Skip to main content
Log in

High performance solid-state thermoelectric energy conversion via inorganic metal halide perovskites under tailored mechanical deformation

  • Research Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Solid-state thermoelectric energy conversion devices attract broad research interests because of their great promises in waste heat recycling, space power generation, deep water power generation, and temperature control, but the search for essential thermoelectric materials with high performance still remains a great challenge. As an emerging low cost, solution-processed thermoelectric material, inorganic metal halide perovskites CsPb(I1−xBrx)3 under mechanical deformation is systematically investigated using the first-principle calculations and the Boltzmann transport theory. It is demonstrated that halogen mixing and mechanical deformation are efficient methods to tailor electronic structures and charge transport properties in CsPb(I1−xBrx)3 synergistically. Halogen mixing leads to band splitting and anisotropic charge transport due to symmetry-breaking-induced intrinsic strains. Such band splitting reconstructs the band edge and can decrease the charge carrier effective mass, leading to excellent charge transport properties. Mechanical deformation can further push the orbital energies apart from each other in a more controllable manner, surpassing the impact from intrinsic strains. Both anisotropic charge transport properties and ZT values are sensitive to the direction and magnitude of strain, showing a wide range of variation from 20% to 400% (with a ZT value of up to 1.85) compared with unstrained cases. The power generation efficiency of the thermoelectric device can reach as high as approximately 12% using mixed halide perovskites under tailored mechanical deformation when the heat-source is at 500 K and the cold side is maintained at 300 K, surpassing the performance of many existing bulk thermoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang H, He J. China’s pre-2020 CO2 emission reduction potential and its influence. Frontiers in Energy, 2019, 13(3): 571–578

    Article  Google Scholar 

  2. Semieniuk G, Taylor L, Rezai A, et al. Plausible energy demand patterns in a growing global economy with climate policy. Nature Climate Change, 2021, 11(4): 313–318

    Article  Google Scholar 

  3. Pathak L, Shah K. Renewable energy resources, policies and gaps in BRICS countries and the global impact. Frontiers in Energy, 2019, 13(3): 506–521

    Article  Google Scholar 

  4. Zhang X, Geng Y, Tong Y W, et al. Trends and driving forces of low-carbon energy technology innovation in China’s industrial sectors from 1998 to 2017: from a regional perspective. Frontiers in Energy, 2021, 15(2): 473–486

    Article  Google Scholar 

  5. Garofalo E, Bevione M, Cecchini L, et al. Waste heat to power: technologies, current applications, and future potential. Energy Technology (Weinheim), 2020, 8(11): 2000413

    Article  Google Scholar 

  6. Zhao C, Zhang Z, Zhang X. Special issue: nanotechnology in energy. Frontiers in Energy, 2018, 12(1): 1–4

    Article  Google Scholar 

  7. Liu J, Guo Z. Unconventional energy: seeking the ways to innovate energy science and technology. Frontiers in Energy, 2018, 12(2): 195–197

    Article  Google Scholar 

  8. Liu Z, Yuan S, Yuan Y, et al. A thermoelectric generator and water-cooling assisted high conversion efficiency polycrystalline silicon photovoltaic system. Frontiers in Energy, 2021, 15(2): 358–366

    Article  Google Scholar 

  9. Twaha S, Zhu J, Yan Y, et al. A comprehensive review of thermoelectric technology: materials, applications, modelling and performance improvement. Renewable & Sustainable Energy Reviews, 2016, 65: 698–726

    Article  Google Scholar 

  10. Jia D, Liu J. Human power-based energy harvesting strategies for mobile electronic devices. Frontiers of Energy and Power Engineering in China, 2009, 3(1): 27–46

    Article  Google Scholar 

  11. Lin S, Chen C, Zhao L, et al. Molecular insights into water vapor adsorption and interfacial moisture stability of hybrid perovskites for robust optoelectronics. International Journal of Heat and Mass Transfer, 2021, 175: 121334

    Article  Google Scholar 

  12. He Y, Galli G. Perovskites for solar thermoelectric applications: a first principle study of CH3NH3AI3 (A = Pb and Sn). Chemistry of Materials, 2014, 26(18): 5394–5400

    Article  Google Scholar 

  13. Tang G, Ghosez P, Hong J. Band-edge orbital engineering of perovskite semiconductors for optoelectronic applications. Journal of Physical Chemistry Letters, 2021, 12(17): 4227–4239

    Article  Google Scholar 

  14. Hu S, Ren Z, Djurišić A B, et al. Metal halide perovskites as emerging thermoelectric materials. ACS Energy Letters, 2021, 6(11): 3882–3905

    Article  Google Scholar 

  15. Eperon G E, Paternò G M, Sutton R J, et al. Inorganic caesium lead iodide perovskite solar cells. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(39): 19688–19695

    Article  Google Scholar 

  16. Kulbak M, Gupta S, Kedem N, et al. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. Journal of Physical Chemistry Letters, 2016, 7(1): 167–172

    Article  Google Scholar 

  17. Wang Z, Shi Z, Li T, et al. Stability of perovskite solar cells: a prospective on the substitution of the A cation and X anion. Angewandte Chemie International Edition, 2017, 56(5): 1190–1212

    Article  Google Scholar 

  18. Wang X, Ling Y, Lian X, et al. Suppressed phase separation of mixed-halide perovskites confined in endotaxial matrices. Nature Communications, 2019, 10(1): 695

    Article  Google Scholar 

  19. Yu H, Sun Q, Zhang T, et al. Is the strain responsible to instability of inorganic perovskites and their photovoltaic devices?. Materials Today Energy, 2021, 19: 100601

    Article  Google Scholar 

  20. Moloney E G, Yeddu V, Saidaminov M I. Strain engineering in halide perovskites. ACS Materials Letters, 2020, 2(11): 1495–1508

    Article  Google Scholar 

  21. Li Z, Qin Y, Dong L, et al. Elastic and electronic origins of strain stabilized photovoltaic gamma-CsPbI3. Physical Chemistry Chemical Physics, 2020, 22(22): 12706–12712

    Article  Google Scholar 

  22. Yalameha S, Saeidi P, Nourbakhsh Z, et al. Insight into the topological phase and elastic properties of halide perovskites CsSnX3 (X = l, Br, Cl) under hydrostatic pressures. Journal of Applied Physics, 2020, 127(8): 085102

    Article  Google Scholar 

  23. Zitouni H, Tahiri N, El Bounagui O, et al. How the strain effects decreases the band gap energy in the CsPbX3 perovskite compounds?. Phase Transitions, 2020, 93(5): 455–469

    Article  Google Scholar 

  24. Rahman M A, Giri A. Uniquely anisotropic mechanical and thermal responses of hybrid organic-inorganic perovskites under uniaxial strain. Journal of Chemical Physics, 2021, 155(12): 124703

    Article  Google Scholar 

  25. Ding G, Gao G Y, Yu L, et al. Thermoelectric properties of half-Heusler topological insulators MPtBi (M = Sc, Y, La) induced by strain. Journal of Applied Physics, 2016, 119(2): 025105

    Article  Google Scholar 

  26. Luo X, Sullivan M B, Quek S Y. First-principles investigations of the atomic, electronic, and thermoelectric properties of equilibrium and strained Bi2Se3 and Bi2Te3 including van der Waals interactions. Physical Review B: Condensed Matter and Materials Physics, 2012, 86(18): 184111

    Article  Google Scholar 

  27. Pal K, Anand S, Waghmare U V. Thermoelectric properties of materials with nontrivial electronic topology. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2015, 3(46): 12130–12139

    Article  Google Scholar 

  28. Zou C, Lei C, Zou D, et al. Uniaxial tensile strain induced the enhancement of thermoelectric properties in n-type BiCuOCh (Ch = Se, S): a first principles study. Materials (Basel), 2020, 13(7): 1755

    Article  Google Scholar 

  29. Bhaskar L K, Kumar G, Srinivasan N, et al. Design and development of a miniaturized multiaxial test setup for in situ X-ray diffraction experiments. Review of Scientific Instruments, 2021, 92(1): 015116

    Article  Google Scholar 

  30. Kleber X, Roux P, Morin M. Sensitivity of the thermoelectric power of metallic materials to an elastic uniaxial strain. Philosophical Magazine Letters, 2009, 89(9): 565–572

    Article  Google Scholar 

  31. Haque M A, Kee S, Villalva D R, et al. Halide perovskites: thermal transport and prospects for thermoelectricity. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2020, 7(10): 1903389

    Google Scholar 

  32. Nayak P K, Sendner M, Wenger B, et al. Impact of Bi3+ heterovalent doping in organic-inorganic metal halide perovskite crystals. Journal of the American Chemical Society, 2018, 140(2): 574–577

    Article  Google Scholar 

  33. Yan L, Wang M, Zhai C, et al. Symmetry-breaking induced anisotropic carrier transport and remarkable thermoelectric performance in mixed halide perovskites CsPb(I1−xBrx)3. ACS Applied Materials & Interfaces, 2020, 12(36): 40453–40464

    Article  Google Scholar 

  34. Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868

    Article  Google Scholar 

  35. Torrent M, Jollet F, Bottin F, et al. Implementation of the projector augmented-wave method in the ABINIT code: application to the study of iron under pressure. Computational Materials Science, 2008, 42(2): 337–351

    Article  Google Scholar 

  36. Kresse G, Furthmüller J. Efficient iterative schemes for Ab initio total-energy calculations using a plane-wave basis set. Physical Review B: Condensed Matter, 1996, 54(16): 11169–11186

    Article  Google Scholar 

  37. Pulay P. Convergence acceleration of iterative sequences: the case of SCF iteration. Chemical Physics Letters, 1980, 73(2): 393–398

    Article  Google Scholar 

  38. Fiorentini V V, Baldereschi A. Dielectric scaling of the self-enehigh-energyrgy scissor operator in semiconductors and insulators. Physical Review B: Condensed Matter, 1995, 51(23): 17196–17198

    Article  Google Scholar 

  39. Yin W J, Yan Y, Wei S H. Anomalous alloy properties in mixed halide perovskites. Journal of Physical Chemistry Letters, 2014, 5(21): 3625–3631

    Article  Google Scholar 

  40. Stoumpos C C, Malliakas C D, Peters J A, et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Crystal Growth & Design, 2013, 13(7): 2722–2727

    Article  Google Scholar 

  41. Madsen G K H, Singh D J. BoltzTraP. A code for calculating band-structure dependent quantities. Computer Physics Communications, 2006, 175(1): 67–71

    Article  MATH  Google Scholar 

  42. Xi J, Long M, Tang L, et al. First-principles prediction of charge mobility in carbon and organic nanomaterials. Nanoscale, 2012, 4(15): 4348–4369

    Article  Google Scholar 

  43. Tang L, Long M, Wang D, et al. The role of acoustic phonon scattering in charge transport in organic semiconductors: a first-principles deformation-potential study. Science in China. Series B, Chemistry, 2009, 52(10): 1646–1652

    Article  Google Scholar 

  44. Wang D, Shi W, Chen J, et al. Modeling thermoelectric transport in organic materials. Physical Chemistry Chemical Physics, 2012, 14(48): 16505–16520

    Article  Google Scholar 

  45. Wang D, Tang L, Long M, et al. First-principles investigation of organic semiconductors for thermoelectric applications. Journal of Chemical Physics, 2009, 131(22): 224704

    Article  Google Scholar 

  46. Lu Y B, Kong X, Chen X, et al. Piezoelectric scattering limited mobility of hybrid organic-inorganic perovskites CH3NH3PbI3. Scientific Reports, 2017, 7(1): 41860

    Article  Google Scholar 

  47. Fröhlich H. Electrons in lattice fields. Advances in Physics, 1954, 3(11): 325–361

    Article  MATH  Google Scholar 

  48. Chattopadhyay D, Queisser H J. Electron scattering by ionized impurities in semiconductors. Reviews of Modern Physics, 1981, 53(4): 745–768

    Article  Google Scholar 

  49. Yu J, Wang M, Lin S. Probing the soft and nanoductile mechanical nature of single and polycrystalline organic—inorganic hybrid perovskites for flexible functional devices. ACS Nano, 2016, 10(12): 11044–11057

    Article  Google Scholar 

  50. Klemens P G. Thermal resistance due to point defects at high temperatures. Physical Review, 1960, 119(2): 507–509

    Article  Google Scholar 

  51. Wang H, Wang J, Cao X, et al. Thermoelectric alloys between PbSe and PbS with effective thermal conductivity reduction and high figure of merit. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(9): 3169–3174

    Article  Google Scholar 

  52. Jonson M, Mahan G D. Mott’s formula for the thermopower and the Wiedemann-Franz law. Physical Review B: Condensed Matter, 1980, 21(10): 4223–4229

    Article  MathSciNet  Google Scholar 

  53. Yang J, Meisner G P, Chen L. Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds. Applied Physics Letters, 2004, 85(7): 1140–1142

    Article  Google Scholar 

  54. Ma F, Zheng H B, Sun Y J, et al. Strain effect on lattice vibration, heat capacity, and thermal conductivity of graphene. Applied Physics Letters, 2012, 101(11): 111904

    Article  Google Scholar 

  55. Ding B, Li X, Zhou W, et al. Anomalous strain effect on the thermal conductivity of low-buckled two-dimensional silicene. National Science Review, 2021, 8(9): nwaa220

    Article  Google Scholar 

  56. Hu M, Zhang X, Poulikakos D. Anomalous thermal response of silicene to uniaxial stretching. Physical Review B: Condensed Matter and Materials Physics, 2013, 87(19): 195417

    Article  Google Scholar 

  57. Li H, Cheng G, Liu Y, et al. Anomalous thermal response of graphene kirigami induced by tailored shape to uniaxial tensile strain: a molecular dynamics study. Nanomaterials (Basel, Switzerland), 2020, 10(1): 126

    Article  Google Scholar 

  58. Mortazavi B, Le M Q, Rabczuk T, et al. Anomalous strain effect on the thermal conductivity of borophene: a reactive molecular dynamics study. Physica E, Low-Dimensional Systems and Nanostructures, 2017, 93: 202–207

    Article  Google Scholar 

  59. Tabarraei A, Wang X. Anomalous thermal conductivity of monolayer boron nitride. Applied Physics Letters, 2016, 108(18): 181904

    Article  Google Scholar 

  60. Qian J, Xu B, Tian W. A comprehensive theoretical study of halide perovskites ABX3. Organic Electronics, 2016, 37: 61–73

    Article  Google Scholar 

  61. Yuan Y, Xu R, Xu H T, et al. Nature of the band gap of halide perovskites ABX3 (A = CH3NH3, Cs; B = Sn, Pb; X = Cl, Br, I): first-principles calculations. Chinese Physics B, 2015, 24(11): 116302

    Article  Google Scholar 

  62. Leppert L, Reyes-Lillo S E, Neaton J B. Electric field- and strain-induced rashba effect in hybrid halide perovskites. Journal of Physical Chemistry Letters, 2016, 7(18): 3683–3689

    Article  Google Scholar 

  63. Liao M, Liu Y, Cui P, et al. Modeling of alloying effect on elastic properties in BCC Nb-Ti-V-Zr solid solution: from unary to quaternary. Computational Materials Science, 2020, 172: 109289

    Article  Google Scholar 

  64. Kang J, Wang L W. High defect tolerance in lead halide perovskite CsPbBr3. Journal of Physical Chemistry Letters, 2017, 8(2): 489–493

    Article  Google Scholar 

  65. Zhang Q, Song Q, Wang X, et al. Deep defect level engineering: a strategy of optimizing the carrier concentration for high thermoelectric performance. Energy & Environmental Science, 2018, 11(4): 933–940

    Article  Google Scholar 

  66. Ren W, Song Q, Zhu H, et al. Intermediate-level doping strategy to simultaneously optimize power factor and phonon thermal conductivity for improving thermoelectric figure of merit. Materials Today Physics, 2020, 15: 100250

    Article  Google Scholar 

  67. Shin W H, Roh J W, Ryu B, et al. Enhancing thermoelectric performances of bismuth antimony telluride via synergistic combination of multiscale structuring and band alignment by FeTe2 incorporation. ACS Applied Materials & Interfaces, 2018, 10(4): 3689–3698

    Article  Google Scholar 

  68. Kim S I, Lee K H, Mun H A, et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science, 2015, 348(6230): 109–114

    Article  Google Scholar 

  69. Zheng L, Zhu T, Li Y, et al. Enhanced thermoelectric performance of F4-TCNQ doped FASnI3 thin films. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(47): 25431–25442

    Google Scholar 

  70. Wei J, Yang L, Ma Z, et al. Review of current high-ZT thermoelectric materials. Journal of Materials Science, 2020, 55(27): 12642–12704

    Article  Google Scholar 

  71. Lan J L, Liu Y C, Zhan B, et al. Enhanced thermoelectric properties of Pb-doped BiCuSeO ceramics. Advanced Materials, 2013, 25(36): 5086–5090

    Article  Google Scholar 

  72. Liu H, Yuan X, Lu P, et al. Ultrahigh thermoelectric performance by electron and phonon critical scattering in Cu2Se1−xIx. Advanced Materials, 2013, 25(45): 6607–6612

    Article  Google Scholar 

  73. Qin B, Wang D, He W, et al. Realizing high thermoelectric performance in p-type SnSe through crystal structure modification. Journal of the American Chemical Society, 2019, 141(2): 1141–1149

    Article  Google Scholar 

  74. Zhu H, Mao J, Li Y, et al. Discovery of TaFeSb-based half-Heuslers with high thermoelectric performance. Nature Communications, 2019, 10(1): 270

    Article  Google Scholar 

  75. Xing T, Song Q, Qiu P, et al. Superior performance and high service stability for GeTe-based thermoelectric compounds. National Science Review, 2019, 6(5): 944–954

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Thousand Talent Young Scholar Program (BE0200006), Shanghai Aerospace Science and Technology Innovation Fund (USCAST2020-13), the Oceanic Interdisciplinary Program from Shanghai Jiao Tong University (SL2020MS008), and the National Natural Science Foundation of China (Grant No. 51776041).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingling Zhao or Shangchao Lin.

Supporting Infomation

11708_2022_831_MOESM1_ESM.pdf

High performance solid-state thermoelectric energy conversion via inorganic metal halide perovskites under tailored mechanical deformation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, L., Zhao, L., Yang, G. et al. High performance solid-state thermoelectric energy conversion via inorganic metal halide perovskites under tailored mechanical deformation. Front. Energy 16, 581–594 (2022). https://doi.org/10.1007/s11708-022-0831-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-022-0831-y

Keywords

Navigation