ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Parallel Evolutionary Pathways for Glutathione Transferases:  Structure and Mechanism of the Mitochondrial Class Kappa Enzyme rGSTK1-1

View Author Information
The Center for Advanced Research in Biotechnology of the Maryland Biotechnology Institute and the National Institutes of Standards and Technology, Gudelsky Drive, Rockville, Maryland 20850, and Departments of Biochemistry and Chemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
Cite this: Biochemistry 2004, 43, 2, 352–361
Publication Date (Web):December 19, 2003
https://doi.org/10.1021/bi035832z
Copyright © 2004 American Chemical Society

    Article Views

    593

    Altmetric

    -

    Citations

    105
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The class kappa glutathione (GSH) transferase is an enzyme that resides in the mitochondrial matrix. Its relationship to members of the canonical GSH transferase superfamily has remained an enigma. The three-dimensional structure of the class kappa enzyme from rat (rGSTK1-1) in complex with GSH has been solved by single isomorphous replacement with anomalous scattering at a resolution of 2.5 Å. The structure reveals that the enzyme is more closely related to the protein disulfide bond isomerase, dsbA, from Escherichia coli than it is to members of the canonical superfamily. The structures of rGSTK1-1 and the canonical superfamily members indicate that the proteins folds have diverged from a common thioredoxin/glutaredoxin progenitor but did so by different mechanisms. The mitochondrial enzyme, therefore, represents a fourth protein superfamily that supports GSH transferase activity. The thioredoxin domain functions in a manner that is similar to that seen in the canonical enzymes by providing key structural elements for the recognition of GSH. The hydroxyl group of S16 is within hydrogen-bonding distance of the sulfur of bound GSH and is, in part, responsible for the ionization of the thiol in the E•GSH complex (pKa = 6.4 ± 0.1). Preequilibrium kinetic experiments indicate that the kon for GSH is 1 × 105 M-1 s-1 and koff for GS- is ∼8 s-1 and relatively slow with respect to turnover with 1-chloro-2, 4-dinitrobenzene (CDNB). As a result, the KMGSH (11 mM) is much larger than the apparent KdGSH (90 μM). The active site has a relatively open access channel that is flanked by disordered loops that may explain the relatively high turnover number (280 s-1 at pH 7.0) toward CDNB. The disordered loops form an extensive contiguous patch on one face of the dimeric enzyme, a fact that suggests that the protein surface may interact with a membrane or other protein partner.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Supported by Grants R01 GM30910, P30 ES00267, T32 ES07028, and T32 GM08320 from the National Institutes of Health. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under Contract No. W-31-109-Eng-38. Use of the BioCARS Sector 14 was supported by the National Institutes of Health, National Center for Research Resources, under Grant No. RR07707.

     The Center for Advanced Research in Biotechnology of the Maryland Biotechnology Institute and the National Institutes of Standards and Technology.

    §

     Vanderbilt University School of Medicine.

    *

     To whom correspondence should be addressed. Tel:  615 343-2920. Fax:  615 343-2921. E-mail:  [email protected].

    Cited By

    This article is cited by 105 publications.

    1. Diogo Vila-Viçosa, Vitor H. Teixeira, Hugo A. F. Santos, and Miguel Machuqueiro . Conformational Study of GSH and GSSG Using Constant-pH Molecular Dynamics Simulations. The Journal of Physical Chemistry B 2013, 117 (25) , 7507-7517. https://doi.org/10.1021/jp401066v
    2. Deboleena Dipak Sarkar, Sarah K. Edwards, Justin A. Mauser, Allen M. Suarez, Maxwell A. Serowoky, Natalie L. Hudok, Phylicia L. Hudok, Martha Nuñez, Craig S. Weber, Ronald M. Lynch, Osamu Miyashita, and Tsu-Shuen Tsao . Increased Redox-Sensitive Green Fluorescent Protein Reduction Potential in the Endoplasmic Reticulum following Glutathione-Mediated Dimerization. Biochemistry 2013, 52 (19) , 3332-3345. https://doi.org/10.1021/bi400052u
    3. John A. Gerlt, Karen N. Allen, Steven C. Almo, Richard N. Armstrong, Patricia C. Babbitt, John E. Cronan, Debra Dunaway-Mariano, Heidi J. Imker, Matthew P. Jacobson, Wladek Minor, C. Dale Poulter, Frank M. Raushel, Andrej Sali, Brian K. Shoichet, and Jonathan V. Sweedler . The Enzyme Function Initiative. Biochemistry 2011, 50 (46) , 9950-9962. https://doi.org/10.1021/bi201312u
    4. Stacy A. Reeves, Derek Parsonage, Kimberly J. Nelson, and Leslie B. Poole . Kinetic and Thermodynamic Features Reveal That Escherichia coli BCP Is an Unusually Versatile Peroxiredoxin. Biochemistry 2011, 50 (41) , 8970-8981. https://doi.org/10.1021/bi200935d
    5. Holly J. Atkinson and Patricia C. Babbitt . Glutathione Transferases Are Structural and Functional Outliers in the Thioredoxin Fold. Biochemistry 2009, 48 (46) , 11108-11116. https://doi.org/10.1021/bi901180v
    6. Stoyan H. Stoychev, Christos Nathaniel, Sylvia Fanucchi, Melissa Brock, Sheng Li, Kyle Asmus, Virgil L. Woods, Jr. and Heini W. Dirr . Structural Dynamics of Soluble Chloride Intracellular Channel Protein CLIC1 Examined by Amide Hydrogen−Deuterium Exchange Mass Spectrometry. Biochemistry 2009, 48 (35) , 8413-8421. https://doi.org/10.1021/bi9010607
    7. Samantha Gildenhuys, Louise A. Wallace and Heini W. Dirr. Stability and Unfolding of Reduced Escherichia coli Glutaredoxin 2: A Monomeric Structural Homologue of the Glutathione Transferase Family. Biochemistry 2008, 47 (40) , 10801-10808. https://doi.org/10.1021/bi801272t
    8. Maria-Armineh Tossounian, Yuhan Zhao, Bess Yi Kun Yu, Samuel A. Markey, Oksana Malanchuk, Yuejia Zhu, Amanda Cain, Ivan Gout. Low-molecular-weight thiol transferases in redox regulation and antioxidant defence. Redox Biology 2024, 71 , 103094. https://doi.org/10.1016/j.redox.2024.103094
    9. Lluvia de Carolina Sánchez Pérez, Rafael A. Zubillaga, Ponciano García-Gutiérrez, Abraham Landa. Sigma-Class Glutathione Transferases (GSTσ): A New Target with Potential for Helminth Control. Tropical Medicine and Infectious Disease 2024, 9 (4) , 85. https://doi.org/10.3390/tropicalmed9040085
    10. Ho Am Jang, Seo Jin Lee, Sung Min Ku, Jae Hui Kim, Dong Woo Kang, So Yeon Choi, Sang Mok Jung, Jongdae Lee, Yong Seok Lee, Yeon Soo Han, Yong Hun Jo. In silico identification and expression analysis of glutathione S ‐transferase in Tenebrio molitor . Entomological Research 2024, 54 (4) https://doi.org/10.1111/1748-5967.12720
    11. Hyunjun Park, Han-Sol Kim, Sofia Abassi, Quynh Thi Nhu Bui, Jang-Seu Ki. Two novel glutathione S-transferase (GST) genes in the toxic marine dinoflagellate Alexandrium pacificum and their transcriptional responses to environmental contaminants. Science of The Total Environment 2024, , 169983. https://doi.org/10.1016/j.scitotenv.2024.169983
    12. Bengt Mannervik, Ralf Morgenstern. Glutathione Transferases. 2024https://doi.org/10.1016/B978-0-323-95488-4.00032-2
    13. Cláudio F. Costa, Celien Lismont, Serhii Chornyi, Hongli Li, Mohamed A. F. Hussein, Hans R. Waterham, Marc Fransen. Functional Analysis of GSTK1 in Peroxisomal Redox Homeostasis in HEK-293 Cells. Antioxidants 2023, 12 (6) , 1236. https://doi.org/10.3390/antiox12061236
    14. Alexandra Casey, Liam Dolan, . Genes encoding cytochrome P450 monooxygenases and glutathione S-transferases associated with herbicide resistance evolved before the origin of land plants. PLOS ONE 2023, 18 (2) , e0273594. https://doi.org/10.1371/journal.pone.0273594
    15. Janka Vašková, Ladislav Kočan, Ladislav Vaško, Pál Perjési. Glutathione-Related Enzymes and Proteins: A Review. Molecules 2023, 28 (3) , 1447. https://doi.org/10.3390/molecules28031447
    16. Mathieu Schwartz, Valentin Boichot, Stéphane Fraichard, Mariam Muradova, Patrick Senet, Adrien Nicolai, Frederic Lirussi, Mathilde Bas, Francis Canon, Jean-Marie Heydel, Fabrice Neiers. Role of Insect and Mammal Glutathione Transferases in Chemoperception. Biomolecules 2023, 13 (2) , 322. https://doi.org/10.3390/biom13020322
    17. U. Shamjana, Tony Grace. Review of Insecticide Resistance and Its Underlying Mechanisms in Tribolium castaneum. 2022https://doi.org/10.5772/intechopen.100050
    18. Lang Liu, Hongcheng Tang, Baojian Huang, Kang Wang, Balachandar Balakrishnan, Maohua Chen. A novel theta-class glutathione S-transferase gene in Rhopalosiphum padi (L.) (Hemiptera: Aphididae): Identification, recombinant protein expression and function analyses of RpGSTT1. Journal of Asia-Pacific Entomology 2022, 25 (2) , 101915. https://doi.org/10.1016/j.aspen.2022.101915
    19. Sofia Abassi, Hui Wang, Hansol Kim, Jang‐Seu Ki. Molecular cloning and oxidative‐stress responses of a novel Phi class glutathione S ‐transferase ( GSTF ) gene in the freshwater algae Closterium ehrenbergii. Environmental Toxicology 2022, 37 (4) , 789-801. https://doi.org/10.1002/tox.23443
    20. Jong-Uk Lee, Ji-Yeon Jeong, Min Kyung Kim, Sun A. Min, Jong-Sook Park, Choon-Sik Park, . Association of GSTM1 and GSTT1 Null Genotypes with Toluene Diisocyanate-Induced Asthma. Canadian Respiratory Journal 2022, 2022 , 1-8. https://doi.org/10.1155/2022/7977937
    21. Soon Jian Gan, Yong Qi Leong, Muhammad Fakrul Hakim bin Barhanuddin, Siew Tung Wong, Shew Fung Wong, Joon Wah Mak, Rohani Binti Ahmad. Dengue fever and insecticide resistance in Aedes mosquitoes in Southeast Asia: a review. Parasites & Vectors 2021, 14 (1) https://doi.org/10.1186/s13071-021-04785-4
    22. Shahid M. Baba, Arshad A. Pandith, Zafar A. Shah, Sajad A. Geelani, Javid R. Bhat, Ayaz Gul, Sameer A. Guru, Hamed A. El-Serehy, Abid M. Koul, Sheikh Mansoor. GSTT1null and rs156697 Polymorphism in GSTO2 Influence the Risk and Therapeutic Outcome of B-Acute Lymphoblastic Leukemia Patients. Frontiers in Oncology 2021, 11 https://doi.org/10.3389/fonc.2021.714421
    23. Shahid M. Baba, Zafar A. Shah, Arshad A. Pandith, Sajad A. Geelani, Mohammad M. Mir, Javid R. Bhat, Ayaz Gul, Gul M. Bhat. Glutathione S‐transferase gene polymorphic sequence variations: Association with risk and response to Imatinib among Chronic Myeloid Leukemia patients of Kashmir. International Journal of Laboratory Hematology 2021, 43 (5) , 1000-1008. https://doi.org/10.1111/ijlh.13471
    24. Rahul Raj Singh, Katie M. Reindl. Glutathione S-Transferases in Cancer. Antioxidants 2021, 10 (5) , 701. https://doi.org/10.3390/antiox10050701
    25. Mbalenhle Sizamile Mfeka, José Martínez-Oyanedel, Wanping Chen, Ikechukwu Achilonu, Khajamohiddin Syed, Thandeka Khoza. Comparative analyses and structural insights of new class glutathione transferases in Cryptosporidium species. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-77233-5
    26. Tamara Sljivancanin Jakovljevic, Jelena Jacimovic, Nadja Nikolic, Jelena Milasin. Lack of association between glutathione S‐transferase M1 and T1 gene polymorphisms and susceptibility to preeclampsia: An updated systematic review and meta‐analysis. American Journal of Reproductive Immunology 2020, 84 (6) https://doi.org/10.1111/aji.13303
    27. Jun Chul Park, Atsushi Hagiwara, Heum Gi Park, Jae-Seong Lee. The glutathione S-transferase genes in marine rotifers and copepods: Identification of GSTs and applications for ecotoxicological studies. Marine Pollution Bulletin 2020, 156 , 111080. https://doi.org/10.1016/j.marpolbul.2020.111080
    28. Jian Cui, Guoqing Li, Jie Yin, Linwei Li, Yue Tan, Haoran Wei, Bang Liu, Lihong Deng, Jialu Tang, Yonglin Chen, Lan Yi. GSTP1 and cancer: Expression, methylation, polymorphisms and signaling (Review). International Journal of Oncology 2020, https://doi.org/10.3892/ijo.2020.4979
    29. Loutfy H. Madkour. Antioxidant Therapeutic Defenses Toward Redox Biology and Oxidative Stress. 2020, 557-629. https://doi.org/10.1007/978-3-030-37297-2_12
    30. Loutfy H. Madkour. Effects of interactions between antioxidant defense therapy and ROS. 2020, 645-691. https://doi.org/10.1016/B978-0-12-822481-6.00023-2
    31. Arne Sahm, Pedro Almaida-Pagán, Martin Bens, Mirko Mutalipassi, Alejandro Lucas-Sánchez, Jorge de Costa Ruiz, Matthias Görlach, Alessandro Cellerino. Analysis of the coding sequences of clownfish reveals molecular convergence in the evolution of lifespan. BMC Evolutionary Biology 2019, 19 (1) https://doi.org/10.1186/s12862-019-1409-0
    32. Patrick E. Hanna, M. W. Anders. The mercapturic acid pathway. Critical Reviews in Toxicology 2019, 49 (10) , 819-929. https://doi.org/10.1080/10408444.2019.1692191
    33. Fikret Türkan, Zübeyir Huyut, Mehmet Tahir Huyut, Mehmet Harbi Calimli. In vivo biochemical evaluations of some β-lactam group antibiotics on glutathione reductase and glutathione S- transferase enzyme activities. Life Sciences 2019, 231 , 116572. https://doi.org/10.1016/j.lfs.2019.116572
    34. Jupitara Kalita, Rohit Shukla, Timir Tripathi. Structural basis of urea‐induced unfolding of Fasciola gigantica glutathione S‐transferase. Journal of Cellular Physiology 2019, 234 (4) , 4491-4503. https://doi.org/10.1002/jcp.27253
    35. Natalya Kurochkina. Proteins and Protein Structure. 2019, 1-52. https://doi.org/10.1007/978-981-13-6601-7_1
    36. Sreenivasulu Dasari, Sailaja Gonuguntla, Muni Swamy Ganjayi, Suman Bukke, Basha Sreenivasulu, Balaji Meriga. Genetic polymorphism of glutathione S-transferases: Relevance to neurological disorders. Pathophysiology 2018, 25 (4) , 285-292. https://doi.org/10.1016/j.pathophys.2018.06.001
    37. Prachi Gupta, Brendan L. Thompson, Banrida Wahlang, Carolyn T. Jordan, J. Zach Hilt, Bernhard Hennig, Thomas Dziubla. The environmental pollutant, polychlorinated biphenyls, and cardiovascular disease: a potential target for antioxidant nanotherapeutics. Drug Delivery and Translational Research 2018, 8 (3) , 740-759. https://doi.org/10.1007/s13346-017-0429-9
    38. W.M. Gayashani Sandamalika, Thanthrige Thiunuwan Priyathilaka, D.S. Liyanage, Sukkyoung Lee, Han-Kyu Lim, Jehee Lee. Molecular characterization of kappa class glutathione S-transferase from the disk abalone (Haliotis discus discus) and changes in expression following immune and stress challenges. Fish & Shellfish Immunology 2018, 77 , 252-263. https://doi.org/10.1016/j.fsi.2018.03.058
    39. C. He, W. Xie, X. Yang, S.‐L. Wang, Q.‐J. Wu, Y.‐J. Zhang. Identification of glutathione S‐transferases in Bemisia tabaci (Hemiptera: Aleyrodidae) and evidence that GSTd7 helps explain the difference in insecticide susceptibility between B. tabaci Middle East‐Minor Asia 1 and Mediterranean. Insect Molecular Biology 2018, 27 (1) , 22-35. https://doi.org/10.1111/imb.12337
    40. R.N. Armstrong, R. Morgenstern, P.G. Board. Glutathione Transferases. 2018, 326-362. https://doi.org/10.1016/B978-0-12-801238-3.64296-4
    41. Jupitara Kalita, Rohit Shukla, Harish Shukla, Kundlik Gadhave, Rajanish Giri, Timir Tripathi. Comprehensive analysis of the catalytic and structural properties of a mu-class glutathione s-transferase from Fasciola gigantica. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-17678-3
    42. Juli Bai, Christopher Cervantes, Juan Liu, Sijia He, Haiyan Zhou, Bilin Zhang, Huan Cai, Dongqing Yin, Derong Hu, Zhi Li, Hongzhi Chen, Xiaoli Gao, Fang Wang, Jason C. O’Connor, Yong Xu, Meilian Liu, Lily Q. Dong, Feng Liu. DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway. Proceedings of the National Academy of Sciences 2017, 114 (46) , 12196-12201. https://doi.org/10.1073/pnas.1708744114
    43. Xudong Liu, Wangxia Tong, Xiaofang Zhao, Hongxing Zhang, Yanfang Tang, Xin Deng. Chinese herb extract improves liver steatosis by promoting the expression of high molecular weight adiponectin in NAFLD rats. Molecular Medicine Reports 2017, 16 (4) , 5580-5586. https://doi.org/10.3892/mmr.2017.7284
    44. Hongzhi Chen, Juli Bai, Feng Dong, Hezhi Fang, Yun Zhang, Wen Meng, Bilian Liu, Yan Luo, Meilian Liu, Yidong Bai, Muhammad A. Abdul‐Ghani, Rongxia Li, Jiarui Wu, Rong Zeng, Zhiguang Zhou, Lily Q. Dong, Feng Liu. Hepatic DsbA‐L protects mice from diet‐induced hepatosteatosis and insulin resistance. The FASEB Journal 2017, 31 (6) , 2314-2326. https://doi.org/10.1096/fj.201600985R
    45. Muhammad Yasir, Bushra Sultana, Matthew Amicucci. Biological activities of phenolic compounds extracted from Amaranthaceae plants and their LC/ESI-MS/MS profiling. Journal of Functional Foods 2016, 26 , 645-656. https://doi.org/10.1016/j.jff.2016.08.029
    46. Mukesh Kumar Chaurasia, Gayathri Ravichandran, Faizal Nizam, Mariadhas Valan Arasu, Naif Abdullah Al-Dhabi, Aziz Arshad, Ramasamy Harikrishnan, Jesu Arockiaraj. In-silico analysis and mRNA modulation of detoxification enzymes GST delta and kappa against various biotic and abiotic oxidative stressors. Fish & Shellfish Immunology 2016, 54 , 353-363. https://doi.org/10.1016/j.fsi.2016.04.031
    47. Ajamaluddin Malik, Dalia Fouad, Nikolaos E. Labrou, Abdulrahman M. Al-Senaidy, Mohamed A. Ismael, Hesham M. Saeed, Farid S. Ataya. Structural and thermodynamic properties of kappa class glutathione transferase from Camelus dromedarius. International Journal of Biological Macromolecules 2016, 88 , 313-319. https://doi.org/10.1016/j.ijbiomac.2016.03.065
    48. Lu Lu, Ashutosh K. Pandey, M. Trevor Houseal, Megan K. Mulligan, . The Genetic Architecture of Murine Glutathione Transferases. PLOS ONE 2016, 11 (2) , e0148230. https://doi.org/10.1371/journal.pone.0148230
    49. Gabriel V. Markov, Praveen Baskaran, Ralf J. Sommer. The Same or Not the Same: Lineage-Specific Gene Expansions and Homology Relationships in Multigene Families in Nematodes. Journal of Molecular Evolution 2015, 80 (1) , 18-36. https://doi.org/10.1007/s00239-014-9651-y
    50. Md. Ismail, Md. Faruk Hossain, Arifur Rahman Tanu, Hossain Uddin Shekhar. Effect of Spirulina Intervention on Oxidative Stress, Antioxidant Status, and Lipid Profile in Chronic Obstructive Pulmonary Disease Patients. BioMed Research International 2015, 2015 , 1-7. https://doi.org/10.1155/2015/486120
    51. E. V. Kalinina, N. N. Chernov, M. D. Novichkova. Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes. Biochemistry (Moscow) 2014, 79 (13) , 1562-1583. https://doi.org/10.1134/S0006297914130082
    52. Farid S. Ataya, Abdul Aziz Al-Jafari, Mohamed S. Daoud, Amal Abdulaziz Al-Hazzani, Afaf Ibrahim Shehata, Hesham M. Saeed, Dalia Fouad. Genomics, phylogeny and in silico analysis of mitochondrial glutathione S-transferase-kappa from the camel Camelus dromedarius. Research in Veterinary Science 2014, 97 (1) , 46-54. https://doi.org/10.1016/j.rvsc.2014.04.004
    53. Tsu-Shuen Tsao. Assembly of adiponectin oligomers. Reviews in Endocrine and Metabolic Disorders 2014, 15 (2) , 125-136. https://doi.org/10.1007/s11154-013-9256-6
    54. Susan T. Mashiyama, M. Merced Malabanan, Eyal Akiva, Rahul Bhosle, Megan C. Branch, Brandan Hillerich, Kevin Jagessar, Jungwook Kim, Yury Patskovsky, Ronald D. Seidel, Mark Stead, Rafael Toro, Matthew W. Vetting, Steven C. Almo, Richard N. Armstrong, Patricia C. Babbitt, . Large-Scale Determination of Sequence, Structure, and Function Relationships in Cytosolic Glutathione Transferases across the Biosphere. PLoS Biology 2014, 12 (4) , e1001843. https://doi.org/10.1371/journal.pbio.1001843
    55. Bo Wang, Paul P. Van Veldhoven, Chantal Brees, Noemí Rubio, Marcus Nordgren, Oksana Apanasets, Markus Kunze, Myriam Baes, Patrizia Agostinis, Marc Fransen. Mitochondria are targets for peroxisome-derived oxidative stress in cultured mammalian cells. Free Radical Biology and Medicine 2013, 65 , 882-894. https://doi.org/10.1016/j.freeradbiomed.2013.08.173
    56. Marcel Deponte. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochimica et Biophysica Acta (BBA) - General Subjects 2013, 1830 (5) , 3217-3266. https://doi.org/10.1016/j.bbagen.2012.09.018
    57. Philip G. Board, Deepthi Menon. Glutathione transferases, regulators of cellular metabolism and physiology. Biochimica et Biophysica Acta (BBA) - General Subjects 2013, 1830 (5) , 3267-3288. https://doi.org/10.1016/j.bbagen.2012.11.019
    58. S. Sanguansin, S. Petmitr, P. O-charoenrat, W. Pongstaporn. Association of glutathione S-transferase omega gene polymorphisms with progression of head and neck cancer. Molecular Biology Reports 2012, 39 (12) , 10915-10920. https://doi.org/10.1007/s11033-012-1991-3
    59. A Theodoratos, A C Blackburn, M Coggan, J Cappello, C Z Larter, K I Matthaei, P G Board. The impact of glutathione transferase kappa deficiency on adiponectin multimerisation in vivo. International Journal of Obesity 2012, 36 (10) , 1366-1369. https://doi.org/10.1038/ijo.2011.267
    60. Miroslav Dostalek, Anna‐Katarina Stark. Glutathione S ‐Transferases. 2012, 147-164. https://doi.org/10.1002/9783527630905.ch5
    61. Philip G. Board. Functional Genomics of the Human Glutathione Transferases. 2012, 1-35. https://doi.org/10.1002/9780470921920.edm017
    62. Esra Birben, Umit Murat Sahiner, Cansin Sackesen, Serpil Erzurum, Omer Kalayci. Oxidative Stress and Antioxidant Defense. World Allergy Organization Journal 2012, 5 (1) , 9-19. https://doi.org/10.1097/WOX.0b013e3182439613
    63. Anneke C Blackburn, Marjorie Coggan, Alison J Shield, Jean Cappello, Angelo Theodoratos, Tracy P Murray, Melissa Rooke, Claire Z Larter, Mark E Koina, Jane E Dahlstrom, Klaus I Matthaei, Philip G Board. Glutathione transferase kappa deficiency causes glomerular nephropathy without overt oxidative stress. Laboratory Investigation 2011, 91 (11) , 1572-1583. https://doi.org/10.1038/labinvest.2011.107
    64. Bing Wang, Yingjie Peng, Tianlong Zhang, Jianping Ding. Crystal structures and kinetic studies of human Kappa class glutathione transferase provide insights into the catalytic mechanism. Biochemical Journal 2011, 439 (2) , 215-225. https://doi.org/10.1042/BJ20110753
    65. Stephen R. Shouldice, Begoña Heras, Patricia M. Walden, Makrina Totsika, Mark A. Schembri, Jennifer L. Martin. Structure and Function of DsbA, a Key Bacterial Oxidative Folding Catalyst. Antioxidants & Redox Signaling 2011, 14 (9) , 1729-1760. https://doi.org/10.1089/ars.2010.3344
    66. Fabrice Morel, Caroline Aninat. The glutathione transferase kappa family. Drug Metabolism Reviews 2011, 43 (2) , 281-291. https://doi.org/10.3109/03602532.2011.556122
    67. Aaron Oakley. Glutathione transferases: a structural perspective. Drug Metabolism Reviews 2011, 43 (2) , 138-151. https://doi.org/10.3109/03602532.2011.558093
    68. Jack U. Flanagan, Mark L. Smythe. Sigma-class glutathione transferases. Drug Metabolism Reviews 2011, 43 (2) , 194-214. https://doi.org/10.3109/03602532.2011.560157
    69. Larry G. Higgins, John D. Hayes. Mechanisms of induction of cytosolic and microsomal glutathione transferase (GST) genes by xenobiotics and pro-inflammatory agents. Drug Metabolism Reviews 2011, 43 (2) , 92-137. https://doi.org/10.3109/03602532.2011.567391
    70. Guangyu Li, Ping Xie, Huiying Li, Jun Chen, Le Hao, Qian Xiong. Quantitative profiling of mRNA expression of glutathione S ‐transferase superfamily genes in various tissues of bighead carp ( Aristichthys nobilis ). Journal of Biochemical and Molecular Toxicology 2010, 24 (4) , 250-259. https://doi.org/10.1002/jbt.20333
    71. Alison J. Shield, Tracy P. Murray, Jean Y. Cappello, Marjorie Coggan, Philip G. Board. Polymorphisms in the human glutathione transferase Kappa (GSTK1) promoter alter gene expression. Genomics 2010, 95 (5) , 299-305. https://doi.org/10.1016/j.ygeno.2010.02.007
    72. R.N. Armstrong. Glutathione Transferases. 2010, 295-321. https://doi.org/10.1016/B978-0-08-046884-6.00416-4
    73. Jin-Hyoung Kim, Hans-Uwe Dahms, Jae-Sung Rhee, Young-Mi Lee, Jehee Lee, Kyung-Nam Han, Jae-Seong Lee. Expression profiles of seven glutathione S-transferase (GST) genes in cadmium-exposed river pufferfish (Takifugu obscurus). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 2010, 151 (1) , 99-106. https://doi.org/10.1016/j.cbpc.2009.09.001
    74. Sunanta Chariyalertsak, Wichai Purisa, Suleeporn Sangrajrang. Role of Glutathione S-Transferase Omega Gene Polymorphisms in Breast-Cancer Risk. Tumori Journal 2009, 95 (6) , 739-743. https://doi.org/10.1177/030089160909500617
    75. Holly J. Atkinson, Patricia C. Babbitt, . An Atlas of the Thioredoxin Fold Class Reveals the Complexity of Function-Enabling Adaptations. PLoS Computational Biology 2009, 5 (10) , e1000541. https://doi.org/10.1371/journal.pcbi.1000541
    76. Elise Petit, Xavier Michelet, Claudine Rauch, Justine Bertrand‐Michel, François Tercé, Renaud Legouis, Fabrice Morel. Glutathione transferases kappa 1 and kappa 2 localize in peroxisomes and mitochondria, respectively, and are involved in lipid metabolism and respiration in Caenorhabditis elegans. The FEBS Journal 2009, 276 (18) , 5030-5040. https://doi.org/10.1111/j.1742-4658.2009.07200.x
    77. Giuseppe Filomeni, Katia Aquilano, Maria Rosa Ciriolo. GSH, Sulfur Amino Acids, and Apoptosis. 2009, 211-256. https://doi.org/10.1002/9780470475973.ch10
    78. Jason J. Paxman, Natalie A. Borg, James Horne, Philip E. Thompson, Yanni Chin, Pooja Sharma, Jamie S. Simpson, Jerome Wielens, Susannah Piek, Charlene M. Kahler, Harry Sakellaris, Mary Pearce, Stephen P. Bottomley, Jamie Rossjohn, Martin J. Scanlon. The Structure of the Bacterial Oxidoreductase Enzyme DsbA in Complex with a Peptide Reveals a Basis for Substrate Specificity in the Catalytic Cycle of DsbA Enzymes. Journal of Biological Chemistry 2009, 284 (26) , 17835-17845. https://doi.org/10.1074/jbc.M109.011502
    79. Maria Fuciarelli, Annamaria Caccuri, Maria De Francesca, Flavia Ferazzoli, Sara Piacentini, Flavia Porreca. Modulation of the GSTT1 activity by the GSTM1 phenotype in a sample of Italian farm-workers. Archives of Toxicology 2009, 83 (2) , 115-120. https://doi.org/10.1007/s00204-008-0334-6
    80. Fei GAO, Qichen FANG, Rong ZHANG, Junxi LU, Huijuan LU, Chen WANG, Xiaojing MA, Jing XU, Weiping JIA, Kunsan XIANG. Polymorphism of DsbA-L Gene Associates with Insulin Secretion and Body Fat Distribution in Chinese Population. Endocrine Journal 2009, 56 (3) , 487-494. https://doi.org/10.1507/endocrj.K08E-322
    81. Zai-Rong Zhang, Ming Bai, Xin-Yu Wang, Jun-Mei Zhou, Sarah Perrett. “Restoration” of Glutathione Transferase Activity By Single-site Mutation of The Yeast Prion Protein Ure2. Journal of Molecular Biology 2008, 384 (3) , 641-651. https://doi.org/10.1016/j.jmb.2008.09.047
    82. Zhao V. Wang, Philipp E. Scherer. DsbA-L is a versatile player in adiponectin secretion. Proceedings of the National Academy of Sciences 2008, 105 (47) , 18077-18078. https://doi.org/10.1073/pnas.0810027105
    83. Meilian Liu, Lijun Zhou, Aimin Xu, Karen S. L. Lam, Michael D. Wetzel, Ruihua Xiang, Jingjing Zhang, Xiaoban Xin, Lily Q. Dong, Feng Liu. A disulfide-bond A oxidoreductase-like protein (DsbA-L) regulates adiponectin multimerization. Proceedings of the National Academy of Sciences 2008, 105 (47) , 18302-18307. https://doi.org/10.1073/pnas.0806341105
    84. Le Hao, Ping Xie, Juan Fu, Guangyu Li, Qian Xiong, Huiying Li. The effect of cyanobacterial crude extract on the transcription of GST mu, GST kappa and GST rho in different organs of goldfish (Carassius auratus). Aquatic Toxicology 2008, 90 (1) , 1-7. https://doi.org/10.1016/j.aquatox.2008.07.006
    85. Brian Blanchette, Xia Feng, Bal Ram Singh. Marine Glutathione S-Transferases. Marine Biotechnology 2007, 9 (5) , 513-542. https://doi.org/10.1007/s10126-007-9034-0
    86. Kenji Maeda, Per Hägglund, Christine Finnie, Birte Svensson, Anette Henriksen. Structural Basis for Target Protein Recognition by the Protein Disulfide Reductase Thioredoxin. Structure 2006, 14 (11) , 1701-1710. https://doi.org/10.1016/j.str.2006.09.012
    87. Carla Frova. Glutathione transferases in the genomics era: New insights and perspectives. Biomolecular Engineering 2006, 23 (4) , 149-169. https://doi.org/10.1016/j.bioeng.2006.05.020
    88. Haider Raza, Narayan Avadhani. Mitochondrial Glutathione S-Transferase Pool in Health and Disease. 2006, 277-291. https://doi.org/10.1201/9781420004489.ch13
    89. Piotr Zimniak, Sharda Singh. Families of Glutathione Transferases. 2006, 11-26. https://doi.org/10.1201/9781420004489.ch2
    90. Piotr Zimniak. Substrates and Reaction Mechanisms of Glutathione Transferases. 2006, 71-101. https://doi.org/10.1201/9781420004489.ch5
    91. Sujan Babu Marahatta, Phaibul Punyarit, Vajarabhongsa Bhudisawasdi, Anucha Paupairoj, Sopit Wongkham, Songsak Petmitr. Polymorphism of glutathione S-transferase Omega gene and risk of cancer. Cancer Letters 2006, 236 (2) , 276-281. https://doi.org/10.1016/j.canlet.2005.05.020
    92. Nisha Mathew, Muthuswami Kalyanasundaram, Kothandapani Balaraman. Glutathione S -transferase (GST) inhibitors. Expert Opinion on Therapeutic Patents 2006, 16 (4) , 431-444. https://doi.org/10.1517/13543776.16.4.431
    93. Beatrice Pool-Zobel, Selvaraju Veeriah, Frank-D. Böhmer. Modulation of xenobiotic metabolising enzymes by anticarcinogens—focus on glutathione S-transferases and their role as targets of dietary chemoprevention in colorectal carcinogenesis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2005, 591 (1-2) , 74-92. https://doi.org/10.1016/j.mrfmmm.2005.04.020
    94. Aaron J Oakley. Glutathione transferases: new functions. Current Opinion in Structural Biology 2005, 15 (6) , 716-723. https://doi.org/10.1016/j.sbi.2005.10.005
    95. John D. Hayes, Jack U. Flanagan, Ian R. Jowsey. GLUTATHIONE TRANSFERASES. Annual Review of Pharmacology and Toxicology 2005, 45 (1) , 51-88. https://doi.org/10.1146/annurev.pharmtox.45.120403.095857
    96. Jie Li, Zongxiang Xia, Jianping Ding. Thioredoxin‐like domain of human κ class glutathione transferase reveals sequence homology and structure similarity to the θ class enzyme. Protein Science 2005, 14 (9) , 2361-2369. https://doi.org/10.1110/ps.051463905
    97. Heini W. Dirr, Tessa Little, Diane C. Kuhnert, Yasien Sayed. A Conserved N-capping Motif Contributes Significantly to the Stabilization and Dynamics of the C-terminal Region of Class Alpha Glutathione S-Transferases. Journal of Biological Chemistry 2005, 280 (20) , 19480-19487. https://doi.org/10.1074/jbc.M413608200
    98. Bengt Mannervik, Philip G. Board, John D. Hayes, Irving Listowsky, William R. Pearson. Nomenclature for Mammalian Soluble Glutathione Transferases. 2005, 1-8. https://doi.org/10.1016/S0076-6879(05)01001-3
    99. Philip G. Board, M.W. Anders. Human Glutathione Transferase Zeta. 2005, 61-77. https://doi.org/10.1016/S0076-6879(05)01004-9
    100. Astrid K. Whitbread, Amir Masoumi, Natasha Tetlow, Erica Schmuck, Marjorie Coggan, Philip G. Board. Characterization of the Omega Class of Glutathione Transferases. 2005, 78-99. https://doi.org/10.1016/S0076-6879(05)01005-0
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect