennertz K, Joyal S (2008) A pilot cross-over study to evaluate human oral bioavailability of BCM-95® CG (BiocurcumaxTM), a novel bioenhanced preparation of curcumin. Indian J Pharm Sci. https://doi.org/10.4103/0250-474X.44591

    Article  PubMed  PubMed Central  Google Scholar 

  94. Chen AL et al (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21(4B):e2900

    Google Scholar 

  95. Ringman J, Frautschy S, Cole G, Masterman D, Cummings J (2005) A potential role of the curry spice curcumin in alzheimers disease. Curr Alzheimer Res 2(2):131–136. https://doi.org/10.2174/1567205053585882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Valderrama Solano AC, Rojas de Gante C (2014) Development of biodegradable films based on blue corn flour with potential applications in food packaging. Effects of plasticizers on mechanical, thermal, and microstructural properties of flour films. J Cereal Sci 60(1):60–66. https://doi.org/10.1016/J.JCS.2014.01.015

    Article  CAS  Google Scholar 

  97. Vargas CG, Costa TMH, de Oliveira Rios A, Flôres SH (2017) Comparative study on the properties of films based on red rice (Oryza glaberrima) flour and starch. Food Hydrocoll 65:96–106. https://doi.org/10.1016/J.FOODHYD.2016.11.006

    Article  CAS  Google Scholar 

  98. Taghavi Kevij H, Salami M, Mohammadian M, Khodadadi M (2020) Fabrication and investigation of physicochemical, food simulant release, and antioxidant properties of whey protein isolate-based films activated by loading with curcumin through the pH-driven method. Food Hydrocoll 108:106026. https://doi.org/10.1016/J.FOODHYD.2020.106026

    Article  CAS  Google Scholar 

  99. Colobatiu L et al (2019) Evaluation of bioactive compounds-loaded chitosan films as a novel and potential diabetic wound dressing material. React Funct Polym 145:104369. https://doi.org/10.1016/J.REACTFUNCTPOLYM.2019.104369

    Article  CAS  Google Scholar 

  100. Hosseini SF, Nahvi Z, Zandi M (2019) Antioxidant peptide-loaded electrospun chitosan/poly(vinyl alcohol) nanofibrous mat intended for food biopackaging purposes. Food Hydrocoll 89:637–648. https://doi.org/10.1016/J.FOODHYD.2018.11.033

    Article  CAS  Google Scholar 

  101. Riaz A et al (2020) Chitosan-based biodegradable active food packaging film containing Chinese chive (Allium tuberosum) root extract for food application. Int J Biol Macromol 150:595–604. https://doi.org/10.1016/J.IJBIOMAC.2020.02.078

    Article  CAS  PubMed  Google Scholar 

  102. Chen H, Li L, Ma Y, Mcdonald TP, Wang Y (2019) Development of active packaging film containing bioactive components encapsulated in β-cyclodextrin and its application. Food Hydrocoll 90:360–366. https://doi.org/10.1016/J.FOODHYD.2018.12.043

    Article  CAS  Google Scholar 

  103. Wang L, Xue J, Zhang Y (2019) Preparation and characterization of curcumin loaded caseinate/zein nanocomposite film using pH-driven method. Ind Crops Prod 130:71–80. https://doi.org/10.1016/J.INDCROP.2018.12.072

    Article  CAS  Google Scholar 

  104. Mahcene Z et al (2020) Development and characterization of sodium alginate based active edible films incorporated with essential oils of some medicinal plants. Int J Biol Macromol 145:124–132. https://doi.org/10.1016/J.IJBIOMAC.2019.12.093

    Article  CAS  PubMed  Google Scholar 

  105. Xiang H, Sun-waterhouse D, Cui C, Wang W, Dong K (2018) Modification of soy protein isolate by glutaminase for nanocomplexation with curcumin. Food Chem 268:504–512. https://doi.org/10.1016/J.FOODCHEM.2018.06.059

    Article  CAS  PubMed  Google Scholar 

  106. Zhai X et al (2020) Extruded low density polyethylene-curcumin film: a hydrophobic ammonia sensor for intelligent food packaging. Food Packag Shelf Life 26:100595. https://doi.org/10.1016/J.FPSL.2020.100595

    Article  Google Scholar 

  107. Zia J, Paul UC, Heredia-Guerrero JA, Athanassiou A, Fragouli D (2019) Low-density polyethylene/curcumin melt extruded composites with enhanced water vapor barrier and antioxidant properties for active food packaging. Polymer 175:137–145. https://doi.org/10.1016/J.POLYMER.2019.05.012

    Article  CAS  Google Scholar 

  108. Al-Naamani L, Dobretsov S, Dutta J (2016) Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innov Food Sci Emerg Technol 38:231–237. https://doi.org/10.1016/J.IFSET.2016.10.010

    Article  CAS  Google Scholar 

  109. Papadimitriou A et al (2018) Innovative material containing the natural product curcumin, with enhanced antimicrobial properties for active packaging. Mater Sci Eng C 84:118–122. https://doi.org/10.1016/J.MSEC.2017.11.041

    Article  CAS  Google Scholar 

  110. Roudashti S, Zeighami H, Mirshahabi H, Bahari S, Soltani A, Haghi F (2017) Synergistic activity of sub-inhibitory concentrations of curcumin with ceftazidime and ciprofloxacin against Pseudomonas aeruginosa quorum sensing related genes and virulence traits. World J Microbiol Biotechnol 33(3):1–8. https://doi.org/10.1007/S11274-016-2195-0

    Article  CAS  Google Scholar 

  111. el Sayed AM, El-Gamal S, Morsi WM, Mohammed Gh (2015) Effect of PVA and copper oxide nanoparticles on the structural, optical, and electrical properties of carboxymethyl cellulose films. J Mater Sci 50(13):4717–4728. https://doi.org/10.1007/S10853-015-9023-Z

    Article  Google Scholar 

  112. Mohanapriya S, Mumjitha M, PurnaSai K, Raj V (2016) Fabrication and characterization of poly(vinyl alcohol)-TiO2 nanocomposite films for orthopedic applications. J Mech Behav Biomed Mater 63:141–156. https://doi.org/10.1016/J.JMBBM.2016.06.009

    Article  CAS  PubMed  Google Scholar 

  113. Xie J et al (2017) Biodegradable poly(vinyl alcohol)-based nanocomposite film reinforced with organophilic layered double hydroxides with potential packaging application. Iran Polym J 26(11):811–819. https://doi.org/10.1007/S13726-017-0561-X

    Article  CAS  Google Scholar 

  114. Saha NR et al (2016) Nanocomposite films based on cellulose acetate/polyethylene glycol/modified montmorillonite as nontoxic active packaging material. RSC Adv 6(95):92569–92578. https://doi.org/10.1039/C6RA17300D

    Article  CAS  Google Scholar 

  115. Hoffmann T, Peters D, Angioletti B, Bertoli S, Péres L, Reiter M, De Souza C (2019) Potentials nanocomposites in food packaging. Chem Eng Trans. https://doi.org/10.3303/CET1975043

    Article  Google Scholar 

  116. Roy S, Rhim JW (2021) Antioxidant and antimicrobial poly(vinyl alcohol)-based films incorporated with grapefruit seed extract and curcumin. J Environ Chem Eng 9(1):104694. https://doi.org/10.1016/J.JECE.2020.104694

    Article  CAS  Google Scholar 

  117. Kuswandi B, Jayus, Larasati TS, Abdullah A, Heng LY (2011) Real-time monitoring of shrimp spoilage using on-package sticker sensor based on natural dye of curcumin. Food Anal Methods 5(4):881–889. https://doi.org/10.1007/S12161-011-9326-X

    Article  Google Scholar 

  118. Martins JT, Cerqueira MA, Bourbon AI, Pinheiro AC, Souza BWS, Vicente AA (2012) Synergistic effects between κ-carrageenan and locust bean gum on physicochemical properties of edible films made thereof. Food Hydrocoll 29(2):280–289. https://doi.org/10.1016/J.FOODHYD.2012.03.004

    Article  CAS  Google Scholar 

  119. Ramos M, Valdés A, Beltrán A, Garrigós M (2016) Gelatin-based films and coatings for food packaging applications. Coatings. https://doi.org/10.3390/coatings6040041

    Article  Google Scholar 

  120. Luo N, Varaprasad K, Reddy GVS, Rajulu AV, Zhang J (2012) Preparation and characterization of cellulose/curcumin composite films. RSC Adv 2(22):8483–8488. https://doi.org/10.1039/C2RA21465B

    Article  CAS  Google Scholar 

  121. Bosso A, Cassino C, Motta S, Panero L, Tsolakis C, Guaita M (2020) Polyphenolic composition and in vitro antioxidant activity of red grape seeds as byproducts of short and medium-long fermentative macerations. Foods 9(10):1451. https://doi.org/10.3390/FOODS9101451

    Article  CAS  PubMed Central  Google Scholar 

  122. Wang LF, Rhim JW (2016) Grapefruit seed extract incorporated antimicrobial LDPE and PLA films: Effect of type of polymer matrix. LWT 74:338–345. https://doi.org/10.1016/J.LWT.2016.07.066

    Article  CAS  Google Scholar 

  123. Oun AA, Rhim JW (2020) Preparation of multifunctional carboxymethyl cellulose-based films incorporated with chitin nanocrystal and grapefruit seed extract. Int J Biol Macromol 152:1038–1046. https://doi.org/10.1016/J.IJBIOMAC.2019.10.191

    Article  PubMed  Google Scholar 

  124. Pramanik N et al (2015) Characterization and evaluation of curcumin loaded guar gum/polyhydroxyalkanoates blend films for wound healing applications. RSC Adv 5(78):63489–63501. https://doi.org/10.1039/C5RA10114J

    Article  CAS  Google Scholar 

  125. Roy S, Rhim JW (2020) Preparation of bioactive functional poly(lactic acid)/curcumin composite film for food packaging application. Int J Biol Macromol 162:1780–1789. https://doi.org/10.1016/J.IJBIOMAC.2020.08.094

    Article  CAS  PubMed  Google Scholar 

  126. Roy S, Rhim JW (2020) Effect of CuS reinforcement on the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of alginate-based composite films. Int J Biol Macromol 164:37–44. https://doi.org/10.1016/J.IJBIOMAC.2020.07.092

    Article  CAS  PubMed  Google Scholar 

  127. Zorofchian Moghadamtousi S, Abdul Kadir H, Hassandarvish P, Tajik H, Abubakar S, Zandi K (2014) A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Res Int. https://doi.org/10.1155/2014/186864

    Article  PubMed Central  Google Scholar 

  128. Roy S, van Hai L, Kim HC, Zhai L, Kim J (2020) Preparation and characterization of synthetic melanin-like nanoparticles reinforced chitosan nanocomposite films. Carbohydr Polym 231:115729. https://doi.org/10.1016/J.CARBPOL.2019.115729

    Article  CAS  PubMed  Google Scholar 

  129. Mondal K, Ghosh T, Bhagabati P, Katiyar V (2019) Sustainable nanostructured materials in food packaging. Dynamics of advanced sustainable nanomaterials and their related nanocomposites at the bio-nano interface. Elsevier, Amsterdam, pp 171–213. https://doi.org/10.1016/B978-0-12-819142-2.00008-2

    Chapter  Google Scholar 

  130. Garcia de Rodriguez NL, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13(3):261–270. https://doi.org/10.1007/S10570-005-9039-7

    Article  CAS  Google Scholar 

  131. Condat M et al (2015) Photoinduced curcumin derivative-coatings with antibacterial properties. RSC Adv 5(104):85214–85224. https://doi.org/10.1039/C5RA19499G

    Article  CAS  Google Scholar 

  132. In Y-W, Kim J-J, Kim H-J, Oh S-W (2013) Antimicrobial activities of acetic acid, citric acid and lactic acid against shigella species. J Food Saf 33(1):79–85. https://doi.org/10.1111/JFS.12025

    Article  Google Scholar 

  133. Tawakkal ISMA, Cran MJ, Miltz J, Bigger SW (2014) A review of poly(lactic acid)-based materials for antimicrobial packaging. J Food Sci. https://doi.org/10.1111/1750-3841.12534

    Article  PubMed  Google Scholar 

  134. Tawakkal ISMA, Cran MJ, Miltz J, Bigger SW (2014) A review of poly(lactic acid)-based materials for antimicrobial packaging. J Food Sci 79(8):R1477–R1490. https://doi.org/10.1111/1750-3841.12534

    Article  CAS  PubMed  Google Scholar 

  135. Risyon NP, Othman SH, Basha RK, Talib RA (2020) Characterization of polylactic acid/halloysite nanotubes bionanocomposite films for food packaging. Food Packag Shelf Life 23:100450. https://doi.org/10.1016/J.FPSL.2019.100450

    Article  Google Scholar 

  136. Nile SH, Baskar V, Selvaraj D, Nile A, Xiao J, Kai G (2020) Nanotechnologies in food science: applications, recent trends, and future perspectives. Nano-Micro Lett 12(1):1–34. https://doi.org/10.1007/S40820-020-0383-9

    Article  Google Scholar 

  137. Shankar S, Rhim JW (2018) Preparation of antibacterial poly(lactide)/poly(butylene adipate-co-terephthalate) composite films incorporated with grapefruit seed extract. Int J Biol Macromol 120:846–852. https://doi.org/10.1016/J.IJBIOMAC.2018.09.004

    Article  CAS  PubMed  Google Scholar 

  138. Othman SH, Ling HN, Talib RA, Naim MN, Risyon NP, Saifullah Md (2019) PLA/MMT and PLA/halloysite bio-nanocomposite films: mechanical, barrier, and transparency. J Nano Res 59:77–93. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/JNANOR.59.77

    Article  CAS  Google Scholar 

  139. Latos-Brozio M, Masek A (2020) The application of natural food colorants as indicator substances in intelligent biodegradable packaging materials. Food Chem Toxicol 135:110975. https://doi.org/10.1016/J.FCT.2019.110975

    Article  CAS  PubMed  Google Scholar 

  140. Roy S, Rhim JW (2020) Carboxymethyl cellulose-based antioxidant and antimicrobial active packaging film incorporated with curcumin and zinc oxide. Int J Biol Macromol 148:666–676. https://doi.org/10.1016/J.IJBIOMAC.2020.01.204

    Article  CAS  PubMed  Google Scholar 

  141. Chen Y, Lin J, Fei Y, Wang H, Gao W (2010) Preparation and characterization of electrospinning PLA/curcumin composite membranes. Fibers Polym. https://doi.org/10.1007/s12221-010-1128-z

    Article  Google Scholar 

  142. Ranjeth Kumar Reddy T, Kim H-J (2018) Mechanical, optical, thermal, and barrier properties of poly (lactic acid)/curcumin composite films prepared using twin-screw extruder. Food Biophys 14(1):22–29. https://doi.org/10.1007/S11483-018-9553-4

    Article  Google Scholar 

  143. Suyatma NE, Copinet A, Coma V, Fricoteaux F (2010) Compatibilization method applied to the chitosan-acid poly(L-lactide) solution. J Appl Polym Sci 117(5):3083–3091. https://doi.org/10.1002/APP.32115

    Article  CAS  Google Scholar 

  144. Sussman EM, Clarke MB, Shastri VP (2007) Single-step process to produce surface-functionalized polymeric nanoparticles. Langmuir 23(24):12275–12279. https://doi.org/10.1021/LA701997X

    Article  CAS  PubMed  Google Scholar 

  145. Shankar S, Wang LF, Rhim JW (2018) Incorporation of zinc oxide nanoparticles improved the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of PLA-based nanocomposite films. Mater Sci Eng C 93:289–298. https://doi.org/10.1016/J.MSEC.2018.08.002

    Article  CAS  Google Scholar 

  146. Shameli K et al (2010) Silver/poly (lactic acid) nanocomposites: preparation, characterization, and antibacterial activity. Int J Nanomed 5(1):573–579. https://doi.org/10.2147/IJN.S12007

    Article  CAS  Google Scholar 

  147. Marra A, Silvestre C, Duraccio D, Cimmino S (2016) Polylactic acid/zinc oxide biocomposite films for food packaging application. Int J Biol Macromol 88:254–262. https://doi.org/10.1016/J.IJBIOMAC.2016.03.039

    Article  CAS  PubMed  Google Scholar 

  148. Roy S, Rhim JW, Jaiswal L (2019) Bioactive agar-based functional composite film incorporated with copper sulfide nanoparticles. Food Hydrocoll 93:156–166. https://doi.org/10.1016/J.FOODHYD.2019.02.034

    Article  CAS  Google Scholar 

  149. Teow SY, Liew K, Ali SA, Khoo ASB, Peh SC (2016) Antibacterial action of curcumin against staphylococcus aureus: a brief review. J Trop Med. https://doi.org/10.1155/2016/2853045

    Article  PubMed  PubMed Central  Google Scholar 

  150. Kaur S, Modi NH, Panda D, Roy N (2010) Probing the binding site of curcumin in Escherichia coli and Bacillus subtilis FtsZ—A structural insight to unveil antibacterial activity of curcumin. Eur J Med Chem 45(9):4209–4214. https://doi.org/10.1016/J.EJMECH.2010.06.015

    Article  CAS  PubMed  Google Scholar 

  151. Bishai M, De S, Adhikari B, Banerjee R (2014) A comprehensive study on enhanced characteristics of modified polylactic acid based versatile biopolymer. Eur Polym J 54(1):52–61. https://doi.org/10.1016/J.EURPOLYMJ.2014.01.027

    Article  CAS  Google Scholar 

  152. Viscusi G, Lamberti E, Vittoria V, Gorrasi G (2021) Coaxial electrospun membranes of poly(ε-caprolactone)/poly(lactic acid) with reverse core-shell structures loaded with curcumin as tunable drug delivery systems. Polym Adv Technol. https://doi.org/10.1002/pat.5404

    Article  Google Scholar 

  153. Di Salle A, Viscusi G, Di Cristo F, Valentino A, Gorrasi G, Lamberti E, Vittoria V, Calarco A, Peluso G (2021) Antimicrobial and antibiofilm activity of curcumin-loaded electrospun nanofibers for the prevention of the biofilm-associated infections”. Molecules. https://doi.org/10.3390/molecules26164866

    Article  PubMed  PubMed Central  Google Scholar 

  154. Sohrabnezhad S, Rassa M, Mohammadi Dahanesari E (2016) Spectroscopic study of silver halides in montmorillonite and their antibacterial activity. J Photochem Photobiol B 163:150–155. https://doi.org/10.1016/J.JPHOTOBIOL.2016.08.018

    Article  CAS  PubMed  Google Scholar 

  155. Baysal G, Doğan F (2020) Investigation and preparation of biodegradable starch-based nanofilms for potential use of curcumin and garlic in food packaging applications. J Biomater 31(9):1127–1143. https://doi.org/10.1080/09205063.2020.1743947

    Article  CAS  Google Scholar 

  156. Nieto-Suaza L, Acevedo-Guevara L, Sánchez LT, Pinzón MI, Villa CC (2019) Characterization of Aloe vera-banana starch composite films reinforced with curcumin-loaded starch nanoparticles. Food Struct 22:100131. https://doi.org/10.1016/J.FOOSTR.2019.100131

    Article  Google Scholar 

  157. Heinze T (2016) Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials, vol 271. Springer, Cham

    Google Scholar 

  158. Ding H (1995) Handbook of plastic industry. Chemical Industry Press, Beijing

    Google Scholar 

  159. Xu Y et al (2021) Development and properties of bacterial cellulose, curcumin, and chitosan composite biodegradable films for active packaging materials. Carbohydr Polym 260:117778. https://doi.org/10.1016/J.CARBPOL.2021.117778

    Article  CAS  PubMed  Google Scholar 

  160. Wan S, Sun Y, Qi X, Tan F (2011) Improved bioavailability of poorly water-soluble drug curcumin in cellulose acetate solid dispersion. AAPS PharmSciTech 13(1):159–166. https://doi.org/10.1208/S12249-011-9732-9

    Article  PubMed  PubMed Central  Google Scholar 

  161. Sabet S, Rashidinejad A, Melton LD, McGillivray DJ (2021) Recent advances to improve curcumin oral bioavailability. Trends Food Sci Technol 110:253–266. https://doi.org/10.1016/J.TIFS.2021.02.006

    Article  CAS  Google Scholar 

  162. Ariyarathna IR, Karunaratne DN (2016) Microencapsulation stabilizes curcumin for efficient delivery in food applications. Food Packag Shelf Life 10:79–86. https://doi.org/10.1016/J.FPSL.2016.10.005

    Article  Google Scholar 

  163. Dhule SS et al (2012) Curcumin-loaded γ-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma. Nanomedicine: Nanotechnol Biol Med 8(4):440–451. https://doi.org/10.1016/J.NANO.2011.07.011

    Article  CAS  Google Scholar 

  164. Karunaratne DN, Surandika Siriwardhana DA, Ariyarathna IR, Indunil Rajakaruna RMP, Banu FT, Karunaratne V (2017) Nutrient delivery through nanoencapsulation. Nutr Deliv. https://doi.org/10.1016/B978-0-12-804304-2.00017-2

    Article  Google Scholar 

  165. Brandelli A, Brum LFW, dos Santos JHZ (2017) Nanostructured bioactive compounds for ecological food packaging. Environ Chem Lett 15(2):193–204. https://doi.org/10.1007/S10311-017-0621-7

    Article  CAS  Google Scholar 

  166. Chen Z et al (2014) Thermal degradation kinetics study of curcumin with nonlinear methods. Food Chem 155:81–86. https://doi.org/10.1016/J.FOODCHEM.2014.01.034

    Article  CAS  PubMed  Google Scholar 

  167. Dave PN, Gor A (2018) Natural polysaccharide-based hydrogels and nanomaterials: recent trends and their applications. Handbook of nanomaterials for industrial applications. Elsevier, Amsterdam, pp 36–66. https://doi.org/10.1016/B978-0-12-813351-4.00003-1

    Chapter  Google Scholar 

  168. Saquib Hasnain M, Nayak AK (2018) Chitosan as responsive polymer for drug delivery applications. Stimuli responsive polymeric nanocarriers for drug delivery applications, vol 1. Elsevier, Amsterdam, pp 581–605. https://doi.org/10.1016/B978-0-08-101997-9.00025-4

    Chapter  Google Scholar 

  169. Ogawa Y et al (2017) Preparation and biocompatibility of a chitin nanofiber/gelatin composite film. Int J Biol Macromol 104:1882–1889. https://doi.org/10.1016/J.IJBIOMAC.2017.02.041

    Article  CAS  PubMed  Google Scholar 

  170. Gaballah ST, El-Nazer HA, Abdel-Monem RA, El-Liethy MA, Hemdan BA, Rabie ST (2019) Synthesis of novel chitosan-PVC conjugates encompassing Ag nanoparticles as antibacterial polymers for biomedical applications. Int J Biol Macromol 121:707–717. https://doi.org/10.1016/J.IJBIOMAC.2018.10.085

    Article  CAS  PubMed  Google Scholar 

  171. Yashaswini M, Iyer P (2019) Chitosan based films incorporated with turmeric/clove/ginger essential oil for food packaging. J Nanomed Nanotechnol 10(5):1–10. https://doi.org/10.35248/2157-7439.19.10.537

    Article  Google Scholar 

  172. Escamilla-García M et al (2017) Physical, structural, barrier, and antifungal characterization of chitosan-zein edible films with added essential oils. Int J Mol Sci 18(11):2370. https://doi.org/10.3390/IJMS18112370

    Article  PubMed Central  Google Scholar 

  173. Xu J-D et al (2018) Composite film based on pulping industry waste and chitosan for food packaging. Materials 11(11):2264. https://doi.org/10.3390/MA11112264

    Article  PubMed Central  Google Scholar 

  174. Azkia A, Baihaqi AI, Prabowo HA, Hendri, Handayani S, Agustiany T (2020) A preliminary study on modified chitosan-curcuminoids as material active food packaging with antioxidant and antibacterial activities. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/902/1/012040

    Article  Google Scholar 

  175. Huang C et al (2020) TEMPO-oxidized bacterial cellulose nanofiber membranes as high-performance separators for lithium-ion batteries. Carbohydr Polym 230:115570. https://doi.org/10.1016/J.CARBPOL.2019.115570

    Article  CAS  PubMed  Google Scholar 

  176. Kargarzadeh H et al (2018) Advances in cellulose nanomaterials. Cellulose 25(4):2151–2189. https://doi.org/10.1007/S10570-018-1723-5

    Article  CAS  Google Scholar 

  177. Sunasee R (2021) Nanocellulose: preparation, functionalization and applications. Compr Glycosci. https://doi.org/10.1016/B978-0-12-409547-2.14946-7

    Article  Google Scholar 

  178. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol. https://doi.org/10.1021/bm0703970

    Article  Google Scholar 

  179. Cacicedo ML, Pacheco G, Islan GA, Alvarez VA, Barud HS, Castro GR (2020) Chitosan-bacterial cellulose patch of ciprofloxacin for wound dressing: preparation and characterization studies. Int J Biol Macromol 147:1136–1145. https://doi.org/10.1016/J.IJBIOMAC.2019.10.082

    Article  CAS  PubMed  Google Scholar 

  180. Corsello FA, Bolla PA, Anbinder PS, Serradell MA, Amalvy JI, Peruzzo PJ (2017) Morphology and properties of neutralized chitosan-cellulose nanocrystals biocomposite films. Carbohydr Polym 156:452–459. https://doi.org/10.1016/J.CARBPOL.2016.09.031

    Article  CAS  PubMed  Google Scholar 

  181. Xie Y et al (2020) Active biodegradable films based on the whole potato peel incorporated with bacterial cellulose and curcumin. Int J Biol Macromol 150:480–491. https://doi.org/10.1016/J.IJBIOMAC.2020.01.291

    Article  CAS  PubMed  Google Scholar 

  182. Ghani S, Barzegar H, Noshad M, Hojjati M (2018) The preparation, characterization and in vitro application evaluation of soluble soybean polysaccharide films incorporated with cinnamon essential oil nanoemulsions. Int J Biol Macromol 112:197–202. https://doi.org/10.1016/J.IJBIOMAC.2018.01.145

    Article  CAS  PubMed  Google Scholar 

  183. Ak T, Gülçin I (2008) Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact 174(1):27–37. https://doi.org/10.1016/J.CBI.2008.05.003

    Article  CAS  PubMed  Google Scholar 

  184. O’Toole MG et al (2016) Release-modulated antioxidant activity of a composite curcumin-chitosan polymer. Biomacromol 17(4):1253–1260. https://doi.org/10.1021/ACS.BIOMAC.5B01019

    Article  Google Scholar 

  185. Roy S, Rhim JW (2020) Preparation of carbohydrate-based functional composite films incorporated with curcumin. Food Hydrocoll 98:105302. https://doi.org/10.1016/J.FOODHYD.2019.105302

    Article  CAS  Google Scholar 

  186. Pacheco N et al (2019) Effect of bio-chemical chitosan and gallic acid into rheology and physicochemical properties of ternary edible films. Int J Biol Macromol 125:149–158. https://doi.org/10.1016/J.IJBIOMAC.2018.12.060

    Article  CAS  PubMed  Google Scholar 

  187. Guo M, Jin TZ, Yang R (2014) Antimicrobial polylactic acid packaging films against listeria and salmonella in culture medium and on ready-to-eat meat. Food Bioprocess Technol 7(11):3293–3307. https://doi.org/10.1007/S11947-014-1322-X

    Article  CAS  Google Scholar 

  188. Yin N, Du R, Zhao F, Han Y, Zhou Z (2020) Characterization of antibacterial bacterial cellulose composite membranes modified with chitosan or chitooligosaccharide. Carbohydr Polym 229:115520. https://doi.org/10.1016/J.CARBPOL.2019.115520

    Article  CAS  PubMed  Google Scholar 

  189. Remya S, Mohan CO, Bindu J, Sivaraman GK, Venkateshwarlu G, Ravishankar CN (2015) Effect of chitosan based active packaging film on the keeping quality of chilled stored barracuda fish. J Food Sci Technol 53(1):685–693. https://doi.org/10.1007/S13197-015-2018-6

    Article  PubMed  PubMed Central  Google Scholar 

  190. Stevenson DE, Storer AC (1991) Papain in organic solvents: determination of conditions suitable for biocatalysis and the effect on substrate specificity and inhibition. Biotechnol Bioeng 37(6):519–527. https://doi.org/10.1002/BIT.260370605

    Article  CAS  PubMed  Google Scholar 

  191. Amri E, Mamboya F (2012) Papain, a plant enzyme of biological importance: a review. Am J Biochem Biotechnol. https://doi.org/10.3844/ajbbsp.2012.99.104

    Article  Google Scholar 

  192. Nwinyi OC, Anthonia AB (2010) Antifungal effects of pawpaw seed extracts and papain on post harvest Carica papaya L. fruit rot. Afr J Agric Res 5(12):1531–1535

    Google Scholar 

  193. Manohar CM, Prabhawathi V, Sivakumar PM, Doble M (2015) Design of a papain immobilized antimicrobial food package with curcumin as a crosslinker. PLoS ONE 10(4):e0121665. https://doi.org/10.1371/JOURNAL.PONE.0121665

    Article  PubMed  PubMed Central  Google Scholar 

  194. Mateo C et al (2002) Epoxy sepabeads: a novel epoxy support for stabilization of industrial enzymes via very intense multipoint covalent attachment. Biotechnol Progress. https://doi.org/10.1021/bp010171n

    Article  Google Scholar 

  195. Bräse S, Gil C, Knepper K, Zimmermann V (2005) Organic azides: an exploding diversity of a unique class of compounds. Angew Chem Int Ed 44(33):5188–5240. https://doi.org/10.1002/ANIE.200400657

    Article  Google Scholar 

  196. Robertson GL (2013) Introduction to Food Packaging. In: Food packaging: principles and practice, 3rd edn. CRC Press, Taylor and Francis Group, LLC

  197. Sarker SD, Nahar L, Kumarasamy Y (2007) Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 42(4):321–324. https://doi.org/10.1016/J.YMETH.2007.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Arkatkar A, Juwarkar AA, Bhaduri S, Uppara PV, Doble M (2010) Growth of Pseudomonas and Bacillus biofilms on pretreated polypropylene surface. Int Biodeterior Biodegrad 64(6):530–536. https://doi.org/10.1016/J.IBIOD.2010.06.002

    Article  CAS  Google Scholar 

  199. Valencia-Sullca C, Vargas M, Atarés L, Chiralt A (2018) Thermoplastic cassava starch-chitosan bilayer films containing essential oils. Food Hydrocoll 75:107–115. https://doi.org/10.1016/J.FOODHYD.2017.09.008

    Article  CAS  Google Scholar 

  200. Muller J, González-Martínez C, Chiralt A (2017) Combination of poly(lactic) acid and starch for biodegradable food packaging. Materials 10(8):952. https://doi.org/10.3390/MA10080952

    Article  PubMed Central  Google Scholar 

  201. de Campos SS et al (2019) TPCS/PBAT blown extruded films added with curcumin as a technological approach for active packaging materials. Food Packag Shelf Life 22:100424. https://doi.org/10.1016/J.FPSL.2019.100424

    Article  Google Scholar 

  202. Jumaidin R, Khiruddin MA, Saidi ZA, Salit MS, Ilyas RA (2020) Effect of cogon grass fibre on the thermal, mechanical and biodegradation properties of thermoplastic cassava starch biocomposite. Int J Biol Macromol 146:746–755. https://doi.org/10.1016/J.IJBIOMAC.2019.11.011

    Article  CAS  PubMed  Google Scholar 

  203. Dilkes-Hoffman LS, Pratt S, Lant PA, Levett I, Laycock B (2018) Polyhydroxyalkanoate coatings restrict moisture uptake and associated loss of barrier properties of thermoplastic starch films. J Appl Polym Sci 135(25):46379. https://doi.org/10.1002/APP.46379

    Article  Google Scholar 

  204. Garcia PS et al (2014) Improving action of citric acid as compatibiliser in starch/polyester blown films. Ind Crops Prod 52:305–312. https://doi.org/10.1016/J.INDCROP.2013.11.001

    Article  CAS  Google Scholar 

  205. Olivato JB, Grossmann MVE, Bilck AP, Yamashita F (2012) Effect of organic acids as additives on the performance of thermoplastic starch/polyester blown films. Carbohydr Polym 90(1):159–164. https://doi.org/10.1016/J.CARBPOL.2012.05.009

    Article  CAS  PubMed  Google Scholar 

  206. de Araújo GKP et al (2015) Physical, antimicrobial and antioxidant properties of starch-based film containing ethanolic propolis extract. Int J Food Sci Technol 50(9):2080–2087. https://doi.org/10.1111/IJFS.12869

    Article  Google Scholar 

  207. Kanmani P, Rhim JW (2014) Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocoll 35:644–652. https://doi.org/10.1016/j.foodhyd.2013.08.011

    Article  CAS  Google Scholar 

  208. Skroza D, Šimat V, Smole Možina S, Katalinić V, Boban N, Generalić Mekinić I (2019) Interactions of resveratrol with other phenolics and activity against food-borne pathogens. Food Sci Nutr. https://doi.org/10.1002/fsn3.1073

    Article  PubMed  PubMed Central  Google Scholar 

  209. Iamareerat B, Singh M, Sadiq MB, Anal AK (2018) Reinforced cassava starch based edible film incorporated with essential oil and sodium bentonite nanoclay as food packaging material. J Food Sci Technol 55(5):1953–1959. https://doi.org/10.1007/S13197-018-3100-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Musso YS, Salgado PR, Mauri AN (2017) Smart edible films based on gelatin and curcumin. Food Hydrocoll 66:8–15. https://doi.org/10.1016/j.foodhyd.2016.11.007

    Article  CAS  Google Scholar 

  211. Roy S, Rhim JW (2020) Preparation of antimicrobial and antioxidant gelatin/curcumin composite films for active food packaging application. Colloids Surf B 188:110761. https://doi.org/10.1016/J.COLSURFB.2019.110761

    Article  CAS  Google Scholar 

  212. Roy S, Rhim JW (2019) Carrageenan-based antimicrobial bionanocomposite films incorporated with ZnO nanoparticles stabilized by melanin. Food Hydrocoll 90:500–507. https://doi.org/10.1016/J.FOODHYD.2018.12.056

    Article  CAS  Google Scholar 

  213. Elramady MG, Aly SS, Rossitto PV, Crook JA, Cullor JS (2013) “Synergistic effects of lactic acid and sodium dodecyl sulfate to decontaminate Escherichia coli O157:H7 on cattle hide sections. Foodborne Pathog Dis 10(7):661–663. https://doi.org/10.1089/FPD.2012.1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Arrua D, Strumia MC, Nazareno MA (2010) Immobilization of caffeic acid on a polypropylene film: synthesis and antioxidant properties. J Agric Food Chem 58(16):9228–9234. https://doi.org/10.1021/JF101651Y

    Article  CAS  PubMed  Google Scholar 

  215. Roy S, Rhim JW (2019) Preparation of carrageenan-based functional nanocomposite films incorporated with melanin nanoparticles. Colloids Surf B 176:317–324. https://doi.org/10.1016/J.COLSURFB.2019.01.023

    Article  CAS  Google Scholar 

  216. Choonpicharn S, Jaturasitha S, Rakariyatham N, Suree N, Niamsup H (2014) Antioxidant and antihypertensive activity of gelatin hydrolysate from Nile tilapia skin. J Food Sci Technol 52(5):3134–3139. https://doi.org/10.1007/S13197-014-1581-6

    Article  PubMed  PubMed Central  Google Scholar 

  217. Giménez B, Alemán A, Montero P, Gómez-Guillén MC (2009) Antioxidant and functional properties of gelatin hydrolysates obtained from skin of sole and squid. Food Chem 114(3):976–983. https://doi.org/10.1016/J.FOODCHEM.2008.10.050

    Article  Google Scholar 

  218. Moradi M et al (2012) Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract. LWT Food Sci Technol 46(2):477–484. https://doi.org/10.1016/J.LWT.2011.11.020

    Article  CAS  Google Scholar 

  219. Hernández-Muñoz P, Cerisuelo JP, Domínguez I, López-Carballo G, Catalá R, Gavara R (2019) Nanotechnology in food packaging. Nanomater Food Appl. https://doi.org/10.1016/B978-0-12-814130-4.00008-7

    Article  Google Scholar 

  220. Sonkaew P, Sane A, Suppakul P (2012) Antioxidant activities of curcumin and ascorbyl dipalmitate nanoparticles and their activities after incorporation into cellulose-based packaging films. J Agric Food Chem 60(21):5388–5399. https://doi.org/10.1021/JF301311G

    Article  CAS  PubMed  Google Scholar 

  221. Suppakul P, Miltz J, Sonneveld K, Bigger SW (2003) Active packaging technologies with an emphasis on antimicrobial packaging and its applications. J Food Sci 68(2):408–420. https://doi.org/10.1111/J.1365-2621.2003.TB05687.X

    Article  CAS  Google Scholar 

  222. Salgado PR, Ortiz CM, Musso YS, di Giorgio L, Mauri AN (2015) Edible films and coatings containing bioactives. Curr Opin Food Sci 5:86–92. https://doi.org/10.1016/J.COFS.2015.09.004

    Article  Google Scholar 

  223. Dey S, Sreenivasan K (2014) Conjugation of curcumin onto alginate enhances aqueous solubility and stability of curcumin. Carbohydr Polym 99:499–507. https://doi.org/10.1016/J.CARBPOL.2013.08.067

    Article  CAS  PubMed  Google Scholar 

  224. Dashipour A et al (2015) Antioxidant and antimicrobial carboxymethyl cellulose films containing Zataria multiflora essential oil. Int J Biol Macromol 72:606–613. https://doi.org/10.1016/J.IJBIOMAC.2014.09.006

    Article  CAS  PubMed  Google Scholar 

  225. Pulido-Moran M, Moreno-Fernandez J, Ramirez-Tortosa C, Ramirez-Tortosa M (2016) Curcumin and health. Molecules 21(3):264. https://doi.org/10.3390/MOLECULES21030264

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to Aarti P. More.

Ethics declarations

Conflict of interest

There is no conflict of interest by any of the author for this review.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tambawala, H., Batra, S., Shirapure, Y. et al. Curcumin- A Bio-based Precursor for Smart and Active Food Packaging Systems: A Review. J Polym Environ 30, 2177–2208 (2022). https://doi.org/10.1007/s10924-022-02372-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02372-x

Keywords

Navigation