ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Subunit Interface Residues of Glutathione S-Transferase A1-1 that Are Important in the Monomer−Dimer Equilibrium

View Author Information
Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716
Cite this: Biochemistry 2004, 43, 12, 3327–3335
Publication Date (Web):March 5, 2004
https://doi.org/10.1021/bi030245z
Copyright © 2004 American Chemical Society

    Article Views

    531

    Altmetric

    -

    Citations

    52
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Alpha class glutathione S-transferase, isozyme A1-1, is a dimer (51 kDa) of identical subunits. Using the crystal structure, two main areas of subunit interaction were chosen for study:  (1) the hydrophobic ball and socket comprised of Phe52 from one subunit fitting into a socket formed on the other subunit by Met94, Phe136, and Val139 and (2) the Arg/Glu region consisting of Arg69 and Glu97 from both subunits. We introduced substitutions of these residues, by site-directed mutagenesis, to evaluate the importance of each at the subunit interface and to determine if monomeric enzymes could be generated using single mutations. Mutating each residue of the socket region to alanine results in little change in the kinetic parameters, and all are dimeric enzymes. In contrast, when Phe52, the ball residue, is replaced with alanine, the enzyme has very low activity and a weight average molecular mass of 31.9 kDa, as determined by sedimentation equilibrium experiments. Substitutions for Glu97 which eliminate the charge cause no appreciable changes in the kinetic parameters or molecular mass. Eliminating the charge on Arg69 (as in R69Q) results in a dimeric enzyme; however, when the charge is reversed (as in R69E), the weight average molecular mass is greatly shifted toward that of the monomer (33 kDa) and the changes in kinetic parameters are reasonably small. We determined the molecular masses in the presence of glutathione for F52A and R69E to ascertain whether the monomeric species retains activity. For R69E, it appears that the monomer is active, albeit less so than the dimer, while for F52A, the monomer and dimer both appear to exhibit very low activity. The dimeric species is needed to obtain high specific activity. We conclude that, of the residues that were studied, Phe52 and Arg69 are the major determinants of dimer formation and a single mutation at either position substantially hinders dimerization. The use of a mutant glutathione S-transferase which retains activity yet has a greatly weakened tendency to dimerize (such as R69E) may be advantageous for certain applications of GST fusion proteins.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     This work was funded by NIH Grant R01-CA66561 (R.F.C.) and by NIH Grant T32 GM-08550 (for M.A.V.).

    *

     To whom correspondence should be addressed. Telephone:  (302) 831-2973. Fax:  (302) 831-6335. E-mail:  [email protected].

    Cited By

    This article is cited by 52 publications.

    1. Na He, Song Bai, Yan Huang, Yanlong Xing, Lingxin Chen, Fabiao Yu, Changjun Lv. Evaluation of Glutathione S-Transferase Inhibition Effects on Idiopathic Pulmonary Fibrosis Therapy with a Near-Infrared Fluorescent Probe in Cell and Mice Models. Analytical Chemistry 2019, 91 (8) , 5424-5432. https://doi.org/10.1021/acs.analchem.9b00713
    2. Jing Zhang, Zhen Jin, Xiao-Xiao Hu, Hong-Min Meng, Jin Li, Xiao-Bing Zhang, Hong-Wen Liu, Tanggang Deng, Shan Yao, and Lili Feng . Efficient Two-Photon Fluorescent Probe for Glutathione S-Transferase Detection and Imaging in Drug-Induced Liver Injury Sample. Analytical Chemistry 2017, 89 (15) , 8097-8103. https://doi.org/10.1021/acs.analchem.7b01659
    3. Nishal Parbhoo, Stoyan H. Stoychev, Sylvia Fanucchi, Ikechukwu Achilonu, Roslin J. Adamson, Manuel Fernandes, Samantha Gildenhuys, and Heini W. Dirr . A Conserved Interdomain Interaction Is a Determinant of Folding Cooperativity in the GST Fold. Biochemistry 2011, 50 (32) , 7067-7075. https://doi.org/10.1021/bi2006509
    4. Samantha Gildenhuys, Louise A. Wallace, Jonathan P. Burke, David Balchin, Yasien Sayed and Heini W. Dirr. Class Pi Glutathione Transferase Unfolds via a Dimeric and Not Monomeric Intermediate: Functional Implications for an Unstable Monomer. Biochemistry 2010, 49 (24) , 5074-5081. https://doi.org/10.1021/bi100552d
    5. Raffaele Fabrini, Anastasia De Luca, Lorenzo Stella, Giampiero Mei, Barbara Orioni, Sarah Ciccone, Giorgio Federici, Mario Lo Bello and Giorgio Ricci . Monomer−Dimer Equilibrium in Glutathione Transferases: A Critical Re-Examination. Biochemistry 2009, 48 (43) , 10473-10482. https://doi.org/10.1021/bi901238t
    6. Xue Yang, Zhihai Wu, Jie Gao. Effects of conserved Arg20, Glu74 and Asp77 on the structure and function of a tau class glutathione S-transferase in rice. Plant Molecular Biology 2021, 105 (4-5) , 451-462. https://doi.org/10.1007/s11103-020-01099-4
    7. Aiguo Song, Xin Shen, Tian Feng, Shouchang Gai, Haiqing Wei, Xinxin Li, Hui Chen. Optimized Fluorescent Probe for Specific Imaging of Glutathione S‐Transferases in Living Cells and Mice. Chemistry – An Asian Journal 2020, 15 (9) , 1464-1468. https://doi.org/10.1002/asia.202000152
    8. Timon Geib, Cristina Lento, Derek J. Wilson, Lekha Sleno. Liquid Chromatography-Tandem Mass Spectrometry Analysis of Acetaminophen Covalent Binding to Glutathione S-Transferases. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00558
    9. Aiguo Song, Tian Feng, Xin Shen, Shouchang Gai, Yumeng Zhai, Hui Chen. Fluorescence detection of glutathione S-transferases in a low GSH level environment. Chemical Communications 2019, 55 (50) , 7219-7222. https://doi.org/10.1039/C9CC02702E
    10. Pavel V. Ershov, Yuri V. Mezentsev, Arthur T. Kopylov, Evgeniy O. Yablokov, Andrey V. Svirid, Aliaksandr Ya. Lushchyk, Leonid A. Kaluzhskiy, Andrei A. Gilep, Sergey A. Usanov, Alexey E. Medvedev, Alexis S. Ivanov. Affinity Isolation and Mass Spectrometry Identification of Prostacyclin Synthase (PTGIS) Subinteractome. Biology 2019, 8 (2) , 49. https://doi.org/10.3390/biology8020049
    11. Anupam Chatterjee, Sanjay Gupta. The multifaceted role of glutathione S-transferases in cancer. Cancer Letters 2018, 433 , 33-42. https://doi.org/10.1016/j.canlet.2018.06.028
    12. Maria Bräutigam, Nicole Teusch, Tobias Schenk, Miriam Sheikh, Rocky Z. Aricioglu, Swantje H. Borowski, Jörg‐Martin Neudörfl, Ulrich Baumann, Axel G. Griesbeck, Markus Pietsch. Selective Inhibitors of Glutathione Transferase P1 with Trioxane Structure as Anticancer Agents. ChemMedChem 2015, 10 (4) , 629-639. https://doi.org/10.1002/cmdc.201402553
    13. Virginia P. Ronchi, Jennifer M. Klein, Daniel J. Edwards, Arthur L. Haas. The Active Form of E6-associated protein (E6AP)/UBE3A Ubiquitin Ligase Is an Oligomer. Journal of Biological Chemistry 2014, 289 (2) , 1033-1048. https://doi.org/10.1074/jbc.M113.517805
    14. Marcos Rodrigo Alborghetti, Ariane da Silva Furlan, Júlio César da Silva, Maurício Luís Sforça, Rodrigo Vargas Honorato, Daniela Campos Granato, Deivid Lucas dos Santos Migueleti, Jorge L. Neves, Paulo Sergio Lopes de Oliveira, Adriana Franco Paes-Leme, Ana Carolina de Mattos Zeri, Iris Concepcion Linares de Torriani, Jörg Kobarg, . Structural Analysis of Intermolecular Interactions in the Kinesin Adaptor Complex Fasciculation and Elongation Protein Zeta 1/ Short Coiled-Coil Protein (FEZ1/SCOCO). PLoS ONE 2013, 8 (10) , e76602. https://doi.org/10.1371/journal.pone.0076602
    15. Frederick C. Streich, Virginia P. Ronchi, J.Patrick Connick, Arthur L. Haas. Tripartite Motif Ligases Catalyze Polyubiquitin Chain Formation through a Cooperative Allosteric Mechanism. Journal of Biological Chemistry 2013, 288 (12) , 8209-8221. https://doi.org/10.1074/jbc.M113.451567
    16. David Balchin, Sylvia Fanucchi, Ikechukwu Achilonu, Roslin J. Adamson, Jonathan Burke, Manuel Fernandes, Samantha Gildenhuys, Heini W. Dirr. Stability of the domain interface contributes towards the catalytic function at the H-site of class alpha glutathione transferase A1-1. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2010, 1804 (12) , 2228-2233. https://doi.org/10.1016/j.bbapap.2010.09.003
    17. Qiang Zhang, Jingbo Pi, Courtney G. Woods, Melvin E. Andersen. A systems biology perspective on Nrf2-mediated antioxidant response. Toxicology and Applied Pharmacology 2010, 244 (1) , 84-97. https://doi.org/10.1016/j.taap.2009.08.018
    18. Xianchun Li. Glutathione and Glutathione-S-Transferase in Detoxification Mechanisms. 2009https://doi.org/10.1002/9780470744307.gat166
    19. Nadia Barbero, Lucia Napione, Pierluigi Quagliotto, Simona Pavan, Claudia Barolo, Ermanno Barni, Federico Bussolino, Guido Viscardi. Fluorescence anisotropy analysis of protein–antibody interaction. Dyes and Pigments 2009, 83 (2) , 225-229. https://doi.org/10.1016/j.dyepig.2009.04.011
    20. Irene Axarli, Prathusha Dhavala, Anastassios C. Papageorgiou, Nikolaos E. Labrou. Crystallographic and Functional Characterization of the Fluorodifen-inducible Glutathione Transferase from Glycine max Reveals an Active Site Topography Suited for Diphenylether Herbicides and a Novel L-site. Journal of Molecular Biology 2009, 385 (3) , 984-1002. https://doi.org/10.1016/j.jmb.2008.10.084
    21. Yu-chu Huang, Stephanie Misquitta, Sylvie Y. Blond, Elizabeth Adams, Roberta F. Colman. Catalytically Active Monomer of Glutathione S-Transferase π and Key Residues Involved in the Electrostatic Interaction between Subunits. Journal of Biological Chemistry 2008, 283 (47) , 32880-32888. https://doi.org/10.1074/jbc.M805484200
    22. Shunichi Kosugi, Masako Hasebe, Tetsuyuki Entani, Seiji Takayama, Masaru Tomita, Hiroshi Yanagawa. Design of Peptide Inhibitors for the Importin α/β Nuclear Import Pathway by Activity-Based Profiling. Chemistry & Biology 2008, 15 (9) , 940-949. https://doi.org/10.1016/j.chembiol.2008.07.019
    23. Sudan Tao, Xiwen Chen, Jia Liu, Ming Ming, Namsu Chong, Defu Chen. Characterization of Ser73 in Arabidopsis thaliana Glutathione S-transferase zeta class. Journal of Genetics and Genomics 2008, 35 (8) , 507-512. https://doi.org/10.1016/S1673-8527(08)60069-7
    24. Nikola Wenta, Holger Strauss, Stefanie Meyer, Uwe Vinkemeier. Tyrosine phosphorylation regulates the partitioning of STAT1 between different dimer conformations. Proceedings of the National Academy of Sciences 2008, 105 (27) , 9238-9243. https://doi.org/10.1073/pnas.0802130105
    25. Emma Connell, Phillip Scott, Bazbek Davletov. Real-time assay for monitoring membrane association of lipid-binding domains. Analytical Biochemistry 2008, 377 (1) , 83-88. https://doi.org/10.1016/j.ab.2008.02.016
    26. Luis A. Ralat, Stephanie A. Misquitta, Yefim Manevich, Aron B. Fisher, Roberta F. Colman. Characterization of the complex of glutathione S-transferase pi and 1-cysteine peroxiredoxin. Archives of Biochemistry and Biophysics 2008, 474 (1) , 109-118. https://doi.org/10.1016/j.abb.2008.02.043
    27. Usama M. Hegazy, Kaspars Tars, Ulf Hellman, Bengt Mannervik. Modulating Catalytic Activity by Unnatural Amino Acid Residues in a GSH-Binding Loop of GST P1-1. Journal of Molecular Biology 2008, 376 (3) , 811-826. https://doi.org/10.1016/j.jmb.2007.12.013
    28. Melvyn W. Yap, Gulnahar B. Mortuza, Ian A. Taylor, Jonathan P. Stoye. The design of artificial retroviral restriction factors. Virology 2007, 365 (2) , 302-314. https://doi.org/10.1016/j.virol.2007.04.005
    29. Melissa L. Geddie, Ichiro Matsumura. Antibody-Induced Oligomerization and Activation of an Engineered Reporter Enzyme. Journal of Molecular Biology 2007, 369 (4) , 1052-1059. https://doi.org/10.1016/j.jmb.2007.03.076
    30. Tsui-Fen Chou, Ilya B. Tikh, Bruno A.C. Horta, Brahma Ghosh, Ricardo B. De Alencastro, Carston R. Wagner. Engineered Monomeric Human Histidine Triad Nucleotide-binding Protein 1 Hydrolyzes Fluorogenic Acyl-adenylate and Lysyl-tRNA Synthetase-generated Lysyl-adenylate. Journal of Biological Chemistry 2007, 282 (20) , 15137-15147. https://doi.org/10.1074/jbc.M606972200
    31. Qiang Zhang, Melvin E Andersen, . Dose Response Relationship in Anti-Stress Gene Regulatory Networks. PLoS Computational Biology 2007, 3 (3) , e24. https://doi.org/10.1371/journal.pcbi.0030024
    32. Thanasis Dalakouras, Brian J. Smith, Dimitris Platis, Manon M.J. Cox, Nikolaos E. Labrou. Development of recombinant protein-based influenza vaccine. Journal of Chromatography A 2006, 1136 (1) , 48-56. https://doi.org/10.1016/j.chroma.2006.09.067
    33. Usama M. Hegazy, Ulf Hellman, Bengt Mannervik. Replacement Surgery with Unnatural Amino Acids in the Lock-and-Key Joint of Glutathione Transferase Subunits. Chemistry & Biology 2006, 13 (9) , 929-936. https://doi.org/10.1016/j.chembiol.2006.07.005
    34. Dimitris Platis, Christoph A. Sotriffer, Yannis Clonis, Nikolaos E. Labrou. Lock-and-key motif as a concept for designing affinity adsorbents for protein purification. Journal of Chromatography A 2006, 1128 (1-2) , 138-151. https://doi.org/10.1016/j.chroma.2006.06.051
    35. Namir J. Hassan, Stephen J. Simmonds, Nicholas G. Clarkson, Sarah Hanrahan, Michael J. Puklavec, Martine Bomb, A. Neil Barclay, Marion H. Brown. CD6 Regulates T-Cell Responses through Activation-Dependent Recruitment of the Positive Regulator SLP-76. Molecular and Cellular Biology 2006, 26 (17) , 6727-6738. https://doi.org/10.1128/MCB.00688-06
    36. Piotr Zimniak. Substrates and Reaction Mechanisms of Glutathione Transferases. 2006, 71-101. https://doi.org/10.1201/9781420004489.ch5
    37. Shige H. Yoshimura, Hirohide Takahashi, Shotaro Otsuka, Kunio Takeyasu. Development of glutathione‐coupled cantilever for the single‐molecule force measurement by scanning force microscopy. FEBS Letters 2006, 580 (16) , 3961-3965. https://doi.org/10.1016/j.febslet.2006.06.032
    38. W. Liu, Vedrana Montana, Jihong Bai, Edwin R. Chapman, U. Mohideen, Vladimir Parpura. Single Molecule Mechanical Probing of the SNARE Protein Interactions. Biophysical Journal 2006, 91 (2) , 744-758. https://doi.org/10.1529/biophysj.105.073312
    39. Jennifer L. Hearne, Roberta F. Colman. Contribution of the mu loop to the structure and function of rat glutathione transferase M1‐1. Protein Science 2006, 15 (6) , 1277-1289. https://doi.org/10.1110/ps.062129506
    40. Siobhan M. O'Sullivan, Ronan M. McCarthy, Melissa A. Vargo, Roberta F. Colman, David Sheehan. Chemical modification at subunit 1 of rat kidney Alpha class glutathione transferase with 2,3,5,6-tetrachloro-1,4-benzoquinone: Close structural connectivity between glutathione conjugation activity and non-substrate ligand binding. Biochemical Pharmacology 2006, 71 (11) , 1629-1636. https://doi.org/10.1016/j.bcp.2006.03.002
    41. Carla S. Alves, Diane C. Kuhnert, Yasien Sayed, Heini W. Dirr. The intersubunit lock-and-key motif in human glutathione transferase A1-1: role of the key residues Met51 and Phe52 in function and dimer stability. Biochemical Journal 2006, 393 (2) , 523-528. https://doi.org/10.1042/BJ20051066
    42. Wenhui Zhou, John W. Shultz, Nancy Murphy, Erika M. Hawkins, Laurent Bernad, Troy Good, Leonard Moothart, Susan Frackman, Dieter H. Klaubert, Robert F. Bulleit, Keith V. Wood. Electrophilic aromatic substituted luciferins as bioluminescent probes for glutathione S-transferase assays. Chemical Communications 2006, 45 (44) , 4620. https://doi.org/10.1039/b610682j
    43. Hengyao Niu, Lihong Wan, Bridget Baumgartner, Dana Schaefer, Josef Loidl, Nancy M. Hollingsworth. Partner Choice during Meiosis Is Regulated by Hop1-promoted Dimerization of Mek1. Molecular Biology of the Cell 2005, 16 (12) , 5804-5818. https://doi.org/10.1091/mbc.e05-05-0465
    44. Jennifer L. Hearne, Roberta F. Colman. Delineation of xenobiotic substrate sites in rat glutathione S‐transferase M1‐1. Protein Science 2005, 14 (10) , 2526-2536. https://doi.org/10.1110/ps.051651905
    45. Andrés Caniuguir, Ricardo Cabrera, Mauricio Báez, Claudio C. Vásquez, Jorge Babul, Victoria Guixé. Role of Cys‐295 on subunit interactions and allosteric regulation of phosphofructokinase‐2 from Escherichia coli. FEBS Letters 2005, 579 (11) , 2313-2318. https://doi.org/10.1016/j.febslet.2005.02.078
    46. Lisa A. DeLouise, Benjamin L. Miller. Enzyme Immobilization in Porous Silicon:  Quantitative Analysis of the Kinetic Parameters for Glutathione- S -transferases. Analytical Chemistry 2005, 77 (7) , 1950-1956. https://doi.org/10.1021/ac0486185
    47. Fiona L Scott, Jean-Bernard Denault, Stefan J Riedl, Hwain Shin, Martin Renatus, Guy S Salvesen. XIAP inhibits caspase-3 and -7 using two binding sites: evolutionarily conserved mechanism of IAPs. The EMBO Journal 2005, 24 (3) , 645-655. https://doi.org/10.1038/sj.emboj.7600544
    48. Young-Mi Lee, Sung Yeoul Chang, Sang-Oun Jung, Hee-Seok Kweon, Jae-Seong Lee. Cloning and expression of alpha class glutathione S-transferase gene from the small hermaphroditic fish Rivulus marmoratus (Cyprinodontiformes, Rivulidae). Marine Pollution Bulletin 2005, 51 (8-12) , 776-783. https://doi.org/10.1016/j.marpolbul.2005.06.016
    49. Lisa A. DeLouise, Benjamin L. Miller. Quantatitive Assessment of Enzyme Immobilization Capacity in Porous Silicon. Analytical Chemistry 2004, 76 (23) , 6915-6920. https://doi.org/10.1021/ac0488208
    50. Georgia A. Kotzia, Nikolaos E. Labrou. S ‐(2,3‐Dichlorotriazinyl)glutathione. European Journal of Biochemistry 2004, 271 (17) , 3503-3511. https://doi.org/10.1111/j.0014-2956.2004.04285.x
    51. Melissa A. Vargo, Roberta F. Colman. Heterodimers of wild‐type and subunit interface mutant enzymes of glutathione S‐transferase A1–1: Interactive or independent active sites?. Protein Science 2004, 13 (6) , 1586-1593. https://doi.org/10.1110/ps.04694004
    52. Martha L. Bulyk. Protein Binding Microarrays for the Characterization of DNA–Protein Interactions. , 65-85. https://doi.org/10.1007/10_025

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect