ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Molecular Recognition at the Dimer Interface of a Class Mu Glutathione Transferase:  Role of a Hydrophobic Interaction Motif in Dimer Stability and Protein Function

View Author Information
Protein Structure-Function Research Programme, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa, and Departments of Biochemistry and Chemistry, Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
Cite this: Biochemistry 2002, 41, 48, 14238–14247
Publication Date (Web):November 7, 2002
https://doi.org/10.1021/bi020548d
Copyright © 2002 American Chemical Society

    Article Views

    317

    Altmetric

    -

    Citations

    39
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Cytosolic glutathione (GSH) transferases (GSTs) exist as stable homo- and heterodimers. Interactions at the subunit interface serve an important role in stabilizing the subunit tertiary structures of all GSH transferases. In addition, the dimer is required to maintain functional conformations at the active site on each subunit and the nonsubstrate ligand binding site at the dimer interface [Dirr, H. W. (2001) Chem.-Biol. Interact.133, 19−23]. In this study, we report on the contribution of a specific intersubunit hydrophobic motif in rGSTM1-1 to dimer stability and protein function. The motif consists of the side chain of F56 from one subunit intercalated between helices 4 and 5 of the second subunit. Replacement of F56 with the hydrophilic side chains of serine, arginine, and glutamate results in a change in the structure of the active site, a marked diminution in catalytic efficiency, and alterations in the ability to bind nonsubstrate ligands. The mutations also affect the ability of the enzyme to bind GSH and the substrate analogue glutathione sulfonate. The functionality of rGSTM1-1 was disrupted to the greatest extent for the F56E mutant. Though mutations at this position do not alter the three-state equilibrium folding process for rGSTM1-1 (i.e., N2 ↔ 2I ↔ 2U), destabilizing mutations at position 56 shift the equilibrium between the folded dimer (N2) and the monomeric intermediate (I) toward the latter conformational state. The transition to the unfolded state (U) is not significantly affected. The folded monomeric intermediate is also observed by electrospray ionization mass spectrometry. The amount of the intermediate is dependent on protein concentration and the residue at position 56. Mutations at position 56 have little impact on the secondary structure and stability of the monomeric folding intermediate. The dimerization process is proposed to induce a conformational change in the loop containing F56, resulting in improved stability and increased affinity between the M1 subunits.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Supported by the University of the Witwatersrand, the South African Foundation for Research and Development, Wellcome Trust Grant 060799, Forgarty International Collaboration Award TW00779, and Grants R01 GM30910, P30 ES00267, and T32 ES07028 from the National Institutes of Health.

     University of the Witwatersrand.

    §

     Vanderbilt University School of Medicine.

    *

     To whom correspondence should be addressed. R.N.A.:  e-mail, [email protected]; fax, (615) 343-2921; telephone, (615) 343-2920. H.W.D.:  e-mail, [email protected]; fax, +27 11 403 1733; telephone, +27 11 717 6352.

    Cited By

    This article is cited by 39 publications.

    1. Nishal Parbhoo, Stoyan H. Stoychev, Sylvia Fanucchi, Ikechukwu Achilonu, Roslin J. Adamson, Manuel Fernandes, Samantha Gildenhuys, and Heini W. Dirr . A Conserved Interdomain Interaction Is a Determinant of Folding Cooperativity in the GST Fold. Biochemistry 2011, 50 (32) , 7067-7075. https://doi.org/10.1021/bi2006509
    2. Samantha Gildenhuys, Louise A. Wallace, Jonathan P. Burke, David Balchin, Yasien Sayed and Heini W. Dirr. Class Pi Glutathione Transferase Unfolds via a Dimeric and Not Monomeric Intermediate: Functional Implications for an Unstable Monomer. Biochemistry 2010, 49 (24) , 5074-5081. https://doi.org/10.1021/bi100552d
    3. Claudia Bich, Samuel Baer, Matthias C. Jecklin, Renato Zenobi. Probing the hydrophobic effect of noncovalent complexes by mass spectrometry. Journal of the American Society for Mass Spectrometry 2010, 21 (2) , 286-289. https://doi.org/10.1016/j.jasms.2009.10.012
    4. Raffaele Fabrini, Anastasia De Luca, Lorenzo Stella, Giampiero Mei, Barbara Orioni, Sarah Ciccone, Giorgio Federici, Mario Lo Bello and Giorgio Ricci . Monomer−Dimer Equilibrium in Glutathione Transferases: A Critical Re-Examination. Biochemistry 2009, 48 (43) , 10473-10482. https://doi.org/10.1021/bi901238t
    5. Erik J. Soderblom and, Michael B. Goshe. Collision-Induced Dissociative Chemical Cross-Linking Reagents and Methodology:  Applications to Protein Structural Characterization Using Tandem Mass Spectrometry Analysis. Analytical Chemistry 2006, 78 (23) , 8059-8068. https://doi.org/10.1021/ac0613840
    6. Jennifer L. Hearne and, Roberta F. Colman. Catalytically Active Monomer of Class Mu Glutathione Transferase from Rat. Biochemistry 2006, 45 (19) , 5974-5984. https://doi.org/10.1021/bi060249e
    7. Lawrence C. Thompson,, John Walters,, Jonathan Burke,, James F. Parsons,, Richard N. Armstrong, and, Heini W. Dirr. Double Mutation at the Subunit Interface of Glutathione Transferase rGSTM1-1 Results in a Stable, Folded Monomer. Biochemistry 2006, 45 (7) , 2267-2273. https://doi.org/10.1021/bi0519506
    8. Simona G. Codreanu,, Lawrence C. Thompson,, David L. Hachey,, Heini W. Dirr, and, Richard N. Armstrong. Influence of the Dimer Interface on Glutathione Transferase Structure and Dynamics Revealed by Amide H/D Exchange Mass Spectrometry. Biochemistry 2005, 44 (31) , 10605-10612. https://doi.org/10.1021/bi050836k
    9. Tijana Ž. Grove and, Nenad M. Kostić. Metalloprotein Association, Self-Association, and Dynamics Governed by Hydrophobic Interactions:  Simultaneous Occurrence of Gated and True Electron-Transfer Reactions between Cytochrome f and Cytochrome c6 from Chlamydomonas reinhardtii. Journal of the American Chemical Society 2003, 125 (35) , 10598-10607. https://doi.org/10.1021/ja036009t
    10. Xue Yang, Zhe Zhang, Lei Wu, Meiying Yang, Siyuan Li, Jie Gao. Conserved Residues Lys64 and Glu78 at the Subunit Surface of Tau Glutathione Transferase in Rice Affect Structure and Enzymatic Properties. International Journal of Molecular Sciences 2024, 25 (1) , 398. https://doi.org/10.3390/ijms25010398
    11. Bengt Mannervik, Ralf Morgenstern. Glutathione Transferases. 2024https://doi.org/10.1016/B978-0-323-95488-4.00032-2
    12. Warin Rangubpit, Eukote Suwan, Danai Sangthong, Kannika Wongpanit, Roger W. Stich, Prapasiri Pongprayoon, Sathaporn Jittapalapong. Elucidating structure and dynamics of glutathione S-transferase from Rhipicephalus (Boophilus) microplus. Journal of Biomolecular Structure and Dynamics 2023, 41 (15) , 7309-7317. https://doi.org/10.1080/07391102.2022.2120079
    13. Luo lixia, Ye ying, Wang hong, Liu zhe, Li Jiqian. Rapid detection of Ag+ in food using cholesteric chiral artificial receptor L5. Microchemical Journal 2023, 190 , 108633. https://doi.org/10.1016/j.microc.2023.108633
    14. Marco Giampà, Elvira Sgobba. Insight to Functional Conformation and Noncovalent Interactions of Protein-Protein Assembly Using MALDI Mass Spectrometry. Molecules 2020, 25 (21) , 4979. https://doi.org/10.3390/molecules25214979
    15. Ajamaluddin Malik, Javed M. Khan, Salman F. Alamery, Dalia Fouad, Nikolaos E. Labrou, Mohamed S. Daoud, Mohamed O. Abdelkader, Farid S. Ataya, . Monomeric Camelus dromedarius GSTM1 at low pH is structurally more thermostable than its native dimeric form. PLOS ONE 2018, 13 (10) , e0205274. https://doi.org/10.1371/journal.pone.0205274
    16. Anupam Chatterjee, Sanjay Gupta. The multifaceted role of glutathione S-transferases in cancer. Cancer Letters 2018, 433 , 33-42. https://doi.org/10.1016/j.canlet.2018.06.028
    17. Daniel Gonzalez, Stéphane Fraichard, Paul Grassein, Patrice Delarue, Patrick Senet, Adrien Nicolaï, Evelyne Chavanne, Elodie Mucher, Yves Artur, Jean-François Ferveur, Jean-Marie Heydel, Loïc Briand, Fabrice Neiers. Characterization of a Drosophila glutathione transferase involved in isothiocyanate detoxification. Insect Biochemistry and Molecular Biology 2018, 95 , 33-43. https://doi.org/10.1016/j.ibmb.2018.03.004
    18. R.N. Armstrong, R. Morgenstern, P.G. Board. Glutathione Transferases. 2018, 326-362. https://doi.org/10.1016/B978-0-12-801238-3.64296-4
    19. Fatemeh Janati-Fard, Mohammad R. Housaindokht, Hassan Monhemi, Ali Nakhaeipour. How a multimeric macromolecule is affected by divalent salts? Experimental and simulation study. International Journal of Biological Macromolecules 2018, 106 , 284-292. https://doi.org/10.1016/j.ijbiomac.2017.08.018
    20. Alessio Bocedi, Raffaele Fabrini, Mario Lo Bello, Anna Maria Caccuri, Giorgio Federici, Bengt Mannervik, Athel Cornish-Bowden, Giorgio Ricci. Evolution of Negative Cooperativity in Glutathione Transferase Enabled Preservation of Enzyme Function. Journal of Biological Chemistry 2016, 291 (52) , 26739-26749. https://doi.org/10.1074/jbc.M116.749507
    21. Elien Vandermarliere, Elisabeth Stes, Kris Gevaert, Lennart Martens. Resolution of protein structure by mass spectrometry. Mass Spectrometry Reviews 2016, 35 (6) , 653-665. https://doi.org/10.1002/mas.21450
    22. Marcos Rodrigo Alborghetti, Ariane da Silva Furlan, Júlio César da Silva, Maurício Luís Sforça, Rodrigo Vargas Honorato, Daniela Campos Granato, Deivid Lucas dos Santos Migueleti, Jorge L. Neves, Paulo Sergio Lopes de Oliveira, Adriana Franco Paes-Leme, Ana Carolina de Mattos Zeri, Iris Concepcion Linares de Torriani, Jörg Kobarg, . Structural Analysis of Intermolecular Interactions in the Kinesin Adaptor Complex Fasciculation and Elongation Protein Zeta 1/ Short Coiled-Coil Protein (FEZ1/SCOCO). PLoS ONE 2013, 8 (10) , e76602. https://doi.org/10.1371/journal.pone.0076602
    23. Agnieszka Wojtkowiak-Giera, Elżbieta Wandurska-Nowak, Michał Michalak, Monika Derda, Jadwiga Łopaciuch. Trichinellosis in mice: effect of albendazole on the glutathione transferase in the intestines. Folia Parasitologica 2012, 59 (4) , 311-314. https://doi.org/10.14411/fp.2012.044
    24. Albert J. Ketterman, Chonticha Saisawang, Jantana Wongsantichon. Insect glutathione transferases. Drug Metabolism Reviews 2011, 43 (2) , 253-265. https://doi.org/10.3109/03602532.2011.552911
    25. David Balchin, Sylvia Fanucchi, Ikechukwu Achilonu, Roslin J. Adamson, Jonathan Burke, Manuel Fernandes, Samantha Gildenhuys, Heini W. Dirr. Stability of the domain interface contributes towards the catalytic function at the H-site of class alpha glutathione transferase A1-1. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2010, 1804 (12) , 2228-2233. https://doi.org/10.1016/j.bbapap.2010.09.003
    26. R.N. Armstrong. Glutathione Transferases. 2010, 295-321. https://doi.org/10.1016/B978-0-08-046884-6.00416-4
    27. Xin-Yu Wang, Zai-Rong Zhang, Sarah Perrett. Characterization of the activity and folding of the glutathione transferase from Escherichia coli and the roles of residues Cys10 and His106. Biochemical Journal 2009, 417 (1) , 55-64. https://doi.org/10.1042/BJ20071702
    28. Yu-chu Huang, Stephanie Misquitta, Sylvie Y. Blond, Elizabeth Adams, Roberta F. Colman. Catalytically Active Monomer of Glutathione S-Transferase π and Key Residues Involved in the Electrostatic Interaction between Subunits. Journal of Biological Chemistry 2008, 283 (47) , 32880-32888. https://doi.org/10.1074/jbc.M805484200
    29. Kristina O. Pazehoski, Tyler C. Collins, Robert J. Boyle, Michael I. Jensen-Seaman, Charles T. Dameron. Stalking metal-linked dimers. Journal of Inorganic Biochemistry 2008, 102 (3) , 522-531. https://doi.org/10.1016/j.jinorgbio.2007.10.027
    30. Usama M. Hegazy, Kaspars Tars, Ulf Hellman, Bengt Mannervik. Modulating Catalytic Activity by Unnatural Amino Acid Residues in a GSH-Binding Loop of GST P1-1. Journal of Molecular Biology 2008, 376 (3) , 811-826. https://doi.org/10.1016/j.jmb.2007.12.013
    31. Juthamart Piromjitpong, Jantana Wongsantichon, Albert J. Ketterman. Differences in the subunit interface residues of alternatively spliced glutathione transferases affects catalytic and structural functions. Biochemical Journal 2007, 401 (3) , 635-644. https://doi.org/10.1042/BJ20060603
    32. Carla Frova. Glutathione transferases in the genomics era: New insights and perspectives. Biomolecular Engineering 2006, 23 (4) , 149-169. https://doi.org/10.1016/j.bioeng.2006.05.020
    33. Usama M. Hegazy, Ulf Hellman, Bengt Mannervik. Replacement Surgery with Unnatural Amino Acids in the Lock-and-Key Joint of Glutathione Transferase Subunits. Chemistry & Biology 2006, 13 (9) , 929-936. https://doi.org/10.1016/j.chembiol.2006.07.005
    34. Jantana Wongsantichon, Albert J. Ketterman. An intersubunit lock-and-key ‘Clasp’ motif in the dimer interface of Delta class glutathione transferase. Biochemical Journal 2006, 394 (1) , 135-144. https://doi.org/10.1042/BJ20050915
    35. Carla S. Alves, Diane C. Kuhnert, Yasien Sayed, Heini W. Dirr. The intersubunit lock-and-key motif in human glutathione transferase A1-1: role of the key residues Met51 and Phe52 in function and dimer stability. Biochemical Journal 2006, 393 (2) , 523-528. https://doi.org/10.1042/BJ20051066
    36. Jantana Wongsantichon, Albert J. Ketterman. Alternative Splicing of Glutathione S‐Transferases. 2005, 100-116. https://doi.org/10.1016/S0076-6879(05)01006-2
    37. Usama M. Hegazy, Bengt Mannervik, Gun Stenberg. Functional Role of the Lock and Key Motif at the Subunit Interface of Glutathione Transferase P1-1. Journal of Biological Chemistry 2004, 279 (10) , 9586-9596. https://doi.org/10.1074/jbc.M312320200
    38. Montserrat Andújar-Sánchez, Josefa Marı́a Clemente-Jimenez, Felipe Rodriguez-Vico, Francisco Javier Las Heras-Vazquez, Vicente Jara-Pérez, Ana Cámara-Artigas. A monomer form of the glutathione S-transferase Y7F mutant from Schistosoma japonicum at acidic pH. Biochemical and Biophysical Research Communications 2004, 314 (1) , 6-10. https://doi.org/10.1016/j.bbrc.2003.12.067
    39. Nicole Choy, Vincent Raussens, Vasanthy Narayanaswami. Inter-molecular Coiled-coil Formation in Human Apolipoprotein E C-terminal Domain. Journal of Molecular Biology 2003, 334 (3) , 527-539. https://doi.org/10.1016/j.jmb.2003.09.059

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect