ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

2-Aminothiazoles as Therapeutic Leads for Prion Diseases

View Author Information
The Small Molecule Discovery Center
The Institute for Neurodegenerative Diseases
§ Department of Pharmaceutical Chemistry
Department of Neurology
University of California, San Francisco, MC2552 Byers Hall 503D, 1700 4th Street, San Francisco, California 94158, United States
*To whom correspondence should be addressed. Phone: (415) 514-9698. Fax: (415) 514-4507. E-mail: [email protected]
Cite this: J. Med. Chem. 2011, 54, 4, 1010–1021
Publication Date (Web):January 19, 2011
https://doi.org/10.1021/jm101250y
Copyright © 2011 American Chemical Society

    Article Views

    7391

    Altmetric

    -

    Citations

    119
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    2-Aminothiazoles are a new class of small molecules with antiprion activity in prion-infected neuroblastoma cell lines ( J. Virol. 2010, 84, 3408). We report here structure−activity studies undertaken to improve the potency and physiochemical properties of 2-aminothiazoles, with a particular emphasis on achieving and sustaining high drug concentrations in the brain. The results of this effort include the generation of informative structure−activity relationships (SAR) and the identification of lead compounds that are orally absorbed and achieve high brain concentrations in animals. The new aminothiazole analogue (5-methylpyridin-2-yl)-[4-(3-phenylisoxazol-5-yl)-thiazol-2-yl]-amine (27), for example, exhibited an EC50 of 0.94 μM in prion-infected neuroblastoma cells (ScN2a-cl3) and reached a concentration of ∼25 μM in the brains of mice following three days of oral administration in a rodent liquid diet. The studies described herein suggest 2-aminothiazoles as promising new leads in the search for effective therapeutics for prion diseases.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Synthetic schemes for new 2-aminothiazole analogues 450 and synthetic intermediates 5170. Triplicate data set for compounds 350 in the ScN2a-cl3 dividing cell assay (EC50 and pEC50 values), standard deviation (SD), and percent coefficient of variation (CV) values. Mean values (three determinations) for 350 in the ScN2a-cl3 nondividing cell assay and calcein-AM cell viability assay. 1D NOESY data that supports the assigned site of methylation and acylation for compounds 49 and 50, respectively. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 119 publications.

    1. Ali A. Husain, Kirpal S. Bisht. Thiocyanation and 2-Amino-1,3-thiazole Formation in Water Using Recoverable and Reusable Glycosylated Resorcin[4]arene Cavitands. The Journal of Organic Chemistry 2020, 85 (15) , 9928-9935. https://doi.org/10.1021/acs.joc.0c01150
    2. David Luedeker, Rebecca Gossmann, Klaus Langer, and Gunther Brunklaus . Crystal Engineering of Pharmaceutical Co-crystals: “NMR Crystallography” of Niclosamide Co-crystals. Crystal Growth & Design 2016, 16 (6) , 3087-3100. https://doi.org/10.1021/acs.cgd.5b01619
    3. Xiaodong Tang, Zhongzhi Zhu, Chaorong Qi, Wanqing Wu, and Huanfeng Jiang . Copper-Catalyzed Coupling of Oxime Acetates with Isothiocyanates: A Strategy for 2-Aminothiazoles. Organic Letters 2016, 18 (2) , 180-183. https://doi.org/10.1021/acs.orglett.5b03188
    4. Brett R. Beno, Kap-Sun Yeung, Michael D. Bartberger, Lewis D. Pennington, and Nicholas A. Meanwell . A Survey of the Role of Noncovalent Sulfur Interactions in Drug Design. Journal of Medicinal Chemistry 2015, 58 (11) , 4383-4438. https://doi.org/10.1021/jm501853m
    5. Sina Ghaemmaghami, Miranda Russo, and Adam R. Renslo . Successes and Challenges in Phenotype-Based Lead Discovery for Prion Diseases. Journal of Medicinal Chemistry 2014, 57 (16) , 6919-6929. https://doi.org/10.1021/jm5001425
    6. Zhe Li, Satish Rao, Joel R. Gever, Kartika Widjaja, Stanley B. Prusiner, and B. Michael Silber . Towards Optimization of Arylamides As Novel, Potent, and Brain-Penetrant Antiprion Lead Compounds. ACS Medicinal Chemistry Letters 2013, 4 (7) , 647-650. https://doi.org/10.1021/ml300454k
    7. Paolo Sgarbossa, Silvia Mazzega Sbovata, Roberta Bertani, Mirto Mozzon, Franco Benetollo, Cristina Marzano, Valentina Gandin, and Rino A. Michelin . Novel Imino Thioether Complexes of Platinum(II): Synthesis, Structural Investigation, and Biological Activity. Inorganic Chemistry 2013, 52 (10) , 5729-5741. https://doi.org/10.1021/ic3024452
    8. Bagher Eftekhari-Sis, Maryam Zirak, and Ali Akbari . Arylglyoxals in Synthesis of Heterocyclic Compounds. Chemical Reviews 2013, 113 (5) , 2958-3043. https://doi.org/10.1021/cr300176g
    9. Zhe Li, Joel R. Gever, Satish Rao, Kartika Widjaja, Stanley B. Prusiner, and B. Michael Silber . Discovery and Preliminary Structure–Activity Relationship of Arylpiperazines as Novel, Brain-Penetrant Antiprion Compounds. ACS Medicinal Chemistry Letters 2013, 4 (4) , 397-401. https://doi.org/10.1021/ml300472n
    10. Meredeth A. McGowan, Jaclyn L. Henderson, and Stephen L. Buchwald . Palladium-Catalyzed N-Arylation of 2-Aminothiazoles. Organic Letters 2012, 14 (6) , 1432-1435. https://doi.org/10.1021/ol300178j
    11. Işıl Nihan Korkmaz. Investigation of the effects of thiazole compounds on thioredoxin reductase 1 (TrxR1), glutathione S ‐transferase (GST), and glutathione reductase (GR) targeted human brain glioblastoma cancer (U‐87 MG). Biotechnology and Applied Biochemistry 2024, 29 https://doi.org/10.1002/bab.2589
    12. Mustafa Türkmenoğlu, Sümeyra Tuna Yıldırım, Ahmet Altay, Burçin Türkmenoğlu. Synthesis, Characterization, Investigation of Anticancer Activity and Molecular Docking Studies of N 2 O 2 Type Schiff Base Ligand and Metal Complexes. ChemistrySelect 2024, 9 (4) https://doi.org/10.1002/slct.202303519
    13. Preethi Dhanapal, S L Manju. A simple sequential one-pot synthesis of 4-aryl thiazole-based Schiff bases. Synthetic Communications 2024, 54 (2) , 111-120. https://doi.org/10.1080/00397911.2023.2282591
    14. Jasmina Nikolic, Nevena Prlainovic, Gavrilo Sekularac, Luka Matovic, Anita Lazic, Sasa Drmanic. The synthesis, characterization, antioxidant and antimicrobial activity of some novel amides of the esters of substituted 1,4-dihydropyridines. Journal of the Serbian Chemical Society 2024, 89 (2) , 141-150. https://doi.org/10.2298/JSC231023098N
    15. Sankaran Radhika, Purushothaman Yamuna, Gopinathan Anilkumar. A Novel Cu(II)-Iodine Catalyzed Hantzsch Type Synthesis of 2-Aminothiazole Derivatives. Current Organic Chemistry 2023, 26 (19) , 1779-1788. https://doi.org/10.2174/1385272827666221221103955
    16. Kyu Hwan Shim, Niti Sharma, Seong Soo A An. Prion therapeutics: Lessons from the past. Prion 2022, 16 (1) , 265-294. https://doi.org/10.1080/19336896.2022.2153551
    17. A. B. Naik, P. B. Morey. Density, Viscosity, and Ultrasonic Measurements on Liquid–Liquid Interactions of Some Binary Mixtures. Russian Journal of Physical Chemistry A 2022, 96 (11) , 2417-2424. https://doi.org/10.1134/S0036024422110218
    18. Janail Rodrigues da Silva, Gabriela Colosso Bramante, Cristina Souza Freire Nordi, Norberto S. Gonçalves, Izilda A. Bagatin. Selective Aminothiazole‐Derivative Probe for Detection of Phosphate in Freshwater. ChemistrySelect 2022, 7 (37) https://doi.org/10.1002/slct.202202740
    19. Junfeng Wang, Kazue Takahashi, Timothy M. Shoup, Lichong Gong, Yingbo Li, Georges El Fakhri, Zhaoda Zhang, Anna-Liisa Brownell. Organomediated cleavage of benzoyl group enables an efficient synthesis of 1-(6-nitropyridin-2-yl)thiourea and its application for developing 18F-labeled PET tracers. Bioorganic Chemistry 2022, 124 , 105804. https://doi.org/10.1016/j.bioorg.2022.105804
    20. H. Nagarajaiah, N. L. Prasad, Noor Shahina Begum. Sequential One-Pot Synthesis of 2-Aminothiazoles Using Corresponding Ketones: Insights into Their Structural Features. Polycyclic Aromatic Compounds 2022, 42 (4) , 1909-1919. https://doi.org/10.1080/10406638.2020.1821228
    21. M Vathanaruba, S. Johnson Raja, R. Princess, P Tharmaraj. Pharmacological and Molecular docking studies of new copper (II) complexes of N2-Phenyl-N4,N6-di(thiazol-2-yl)-1,3,5-triazine-2,4,6-triamine. Journal of Molecular Structure 2022, 1253 , 132275. https://doi.org/10.1016/j.molstruc.2021.132275
    22. Arup K. Kabi, Sattu Sravani, Raghuram Gujjarappa, Aakriti Garg, Nagaraju Vodnala, Ujjawal Tyagi, Dhananjaya Kaldhi, Ravichandiran Velayutham, Sreya Gupta, Chandi C. Malakar. An Introduction on Evolution of Azole Derivatives in Medicinal Chemistry. 2022, 79-99. https://doi.org/10.1007/978-981-16-8399-2_4
    23. Ermias D. Belay, Brian S. Appleby. Prion Diseases. 2022, 1-49. https://doi.org/10.1007/978-1-4939-9544-8_47-1
    24. Denise Böck, Andreas Beuchel, Richard Goddard, Peter Imming, Rüdiger W. Seidel. Structural Characterization of Two Polymorphs of 1-(4-Methylpyridin-2-yl)thiourea and Two Derived 2-Aminothiazoles. Journal of Chemical Crystallography 2021, 51 (3) , 394-404. https://doi.org/10.1007/s10870-020-00863-0
    25. Cao Chen, Xiaoping Dong. Therapeutic implications of prion diseases. Biosafety and Health 2021, 3 (2) , 92-100. https://doi.org/10.1016/j.bsheal.2020.09.001
    26. Seyedeh Roya Alizadeh, Seyedeh Mahdieh Hashemi. Development and therapeutic potential of 2-aminothiazole derivatives in anticancer drug discovery. Medicinal Chemistry Research 2021, 30 (4) , 771-806. https://doi.org/10.1007/s00044-020-02686-2
    27. Bini Mathew, Pedro Ruiz, Shilpa Dutta, Jordan T. Entrekin, Sixue Zhang, Kaval D. Patel, Micah S. Simmons, Corinne E. Augelli-Szafran, Rita M. Cowell, Mark J. Suto. Structure-activity relationship (SAR) studies of N-(3-methylpyridin-2-yl)-4-(pyridin-2-yl)thiazol-2-amine (SRI-22819) as NF-ҡB activators for the treatment of ALS. European Journal of Medicinal Chemistry 2021, 210 , 112952. https://doi.org/10.1016/j.ejmech.2020.112952
    28. Qian Zhang, Jiefei Wu, Zexi Pan, Wen Zhang, Wei Zhou. A one-pot synthesis of 2-aminothiazoles via the coupling of ketones and thiourea using I 2 /dimethyl sulfoxide as a catalytic oxidative system. Journal of Chemical Research 2021, 45 (1-2) , 89-94. https://doi.org/10.1177/1747519820930961
    29. Azim Ziyaei Halimehjani, Maryam Khalesi, Bernhard Breit. Amino Acid‐Based Dithiocarbamates as Efficient Intermediates for Diversity‐Oriented Synthesis of Thiazoles. European Journal of Organic Chemistry 2020, 2020 (38) , 6081-6084. https://doi.org/10.1002/ejoc.202001050
    30. Carlo Mustazza, Marco Sbriccoli, Paola Minosi, Carla Raggi. Small Molecules with Anti-Prion Activity. Current Medicinal Chemistry 2020, 27 (33) , 5446-5479. https://doi.org/10.2174/0929867326666190927121744
    31. Žiga Jakopin. 2-aminothiazoles in drug discovery: Privileged structures or toxicophores?. Chemico-Biological Interactions 2020, 330 , 109244. https://doi.org/10.1016/j.cbi.2020.109244
    32. Clara Lemos, Luise Schulze, Joerg Weiske, Hanna Meyer, Nico Braeuer, Naomi Barak, Uwe Eberspächer, Nicolas Werbeck, Carlo Stresemann, Martin Lange, Ralf Lesche, Nina Zablowsky, Katrin Juenemann, Atanas Kamburov, Laura Martina Luh, Thomas Markus Leissing, Jeremie Mortier, Michael Steckel, Holger Steuber, Knut Eis, Ashley Eheim, Patrick Steigemann. Identification of Small Molecules that Modulate Mutant p53 Condensation. iScience 2020, 23 (9) , 101517. https://doi.org/10.1016/j.isci.2020.101517
    33. Andreas Beuchel, Richard Goddard, Peter Imming, Rüdiger W. Seidel. A solid solution of ethyl and d 3 -methyl 2-[(4-methylpyridin-2-yl)amino]-4-(pyridin-2-yl)thiazole-5-carboxylate. Acta Crystallographica Section E Crystallographic Communications 2020, 76 (8) , 1255-1259. https://doi.org/10.1107/S2056989020008956
    34. Ludovica Zaccagnini, Giulia Rossetti, Thanh Hoa Tran, Giulia Salzano, Annachiara Gandini, Arianna Colini Baldeschi, Maria Laura Bolognesi, Paolo Carloni, Giuseppe Legname. In silico/in vitro screening and hit evaluation identified new phenothiazine anti-prion derivatives. European Journal of Medicinal Chemistry 2020, 196 , 112295. https://doi.org/10.1016/j.ejmech.2020.112295
    35. Saffire H. Krance, Russell Luke, Marc Shenouda, Ahmad R. Israwi, Sarah J. Colpitts, Lina Darwish, Maximilian Strauss, Joel C. Watts. Cellular models for discovering prion disease therapeutics: Progress and challenges. Journal of Neurochemistry 2020, 153 (2) , 150-172. https://doi.org/10.1111/jnc.14956
    36. Klaus Banert. Functionalized Allenes: Generation by Sigmatropic Rearrangement and Application in Heterocyclic Chemistry. Current Organic Chemistry 2020, 23 (27) , 3040-3063. https://doi.org/10.2174/1385272823666191112102523
    37. Sara A.M. Holec, Alyssa J. Block, Jason C. Bartz. The role of prion strain diversity in the development of successful therapeutic treatments. 2020, 77-119. https://doi.org/10.1016/bs.pmbts.2020.07.001
    38. Mysore Bhyrappa Harisha, Pandi Dhanalakshmi, Rajendran Suresh, Raju Ranjith Kumar, Shanmugam Muthusubramanian. Access to highly substituted oxazoles by the reaction of α-azidochalcone with potassium thiocyanate. Beilstein Journal of Organic Chemistry 2020, 16 , 2108-2118. https://doi.org/10.3762/bjoc.16.178
    39. Mara Tomassetti, Gabriele Lupidi, Pamela Piermattei, Federico V. Rossi, Samuele Lillini, Gianluca Bianchini, Andrea Aramini, Marco A. Ciufolini, Enrico Marcantoni. Catalyst-Free Synthesis of Polysubstituted 5-Acylamino-1,3-Thiazoles via Hantzsch Cyclization of α-Chloroglycinates. Molecules 2019, 24 (21) , 3846. https://doi.org/10.3390/molecules24213846
    40. Klaus Banert, Jennifer Seifert. Steric hindrance classified: treatment of isothiocyanatoallene with secondary amines bearing bulky substituents to generate 2-aminothiazoles. Organic Chemistry Frontiers 2019, 6 (20) , 3517-3522. https://doi.org/10.1039/C9QO00312F
    41. Wei Guo, Mingming Zhao, Wen Tan, Lvyin Zheng, Kailiang Tao, Xiaolin Fan. Developments towards synthesis of N-heterocycles from amidines via C–N/C–C bond formation. Organic Chemistry Frontiers 2019, 6 (13) , 2120-2141. https://doi.org/10.1039/C9QO00283A
    42. Zhi-Hua Zhang, Hong-Mei Wu, Sai-Nan Deng, Xiao-Yu Cai, Yu Yao, Muriira Cyrus Mwenda, Jin-Yin Wang, Dong Cai, Yu Chen. Design, Synthesis, and Anticancer Activities of Novel 2-Amino-4-phenylthiazole Scaffold Containing Amide Moieties. Journal of Chemistry 2018, 2018 , 1-8. https://doi.org/10.1155/2018/4301910
    43. Frank Richter, Jennifer Seifert, Marcus Korb, Heinrich Lang, Klaus Banert. Real Multicomponent Reactions: Synthesis of Highly Substituted 2‐Aminothiazoles. European Journal of Organic Chemistry 2018, 2018 (34) , 4673-4682. https://doi.org/10.1002/ejoc.201800701
    44. Wei Guo, Mingming Zhao, Wen Tan, Lvyin Zheng, Kailiang Tao, Luyan Chen, Mingfeng Wang, Deliang Chen, Xiaolin Fan. Base‐Promoted Metal‐/Oxidant‐Free Three‐Component Tandem Annulation: A Strategy for the Construction of 2,4,5‐Trisubstituted Thiazoles via C−N Bond Cleavage of Amidines. Asian Journal of Organic Chemistry 2018, 7 (9) , 1893-1897. https://doi.org/10.1002/ajoc.201800417
    45. Sayed M. Riyadh, Shojaa A. El‐Motairi, Hany E. A. Ahmed, Khaled D. Khalil, EL‐Sayed E. Habib. Synthesis, Biological Evaluation, and Molecular Docking of Novel Thiazoles and [1,3,4]Thiadiazoles Incorporating Sulfonamide Group as DHFR Inhibitors. Chemistry & Biodiversity 2018, 15 (9) https://doi.org/10.1002/cbdv.201800231
    46. YASSER HUSSEIN EISSA MOHAMMED, SHAUKATH ARA KHANUM. Recent progress on anti-cancer of amide appended heterocyclic and its possible therapeutic applications. A review drug progress for cancer therapeutics.. International Journal of pharma and Bio Sciences 2018, 9 (2) https://doi.org/10.22376/ijpbs.2018.9.2.p94-124
    47. . 2‐Aminothiazoles. 2018, 284-320. https://doi.org/10.1002/9781118686263.ch8
    48. Isabelle R. Taylor, Bryan M. Dunyak, Tomoko Komiyama, Hao Shao, Xu Ran, Victoria A. Assimon, Chakrapani Kalyanaraman, Jennifer N. Rauch, Matthew P. Jacobson, Erik R.P. Zuiderweg, Jason E. Gestwicki. High-throughput screen for inhibitors of protein–protein interactions in a reconstituted heat shock protein 70 (Hsp70) complex. Journal of Biological Chemistry 2018, 293 (11) , 4014-4025. https://doi.org/10.1074/jbc.RA117.001575
    49. Ramin Ghorbani‐Vaghei, Sedigheh Alavinia, Zohreh Merati, Vida Izadkhah. MNPs@SiO 2 ‐Pr‐AP: A new catalyst for the synthesis of 2‐amino‐4‐aryl thiazole derivatives. Applied Organometallic Chemistry 2018, 32 (3) https://doi.org/10.1002/aoc.4127
    50. Pratip Kumar Dutta, Subhabrata Sen, Debasree Saha, Basabbijayi Dhar. Solid Supported Nano Structured Cu‐Catalyst for Solvent/Ligand Free C 2 Amination of Azoles. European Journal of Organic Chemistry 2018, 2018 (5) , 657-665. https://doi.org/10.1002/ejoc.201701669
    51. N. C. Ferreira, L. M. Ascari, A. G. Hughson, G. R. Cavalheiro, C. F. Góes, P. N. Fernandes, J. R. Hollister, R. A. da Conceição, D. S. Silva, A. M. T. Souza, M. L. C. Barbosa, F. A. Lara, R. A. P. Martins, B. Caughey, Y. Cordeiro. A Promising Antiprion Trimethoxychalcone Binds to the Globular Domain of the Cellular Prion Protein and Changes Its Cellular Location. Antimicrobial Agents and Chemotherapy 2018, 62 (2) https://doi.org/10.1128/AAC.01441-17
    52. Jiapu Zhang. Potential Antiprion Drugs. 2018, 297-303. https://doi.org/10.1007/978-981-10-8815-5_14
    53. Sarah Titus, Kumaran G. Sreejalekshmi. Enriching biologically relevant chemical space around 2-aminothiazole template for anticancer drug development. Medicinal Chemistry Research 2018, 27 (1) , 23-36. https://doi.org/10.1007/s00044-017-2039-y
    54. Seamus P. Caragher, Sean Sachdev, Atique U. Ahmed. Radiotherapy and Glioma Stem Cells: Searching for Chinks in Cellular Armor. Current Stem Cell Reports 2017, 3 (4) , 348-357. https://doi.org/10.1007/s40778-017-0102-8
    55. Md. Azharul Arafath, Farook Adam, Fouad Saleih R. Al-Suede, Mohd R. Razali, Mohamed B. Khadeer Ahamed, Amin Malik Shah Abdul Majid, Mohd Zaheen Hassan, Hasnah Osman, Saifullah Abubakar. Synthesis, characterization, X-ray crystal structures of heterocyclic Schiff base compounds and in vitro cholinesterase inhibition and anticancer activity. Journal of Molecular Structure 2017, 1149 , 216-228. https://doi.org/10.1016/j.molstruc.2017.07.092
    56. N.H. Kumar Baba, D. Ashok, Boddu Ananda Rao, Madderla Sarasija, N.Y.S. Murthy, Vankadari Srinivasarao, Tigulla Parthasarathy. Microwave-assisted synthesis of bis( N -substituted thiazol-2-amine) derivatives and their biological activities. Heterocyclic Communications 2017, 23 (5) , 405-409. https://doi.org/10.1515/hc-2017-0129
    57. Nataraj S. Pagadala, Trent C. Bjorndahl, Michael Joyce, David S. Wishart, Khajamohiddin Syed, Abdolamir Landi. The compound (3-{5-[(2,5-dimethoxyphenyl)amino]-1,3,4-thiadiazolidin-2-yl}-5,8-methoxy-2H-chromen-2-one) inhibits the prion protein conversion from PrPC to PrPSc with lower IC50 in ScN2a cells. Bioorganic & Medicinal Chemistry 2017, 25 (20) , 5875-5888. https://doi.org/10.1016/j.bmc.2017.09.024
    58. Sina Ghaemmaghami. Biology and Genetics of PrP Prion Strains. Cold Spring Harbor Perspectives in Medicine 2017, 7 (8) , a026922. https://doi.org/10.1101/cshperspect.a026922
    59. Seung-Ju Yang, Eun-A Kim, Min-Jun Chang, Jiae Kim, Jung-Min Na, Soo Young Choi, Sung-Woo Cho. N-Adamantyl-4-Methylthiazol-2-Amine Attenuates Glutamate-Induced Oxidative Stress and Inflammation in the Brain. Neurotoxicity Research 2017, 32 (1) , 107-120. https://doi.org/10.1007/s12640-017-9717-x
    60. María Blázquez-Sánchez, Ana de Matos, Amélia Rauter. Exploring Anti-Prion Glyco-Based and Aromatic Scaffolds: A Chemical Strategy for the Quality of Life. Molecules 2017, 22 (6) , 864. https://doi.org/10.3390/molecules22060864
    61. Kurt Giles, Steven H. Olson, Stanley B. Prusiner. Developing Therapeutics for PrP Prion Diseases. Cold Spring Harbor Perspectives in Medicine 2017, 7 (4) , a023747. https://doi.org/10.1101/cshperspect.a023747
    62. Yuxin Tuo, Fang Yao, Yang Liao, Mingzhong Cai. Highly Efficient Heterogeneous Copper-Catalysed Coupling of Oxime Acetates with Isothiocyanates Leading to 2-Aminothiazoles. Journal of Chemical Research 2017, 41 (4) , 225-229. https://doi.org/10.3184/174751917X14894997017739
    63. Nataraj S. Pagadala, Khajamohiddin Syed, Rakesh Bhat. In silico strategies on prion pathogenic conversion and inhibition from PrP C –PrP Sc. Expert Opinion on Drug Discovery 2017, 12 (3) , 241-248. https://doi.org/10.1080/17460441.2017.1287171
    64. Kenta Teruya, Katsumi Doh-ura. Insights from Therapeutic Studies for PrP Prion Disease. Cold Spring Harbor Perspectives in Medicine 2017, 7 (3) , a024430. https://doi.org/10.1101/cshperspect.a024430
    65. Ludovica Zaccagnini, Simone Brogi, Margherita Brindisi, Sandra Gemma, Giulia Chemi, Giuseppe Legname, Giuseppe Campiani, Stefania Butini. Identification of novel fluorescent probes preventing PrP Sc replication in prion diseases. European Journal of Medicinal Chemistry 2017, 127 , 859-873. https://doi.org/10.1016/j.ejmech.2016.10.064
    66. Jiae Kim, Chang Hun Cho, Hoh-Gyu Hahn, Soo-Young Choi, Sung-Woo Cho. Neuroprotective effects of N-adamantyl-4-methylthiazol-2-amine against amyloid β-induced oxidative stress in mouse hippocampus. Brain Research Bulletin 2017, 128 , 22-28. https://doi.org/10.1016/j.brainresbull.2016.10.010
    67. Pu Chun Ke, Marc-Antonie Sani, Feng Ding, Aleksandr Kakinen, Ibrahim Javed, Frances Separovic, Thomas P. Davis, Raffaele Mezzenga. Implications of peptide assemblies in amyloid diseases. Chemical Society Reviews 2017, 46 (21) , 6492-6531. https://doi.org/10.1039/C7CS00372B
    68. Alexander E Kobryn, Sergey Gusarov, Andriy Kovalenko. A closure relation to molecular theory of solvation for macromolecules. Journal of Physics: Condensed Matter 2016, 28 (40) , 404003. https://doi.org/10.1088/0953-8984/28/40/404003
    69. Donghong Zhao, Shanshan Guo, Xiao Guo, Guolin Zhang, Yongping Yu. Facile, efficient synthesis of polysubstituted thiazoles via α-nitroepoxides and thioureas. Tetrahedron 2016, 72 (35) , 5285-5289. https://doi.org/10.1016/j.tet.2016.05.010
    70. Kelcey D. Dinkel, James B. Stanton, David W. Boykin, Chad E. Stephens, Sally A. Madsen-Bouterse, David A. Schneider. Antiprion Activity of DB772 and Related Monothiophene- and Furan-Based Analogs in a Persistently Infected Ovine Microglia Culture System. Antimicrobial Agents and Chemotherapy 2016, 60 (9) , 5467-5482. https://doi.org/10.1128/AAC.00811-16
    71. K. Giles, D. B. Berry, C. Condello, B. N. Dugger, Z. Li, A. Oehler, S. Bhardwaj, M. Elepano, S. Guan, B. M. Silber, S. H. Olson, S. B. Prusiner. Optimization of Aryl Amides that Extend Survival in Prion-Infected Mice. Journal of Pharmacology and Experimental Therapeutics 2016, 358 (3) , 537-547. https://doi.org/10.1124/jpet.116.235556
    72. Chang Hun Cho, Eun-A Kim, Jiae Kim, Soo Young Choi, Seung-Ju Yang, Sung-Woo Cho. N -Adamantyl-4-methylthiazol-2-amine suppresses amyloid β-induced neuronal oxidative damage in cortical neurons. Free Radical Research 2016, 50 (6) , 678-690. https://doi.org/10.3109/10715762.2016.1167277
    73. Reza Heydari, Fahimeh Shahrekipour, Claudia Graiff, Batool Tahamipour. Synthesis and Crystal Structures of Some New 2-(Diphenylamino)-4,5-Disubstituted Thiazole Derivatives. Journal of Chemical Research 2016, 40 (6) , 326-330. https://doi.org/10.3184/174751916X14610676453088
    74. Stacey L. McDonald, Charles E. Hendrick, Katie J. Bitting, Qiu Wang*. Copper‐Catalyzed Electrophilic Amination of Heteroaromatic and Aromatic CH Bonds via TMPZnCl ·LiCl Mediated Metalation. 2016, 356-372. https://doi.org/10.1002/0471264229.os092.27
    75. Müjgan Özkütük, Ezgi İpek, Burcu Aydıner, Serhat Mamaş, Zeynel Seferoğlu. Synthesis, spectroscopic, thermal and electrochemical studies on thiazolyl azo based disperse dyes bearing coumarin. Journal of Molecular Structure 2016, 1108 , 521-532. https://doi.org/10.1016/j.molstruc.2015.12.032
    76. Debasis Das, Papiya Sikdar, Moumita Bairagi. Recent developments of 2-aminothiazoles in medicinal chemistry. European Journal of Medicinal Chemistry 2016, 109 , 89-98. https://doi.org/10.1016/j.ejmech.2015.12.022
    77. Azim Ziyaei Halimehjani, Leila Hasani, M. Ali Alaei, Mohammad R. Saidi. Dithiocarbamates as an efficient intermediate for the synthesis of 2-(alkylsulfanyl)thiazoles in water. Tetrahedron Letters 2016, 57 (8) , 883-886. https://doi.org/10.1016/j.tetlet.2016.01.045
    78. Stacey L. McDonald. Copper-Catalyzed Electrophilic Amination of Heteroarenes and Arenes by C–H Zincation. 2016, 97-142. https://doi.org/10.1007/978-3-319-38878-6_4
    79. Kurt Giles, David B. Berry, Carlo Condello, Ronald C. Hawley, Alejandra Gallardo-Godoy, Clifford Bryant, Abby Oehler, Manuel Elepano, Sumita Bhardwaj, Smita Patel, B. Michael Silber, Shenheng Guan, Stephen J. DeArmond, Adam R. Renslo, Stanley B. Prusiner. Different 2-Aminothiazole Therapeutics Produce Distinct Patterns of Scrapie Prion Neuropathology in Mouse Brains. Journal of Pharmacology and Experimental Therapeutics 2015, 355 (1) , 2-12. https://doi.org/10.1124/jpet.115.224659
    80. Debnath Bhuniya, Rao Mukkavilli, Rahul Shivahare, Delphine Launay, Ravindra T. Dere, Anil Deshpande, Aditya Verma, Preeti Vishwakarma, Manjunath Moger, Ashok Pradhan, Hari Pati, Vadiraj S. Gopinath, Suman Gupta, Sunil K. Puri, Denis Martin. Aminothiazoles: Hit to lead development to identify antileishmanial agents. European Journal of Medicinal Chemistry 2015, 102 , 582-593. https://doi.org/10.1016/j.ejmech.2015.08.013
    81. David Berry, Kurt Giles, Abby Oehler, Sumita Bhardwaj, Stephen J. DeArmond, Stanley B. Prusiner. Use of a 2-aminothiazole to Treat Chronic Wasting Disease in Transgenic Mice. Journal of Infectious Diseases 2015, 212 (suppl 1) , S17-S25. https://doi.org/10.1093/infdis/jiu656
    82. Benjamin M Nugent, Ann M Buysse, Michael R Loso, Jon M Babcock, Timothy C Johnson, M Paige Oliver, Timothy P Martin, Matthias S Ober, Nneka Breaux, Andrew Robinson, Yelena Adelfinskaya. Expanding the structure–activity relationship of sulfoxaflor: the synthesis and biological activity of N ‐heterocyclic sulfoximines. Pest Management Science 2015, 71 (7) , 928-936. https://doi.org/10.1002/ps.3865
    83. Guolin Zhang, Binhui Chen, Xiao Guo, Shanshan Guo, Yongping Yu. Iron(II)‐Promoted Synthesis of 2‐Aminothiazoles via CN Bond Formation from Vinyl Azides and Potassium Thiocyanate. Advanced Synthesis & Catalysis 2015, 357 (5) , 1065-1069. https://doi.org/10.1002/adsc.201400856
    84. Ahmed Khalil, Jessica A. Edwards, Chad A. Rappleye, Werner Tjarks. Design, synthesis, and biological evaluation of aminothiazole derivatives against the fungal pathogens Histoplasma capsulatum and Cryptococcus neoformans. Bioorganic & Medicinal Chemistry 2015, 23 (3) , 532-547. https://doi.org/10.1016/j.bmc.2014.12.006
    85. Nataraj S. Pagadala, Rolando Perez-Pineiro, David S. Wishart, Jack A. Tuszynski. In silico studies and fluorescence binding assays of potential anti-prion compounds reveal an important binding site for prion inhibition from PrPC to PrPSc. European Journal of Medicinal Chemistry 2015, 91 , 118-131. https://doi.org/10.1016/j.ejmech.2014.07.045
    86. S.I. Orysyk, O.O. Zholob, V.V. Bon, V.V. Nikulina, V.V. Orysyk, T.V. Nikolaienko, L.V. Garmanchuk, Yu.L. Zborovskii, G.M. Tolstanova, N.M. Khranovska, V.I. Pekhnyo, M.V. Vovk. Novel chelate complexes of Co(II), Ni(II), Cu(II), Pd(II) derived from anti- and syn-isomers of 2-(2-aminothiazole-4-yl)-2-hydroxyiminoacetic acid with pro-/antiproliferative actions on endothelial cells. Polyhedron 2015, 85 , 208-220. https://doi.org/10.1016/j.poly.2014.08.034
    87. Jinwu Zhao, Jingxiu Xu, Jiaxi Chen, Minghua He, Xiaoqin Wang. Potassium iodide and ammonium nitrate catalyzed aerobic oxidative cyclization of ketones with thioureas in ionic liquid: an access to 2-aminothiazoles. Tetrahedron 2015, 71 (4) , 539-543. https://doi.org/10.1016/j.tet.2014.12.044
    88. Siddique Anwar, Satya B. Paul, K. C. Majumdar, Sudip Choudhury. Green, One-Pot, Multicomponent Synthesis of Fused-Ring 2-Aminothiazoles. Synthetic Communications 2014, 44 (22) , 3304-3313. https://doi.org/10.1080/00397911.2014.904880
    89. Parameshwar Makam, Tharanikkarasu Kannan. 2-Aminothiazole derivatives as antimycobacterial agents: Synthesis, characterization, in vitro and in silico studies. European Journal of Medicinal Chemistry 2014, 87 , 643-656. https://doi.org/10.1016/j.ejmech.2014.09.086
    90. Eun-A Kim, A Reum Han, Jiyoung Choi, Jee-Yin Ahn, Soo Young Choi, Sung-Woo Cho. Anti-inflammatory mechanisms of N-adamantyl-4-methylthiazol-2-amine in lipopolysaccharide-stimulated BV-2 microglial cells. International Immunopharmacology 2014, 22 (1) , 73-83. https://doi.org/10.1016/j.intimp.2014.06.022
    91. Ayesha Babar, Huma Khalid, Khurshid Ayub, Sarah Saleem, Amir Waseem, Tariq Mahmood, Munawar Ali Munawar, Ghulam Abbas, Ather Farooq Khan. Synthesis, characterization and density functional theory study of some new 2-anilinothiazoles. Journal of Molecular Structure 2014, 1072 , 221-227. https://doi.org/10.1016/j.molstruc.2014.05.009
    92. Navneet Chandak, Pawan Kumar, Pawan Kaushik, Parul Varshney, Chetan Sharma, Dhirender Kaushik, Sudha Jain, Kamal R. Aneja, Pawan K. Sharma. Dual evaluation of some novel 2-amino-substituted coumarinylthiazoles as anti-inflammatory–antimicrobial agents and their docking studies with COX-1/COX-2 active sites. Journal of Enzyme Inhibition and Medicinal Chemistry 2014, 29 (4) , 476-484. https://doi.org/10.3109/14756366.2013.805755
    93. Phuhai Nguyen, Nassima Oumata, Flavie Soubigou, Justine Evrard, Nathalie Desban, Pascale Lemoine, Serge Bouaziz, Marc Blondel, Cécile Voisset. Evaluation of the antiprion activity of 6-aminophenanthridines and related heterocycles. European Journal of Medicinal Chemistry 2014, 82 , 363-371. https://doi.org/10.1016/j.ejmech.2014.05.083
    94. Puay-Wah Phuan, Guido Veit, Joseph Tan, Ariel Roldan, Walter E. Finkbeiner, Gergely L. Lukacs, A. S. Verkman. Synergy-Based Small-Molecule Screen Using a Human Lung Epithelial Cell Line Yields ΔF508-CFTR Correctors That Augment VX-809 Maximal Efficacy. Molecular Pharmacology 2014, 86 (1) , 42-51. https://doi.org/10.1124/mol.114.092478
    95. Stacey L. McDonald, Charles E. Hendrick, Qiu Wang. Copper‐Catalyzed Electrophilic Amination of Heteroarenes and Arenes by CH Zincation. Angewandte Chemie International Edition 2014, 53 (18) , 4667-4670. https://doi.org/10.1002/anie.201311029
    96. Stacey L. McDonald, Charles E. Hendrick, Qiu Wang. Copper‐Catalyzed Electrophilic Amination of Heteroarenes and Arenes by CH Zincation. Angewandte Chemie 2014, 126 (18) , 4755-4758. https://doi.org/10.1002/ange.201311029
    97. Ermias D. Belay, Jason C. Bartz. Prion Diseases. 2014, 1165-1186. https://doi.org/10.1007/978-1-4899-7448-8_47
    98. G.E. Schiltz. 6.13 Use of Carbonyl Derivatives for Heterocyclic Synthesis. 2014, 555-572. https://doi.org/10.1016/B978-0-08-097742-3.00621-2
    99. B. Michael Silber, Joel R. Gever, Zhe Li, Alejandra Gallardo-Godoy, Adam R. Renslo, Kartika Widjaja, John J. Irwin, Satish Rao, Matthew P. Jacobson, Sina Ghaemmaghami, Stanley B. Prusiner. Antiprion compounds that reduce PrPSc levels in dividing and stationary-phase cells. Bioorganic & Medicinal Chemistry 2013, 21 (24) , 7999-8012. https://doi.org/10.1016/j.bmc.2013.09.022
    100. David B. Berry, Duo Lu, Michal Geva, Joel C. Watts, Sumita Bhardwaj, Abby Oehler, Adam R. Renslo, Stephen J. DeArmond, Stanley B. Prusiner, Kurt Giles. Drug resistance confounding prion therapeutics. Proceedings of the National Academy of Sciences 2013, 110 (44) https://doi.org/10.1073/pnas.1317164110
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect