ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Equilibrium Folding of Dimeric Class μ Glutathione Transferases Involves a Stable Monomeric Intermediate

View Author Information
Protein Structure−Function Research Program, Department of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa, and Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
Cite this: Biochemistry 2000, 39, 40, 12336–12344
Publication Date (Web):September 13, 2000
https://doi.org/10.1021/bi000176d
Copyright © 2000 American Chemical Society

    Article Views

    395

    Altmetric

    -

    Citations

    44
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The conformational stabilities of two homodimeric class μ glutathione transferases (GSTM1-1 and GSTM2-2) were studied by urea- and guanidinium chloride-induced denaturation. Unfolding is reversible and structural changes were followed with far-ultraviolet circular dichroism, tryptophan fluorescence, enzyme activity, chemical cross-linking, and size-exclusion chromatography. Disruption of secondary structure occurs as a monophasic transition and is independent of protein concentration. Changes in tertiary structure occur as two transitions; the first is protein concentration dependent, while the second is weakly dependent (GSTM1-1) or independent (GSTM2-2). The second transition corresponds with the secondary structure transition. Loss in catalytic activity occurs as two transitions for GSTM1-1 and as one transition for GSTM2-2. These transitions are dependent upon protein concentration. The first deactivation transition coincides with the first tertiary structure transition. Dimer dissociation occurs prior to disruption of secondary structure. The data suggest that the equilibrium unfolding/refolding of the class μ glutathione transferases M1-1 and M2-2 proceed via a three-state process:  N2 ↔ 2I ↔ 2U. Although GSTM1-1 and GSTM2-2 are homologous (78% identity/94% homology), their N2 tertiary structures are not identical. Dissociation of the GSTM1-1 dimer to structured monomers (I) occurs at lower denaturant concentrations than for GSTM2-2. The monomeric intermediate for GSTM1-1 is, however, more stable than the intermediate for GSTM2-2. The intermediates are catalytically inactive and display nativelike secondary structure. Guanidinium chloride-induced denaturation yields monomeric intermediates, which have a more loosely packed tertiary structure displaying enhanced solvent exposure of its tryptophans and enhanced ANS binding. The three-state model for the class μ enzymes is in contrast to the equilibrium two-state models previously proposed for representatives of classes α/π/Sj26 GSTs. Class μ subunits appear to be intrinsically more stable than those of the other GST classes.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     This work was supported by the University of the Witwatersrand, the South African National Research Foundation, the Fogarty International Collaboration Award TW00779, Grant GM30910 from the National Institutes of Health, and the Alexander von Humboldt Foundation.

     University of the Witwatersrand.

    §

     Vanderbilt University School of Medicine.

    *

     To whom correspondence should be addressed:  e-mail [email protected]; fax +27 11 403 1733; phone +27 11 716 2265.

    Cited By

    This article is cited by 44 publications.

    1. Nishal Parbhoo, Stoyan H. Stoychev, Sylvia Fanucchi, Ikechukwu Achilonu, Roslin J. Adamson, Manuel Fernandes, Samantha Gildenhuys, and Heini W. Dirr . A Conserved Interdomain Interaction Is a Determinant of Folding Cooperativity in the GST Fold. Biochemistry 2011, 50 (32) , 7067-7075. https://doi.org/10.1021/bi2006509
    2. Samantha Gildenhuys, Louise A. Wallace, Jonathan P. Burke, David Balchin, Yasien Sayed and Heini W. Dirr. Class Pi Glutathione Transferase Unfolds via a Dimeric and Not Monomeric Intermediate: Functional Implications for an Unstable Monomer. Biochemistry 2010, 49 (24) , 5074-5081. https://doi.org/10.1021/bi100552d
    3. Amy R. Hurshman Babbes, Evan T. Powers and Jeffery W. Kelly . Quantification of the Thermodynamically Linked Quaternary and Tertiary Structural Stabilities of Transthyretin and Its Disease-Associated Variants: The Relationship between Stability and Amyloidosis. Biochemistry 2008, 47 (26) , 6969-6984. https://doi.org/10.1021/bi800636q
    4. Lisa A. DeLouise and, Benjamin L. Miller. Enzyme Immobilization in Porous Silicon:  Quantitative Analysis of the Kinetic Parameters for Glutathione-S-transferases. Analytical Chemistry 2005, 77 (7) , 1950-1956. https://doi.org/10.1021/ac0486185
    5. Lisa A. DeLouise and, Benjamin L. Miller. Quantatitive Assessment of Enzyme Immobilization Capacity in Porous Silicon. Analytical Chemistry 2004, 76 (23) , 6915-6920. https://doi.org/10.1021/ac0488208
    6. Jeffery M. Schwehm,, Carolyn A. Fitch,, Bao N. Dang,, Bertrand García-Moreno E., and, Wesley E. Stites. Changes in Stability upon Charge Reversal and Neutralization Substitution in Staphylococcal Nuclease Are Dominated by Favorable Electrostatic Effects. Biochemistry 2003, 42 (4) , 1118-1128. https://doi.org/10.1021/bi0266434
    7. Bengt Mannervik, Ralf Morgenstern. Glutathione Transferases. 2024https://doi.org/10.1016/B978-0-323-95488-4.00032-2
    8. José L. Neira, Ana Cámara-Artigas, José Ginés Hernández-Cifre, María Grazia Ortore. The Histidine Phosphocarrier Kinase/Phosphorylase from Bacillus Subtilis Is an Oligomer in Solution with a High Thermal Stability. International Journal of Molecular Sciences 2021, 22 (6) , 3231. https://doi.org/10.3390/ijms22063231
    9. Temidayo Ogunmoyole, Adedayo A. Fodeke, Isaac Olusanjo Adewale. Denaturation studies of Clarias gariepinus glutathione transferase in dilute and crowded solutions. European Biophysics Journal 2019, 48 (8) , 789-801. https://doi.org/10.1007/s00249-019-01405-z
    10. Carolin Sailer, Fabian Offensperger, Alexandra Julier, Kai-Michael Kammer, Ryan Walker-Gray, Matthew G. Gold, Martin Scheffner, Florian Stengel. Structural dynamics of the E6AP/UBE3A-E6-p53 enzyme-substrate complex. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-06953-0
    11. Ajamaluddin Malik, Javed M. Khan, Salman F. Alamery, Dalia Fouad, Nikolaos E. Labrou, Mohamed S. Daoud, Mohamed O. Abdelkader, Farid S. Ataya, . Monomeric Camelus dromedarius GSTM1 at low pH is structurally more thermostable than its native dimeric form. PLOS ONE 2018, 13 (10) , e0205274. https://doi.org/10.1371/journal.pone.0205274
    12. R.N. Armstrong, R. Morgenstern, P.G. Board. Glutathione Transferases. 2018, 326-362. https://doi.org/10.1016/B978-0-12-801238-3.64296-4
    13. John W. Froehlich, Stephen A. Kostel, Patricia S. Cho, Andrew C. Briscoe, Hanno Steen, Ali R. Vaezzadeh, Richard S. Lee. Urinary Proteomics Yield Pathological Insights for Ureteropelvic Junction Obstruction. Molecular & Cellular Proteomics 2016, 15 (8) , 2607-2615. https://doi.org/10.1074/mcp.M116.059386
    14. Aramis Roldan, Anayetzin Torres-Rivera, Abraham Landa. Structural and biochemical studies of a recombinant 25.5 kDa glutathione transferase of Taenia solium metacestode (rTs25GST1-1). Parasitology Research 2013, 112 (11) , 3865-3872. https://doi.org/10.1007/s00436-013-3577-y
    15. Hiromi Yoshida, Satoshi Yamashita, Misa Teraoka, Aiko Itoh, Shin‐ichi Nakakita, Nozomu Nishi, Shigehiro Kamitori. X ‐ray structure of a protease‐resistant mutant form of human galectin‐8 with two carbohydrate recognition domains. The FEBS Journal 2012, 279 (20) , 3937-3951. https://doi.org/10.1111/j.1742-4658.2012.08753.x
    16. Albert J. Ketterman, Chonticha Saisawang, Jantana Wongsantichon. Insect glutathione transferases. Drug Metabolism Reviews 2011, 43 (2) , 253-265. https://doi.org/10.3109/03602532.2011.552911
    17. David Balchin, Sylvia Fanucchi, Ikechukwu Achilonu, Roslin J. Adamson, Jonathan Burke, Manuel Fernandes, Samantha Gildenhuys, Heini W. Dirr. Stability of the domain interface contributes towards the catalytic function at the H-site of class alpha glutathione transferase A1-1. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2010, 1804 (12) , 2228-2233. https://doi.org/10.1016/j.bbapap.2010.09.003
    18. Subhash Chandra Yadav, Medicherla V. Jagannadham, Suman Kundu. Equilibrium unfolding of kinetically stable serine protease milin: the presence of various active and inactive dimeric intermediates. European Biophysics Journal 2010, 39 (10) , 1385-1396. https://doi.org/10.1007/s00249-010-0593-z
    19. R.N. Armstrong. Glutathione Transferases. 2010, 295-321. https://doi.org/10.1016/B978-0-08-046884-6.00416-4
    20. Stefano M. Marino, Vadim N. Gladyshev. Structural Analysis of Cysteine S-Nitrosylation: A Modified Acid-Based Motif and the Emerging Role of Trans-Nitrosylation. Journal of Molecular Biology 2010, 395 (4) , 844-859. https://doi.org/10.1016/j.jmb.2009.10.042
    21. Spyridon Vicatos, Maite Roca, Arieh Warshel. Effective approach for calculations of absolute stability of proteins using focused dielectric constants. Proteins: Structure, Function, and Bioinformatics 2009, 77 (3) , 670-684. https://doi.org/10.1002/prot.22481
    22. Timir Tripathi, Byoung-Kuk Na, Woon-Mok Sohn, Katja Becker, Vinod Bhakuni. Structural, functional and unfolding characteristics of glutathione S-transferase of Plasmodium vivax. Archives of Biochemistry and Biophysics 2009, 487 (2) , 115-122. https://doi.org/10.1016/j.abb.2009.05.011
    23. Sheeba Rasheedi, Madhuri Suragani, Soghra K. Haq, Sudip Ghosh, Nasreen Z. Ehtesham, Seyed E. Hasnain. Biophysical characterization and unfolding of LEF4 factor of RNA polymerase from Ac NPV. Biopolymers 2009, 91 (7) , 574-582. https://doi.org/10.1002/bip.21180
    24. K. Singh, V. Bhakuni. Guanidine Hydrochloride- and Urea-Induced Unfolding of Toxoplasma gondii Ferredoxin-NADP+ Reductase: Stabilization of a Functionally Inactive Holo-Intermediate. Journal of Biochemistry 2009, 145 (6) , 721-731. https://doi.org/10.1093/jb/mvp029
    25. Anchanee Sangcharoen, Weerachon Tepanant, Somruathai Kidsanguan, Boonhiang Promdonkoy, Chartchai Krittanai. Investigation of the unfolding pathway of Bacillus thuringiensis Cyt2Aa2 toxin reveals an unfolding intermediate. Journal of Biotechnology 2009, 141 (3-4) , 137-141. https://doi.org/10.1016/j.jbiotec.2009.03.012
    26. Jad Walters, Sara L. Milam, A. Clay Clark. Chapter 1 Practical Approaches to Protein Folding and Assembly. 2009, 1-39. https://doi.org/10.1016/S0076-6879(08)04201-8
    27. Xin-Yu Wang, Zai-Rong Zhang, Sarah Perrett. Characterization of the activity and folding of the glutathione transferase from Escherichia coli and the roles of residues Cys10 and His106. Biochemical Journal 2009, 417 (1) , 55-64. https://doi.org/10.1042/BJ20071702
    28. Matthew R. Stump, Lisa M. Gloss. Mutational Analysis of the Stability of the H2A and H2B Histone Monomers. Journal of Molecular Biology 2008, 384 (5) , 1369-1383. https://doi.org/10.1016/j.jmb.2008.10.040
    29. Nichole Kinsley, Yasien Sayed, Salerwe Mosebi, Richard N. Armstrong, Heini W. Dirr. Characterization of the binding of 8-anilinonaphthalene sulfonate to rat class Mu GST M1-1. Biophysical Chemistry 2008, 137 (2-3) , 100-104. https://doi.org/10.1016/j.bpc.2008.07.008
    30. Jessica A.O. Rumfeldt, Céline Galvagnion, Kenrick A. Vassall, Elizabeth M. Meiering. Conformational stability and folding mechanisms of dimeric proteins. Progress in Biophysics and Molecular Biology 2008, 98 (1) , 61-84. https://doi.org/10.1016/j.pbiomolbio.2008.05.004
    31. Daisuke TAKAHASHI, Shuzo MATSUMOTO, Etsuko NISHIMOTO, Takuhiro OTOSU, Shoji YAMASHITA. Heterogeneous Packing in the Folding/Unfolding Intermediate State of Bitter Gourd Trypsin Inhibitor. Bioscience, Biotechnology, and Biochemistry 2008, 72 (6) , 1498-1505. https://doi.org/10.1271/bbb.80009
    32. Michaela Kupka, Hugo Scheer. Unfolding of C-phycocyanin followed by loss of non-covalent chromophore–protein interactions. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2008, 1777 (1) , 94-103. https://doi.org/10.1016/j.bbabio.2007.10.009
    33. Juthamart Piromjitpong, Jantana Wongsantichon, Albert J. Ketterman. Differences in the subunit interface residues of alternatively spliced glutathione transferases affects catalytic and structural functions. Biochemical Journal 2007, 401 (3) , 635-644. https://doi.org/10.1042/BJ20060603
    34. Kathryn Luke, Michael Perham, Pernilla Wittung-Stafshede. Kinetic Folding and Assembly Mechanisms Differ for Two Homologous Heptamers. Journal of Molecular Biology 2006, 363 (3) , 729-742. https://doi.org/10.1016/j.jmb.2006.08.058
    35. Etsuko Nishimoto, Yoichi Aso, Toshiaki Koga, Shoji Yamashita. Thermal Unfolding Process of Dihydrolipoamide Dehydrogenase Studied by Fluorescence Spectroscopy. The Journal of Biochemistry 2006, 140 (3) , 349-357. https://doi.org/10.1093/jb/mvj156
    36. Jennifer L. Hearne, Roberta F. Colman. Contribution of the mu loop to the structure and function of rat glutathione transferase M1‐1. Protein Science 2006, 15 (6) , 1277-1289. https://doi.org/10.1110/ps.062129506
    37. Ramiro Téllez‐Sanz, Eleonora Cesareo, Marzia Nuccetelli, Ana M. Aguilera, Carmen Barón, Lorien J. Parker, Julian J. Adams, Craig J. Morton, Mario Lo Bello, Michael W. Parker, Luis García‐Fuentes. Calorimetric and structural studies of the nitric oxide carrier S‐nitrosoglutathione bound to human glutathione transferase P1‐1. Protein Science 2006, 15 (5) , 1093-1105. https://doi.org/10.1110/ps.052055206
    38. Jantana Wongsantichon, Albert J. Ketterman. An intersubunit lock-and-key ‘Clasp’ motif in the dimer interface of Delta class glutathione transferase. Biochemical Journal 2006, 394 (1) , 135-144. https://doi.org/10.1042/BJ20050915
    39. Carla S. Alves, Diane C. Kuhnert, Yasien Sayed, Heini W. Dirr. The intersubunit lock-and-key motif in human glutathione transferase A1-1: role of the key residues Met51 and Phe52 in function and dimer stability. Biochemical Journal 2006, 393 (2) , 523-528. https://doi.org/10.1042/BJ20051066
    40. Anna L. Mallam, Sophie E. Jackson. Folding Studies on a Knotted Protein. Journal of Molecular Biology 2005, 346 (5) , 1409-1421. https://doi.org/10.1016/j.jmb.2004.12.055
    41. Haripada Maity, Michael C. Mossing, Maurice R. Eftink. Equilibrium unfolding of dimeric and engineered monomeric forms of λ Cro (F58W) repressor and the effect of added salts: evidence for the formation of folded monomer induced by sodium perchlorate. Archives of Biochemistry and Biophysics 2005, 434 (1) , 93-107. https://doi.org/10.1016/j.abb.2004.10.019
    42. Hwei‐Jen Lee, Shang‐Way Lu, Gu‐Gang Chang. Monomeric molten globule intermediate involved in the equilibrium unfolding of tetrameric duck δ 2 ‐crystallin. European Journal of Biochemistry 2003, 270 (19) , 3988-3995. https://doi.org/10.1046/j.1432-1033.2003.03787.x
    43. Jiann‐Kae Luo, Judith A.T. Hornby, Louise A. Wallace, Jihong Chen, Richard N. Armstrong, Heini W. Dirr. Impact of domain interchange on conformational stability and equilibrium folding of chimeric class μ glutathione transferases. Protein Science 2002, 11 (9) , 2208-2217. https://doi.org/10.1110/ps.0208002
    44. Nicole E. Pettigrew, Roberta F. Colman. Heterodimers of Glutathione S-Transferase Can Form between Isoenzyme Classes pi and mu. Archives of Biochemistry and Biophysics 2001, 396 (2) , 225-230. https://doi.org/10.1006/abbi.2001.2629

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect