Skip to main content
Log in

Molecular analysis and bioinformatic characterization of cooper, zinc-superoxide dismutase (Cu/Zn-sod) gene of Caiman latirostris

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Superoxide dismutase (SOD) is an antioxidant enzyme that acts as a component of first-line defense system against reactive oxygen species (ROS). Copper/Zinc superoxide dismutase (Cu/Zn-SOD) is one of the isoforms of SOD enzyme and is sensitive to the exposure of different environmental factors, in different species and tissues. Caiman latirostris is one of the two crocodilian species living in Argentina and no information is available on the molecular and biochemical characteristics of the Cu/Zn-sod gene in this species. In the present work, we reported the presence of the Cu/Zn-sod gene in C. latirostris, the nucleotide and amino acid sequences, the modelled protein structure, evolutionary distance among species and tissue specific expression patterns. Cu/Zn-sod gene was 620 bp open reading frame in length and encoded 178 amino acids. The nucleotide sequences of C. latirostris shared high similarity with the Cu/Zn-sod genes of other crocodilian species, so it showed to be highly conserved. PCR analysis showed that Cu/Zn-sod gene was expressed in all the tissues examined (liver, gonads, spleen, heart, and whole blood), suggesting a constitutively expressed gene in these tissues. This study allows further investigation into the structure-activity relationship and the mechanism of action of Cu/Zn-SOD, besides exploring the functional breadth and possible alteration factors, including xenobiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Campbell KR (2003) Ecotoxicology of crocodilians. Appl Herpetol 1:45–163. https://doi.org/10.1163/157075403766451225

    Article  Google Scholar 

  2. Wright JC, Grigg GC, Franklin CE (1992) Redistribution of air within the lungs may potentiate “fright” bradycardia in submerged crocodiles (Crocodylus porosus). Comp Biochem Physiol Comp Physiol 102:33–36. https://doi.org/10.1016/0300-9629(92)90007-D

    Article  CAS  PubMed  Google Scholar 

  3. Seebacher F, Franklin CE (2005) Physiological mechanisms of thermoregulation in reptiles: a review. J Comp Physiol B 175:533–541. https://doi.org/10.1007/s00360-005-0007-1

    Article  PubMed  Google Scholar 

  4. Hermes-Lima M, Zenteno-Savín T (2002) Animal response to drastic changes in oxygen availability and physiological oxidative stress. Comp Biochem Physiol C Toxicol Pharmacol 133:537–556. https://doi.org/10.1016/S1532-0456(02)00080-7

    Article  PubMed  Google Scholar 

  5. Bickler PE, Buck LT (2007) Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygena vailability. Annu Rev Physiol 69:145–170. https://doi.org/10.1146/annurev.physiol.69.031905.162529

    Article  CAS  PubMed  Google Scholar 

  6. Furtado-Filho OV, Polcheira C, Machado DP, Mourão G, Hermes-Lima M (2007) Selected oxidative stress markers in a South American crocodilian species. Comp Biochem Physiol Part C: Toxicol Pharmacol 146:241–254. https://doi.org/10.1016/j.cbpc.2006.11.017

    Article  CAS  Google Scholar 

  7. Milton SL, Prentice HM (2007) Beyond anoxia: the physiology of metabolic down regulation and recovery in the anoxia-tolerant turtle. Comp Biochem Physiol A Mol Integr Physiol 147:277–290. https://doi.org/10.1016/j.cbpa.2006.08.041

    Article  CAS  PubMed  Google Scholar 

  8. Adams L, Franco MC, Estevez AG (2015) Reactive nitrogen species in cellular signaling. Exp Biol Med (Maywood) 240:711–717

    Article  CAS  Google Scholar 

  9. Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Brazil J Med Biol Res 38:995–1014

    Article  CAS  Google Scholar 

  10. Weidinger A, Kozlov AV (2015) Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomolecules 5:472–484

    Article  CAS  Google Scholar 

  11. Nimalaratne C, Bandara N, Wu J (2015) Purification and characterization of antioxidant peptides from enzymatically hydrolyzed chicken egg white. Food Chem 188:467–447. https://doi.org/10.1016/j.foodchem.2015.05.014

    Article  CAS  PubMed  Google Scholar 

  12. Kumar A, Dutt S, Bagler G, Ahuja PS, Kumar S (2012) Engineering a thermo-stable superoxide dismutase functional at subzero to > 50 °C, which also tolerates autoclaving. Sci Rep 2:387. https://doi.org/10.1038/srep00387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Auclair JR, Brodkin HR, D’Aquino JA, Petsko GA, Ringe D, Agar JN (2013) Structural consequences of cysteinylation of Cu/ Zn-superoxide Dismutase. BioChemistry 52:6145–6150. https://doi.org/10.1021/bi40061

    Article  CAS  PubMed  Google Scholar 

  14. Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA (2007) Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev 87:1175–1213. https://doi.org/10.1152/physrev.00047.2006

    Article  CAS  PubMed  Google Scholar 

  15. Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  Google Scholar 

  16. Bafana A, Dutt S, Kumar A, Ahuja PS (2012) The basic and applied aspects of superoxide dismutase. J Mol Catal B  Enzym 68:129–138. https://doi.org/10.1016/j.molcatb.2010.11.007

    Article  CAS  Google Scholar 

  17. Geret F, Manduzio H, Company R, Leboulenger F, Bebianno MJ, Danger JM (2004) Molecular cloning of superoxide dismutase (Cu/Zn-SOD) from aquatic molluscs. Mar Environ Res 58:619–623

    Article  CAS  Google Scholar 

  18. Roberts BR, Tainer JA, Getzoff ED, Malencik DA, Anderson SR, Bomben VC, Meyers KR, Karplus PA, Beckman JS (2007) Structural characterization of zinc deficient human superoxide dismutase and implications for ALS. J Mol Biol 73:877–890

    Article  Google Scholar 

  19. Yonar ME (2013) Protective effect of lycopene on oxidative stress and antioxidant status in Cyprinus carpio during cypermethrin exposure. Environ Toxicol 28:609–616. https://doi.org/10.1002/tox.20757

    Article  CAS  PubMed  Google Scholar 

  20. Yang Y, Ma H, Zhou J, Liu J, Liu W (2014) Joint toxicity of permethrin and cypermethrin at sublethal concentrations to the embryo-larval zebrafish. Chemosphere 96:146–154. https://doi.org/10.1016/j.chemosphere.2013.10.014

    Article  CAS  PubMed  Google Scholar 

  21. Burella PM, Odetti LM, Simoniello MF, Poletta GL (2018) Oxidative damage and antioxidant defense in Caiman latirostris (Broad snouted caiman) exposed in ovo to pesticide formulations. Ecotoxicol Environ Saf 161:437–443. https://doi.org/10.1016/j.ecoenv.2018.06.006

    Article  CAS  PubMed  Google Scholar 

  22. Paravani EV, Simoniello MF, Poletta GL, Casco VH (2019) Cypermethrin induction of DNA damage and oxidative stress in zebrafish gill cells. Ecotoxicol Environ Saf 173:1–7. https://doi.org/10.1016/j.ecoenv.2019.02.004

    Article  CAS  PubMed  Google Scholar 

  23. Paravani EV, Simoniello MF, Poletta GL, Zolessi FR, Casco VH (2018) Cypermethrin: oxidative stress and genotoxicity in retinal cells of the adult zebrafish. Mutat Res Toxicol Environ Mutagen 826:25–32. https://doi.org/10.1016/j.mrgentox.2017.12.010

    Article  CAS  Google Scholar 

  24. Odetti LM, López-González EC, Romito ML, Simoniello MF, Poletta GL (2020) Genotoxicity and oxidative stress in Caiman latirostris hatchlings exposed to pesticide formulations and their mixtures during incubation period. Ecotoxicol Environ Saf 193:110312. https://doi.org/10.1016/j.ecoenv.2020.110312

    Article  CAS  PubMed  Google Scholar 

  25. Wan QH, Pan SK, Hu L, Zhu Y, Xu PW, Xia JQ, Chen H, He GY, He J, Ni XW, Hou HL, Liao SG, Yang HQ, Chen Y, Gao SK, Ge YF, Cao CC, Li PF, Fang LM, Liao L, Zhang S, Wang MZ, Dong W, Fang SG (2013) Genome analysis and signature discovery for diving and sensory properties of the endangered Chinese alligator. Cell Res 23:1091–1105. https://doi.org/10.1038/cr.2013.104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Green RE, Braun EL, Armstrong J, Earl D, Nguyen N, Hickey G, Vandewege MW, St John JA, Capella-Gutiérrez S, Castoe TA, Kern C, Fujita MK, Opazo JC, Jurka J, Kojima KK, Caballero J, Hubley RM, Smit AF, Platt RN, Lavoie CA, Ramakodi MP, Finger JW Jr, Suh A, Isberg SR, Miles L, Chong AY, Jaratlerdsiri W, Gongora J, Moran C, Iriarte A, Mc Cormack J, Burgess SC, Edwards SV, Lyons E, Williams C, Breen M, Howard JT, Gresham CR, Peterson DG, Schmitz J, Pollock DD, Haussler D, Triplett EW, Zhang G, Irie N, Jarvis ED, Brochu CA, Schmidt CJ, McCarthy FM, Faircloth BC, Hoffmann FG, Glenn TC, Gabaldón T, Paten B, Ray DA (2014) Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science 346:1254449

    Article  Google Scholar 

  27. Sujiwattanarat P, Pongsanarakul P, Temsiripong Y, Temsiripong T, Thawornkuno C, Uno Y, Unajak S, Matsuda Y, Choowongkomon K, Srikulnath K (2016) Molecular cloning and characterization of Siamese crocodile (Crocodylus siamensis) copper, zinc superoxide dismutase (CSI-Cu, Zn-SOD) gene. Comp Biochem Physiol Part A 191:187–195. https://doi.org/10.1016/j.cbpa.2015.10.028

    Article  CAS  Google Scholar 

  28. Poletta GL, Simoniello MF, Mudry MD (2016) Biomarkers of oxidative damage and antioxidant defense capacity in Caiman latirostris blood. Comp Biochem Physiol Part C 179:29–36. https://doi.org/10.1016/j.cbpc.2015.08.003

    Article  CAS  Google Scholar 

  29. CONICET: Consejo Nacional de Investigaciones Científicas y Técnicas. (2005), Reference Ethical Framework for Biomedical Research: Ethical principles for research with laboratory, farm and wild animals. RESOLUCION D Nro. 1047, ANEXO l. Date:1/7/2005. https://www.conicet.gov.ar/wp-content/uploads/OCR-RD-20050701-1047.pdf

  30. Manolis SC, Webb GJW (compilers) (2016) Best management practices for crocodilian farming. Version 1. IUCN-SSC, Crocodile Specialist Group: Darwin, Australia. p. 79. https://www.iucncsg.org/365_docs/attachments/protarea/227c50b2e92bf796cbb1573bdd348b12.pdf . Accessed on July 2019

  31. Myburgh JG, Kirberger RM, Steyl JCA, Soley JT, Booyse DG, Huchzermeyer FW, Lowers RH, Guillette LJ (2014) The post-occipital spinal venous sinus of the Nile crocodile (Crocodylus niloticus): its anatomy and use for blood sample collection and intravenous infusions. J S Afr Vet Assoc 85:1–10. https://doi.org/10.4102/jsava.v85i1.965

    Article  Google Scholar 

  32. OIE - Terrestrial Animal Health Code (2019) Chapter 7.14 Killing of reptiles for their skins, meat and other products. 28 Ed. Vol I. https://www.oie.int/es/normas/codigo-terrestre/acceso-en-linea/

  33. Lopez-Gónzalez E, Odetti LM, Poletta GL, Denson N, Kroll KJ, Siroski PA, Parapachú Marcó MV. Optimizing protocols for high-quality RNA extraction from blood and liver tissues of the Broad-snouted Caiman (Caiman latirostris Daudin 1802). Russian Journal of Herpetology -Acepted with minor revision

  34. Galetto CD, Izaguirre MF, Bessone V, Casco VH (2012) Isolation and nucleotide sequence analysis of the of Rhinella arenarum β-catenin: An mRNA and protein expression study during the larval stages of the digestive tract development. Gene 512:256–264. https://doi.org/10.1016/j.gene.2012.09.030

    Article  CAS  Google Scholar 

  35. Dieffenbach CW, Lowe TM, Dveksler GS (1993) General concepts for PCR primer design. PCR Methods Appl 3:30–37

    Article  Google Scholar 

  36. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. https://doi.org/10.1093/molbev/msm092

    Article  CAS  PubMed  Google Scholar 

  37. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nishiyama Y, Fukamizo T, Yoneda K, Araki. T (2017) Complete amino acid sequence of a copper/zinc-superoxide dismutase from ginger rhizome. Protein J 36:98–107. https://doi.org/10.1007/s10930-017-9700-7

    Article  CAS  PubMed  Google Scholar 

  39. Strange RW, Hough MA, Antonyuk SV, Hasnain SS (2012) Structural evidence for a copper-bound carbonate intermediate in the peroxidase and dismutase activities of superoxide dismutase. PLoS ONE 7:e44811. https://doi.org/10.1371/journal.pone.0044811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. SPSS Inc. (2013) SPSS for Windows Version 22.0. SPSS Inc, Chicago

    Google Scholar 

  41. Tainer JA, Getzoff ED, Beem KM, Richardson JS, Richardson DC (1982) Determination and analysis of the 2 Å structure of copper, zinc superoxide dismutase. J Mol Biol 160(2):181–217

    Article  CAS  Google Scholar 

  42. Noor R, Mittal S, Iqbal J (2002) Superoxide dismutase-applications and relevance to human diseases. Med Sci Monit 8:RA210-R5

    CAS  PubMed  Google Scholar 

  43. Smith MW, Doolittle RF (1992) A comparis on of evolutionary rates of the two major kinds of superoxide dismutase. J Mol Evol 34(2):175–184 (– 38)

    CAS  PubMed  Google Scholar 

  44. Rodríguez-Trelles F, Tarrio R, Ayala FJ (2001) Erratic overdispersion of three molecular clocks: GPDH, SOD, and XDH. Proc Natl Acad Sci 98(20):11405–11410

    Article  Google Scholar 

  45. Deng HX, Hentati A, Tainer JA, Iqbal Z, Cayabyab A, Hung WY, Getzoff ED, Hu P, Herzfeldt B, Roos RP (1993) Amyotrophic lateral sclerosis and structural defects in Cu, Zn superoxide dismutase. Science 261:1047–1051

    Article  CAS  Google Scholar 

  46. Hansen BH, Rømma S, Gammo ØA, Olsvik PA, Andersen RA (2006) Antioxidative stress proteins and their gene expression in brown trout (Salmo trutta) from three rivers with different heavy metal levels. Comp Biochem Physiol Part C Toxicol Pharmacol 143:263–274. https://doi.org/10.1016/j.cbpc.2006.02.010

    Article  CAS  Google Scholar 

  47. Kim JH, Rhee JS, Lee JS, Dahms HU, Lee J, Han KN, Lee JS (2010) Effect of cadmium exposure on expression of antioxidant gene transcripts in the river pufferfish, Takifugu obscure (Tetraodontiformes). Comp Biochem Physiol C: Toxicol Pharmacol 152:473–479. https://doi.org/10.1016/j.cbpc.2010.08.002

    Article  CAS  Google Scholar 

  48. Umasuthan N, Bathige SDNK, Thulasitha WS, Qiang W, Lim B, Lee J (2014) Characterization of rock bream (Oplegnathus fasciatus) cytosolic Cu/Zn superoxide dismutase in terms of molecular structure, genomic arrangement, stress-induced mRNA expression and antioxidant function. Comp Biochem Physiol Part B 176:18–33. https://doi.org/10.1016/j.cbpb.2014.07.004

    Article  CAS  Google Scholar 

  49. Zhang ZW, Li Z, Liang HW, Li L, Luo XZ, Zou GW (2011) Molecular cloning and differential expression patterns of copper/zinc superoxide dismutase and manganese superoxide dismutase in Hypophthalmichthys molitrix. Fish Shellfish Immunol 30:473–479. https://doi.org/10.1016/j.fsi.2010.11.003

    Article  CAS  PubMed  Google Scholar 

  50. Anju A, Jeswin J, Thomas P, Paulton M, Vijayan K (2013) Molecular cloning, characterization and expression analysis of cytoplasmic Cu/Zn-superoxid dismutase (SOD) from pearl oyster Pinctada fucata. Fish Shellfish Immunol 34:946–950. https://doi.org/10.1016/j.fsi.2012.12.024

    Article  CAS  PubMed  Google Scholar 

  51. Li M, Zheng Y, Liang H, Zou L, Sun J, Zhang Y, Qin F, Liu S, Wang Z (2013) Molecular cloning and characterization of cat, gpx1 and Cu/Zn-sod genes in pengze crucian carp (Carassius auratus var. Pengze) and antioxidant enzyme modulation induced by hexavalent chromium in juveniles. Comp Biochem Physiol C: Toxicol Pharmacol 157:310–321. https://doi.org/10.1016/j.cbpc.2013.02.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the ANPCyT (PICT 2016–2020 to GLP), Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 11220130100478CO to GLP and Proyecto Yacaré - Yacarés Santafesinos (MMA/MUPCN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Odetti.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paravani, E.V., Odetti, L.M., Simoniello, M.F. et al. Molecular analysis and bioinformatic characterization of cooper, zinc-superoxide dismutase (Cu/Zn-sod) gene of Caiman latirostris. Mol Biol Rep 47, 8849–8857 (2020). https://doi.org/10.1007/s11033-020-05937-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05937-y

Keywords

Navigation