ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Evolution of Enzyme Superfamilies: Comprehensive Exploration of Sequence–Function Relationships

View Author Information
Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
Cite this: Biochemistry 2016, 55, 46, 6375–6388
Publication Date (Web):November 1, 2016
https://doi.org/10.1021/acs.biochem.6b00723
Copyright © 2016 American Chemical Society

    Article Views

    2769

    Altmetric

    -

    Citations

    49
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    The sequence and functional diversity of enzyme superfamilies have expanded through billions of years of evolution from a common ancestor. Understanding how protein sequence and functional “space” have expanded, at both the evolutionary and molecular level, is central to biochemistry, molecular biology, and evolutionary biology. Integrative approaches that examine protein sequence, structure, and function have begun to provide comprehensive views of the functional diversity and evolutionary relationships within enzyme superfamilies. In this review, we outline the recent advances in our understanding of enzyme evolution and superfamily functional diversity. We describe the tools that have been used to comprehensively analyze sequence relationships and to characterize sequence and function relationships. We also highlight recent large-scale experimental approaches that systematically determine the activity profiles across enzyme superfamilies. We identify several intriguing insights from this recent body of work. First, promiscuous activities are prevalent among extant enzymes. Second, many divergent proteins retain “function connectivity” via enzyme promiscuity, which can be used to probe the evolutionary potential and history of enzyme superfamilies. Finally, we discuss open questions regarding the intricacies of enzyme divergence, as well as potential research directions that will deepen our understanding of enzyme superfamily evolution.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 49 publications.

    1. Martin Pfeiffer, Rory M. Crean, Catia Moreira, Antonietta Parracino, Gustav Oberdorfer, Lothar Brecker, Friedrich Hammerschmidt, Shina Caroline Lynn Kamerlin, Bernd Nidetzky. Essential Functional Interplay of the Catalytic Groups in Acid Phosphatase. ACS Catalysis 2022, 12 (6) , 3357-3370. https://doi.org/10.1021/acscatal.1c05656
    2. Karen N. Allen, Christian P. Whitman. The Birth of Genomic Enzymology: Discovery of the Mechanistically Diverse Enolase Superfamily. Biochemistry 2021, 60 (46) , 3515-3528. https://doi.org/10.1021/acs.biochem.1c00494
    3. Guillermo Bahr, Lisandro J. González, Alejandro J. Vila. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chemical Reviews 2021, 121 (13) , 7957-8094. https://doi.org/10.1021/acs.chemrev.1c00138
    4. Rory M. Crean, Jasmine M. Gardner, Shina C. L. Kamerlin. Harnessing Conformational Plasticity to Generate Designer Enzymes. Journal of the American Chemical Society 2020, 142 (26) , 11324-11342. https://doi.org/10.1021/jacs.0c04924
    5. Lauren J. Rajakovich, Maria-Eirini Pandelia, Andrew J. Mitchell, Wei-chen Chang, Bo Zhang, Amie K. Boal, Carsten Krebs, J. Martin Bollinger, Jr.. A New Microbial Pathway for Organophosphonate Degradation Catalyzed by Two Previously Misannotated Non-Heme-Iron Oxygenases. Biochemistry 2019, 58 (12) , 1627-1647. https://doi.org/10.1021/acs.biochem.9b00044
    6. Anil R. Mhashal, Yaron Pshetitsky, Christopher M. Cheatum, Amnon Kohen, Dan Thomas Major. Evolutionary Effects on Bound Substrate pKa in Dihydrofolate Reductase. Journal of the American Chemical Society 2018, 140 (48) , 16650-16660. https://doi.org/10.1021/jacs.8b09089
    7. John A. Gerlt . Genomic Enzymology: Web Tools for Leveraging Protein Family Sequence–Function Space and Genome Context to Discover Novel Functions. Biochemistry 2017, 56 (33) , 4293-4308. https://doi.org/10.1021/acs.biochem.7b00614
    8. G.A. TEREGULOVA, N.A. MANUCHAROVA, N.A. URAZBAKHTINA, N.S. ZHEMCHUZHINA, L.I. YEVTUSHENKO, A.L. STEPANOV. ANTIMICROBIAL ACTIVITY OF SPECIALISED METABOLITES OF SOIL STREPTOMYCETES-CHITINOLYTIC. Lomonosov Soil Science Journal 2024, 79 (№1, 2024) https://doi.org/10.55959/MSU0137-0944-17-2024-79-1-51-60
    9. G. A. Teregulova, N. A. Manucharova, N. A. Urazbakhtina, N. S. Zhemchuzhina, L. I. Yevtushenko, A. L. Stepanov. Antimicrobial Activity of Specialized Metabolites of Soil Chitinolytic Streptomycetes. Moscow University Soil Science Bulletin 2024, 79 (1) , 47-55. https://doi.org/10.3103/S0147687424010083
    10. Katayoun Kazemzadeh, Ludovic Pelosi, Clothilde Chenal, Sophie-Carole Chobert, Mahmoud Hajj Chehade, Margaux Jullien, Laura Flandrin, William Schmitt, Qiqi He, Emma Bouvet, Manon Jarzynka, Nelle Varoquaux, Ivan Junier, Fabien Pierrel, Sophie S Abby, . Diversification of Ubiquinone Biosynthesis via Gene Duplications, Transfers, Losses, and Parallel Evolution. Molecular Biology and Evolution 2023, 40 (10) https://doi.org/10.1093/molbev/msad219
    11. Ioannis G. Riziotis, António J.M. Ribeiro, Neera Borkakoti, Janet M. Thornton. The 3D Modules of Enzyme Catalysis: Deconstructing Active Sites into Distinct Functional Entities. Journal of Molecular Biology 2023, 435 (20) , 168254. https://doi.org/10.1016/j.jmb.2023.168254
    12. Karol Buda, Charlotte M. Miton, Xingyu Cara Fan, Nobuhiko Tokuriki. Molecular determinants of protein evolvability. Trends in Biochemical Sciences 2023, 48 (9) , 751-760. https://doi.org/10.1016/j.tibs.2023.05.009
    13. Michael Wells, Minjae Kim, Denise M. Akob, Partha Basu, John F. Stolz, . Impact of the Dimethyl Sulfoxide Reductase Superfamily on the Evolution of Biogeochemical Cycles. Microbiology Spectrum 2023, 11 (2) https://doi.org/10.1128/spectrum.04145-22
    14. . EVOLUTION OF ENZYMES. 2023, 455-485. https://doi.org/10.1002/9781119793304.ch16
    15. António J. M. Ribeiro, Ioannis G. Riziotis, Jonathan D. Tyzack, Neera Borkakoti, Janet M. Thornton. Using mechanism similarity to understand enzyme evolution. Biophysical Reviews 2022, 14 (6) , 1273-1280. https://doi.org/10.1007/s12551-022-01022-9
    16. Mousumi Bhattacharyya, Suman Basu, Rinita Dhar, Tapan K. Dutta. Phthalate hydrolase: distribution, diversity and molecular evolution. Environmental Microbiology Reports 2022, 14 (3) , 333-346. https://doi.org/10.1111/1758-2229.13028
    17. Colin Jackson, Agnes Toth-Petroczy, Rachel Kolodny, Florian Hollfelder, Monika Fuxreiter, Shina Caroline Lynn Kamerlin, Nobuhiko Tokuriki. Adventures on the Routes of Protein Evolution—In Memoriam Dan Salah Tawfik (1955–2021). Journal of Molecular Biology 2022, 434 (7) , 167462. https://doi.org/10.1016/j.jmb.2022.167462
    18. Mitesh Nagar, Joshua A. Hayden, Einat Sagey, George Worthen, Mika Park, Amar Nath Sharma, Christopher M. Fetter, Oliver P. Kuehm, Stephen L. Bearne. Altering the binding determinant on the interdigitating loop of mandelate racemase shifts specificity towards that of d-tartrate dehydratase. Archives of Biochemistry and Biophysics 2022, 718 , 109119. https://doi.org/10.1016/j.abb.2022.109119
    19. Deeksha Thakur, Shashi Bhushan Pandit. Unusual commonality in active site structural features of substrate promiscuous and specialist enzymes. Journal of Structural Biology 2022, 214 (1) , 107835. https://doi.org/10.1016/j.jsb.2022.107835
    20. Andrea Schenkmayerova, Gaspar P. Pinto, Martin Toul, Martin Marek, Lenka Hernychova, Joan Planas-Iglesias, Veronika Daniel Liskova, Daniel Pluskal, Michal Vasina, Stephane Emond, Mark Dörr, Radka Chaloupkova, David Bednar, Zbynek Prokop, Florian Hollfelder, Uwe T. Bornscheuer, Jiri Damborsky. Engineering the protein dynamics of an ancestral luciferase. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-23450-z
    21. Abhishek Srivastava, Daniel E M Saavedra, Blair Thomson, Juan A L García, Zihao Zhao, Wayne M Patrick, Gerhard J Herndl, Federico Baltar. Enzyme promiscuity in natural environments: alkaline phosphatase in the ocean. The ISME Journal 2021, 15 (11) , 3375-3383. https://doi.org/10.1038/s41396-021-01013-w
    22. Christopher Fröhlich, John Z Chen, Sevan Gholipour, Ayse N Erdogan, Nobuhiko Tokuriki. Evolution of β-lactamases and enzyme promiscuity. Protein Engineering, Design and Selection 2021, 34 https://doi.org/10.1093/protein/gzab013
    23. Juliana V. Conte, Patrick A. Frantom. Biochemical characterization of 2-phosphinomethylmalate synthase from Streptomyces hygroscopicus: A member of the DRE-TIM metallolyase superfamily. Archives of Biochemistry and Biophysics 2020, 691 , 108489. https://doi.org/10.1016/j.abb.2020.108489
    24. Gloria Yang, Charlotte M. Miton, Nobuhiko Tokuriki. A mechanistic view of enzyme evolution. Protein Science 2020, 29 (8) , 1724-1747. https://doi.org/10.1002/pro.3901
    25. Jibao Chen, Le Ma, Pengfei Duan, Shuqiong Yang, Hanxiao Li, Debao Cai, Mengya Zhang, Jiebing Yang, Lunguang Yao. Submergence response of pyruvate decarboxylase family genes in adzuki bean. Biologia 2020, 75 (8) , 1213-1220. https://doi.org/10.2478/s11756-020-00421-1
    26. Michael Lukesch, Gábor Tasnádi, Klaus Ditrich, Mélanie Hall, Kurt Faber. Characterization of alkaline phosphatase PhoK from Sphingomonas sp. BSAR-1 for phosphate monoester synthesis and hydrolysis. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2020, 1868 (1) , 140291. https://doi.org/10.1016/j.bbapap.2019.140291
    27. Daichi Obata, Atsushi Takabayashi, Ryouichi Tanaka, Ayumi Tanaka, Hisashi Ito. Horizontal Transfer of Promiscuous Activity from Nonphotosynthetic Bacteria Contributed to Evolution of Chlorophyll Degradation Pathway. Molecular Biology and Evolution 2019, 36 (12) , 2830-2841. https://doi.org/10.1093/molbev/msz193
    28. Genis Andrés Castillo Villamizar, Katrina Funkner, Heiko Nacke, Karolin Foerster, Rolf Daniel, . Functional Metagenomics Reveals a New Catalytic Domain, the Metallo-β-Lactamase Superfamily Domain, Associated with Phytase Activity. mSphere 2019, 4 (3) https://doi.org/10.1128/mSphere.00167-19
    29. Shogo Nakano, Masazumi Niwa, Yasuhisa Asano, Sohei Ito, . Following the Evolutionary Track of a Highly Specific l -Arginine Oxidase by Reconstruction and Biochemical Analysis of Ancestral and Native Enzymes. Applied and Environmental Microbiology 2019, 85 (12) https://doi.org/10.1128/AEM.00459-19
    30. Mikel Iradi-Serrano, Leire Tola-García, Marc S. Cortese, Unai Ugalde. The Early Asexual Development Regulator fluG Codes for a Putative Bifunctional Enzyme. Frontiers in Microbiology 2019, 10 https://doi.org/10.3389/fmicb.2019.00778
    31. Florian Baier, Nansook Hong, Gloria Yang, Anna Pabis, Charlotte M Miton, Alexandre Barrozo, Paul D Carr, Shina CL Kamerlin, Colin J Jackson, Nobuhiko Tokuriki. Cryptic genetic variation shapes the adaptive evolutionary potential of enzymes. eLife 2019, 8 https://doi.org/10.7554/eLife.40789
    32. Yoko Chiba, Ayako Yoshida, Shigeru Shimamura, Masafumi Kameya, Takeo Tomita, Makoto Nishiyama, Ken Takai. Discovery and analysis of a novel type of the serine biosynthetic enzyme phosphoserine phosphatase in Thermus thermophilus. The FEBS Journal 2019, 286 (4) , 726-736. https://doi.org/10.1111/febs.14703
    33. Natsuko Miura. Enzyme Evolution. 2019, 175-185. https://doi.org/10.1007/978-981-13-5868-5_13
    34. Yashraj Kulkarni, Shina Caroline Lynn Kamerlin. Computational physical organic chemistry using the empirical valence bond approach. 2019, 69-104. https://doi.org/10.1016/bs.apoc.2019.07.001
    35. Janine N. Copp, Dave W. Anderson, Eyal Akiva, Patricia C. Babbitt, Nobuhiko Tokuriki. Exploring the sequence, function, and evolutionary space of protein superfamilies using sequence similarity networks and phylogenetic reconstructions. 2019, 315-347. https://doi.org/10.1016/bs.mie.2019.03.015
    36. Jung Hun Lee, Masayuki Takahashi, Jeong Ho Jeon, Lin-Woo Kang, Mineaki Seki, Kwang Seung Park, Myoung-Ki Hong, Yoon Sik Park, Tae Yeong Kim, Asad Mustafa Karim, Jung-Hyun Lee, Masayuki Nashimoto, Sang Hee Lee. Dual activity of PNGM-1 pinpoints the evolutionary origin of subclass B3 metallo- β -lactamases: a molecular and evolutionary study. Emerging Microbes & Infections 2019, 8 (1) , 1688-1700. https://doi.org/10.1080/22221751.2019.1692638
    37. Angelica Jimenez-Rosales, Miriam V. Flores-Merino. Tailoring Proteins to Re-Evolve Nature: A Short Review. Molecular Biotechnology 2018, 60 (12) , 946-974. https://doi.org/10.1007/s12033-018-0122-3
    38. Natalie M. Hendrikse, Gwenaëlle Charpentier, Erik Nordling, Per‐Olof Syrén. Ancestral diterpene cyclases show increased thermostability and substrate acceptance. The FEBS Journal 2018, 285 (24) , 4660-4673. https://doi.org/10.1111/febs.14686
    39. Marie-Ève Lacombe-Harvey, Ryszard Brzezinski, Carole Beaulieu. Chitinolytic functions in actinobacteria: ecology, enzymes, and evolution. Applied Microbiology and Biotechnology 2018, 102 (17) , 7219-7230. https://doi.org/10.1007/s00253-018-9149-4
    40. Tijs J. M. van den Bosch, Kemin Tan, Andrzej Joachimiak, Cornelia U. Welte, . Functional Profiling and Crystal Structures of Isothiocyanate Hydrolases Found in Gut-Associated and Plant-Pathogenic Bacteria. Applied and Environmental Microbiology 2018, 84 (14) https://doi.org/10.1128/AEM.00478-18
    41. Lianet Noda-Garcia, Wolfram Liebermeister, Dan S. Tawfik. Metabolite–Enzyme Coevolution: From Single Enzymes to Metabolic Pathways and Networks. Annual Review of Biochemistry 2018, 87 (1) , 187-216. https://doi.org/10.1146/annurev-biochem-062917-012023
    42. Ben E. Clifton, Joe A. Kaczmarski, Paul D. Carr, Monica L. Gerth, Nobuhiko Tokuriki, Colin J. Jackson. Evolution of cyclohexadienyl dehydratase from an ancestral solute-binding protein. Nature Chemical Biology 2018, 14 (6) , 542-547. https://doi.org/10.1038/s41589-018-0043-2
    43. Richard A Notebaart, Bálint Kintses, Adam M Feist, Balázs Papp. Underground metabolism: network-level perspective and biotechnological potential. Current Opinion in Biotechnology 2018, 49 , 108-114. https://doi.org/10.1016/j.copbio.2017.07.015
    44. Matilda S .Newton, Vickery L Arcus, Monica L Gerth, Wayne M Patrick. Enzyme evolution: innovation is easy, optimization is complicated. Current Opinion in Structural Biology 2018, 48 , 110-116. https://doi.org/10.1016/j.sbi.2017.11.007
    45. Lei Lei, Uria Alcolombri, Dan S. Tawfik. Biochemical Profiling of DMSP Lyases. 2018, 269-289. https://doi.org/10.1016/bs.mie.2018.03.004
    46. Jonathan D Tyzack, Nicholas Furnham, Ian Sillitoe, Christine M Orengo, Janet M Thornton. Understanding enzyme function evolution from a computational perspective. Current Opinion in Structural Biology 2017, 47 , 131-139. https://doi.org/10.1016/j.sbi.2017.08.003
    47. Fanny Sunden, Ishraq AlSadhan, Artem Lyubimov, Tzanko Doukov, Jeffrey Swan, Daniel Herschlag. Differential catalytic promiscuity of the alkaline phosphatase superfamily bimetallo core reveals mechanistic features underlying enzyme evolution. Journal of Biological Chemistry 2017, 292 (51) , 20960-20974. https://doi.org/10.1074/jbc.M117.788240
    48. Karolina Wieszczycka, Katarzyna Staszak. Artificial metalloenzymes as catalysts in non-natural compounds synthesis. Coordination Chemistry Reviews 2017, 351 , 160-171. https://doi.org/10.1016/j.ccr.2017.06.012
    49. Xiongying Tu, John A. Latham, Valerie J. Klema, Robert L. Evans, Chao Li, Judith P. Klinman, Carrie M. Wilmot. Crystal structures reveal metal-binding plasticity at the metallo-β-lactamase active site of PqqB from Pseudomonas putida. JBIC Journal of Biological Inorganic Chemistry 2017, 22 (7) , 1089-1097. https://doi.org/10.1007/s00775-017-1486-8

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect