ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUECurrent Topics/Persp...Current Topics/PerspectivesNEXT

Microbial Metabolism of Aliphatic Alkenes

View Author Information
Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300
Cite this: Biochemistry 2001, 40, 20, 5845–5853
Publication Date (Web):April 27, 2001
https://doi.org/10.1021/bi015523d
Copyright © 2001 American Chemical Society

    Article Views

    636

    Altmetric

    -

    Citations

    53
    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     This work was supported by National Institutes of Health Grant GM51805.

    *

     To whom correspondence should be addressed. Phone:  (435) 797-3969; fax:  (435) 797-3390; e-mail:  [email protected].

    Cited By

    This article is cited by 53 publications.

    1. Dariusz A. Sliwa, Arathi M. Krishnakumar, John W. Peters and Scott A. Ensign . Molecular Basis for Enantioselectivity in the (R)- and (S)-Hydroxypropylthioethanesulfonate Dehydrogenases, a Unique Pair of Stereoselective Short-Chain Dehydrogenases/Reductases Involved in Aliphatic Epoxide Carboxylation. Biochemistry 2010, 49 (16) , 3487-3498. https://doi.org/10.1021/bi100294m
    2. Adina S. Chuang, Yang Oh Jin, Laura S. Schmidt, Yalan Li, Samuel Fogel, Donna Smoler and Timothy E. Mattes . Proteomic Analysis of Ethene-Enriched Groundwater Microcosms from a Vinyl Chloride-Contaminated Site. Environmental Science & Technology 2010, 44 (5) , 1594-1601. https://doi.org/10.1021/es903033r
    3. Arathi M. Krishnakumar,, Boguslaw P. Nocek,, Daniel D. Clark,, Scott A. Ensign, and, John W. Peters. Structural Basis for Stereoselectivity in the (R)- and (S)-Hydroxypropylthioethanesulfonate Dehydrogenases,. Biochemistry 2006, 45 (29) , 8831-8840. https://doi.org/10.1021/bi0603569
    4. Arti S. Pandey,, Boguslaw Nocek,, Daniel D. Clark,, Scott A. Ensign, and, John W. Peters. Mechanistic Implications of the Structure of the Mixed-Disulfide Intermediate of the Disulfide Oxidoreductase, 2-Ketopropyl-Coenzyme M Oxidoreductase/Carboxylase,. Biochemistry 2006, 45 (1) , 113-120. https://doi.org/10.1021/bi051518o
    5. Jeffrey M. Boyd and, Scott A. Ensign. Evidence for a Metal−Thiolate Intermediate in Alkyl Group Transfer from Epoxypropane to Coenzyme M and Cooperative Metal Ion Binding in Epoxyalkane:CoM Transferase. Biochemistry 2005, 44 (39) , 13151-13162. https://doi.org/10.1021/bi0505619
    6. Daniel D. Clark,, Jeffrey M. Boyd, and, Scott A. Ensign. The Stereoselectivity and Catalytic Properties of Xanthobacter autotrophicus 2-[(R)-2-Hydroxypropylthio]ethanesulfonate Dehydrogenase Are Controlled by Interactions between C-Terminal Arginine Residues and the Sulfonate of Coenzyme M. Biochemistry 2004, 43 (21) , 6763-6771. https://doi.org/10.1021/bi049783h
    7. Ni Zhang, Mingzhu Ding, Yingjin Yuan. Current Advances in Biodegradation of Polyolefins. Microorganisms 2022, 10 (8) , 1537. https://doi.org/10.3390/microorganisms10081537
    8. Claudia F. Moratti, Colin Scott, Nicholas V. Coleman. Synthetic Biology Approaches to Hydrocarbon Biosensors: A Review. Frontiers in Bioengineering and Biotechnology 2022, 9 https://doi.org/10.3389/fbioe.2021.804234
    9. RA Dawson, AT Crombie, P Pichon, M Steinke, TJ McGenity, JC Murrell. The microbiology of isoprene cycling in aquatic ecosystems. Aquatic Microbial Ecology 2021, 87 , 79-98. https://doi.org/10.3354/ame01972
    10. Florence Mus, Hsin-Hua Wu, Alexander B. Alleman, Krista A. Shisler, Oleg A. Zadvornyy, Brian Bothner, Jennifer L. Dubois, John W. Peters. Insights into the unique carboxylation reactions in the metabolism of propylene and acetone. Biochemical Journal 2020, 477 (11) , 2027-2038. https://doi.org/10.1042/BCJ20200174
    11. Abhishek Singh, Navnita Srivastava, Suresh Kumar Dubey. Molecular characterization and kinetics of isoprene degrading bacteria. Bioresource Technology 2019, 278 , 51-56. https://doi.org/10.1016/j.biortech.2019.01.057
    12. Daniel D. Clark. Characterization of the recombinant ( R )‐ and ( S )‐hydroxypropyl‐coenzyme M dehydrogenases: A case study to augment the teaching of enzyme kinetics and stereoselectivity. Biochemistry and Molecular Biology Education 2019, 47 (2) , 124-132. https://doi.org/10.1002/bmb.21202
    13. Xikun Liu, Yang Wu, Fernanda P Wilson, Ke Yu, Carly Lintner, Alison M Cupples, Timothy E Mattes. Integrated methodological approach reveals microbial diversity and functions in aerobic groundwater microcosms adapted to vinyl chloride. FEMS Microbiology Ecology 2018, 94 (9) https://doi.org/10.1093/femsec/fiy124
    14. Sarah E. Partovi, Florence Mus, Andrew E. Gutknecht, Hunter A. Martinez, Brian P. Tripet, Bernd Markus Lange, Jennifer L. DuBois, John W. Peters. Coenzyme M biosynthesis in bacteria involves phosphate elimination by a functionally distinct member of the aspartase/fumarase superfamily. Journal of Biological Chemistry 2018, 293 (14) , 5236-5246. https://doi.org/10.1074/jbc.RA117.001234
    15. Mahesh Pattabhiramaiah, M. Shanthala, S. Rajashekara, Farhan Sheikh, Sweta Naik. Biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) by Microbes Isolated from the Marine Sponge Biemna fortis (Topsent 1897). 2018, 199-222. https://doi.org/10.1007/978-981-13-1840-5_9
    16. Gregory A. Prussia, George H. Gauss, Florence Mus, Leah Conner, Jennifer L. DuBois, John W. Peters. Substitution of a conserved catalytic dyad into 2‐ KPCC causes loss of carboxylation activity. FEBS Letters 2016, 590 (17) , 2991-2996. https://doi.org/10.1002/1873-3468.12325
    17. Shuke Wu, Yi Zhou, Tianwen Wang, Heng-Phon Too, Daniel I. C. Wang, Zhi Li. Highly regio- and enantioselective multiple oxy- and amino-functionalizations of alkenes by modular cascade biocatalysis. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms11917
    18. Myriam El Khawand, Andrew T. Crombie, Antonia Johnston, Dmitrii V. Vavlline, Joseph C. McAuliffe, Jacob A. Latone, Yuliya A. Primak, Sang‐Kyu Lee, Gregg M. Whited, Terry J. McGenity, J. Colin Murrell. Isolation of isoprene degrading bacteria from soils, development of isoA gene probes and identification of the active isoprene‐degrading soil community using DNA‐stable isotope probing. Environmental Microbiology 2016, 18 (8) , 2743-2753. https://doi.org/10.1111/1462-2920.13345
    19. Xikun Liu, Timothy E. Mattes, . Epoxyalkane:Coenzyme M Transferase Gene Diversity and Distribution in Groundwater Samples from Chlorinated-Ethene-Contaminated Sites. Applied and Environmental Microbiology 2016, 82 (11) , 3269-3279. https://doi.org/10.1128/AEM.00673-16
    20. Roger C. Prince, Clifford C. Walters. Biodegradation of oil hydrocarbons and its implications for source identification. 2016, 869-916. https://doi.org/10.1016/B978-0-12-803832-1.00019-2
    21. Samanthi Kottegoda, Elizabeth Waligora, Michael Hyman, . Metabolism of 2-Methylpropene (Isobutylene) by the Aerobic Bacterium Mycobacterium sp. Strain ELW1. Applied and Environmental Microbiology 2015, 81 (6) , 1966-1976. https://doi.org/10.1128/AEM.03103-14
    22. Kiri E. Martin, Jazmin Ozsvar, Nicholas V. Coleman, . SmoXYB1C1Z of Mycobacterium sp. Strain NBB4: a Soluble Methane Monooxygenase (sMMO)-Like Enzyme, Active on C 2 to C 4 Alkanes and Alkenes. Applied and Environmental Microbiology 2014, 80 (18) , 5801-5806. https://doi.org/10.1128/AEM.01338-14
    23. Anne E. Taylor, Neeraja Vajrala, Andrew T. Giguere, Alix I. Gitelman, Daniel J. Arp, David D. Myrold, Luis Sayavedra-Soto, Peter J. Bottomley. Use of Aliphatic n -Alkynes To Discriminate Soil Nitrification Activities of Ammonia-Oxidizing Thaumarchaea and Bacteria. Applied and Environmental Microbiology 2013, 79 (21) , 6544-6551. https://doi.org/10.1128/AEM.01928-13
    24. Jeremy W. Bakelar, Dariusz A. Sliwa, Sean J. Johnson. Crystal structures of S-HPCDH reveal determinants of stereospecificity for R- and S-hydroxypropyl-coenzyme M dehydrogenases. Archives of Biochemistry and Biophysics 2013, 533 (1-2) , 62-68. https://doi.org/10.1016/j.abb.2013.02.017
    25. Laura K. Jennings, Cloelle G. S. Giddings, James M. Gossett, Jim C. Spain. Bioaugmentation for Aerobic Degradation of CIS-1,2-Dichloroethene. 2013, 199-217. https://doi.org/10.1007/978-1-4614-4115-1_7
    26. Melissa A. Kofoed, David A. Wampler, Arti S. Pandey, John W. Peters, Scott A. Ensign. Roles of the Redox-Active Disulfide and Histidine Residues Forming a Catalytic Dyad in Reactions Catalyzed by 2-Ketopropyl Coenzyme M Oxidoreductase/Carboxylase. Journal of Bacteriology 2011, 193 (18) , 4904-4913. https://doi.org/10.1128/JB.05231-11
    27. Christopher A. Broberg, Daniel D. Clark. Shotgun proteomics of Xanthobacter autotrophicus Py2 reveals proteins specific to growth on propylene. Archives of Microbiology 2010, 192 (11) , 945-957. https://doi.org/10.1007/s00203-010-0623-3
    28. Anne E. Taylor, Daniel J. Arp, Peter J. Bottomley, Lewis Semprini. Extending the alkene substrate range of vinyl chloride utilizing Nocardioides sp. strain JS614 with ethene oxide. Applied Microbiology and Biotechnology 2010, 87 (6) , 2293-2302. https://doi.org/10.1007/s00253-010-2719-8
    29. Jeffrey M. Boyd, Daniel D. Clark, Melissa A. Kofoed, Scott A. Ensign. Mechanism of Inhibition of Aliphatic Epoxide Carboxylation by the Coenzyme M Analog 2-Bromoethanesulfonate. Journal of Biological Chemistry 2010, 285 (33) , 25232-25242. https://doi.org/10.1074/jbc.M110.144410
    30. Yang Oh Jin, Samantha Cheung, Nicholas V. Coleman, Timothy E. Mattes. Association of Missense Mutations in Epoxyalkane Coenzyme M Transferase with Adaptation of Mycobacterium sp. Strain JS623 to Growth on Vinyl Chloride. Applied and Environmental Microbiology 2010, 76 (11) , 3413-3419. https://doi.org/10.1128/AEM.01320-09
    31. Mark L. Thompson, Ray Marriott, Adam Dowle, Gideon Grogan. Biotransformation of β-myrcene to geraniol by a strain of Rhodococcus erythropolis isolated by selective enrichment from hop plants. Applied Microbiology and Biotechnology 2010, 85 (3) , 721-730. https://doi.org/10.1007/s00253-009-2182-6
    32. Pablo Domínguez de María, Robert W. van Gemert, Adrie J. J. Straathof, Ulf Hanefeld. Biosynthesis of ethers: Unusual or common natural events?. Natural Product Reports 2010, 27 (3) , 370. https://doi.org/10.1039/b809416k
    33. Thomas J. Smith. Monooxygenases, Bacterial: Oxidation of Alkenes. 2009, 1-13. https://doi.org/10.1002/9780470054581.eib466
    34. Laura Acuña Alvarez, Daniel A. Exton, Kenneth N. Timmis, David J. Suggett, Terry J. McGenity. Characterization of marine isoprene‐degrading communities. Environmental Microbiology 2009, 11 (12) , 3280-3291. https://doi.org/10.1111/j.1462-2920.2009.02069.x
    35. Laura K. Jennings, Michelle M. G. Chartrand, Georges Lacrampe-Couloume, Barbara Sherwood Lollar, Jim C. Spain, James M. Gossett. Proteomic and Transcriptomic Analyses Reveal Genes Upregulated by cis -Dichloroethene in Polaromonas sp. Strain JS666. Applied and Environmental Microbiology 2009, 75 (11) , 3733-3744. https://doi.org/10.1128/AEM.00031-09
    36. Suzan Pantaroto de Vasconcellos, Elaine Crespim, Georgiana Feitosa da Cruz, Diego Barbosa Senatore, Karen Christina Marques Simioni, Eugênio Vaz dos Santos Neto, Anita Jocelyne Marsaioli, Valéria Maia de Oliveira. Isolation, biodegradation ability and molecular detection of hydrocarbon degrading bacteria in petroleum samples from a Brazilian offshore basin. Organic Geochemistry 2009, 40 (5) , 574-588. https://doi.org/10.1016/j.orggeochem.2009.02.006
    37. Arathi M. Krishnakumar, Darius Sliwa, James A. Endrizzi, Eric S. Boyd, Scott A. Ensign, John W. Peters. Getting a Handle on the Role of Coenzyme M in Alkene Metabolism. Microbiology and Molecular Biology Reviews 2008, 72 (3) , 445-456. https://doi.org/10.1128/MMBR.00005-08
    38. Anthony S. Danko, David L. Freedman. Involvement of carbon dioxide in the aerobic biodegradation of ethylene oxide, ethene, and vinyl chloride. Process Biochemistry 2008, 43 (5) , 517-521. https://doi.org/10.1016/j.procbio.2008.01.008
    39. Roger C. Prince, Clifford C. Walters. Biodegradation of oil hydrocarbons and its implications for source identification. 2007, 349-379. https://doi.org/10.1016/B978-012369523-9.50015-X
    40. Jeffrey M. Boyd, Ashley Ellsworth, Scott A. Ensign. Characterization of 2-Bromoethanesulfonate as a Selective Inhibitor of the Coenzyme M-Dependent Pathway and Enzymes of Bacterial Aliphatic Epoxide Metabolism. Journal of Bacteriology 2006, 188 (23) , 8062-8069. https://doi.org/10.1128/JB.00947-06
    41. Nicholas V. Coleman, Nga B. Bui, Andrew J. Holmes. Soluble di‐iron monooxygenase gene diversity in soils, sediments and ethene enrichments. Environmental Microbiology 2006, 8 (7) , 1228-1239. https://doi.org/10.1111/j.1462-2920.2006.01015.x
    42. Jean L Shennan. Utilisation of C 2 –C 4 gaseous hydrocarbons and isoprene by microorganisms. Journal of Chemical Technology & Biotechnology 2006, 81 (3) , 237-256. https://doi.org/10.1002/jctb.1388
    43. Juergen Wiegel. The Genus Xanthobacter. 2006, 290-314. https://doi.org/10.1007/0-387-30745-1_16
    44. Luise Berthe-Corti, Thomas Höpner. Geo-biological aspects of coastal oil pollution. Palaeogeography, Palaeoclimatology, Palaeoecology 2005, 219 (1-2) , 171-189. https://doi.org/10.1016/j.palaeo.2004.10.020
    45. Christopher J Marx, Stephen J Van Dien, Mary E Lidstrom, . Flux Analysis Uncovers Key Role of Functional Redundancy in Formaldehyde Metabolism. PLoS Biology 2005, 3 (2) , e16. https://doi.org/10.1371/journal.pbio.0030016
    46. Luise Berthe-Corti, Thomas Höpner. Geo-biological aspects of coastal oil pollution. 2005, 171-189. https://doi.org/10.1016/B978-0-444-52019-7.50014-0
    47. Verawat Champreda, Ning-Yi Zhou, David J. Leak. Heterologous expression of alkene monooxygenase components from Xanthobacter autotrophicus Py2 and reconstitution of the active complex. FEMS Microbiology Letters 2004, 239 (2) , 309-318. https://doi.org/10.1016/j.femsle.2004.09.002
    48. Jan Seebacher, Mian Ji, Heinrich Vahrenkamp. (Neocuproin)zinc Thiolates: Attempts at Modeling Cobalamin‐Independent Methionine Synthase. European Journal of Inorganic Chemistry 2004, 2004 (2) , 409-417. https://doi.org/10.1002/ejic.200300501
    49. Argyrides Argyrou, John S. Blanchard. Flavoprotein Disulfide Reductases: Advances in Chemistry and Function. 2004, 89-142. https://doi.org/10.1016/S0079-6603(04)78003-4
    50. Joseph G. Leahy, Patricia J. Batchelor, Suzanne M. Morcomb. Evolution of the soluble diiron monooxygenases. FEMS Microbiology Reviews 2003, 27 (4) , 449-479. https://doi.org/10.1016/S0168-6445(03)00023-8
    51. Nicholas V. Coleman, Jim C. Spain. Distribution of the Coenzyme M Pathway of Epoxide Metabolism among Ethene- and Vinyl Chloride-Degrading Mycobacterium Strains. Applied and Environmental Microbiology 2003, 69 (10) , 6041-6046. https://doi.org/10.1128/AEM.69.10.6041-6046.2003
    52. Nicholas V. Coleman, Jim C. Spain. Epoxyalkane:Coenzyme M Transferase in the Ethene and Vinyl Chloride Biodegradation Pathways of Mycobacterium Strain JS60. Journal of Bacteriology 2003, 185 (18) , 5536-5545. https://doi.org/10.1128/JB.185.18.5536-5545.2003
    53. Scott A. Ensign, Jeffrey R. Allen. Aliphatic Epoxide Carboxylation. Annual Review of Biochemistry 2003, 72 (1) , 55-76. https://doi.org/10.1146/annurev.biochem.72.121801.161820

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect