ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

The Enzyme Function Initiative

View Author Information
Departments of Biochemistry and Chemistry and Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States
§ Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
@ Department of Bioengineering and Therapeutic Sciences and Department of Pharmaceutical Chemistry, California Institute of Quantitative Biosciences, University of California, San Francisco, California 94143, United States
# Departments of Microbiology and Biochemistry, University of Illinois, Urbana, Illinois 61801, United States
Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, United States
+ Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
Institute for Genomic Biology, University of Illinois, 1206 W. Gregory Dr., Urbana, IL 61801. Phone: (217) 244-7414. Fax: (217) 333-0508. E-mail: [email protected]
Cite this: Biochemistry 2011, 50, 46, 9950–9962
Publication Date (Web):October 14, 2011
https://doi.org/10.1021/bi201312u
Copyright © 2011 American Chemical Society

    Article Views

    4621

    Altmetric

    -

    Citations

    148
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    The Enzyme Function Initiative (EFI) was recently established to address the challenge of assigning reliable functions to enzymes discovered in bacterial genome projects; in this Current Topic, we review the structure and operations of the EFI. The EFI includes the Superfamily/Genome, Protein, Structure, Computation, and Data/Dissemination Cores that provide the infrastructure for reliably predicting the in vitro functions of unknown enzymes. The initial targets for functional assignment are selected from five functionally diverse superfamilies (amidohydrolase, enolase, glutathione transferase, haloalkanoic acid dehalogenase, and isoprenoid synthase), with five superfamily specific Bridging Projects experimentally testing the predicted in vitro enzymatic activities. The EFI also includes the Microbiology Core that evaluates the in vivo context of in vitro enzymatic functions and confirms the functional predictions of the EFI. The deliverables of the EFI to the scientific community include (1) development of a large-scale, multidisciplinary sequence/structure-based strategy for functional assignment of unknown enzymes discovered in genome projects (target selection, protein production, structure determination, computation, experimental enzymology, microbiology, and structure-based annotation), (2) dissemination of the strategy to the community via publications, collaborations, workshops, and symposia, (3) computational and bioinformatic tools for using the strategy, (4) provision of experimental protocols and/or reagents for enzyme production and characterization, and (5) dissemination of data via the EFI’s Website, http://enzymefunction.org. The realization of multidisciplinary strategies for functional assignment will begin to define the full metabolic diversity that exists in nature and will impact basic biochemical and evolutionary understanding, as well as a wide range of applications of central importance to industrial, medicinal, and pharmaceutical efforts.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    The SFLD was developed by the NIH National Center for Research Resources for Biocomputing, Visualization, and Informatics (supported by NIH Grant P41 RR-01081) as well as NIH Grant R01GM60595 and National Science Foundation Grants DBI 0234768 and DBI 0640476 (to P.C.B.).

    Nonredundant sequences are those obtained by excluding those that share >98% sequenced identity over 95% of the length of the functional domain.

    T. Lukk, A. Sakai, C. Kalyanaraman, S. Brown, H. J. Imker, L. Song, A. A. Fedorov, E. V. Fedorov, R. Toro, B. Hillerich, R. Seidel, Y. Patskovsky, M. V. Vetting, S. K. Nair, P. C. Babbitt, S. C. Almo, J. A. Gerlt, and M. P. Jacobson, manuscript submitted for publication.

    T. J. Erb, K. Choi, B. S. Evans, J. Singh, B. M. Wood, J. V. Sweedler, J. E. Cronan, R. F. Tabita, and J. A. Gerlt, manuscript submitted for publication.

    Cited By

    This article is cited by 148 publications.

    1. Kevin A. Uggowitzer, Annie R. Q. Shao, Yeganeh Habibi, Qianyi E. Zhang, Christopher J. Thibodeaux. Exploring the Heterogeneous Structural Dynamics of Class II Lanthipeptide Synthetases with Hydrogen–Deuterium Exchange Mass Spectrometry (HDX-MS). Biochemistry 2022, 61 (19) , 2118-2130. https://doi.org/10.1021/acs.biochem.2c00360
    2. Jie Li, Weize Yuan, Shao-Xiong Lennon Luo, Máté J. Bezdek, Alexander Peraire-Bueno, Timothy M. Swager. Wireless Lateral Flow Device for Biosensing. Journal of the American Chemical Society 2022, 144 (34) , 15786-15792. https://doi.org/10.1021/jacs.2c06579
    3. Karen N. Allen, Christian P. Whitman. The Birth of Genomic Enzymology: Discovery of the Mechanistically Diverse Enolase Superfamily. Biochemistry 2021, 60 (46) , 3515-3528. https://doi.org/10.1021/acs.biochem.1c00494
    4. Kundan Kumar, Amol Mhetre, Girish S. Ratnaparkhi, Siddhesh S. Kamat. A Superfamily-wide Activity Atlas of Serine Hydrolases in Drosophila melanogaster. Biochemistry 2021, 60 (16) , 1312-1324. https://doi.org/10.1021/acs.biochem.1c00171
    5. Erika Zangelmi, Toda Stanković, Marco Malatesta, Domenico Acquotti, Katharina Pallitsch, Alessio Peracchi. Discovery of a New, Recurrent Enzyme in Bacterial Phosphonate Degradation: (R)-1-Hydroxy-2-aminoethylphosphonate Ammonia-lyase. Biochemistry 2021, 60 (15) , 1214-1225. https://doi.org/10.1021/acs.biochem.1c00092
    6. Abinaya Rajendran, Kaveri Vaidya, Johnny Mendoza, Jennifer Bridwell-Rabb, Siddhesh S. Kamat. Functional Annotation of ABHD14B, an Orphan Serine Hydrolase Enzyme. Biochemistry 2020, 59 (2) , 183-196. https://doi.org/10.1021/acs.biochem.9b00703
    7. Mina Rho, Woon Ju Song. Discovery of Novel Gene Functions by Chemistry-Guided Targeted Sequence Analysis. Biochemistry 2020, 59 (1) , 10-11. https://doi.org/10.1021/acs.biochem.9b00790
    8. David C. Garcia, Xiaolin Cheng, Miriam L. Land, Robert F. Standaert, Jennifer L. Morrell-Falvey, Mitchel J. Doktycz. Computationally Guided Discovery and Experimental Validation of Indole-3-acetic Acid Synthesis Pathways. ACS Chemical Biology 2019, 14 (12) , 2867-2875. https://doi.org/10.1021/acschembio.9b00725
    9. Rémi Zallot, Nils Oberg, John A. Gerlt. The EFI Web Resource for Genomic Enzymology Tools: Leveraging Protein, Genome, and Metagenome Databases to Discover Novel Enzymes and Metabolic Pathways. Biochemistry 2019, 58 (41) , 4169-4182. https://doi.org/10.1021/acs.biochem.9b00735
    10. Lauren J. Rajakovich, Maria-Eirini Pandelia, Andrew J. Mitchell, Wei-chen Chang, Bo Zhang, Amie K. Boal, Carsten Krebs, J. Martin Bollinger, Jr.. A New Microbial Pathway for Organophosphonate Degradation Catalyzed by Two Previously Misannotated Non-Heme-Iron Oxygenases. Biochemistry 2019, 58 (12) , 1627-1647. https://doi.org/10.1021/acs.biochem.9b00044
    11. Tessily N. Hogancamp, Mark F. Mabanglo, Frank M. Raushel. Structure and Reaction Mechanism of the LigJ Hydratase: An Enzyme Critical for the Bacterial Degradation of Lignin in the Protocatechuate 4,5-Cleavage Pathway. Biochemistry 2018, 57 (40) , 5841-5850. https://doi.org/10.1021/acs.biochem.8b00713
    12. John A. Gerlt . Genomic Enzymology: Web Tools for Leveraging Protein Family Sequence–Function Space and Genome Context to Discover Novel Functions. Biochemistry 2017, 56 (33) , 4293-4308. https://doi.org/10.1021/acs.biochem.7b00614
    13. Markus de Raad, Cyrus Modavi, David J. Sukovich, and J. Christopher Anderson . Observing Biosynthetic Activity Utilizing Next Generation Sequencing and the DNA Linked Enzyme Coupled Assay. ACS Chemical Biology 2017, 12 (1) , 191-199. https://doi.org/10.1021/acschembio.6b00652
    14. F. Baier, J. N. Copp, and N. Tokuriki . Evolution of Enzyme Superfamilies: Comprehensive Exploration of Sequence–Function Relationships. Biochemistry 2016, 55 (46) , 6375-6388. https://doi.org/10.1021/acs.biochem.6b00723
    15. Fanny Sunden, Ishraq AlSadhan, Artem Y. Lyubimov, Susanne Ressl, Helen Wiersma-Koch, Jamar Borland, Clayton L. Brown, Jr., Tory A. Johnson, Zorawar Singh, and Daniel Herschlag . Mechanistic and Evolutionary Insights from Comparative Enzymology of Phosphomonoesterases and Phosphodiesterases across the Alkaline Phosphatase Superfamily. Journal of the American Chemical Society 2016, 138 (43) , 14273-14287. https://doi.org/10.1021/jacs.6b06186
    16. Yunyun Yang, Tzu-Ping Ko, Chun-Chi Chen, Guozhong Huang, Yingying Zheng, Weidong Liu, Iren Wang, Meng-Ru Ho, Shang-Te Danny Hsu, Bing O’Dowd, Hannah C. Huff, Chun-Hsiang Huang, Roberto Docampo, Eric Oldfield, and Rey-Ting Guo . Structures of Trypanosome Vacuolar Soluble Pyrophosphatases: Antiparasitic Drug Targets. ACS Chemical Biology 2016, 11 (5) , 1362-1371. https://doi.org/10.1021/acschembio.5b00724
    17. Sérgio F. Sousa, Maria J. Ramos, Carmay Lim, and Pedro A. Fernandes . Relationship between Enzyme/Substrate Properties and Enzyme Efficiency in Hydrolases. ACS Catalysis 2015, 5 (10) , 5877-5887. https://doi.org/10.1021/acscatal.5b00923
    18. Swapnil V. Ghodge and Frank M. Raushel . Discovery of a Previously Unrecognized Ribonuclease from Escherichia coli That Hydrolyzes 5′-Phosphorylated Fragments of RNA. Biochemistry 2015, 54 (18) , 2911-2918. https://doi.org/10.1021/acs.biochem.5b00192
    19. Matthew W. Vetting, Nawar Al-Obaidi, Suwen Zhao, Brian San Francisco, Jungwook Kim, Daniel J. Wichelecki, Jason T. Bouvier, Jose O. Solbiati, Hoan Vu, Xinshuai Zhang, Dmitry A. Rodionov, James D. Love, Brandan S. Hillerich, Ronald D. Seidel, Ronald J. Quinn, Andrei L. Osterman, John E. Cronan, Matthew P. Jacobson, John A. Gerlt, and Steven C. Almo . Experimental Strategies for Functional Annotation and Metabolism Discovery: Targeted Screening of Solute Binding Proteins and Unbiased Panning of Metabolomes. Biochemistry 2015, 54 (3) , 909-931. https://doi.org/10.1021/bi501388y
    20. Lukas Daniel, Tomas Buryska, Zbynek Prokop, Jiri Damborsky, and Jan Brezovsky . Mechanism-Based Discovery of Novel Substrates of Haloalkane Dehalogenases Using in Silico Screening. Journal of Chemical Information and Modeling 2015, 55 (1) , 54-62. https://doi.org/10.1021/ci500486y
    21. Nir London, Jeremiah D. Farelli, Shoshana D. Brown, Chunliang Liu, Hua Huang, Magdalena Korczynska, Nawar F. Al-Obaidi, Patricia C. Babbitt, Steven C. Almo, Karen N. Allen, and Brian K. Shoichet . Covalent Docking Predicts Substrates for Haloalkanoate Dehalogenase Superfamily Phosphatases. Biochemistry 2015, 54 (2) , 528-537. https://doi.org/10.1021/bi501140k
    22. Sarah Sirin, Rajesh Kumar, Carlos Martinez, Michael J. Karmilowicz, Preeyantee Ghosh, Yuriy A. Abramov, Van Martin, and Woody Sherman . A Computational Approach to Enzyme Design: Predicting ω-Aminotransferase Catalytic Activity Using Docking and MM-GBSA Scoring. Journal of Chemical Information and Modeling 2014, 54 (8) , 2334-2346. https://doi.org/10.1021/ci5002185
    23. Daniel J. Wichelecki, Dylan C. Graff, Nawar Al-Obaidi, Steven C. Almo, and John A. Gerlt . Identification of the in Vivo Function of the High-Efficiency d-Mannonate Dehydratase in Caulobacter crescentus NA1000 from the Enolase Superfamily. Biochemistry 2014, 53 (25) , 4087-4089. https://doi.org/10.1021/bi500683x
    24. Guang Qiang Dong, Sara Calhoun, Hao Fan, Chakrapani Kalyanaraman, Megan C. Branch, Susan T. Mashiyama, Nir London, Matthew P. Jacobson, Patricia C. Babbitt, Brian K. Shoichet, Richard N. Armstrong, and Andrej Sali . Prediction of Substrates for Glutathione Transferases by Covalent Docking. Journal of Chemical Information and Modeling 2014, 54 (6) , 1687-1699. https://doi.org/10.1021/ci5001554
    25. Daniel J. Wichelecki, Bryan M. Balthazor, Anthony C. Chau, Matthew W. Vetting, Alexander A. Fedorov, Elena V. Fedorov, Tiit Lukk, Yury V. Patskovsky, Mark B. Stead, Brandan S. Hillerich, Ronald D. Seidel, Steven C. Almo, and John A. Gerlt . Discovery of Function in the Enolase Superfamily: d-Mannonate and d-Gluconate Dehydratases in the d-Mannonate Dehydratase Subgroup. Biochemistry 2014, 53 (16) , 2722-2731. https://doi.org/10.1021/bi500264p
    26. Cindy Schulenburg and Brian G. Miller . Enzyme Recruitment and Its Role in Metabolic Expansion. Biochemistry 2014, 53 (5) , 836-845. https://doi.org/10.1021/bi401667f
    27. Alden E. Voelker and Rajesh Viswanathan . Synthesis of a Suite of Bioorthogonal Glutathione S-Transferase Substrates and Their Enzymatic Incorporation for Protein Immobilization. The Journal of Organic Chemistry 2013, 78 (19) , 9647-9658. https://doi.org/10.1021/jo401278x
    28. Michael D. Toney . Common Enzymological Experiments Allow Free Energy Profile Determination. Biochemistry 2013, 52 (34) , 5952-5965. https://doi.org/10.1021/bi400696j
    29. Richard Baran, Benjamin P. Bowen, Morgan N. Price, Adam P. Arkin, Adam M. Deutschbauer, and Trent R. Northen . Metabolic Footprinting of Mutant Libraries to Map Metabolite Utilization to Genotype. ACS Chemical Biology 2013, 8 (1) , 189-199. https://doi.org/10.1021/cb300477w
    30. Hao Fan, Daniel S. Hitchcock, Ronald D. Seidel, II, Brandan Hillerich, Henry Lin, Steven C. Almo, Andrej Sali, Brian K. Shoichet, and Frank M. Raushel . Assignment of Pterin Deaminase Activity to an Enzyme of Unknown Function Guided by Homology Modeling and Docking. Journal of the American Chemical Society 2013, 135 (2) , 795-803. https://doi.org/10.1021/ja309680b
    31. John J. Irwin, Teague Sterling, Michael M. Mysinger, Erin S. Bolstad, and Ryan G. Coleman . ZINC: A Free Tool to Discover Chemistry for Biology. Journal of Chemical Information and Modeling 2012, 52 (7) , 1757-1768. https://doi.org/10.1021/ci3001277
    32. Bethany N. Hogg, Christian Schnepel, James D. Finnigan, Simon J. Charnock, Martin A. Hayes, Nicholas J. Turner. The Impact of Metagenomics on Biocatalysis. Angewandte Chemie International Edition 2024, 382 https://doi.org/10.1002/anie.202402316
    33. Bethany N. Hogg, Christian Schnepel, James D. Finnigan, Simon J. Charnock, Martin A. Hayes, Nicholas J. Turner. The Impact of Metagenomics on Biocatalysis. Angewandte Chemie 2024, 9 https://doi.org/10.1002/ange.202402316
    34. Roland Wohlgemuth. Back to the Future of Metabolism—Advances in the Discovery and Characterization of Unknown Biocatalytic Functions and Pathways. Life 2024, 14 (3) , 364. https://doi.org/10.3390/life14030364
    35. Kaveri Vaidya, Golding Rodrigues, Sonali Gupta, Archit Devarajan, Mihika Yeolekar, M. S. Madhusudhan, Siddhesh S. Kamat. Identification of sequence determinants for the ABHD14 enzymes. Proteins: Structure, Function, and Bioinformatics 2023, 75 https://doi.org/10.1002/prot.26632
    36. Jeffrey I. Seeman, Guillermo Restrepo. On the nonexistent Nobel Prizes for two pioneers of modern physical organic chemistry: Sir Christopher K. Ingold and Saul Winstein †. Journal of Physical Organic Chemistry 2023, 36 (10) https://doi.org/10.1002/poc.4551
    37. Constance J. Jeffery. Current successes and remaining challenges in protein function prediction. Frontiers in Bioinformatics 2023, 3 https://doi.org/10.3389/fbinf.2023.1222182
    38. Nils Oberg, Rémi Zallot, John A. Gerlt. EFI-EST, EFI-GNT, and EFI-CGFP: Enzyme Function Initiative (EFI) Web Resource for Genomic Enzymology Tools. Journal of Molecular Biology 2023, 435 (14) , 168018. https://doi.org/10.1016/j.jmb.2023.168018
    39. . CHEMICAL MECHANISMS IN ENZYME CATALYSIS. 2023, 155-192. https://doi.org/10.1002/9781119793304.ch6
    40. Sylvia Kunakom, Hiroshi Otani, Daniel W Udwary, Drew T Doering, Nigel J Mouncey. Cytochromes P450 involved in bacterial RiPP biosyntheses. Journal of Industrial Microbiology and Biotechnology 2023, 50 (1) https://doi.org/10.1093/jimb/kuad005
    41. Hayley L. Knox, Karen N. Allen. Expanding the viewpoint: Leveraging sequence information in enzymology. Current Opinion in Chemical Biology 2023, 72 , 102246. https://doi.org/10.1016/j.cbpa.2022.102246
    42. Baofu Xu, Wenbo Ning, Xiuting Wei, Jeffrey D. Rudolf. Mutation of the eunicellane synthase Bnd4 alters its product profile and expands its prenylation ability. Organic & Biomolecular Chemistry 2022, 20 (45) , 8833-8837. https://doi.org/10.1039/D2OB01931K
    43. Georg Kustatscher, Tom Collins, Anne-Claude Gingras, Tiannan Guo, Henning Hermjakob, Trey Ideker, Kathryn S. Lilley, Emma Lundberg, Edward M. Marcotte, Markus Ralser, Juri Rappsilber. Understudied proteins: opportunities and challenges for functional proteomics. Nature Methods 2022, 19 (7) , 774-779. https://doi.org/10.1038/s41592-022-01454-x
    44. Georg Kustatscher, Tom Collins, Anne-Claude Gingras, Tiannan Guo, Henning Hermjakob, Trey Ideker, Kathryn S. Lilley, Emma Lundberg, Edward M. Marcotte, Markus Ralser, Juri Rappsilber. An open invitation to the Understudied Proteins Initiative. Nature Biotechnology 2022, 40 (6) , 815-817. https://doi.org/10.1038/s41587-022-01316-z
    45. Kimberly A Reynolds, Eduardo Rosa-Molinar, Robert E Ward, Hongbin Zhang, Breeanna R Urbanowicz, A Mark Settles. Accelerating Biological Insight for Understudied Genes. Integrative and Comparative Biology 2022, 61 (6) , 2233-2243. https://doi.org/10.1093/icb/icab029
    46. Nikolina Babic, Filip Kovacic, . Predicting drug targets by homology modelling of Pseudomonas aeruginosa proteins of unknown function. PLOS ONE 2021, 16 (10) , e0258385. https://doi.org/10.1371/journal.pone.0258385
    47. Elzbieta Rembeza, Martin K. M. Engqvist, . Experimental and computational investigation of enzyme functional annotations uncovers misannotation in the EC 1.1.3.15 enzyme class. PLOS Computational Biology 2021, 17 (9) , e1009446. https://doi.org/10.1371/journal.pcbi.1009446
    48. Nico D. Fessner, David R. Nelson, Anton Glieder. Evolution and enrichment of CYP5035 in Polyporales: functionality of an understudied P450 family. Applied Microbiology and Biotechnology 2021, 105 (18) , 6779-6792. https://doi.org/10.1007/s00253-021-11444-2
    49. Ignacio Valenzuela-Chavira, David O. Corona-Martinez, Karina D. Garcia-Orozco, Melissa Beltran-Torres, Filiberto Sanchez-Lopez, Aldo A. Arvizu-Flores, Rocio Sugich-Miranda, Alonso A. Lopez-Zavala, Ramon E. Robles-Zepeda, Maria A. Islas-Osuna, Adrian Ochoa-Leyva, Michael D. Toney, Hugo Serrano-Posada, Rogerio R. Sotelo-Mundo. A Novel Glutathione S-Transferase Gtt2 Class (VpGSTT2) Is Found in the Genome of the AHPND/EMS Vibrio parahaemolyticus Shrimp Pathogen. Toxins 2021, 13 (9) , 664. https://doi.org/10.3390/toxins13090664
    50. Tristan de Rond, Julia E. Asay, Bradley S. Moore. Co-occurrence of enzyme domains guides the discovery of an oxazolone synthetase. Nature Chemical Biology 2021, 17 (7) , 794-799. https://doi.org/10.1038/s41589-021-00808-4
    51. Remi Zallot, Nils Oberg, John A Gerlt. Discovery of new enzymatic functions and metabolic pathways using genomic enzymology web tools. Current Opinion in Biotechnology 2021, 69 , 77-90. https://doi.org/10.1016/j.copbio.2020.12.004
    52. Nir Hecht, Caroline L Monteil, Guy Perrière, Marina Vishkautzan, Eyal Gur, . Exploring Protein Space: From Hydrolase to Ligase by Substitution. Molecular Biology and Evolution 2021, 38 (3) , 761-776. https://doi.org/10.1093/molbev/msaa215
    53. Hui Liu, Xiumin Li, Mengya Li, Yafei Zhang, Keyong Tang, Jie Liu, Xuejing Zheng, Ying Pei. A simple and sustainable beamhouse by the recycling of waste-water from KCl-dispase synergistic unhairing in leather making. Journal of Cleaner Production 2021, 282 , 124535. https://doi.org/10.1016/j.jclepro.2020.124535
    54. Disha Gangotia, Aeshna Gupta, Indra Mani. Role of Bioinformatics in Biological Sciences. 2021, 37-57. https://doi.org/10.1007/978-981-33-6191-1_3
    55. Masayuki Miyake, Tohru Terada, Michiko Shimokawa, Naohisa Sugimoto, Takatoshi Arakawa, Kentaro Shimizu, Kiyohiko Igarashi, Kiyotaka Fujita, Shinya Fushinobu. Structural analysis of β‐L‐arabinobiose‐binding protein in the metabolic pathway of hydroxyproline‐rich glycoproteins in Bifidobacterium longum. The FEBS Journal 2020, 287 (23) , 5114-5129. https://doi.org/10.1111/febs.15315
    56. Bin-Chun Li, Tian Zhang, Yan-Qin Li, Guo-Bin Ding. Target Discovery of Novel α-l-Rhamnosidases from Human Fecal Metagenome and Application for Biotransformation of Natural Flavonoid Glycosides. Applied Biochemistry and Biotechnology 2019, 189 (4) , 1245-1261. https://doi.org/10.1007/s12010-019-03063-5
    57. Kimberly Rizzolo, Steven E. Cohen, Andrew C. Weitz, Madeline M. López Muñoz, Michael P. Hendrich, Catherine L. Drennan, Sean J. Elliott. A widely distributed diheme enzyme from Burkholderia that displays an atypically stable bis-Fe(IV) state. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-09020-4
    58. Weijun Wang, Tania Archbold, Joseph S. Lam, Matthew S. Kimber, Ming Z. Fan. A processive endoglucanase with multi-substrate specificity is characterized from porcine gut microbiota. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-50050-1
    59. Stefano Bruno, Daniela Coppola, Guido di Prisco, Daniela Giordano, Cinzia Verde. Enzymes from Marine Polar Regions and Their Biotechnological Applications. Marine Drugs 2019, 17 (10) , 544. https://doi.org/10.3390/md17100544
    60. Thomas A. Scott, Jörn Piel. The hidden enzymology of bacterial natural product biosynthesis. Nature Reviews Chemistry 2019, 3 (7) , 404-425. https://doi.org/10.1038/s41570-019-0107-1
    61. Kira S. Makarova, Yuri I. Wolf, Eugene V. Koonin. Towards functional characterization of archaeal genomic dark matter. Biochemical Society Transactions 2019, 47 (1) , 389-398. https://doi.org/10.1042/BST20180560
    62. Jascha Rolf, Katrin Rosenthal, Stephan Lütz. Application of Cell-Free Protein Synthesis for Faster Biocatalyst Development. Catalysts 2019, 9 (2) , 190. https://doi.org/10.3390/catal9020190
    63. Cristina Coscolín, Nadine Katzke, Antonio García-Moyano, José Navarro-Fernández, David Almendral, Mónica Martínez-Martínez, Alexander Bollinger, Rafael Bargiela, Christoph Gertler, Tatyana N. Chernikova, David Rojo, Coral Barbas, Hai Tran, Olga V. Golyshina, Rainhard Koch, Michail M. Yakimov, Gro E. K. Bjerga, Peter N. Golyshin, Karl-Erich Jaeger, Manuel Ferrer, . Bioprospecting Reveals Class III ω-Transaminases Converting Bulky Ketones and Environmentally Relevant Polyamines. Applied and Environmental Microbiology 2019, 85 (2) https://doi.org/10.1128/AEM.02404-18
    64. Rémi Zallot, Nils O Oberg, John A Gerlt. ‘Democratized’ genomic enzymology web tools for functional assignment. Current Opinion in Chemical Biology 2018, 47 , 77-85. https://doi.org/10.1016/j.cbpa.2018.09.009
    65. Shengkai Luo, Hua Huang. Discovering a new catabolic pathway of D-ribonate in Mycobacterium smegmatis. Biochemical and Biophysical Research Communications 2018, 505 (4) , 1107-1111. https://doi.org/10.1016/j.bbrc.2018.10.033
    66. Stacia K. Wyman, Aram Avila-Herrera, Stephen Nayfach, Katherine S. Pollard, . A most wanted list of conserved microbial protein families with no known domains. PLOS ONE 2018, 13 (10) , e0205749. https://doi.org/10.1371/journal.pone.0205749
    67. Caitlyn L. Mills, Rohan Garg, Joslynn S. Lee, Liang Tian, Alexandru Suciu, Gene D. Cooperman, Penny J. Beuning, Mary Jo Ondrechen. Functional classification of protein structures by local structure matching in graph representation. Protein Science 2018, 27 (6) , 1125-1135. https://doi.org/10.1002/pro.3416
    68. Harry R. Beller, Andria V. Rodrigues, Kamrun Zargar, Yu-Wei Wu, Avneesh K. Saini, Renee M. Saville, Jose H. Pereira, Paul D. Adams, Susannah G. Tringe, Christopher J. Petzold, Jay D. Keasling. Discovery of enzymes for toluene synthesis from anoxic microbial communities. Nature Chemical Biology 2018, 14 (5) , 451-457. https://doi.org/10.1038/s41589-018-0017-4
    69. Jacquelyn S. Fetrow, Patricia C. Babbitt. New computational approaches to understanding molecular protein function. PLOS Computational Biology 2018, 14 (4) , e1005756. https://doi.org/10.1371/journal.pcbi.1005756
    70. Nicole M. Easton, Sarah A.E. Aboushawareb, Stephen L. Bearne. A continuous assay for l-talarate/galactarate dehydratase using circular dichroism. Analytical Biochemistry 2018, 544 , 80-86. https://doi.org/10.1016/j.ab.2017.12.015
    71. Sara Calhoun, Magdalena Korczynska, Daniel J Wichelecki, Brian San Francisco, Suwen Zhao, Dmitry A Rodionov, Matthew W Vetting, Nawar F Al-Obaidi, Henry Lin, Matthew J O'Meara, David A Scott, John H Morris, Daniel Russel, Steven C Almo, Andrei L Osterman, John A Gerlt, Matthew P Jacobson, Brian K Shoichet, Andrej Sali. Prediction of enzymatic pathways by integrative pathway mapping. eLife 2018, 7 https://doi.org/10.7554/eLife.31097
    72. Mobolaji Adeolu, John Parkinson, Xuejian Xiong. Analyzing Metabolic Pathways in Microbiomes. 2018, 291-307. https://doi.org/10.1007/978-1-4939-8728-3_18
    73. Kurt Faber. Biocatalytic Applications. 2018, 31-313. https://doi.org/10.1007/978-3-319-61590-5_2
    74. N. S. Punekar. Future of Enzymology: An Appraisal. 2018, 521-551. https://doi.org/10.1007/978-981-13-0785-0_39
    75. N. S. Punekar. Closure – Whither Enzymology. 2018, 553-557. https://doi.org/10.1007/978-981-13-0785-0_40
    76. Fanny Sunden, Ishraq AlSadhan, Artem Lyubimov, Tzanko Doukov, Jeffrey Swan, Daniel Herschlag. Differential catalytic promiscuity of the alkaline phosphatase superfamily bimetallo core reveals mechanistic features underlying enzyme evolution. Journal of Biological Chemistry 2017, 292 (51) , 20960-20974. https://doi.org/10.1074/jbc.M117.788240
    77. Kenneth W. Ellens, Nils Christian, Charandeep Singh, Venkata P. Satagopam, Patrick May, Carole L. Linster. Confronting the catalytic dark matter encoded by sequenced genomes. Nucleic Acids Research 2017, 45 (20) , 11495-11514. https://doi.org/10.1093/nar/gkx937
    78. Scott T. Lefurgy, Emily C. Mundorff. A 13‐week research‐based biochemistry laboratory curriculum. Biochemistry and Molecular Biology Education 2017, 45 (5) , 437-448. https://doi.org/10.1002/bmb.21054
    79. Karine Bastard, Alain Perret, Aline Mariage, Thomas Bessonnet, Agnès Pinet-Turpault, Jean-Louis Petit, Ekaterina Darii, Pascal Bazire, Carine Vergne-Vaxelaire, Clémence Brewee, Adrien Debard, Virginie Pellouin, Marielle Besnard-Gonnet, François Artiguenave, Claudine Médigue, David Vallenet, Antoine Danchin, Anne Zaparucha, Jean Weissenbach, Marcel Salanoubat, Véronique de Berardinis. Parallel evolution of non-homologous isofunctional enzymes in methionine biosynthesis. Nature Chemical Biology 2017, 13 (8) , 858-866. https://doi.org/10.1038/nchembio.2397
    80. Stephen L. Bearne. The interdigitating loop of the enolase superfamily as a specificity binding determinant or ‘flying buttress’. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2017, 1865 (5) , 619-630. https://doi.org/10.1016/j.bbapap.2017.02.006
    81. Ana Popovic, Tran Hai, Anatoly Tchigvintsev, Mahbod Hajighasemi, Boguslaw Nocek, Anna N. Khusnutdinova, Greg Brown, Julia Glinos, Robert Flick, Tatiana Skarina, Tatyana N. Chernikova, Veronica Yim, Thomas Brüls, Denis Le Paslier, Michail M. Yakimov, Andrzej Joachimiak, Manuel Ferrer, Olga V. Golyshina, Alexei Savchenko, Peter N. Golyshin, Alexander F. Yakunin. Activity screening of environmental metagenomic libraries reveals novel carboxylesterase families. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep44103
    82. Alessio Peracchi, Maria Veiga-da-Cunha, Tomiko Kuhara, Kenneth W. Ellens, Nicole Paczia, Vincent Stroobant, Agnieszka K. Seliga, Simon Marlaire, Stephane Jaisson, Guido T. Bommer, Jin Sun, Kay Huebner, Carole L. Linster, Arthur J. L. Cooper, Emile Van Schaftingen. Nit1 is a metabolite repair enzyme that hydrolyzes deaminated glutathione. Proceedings of the National Academy of Sciences 2017, 114 (16) https://doi.org/10.1073/pnas.1613736114
    83. Stacy T. Knutson, Brian M. Westwood, Janelle B. Leuthaeuser, Brandon E. Turner, Don Nguyendac, Gabrielle Shea, Kiran Kumar, Julia D. Hayden, Angela F. Harper, Shoshana D. Brown, John H. Morris, Thomas E. Ferrin, Patricia C. Babbitt, Jacquelyn S. Fetrow. An approach to functionally relevant clustering of the protein universe: Active site profile‐based clustering of protein structures and sequences. Protein Science 2017, 26 (4) , 677-699. https://doi.org/10.1002/pro.3112
    84. Shama Khan, Mohd. Shahbaaz, Krishna Bisetty, Faizan Ahmad, Md. Imtaiyaz Hassan. Classification and Functional Analyses of Putative Conserved Proteins from Chlamydophila pneumoniae CWL029. Interdisciplinary Sciences: Computational Life Sciences 2017, 9 (1) , 96-106. https://doi.org/10.1007/s12539-015-0134-7
    85. Shane L. Hogle, Bianca Brahamsha, Katherine A. Barbeau, . Direct Heme Uptake by Phytoplankton-Associated Roseobacter Bacteria. mSystems 2017, 2 (1) https://doi.org/10.1128/mSystems.00124-16
    86. Nives Škunca, Richard J. Roberts, Martin Steffen. Evaluating Computational Gene Ontology Annotations. 2017, 97-109. https://doi.org/10.1007/978-1-4939-3743-1_8
    87. Jerome P. Nilmeier, Elaine C. Meng, Benjamin J. Polacco, Patricia C. Babbitt. 3D Motifs. 2017, 361-392. https://doi.org/10.1007/978-94-024-1069-3_11
    88. A.R. Leach, P.J. Thomas. Protein Structure Prediction and Homology Modeling. 2017, 120-144. https://doi.org/10.1016/B978-0-12-409547-2.12350-9
    89. John A. Gerlt. Tools and strategies for discovering novel enzymes and metabolic pathways. Perspectives in Science 2016, 9 , 24-32. https://doi.org/10.1016/j.pisc.2016.07.001
    90. Mercedes Ramírez-Escudero, Mercedes V. del Pozo, Julia Marín-Navarro, Beatriz González, Peter N. Golyshin, Julio Polaina, Manuel Ferrer, Julia Sanz-Aparicio. Structural and Functional Characterization of a Ruminal β-Glycosidase Defines a Novel Subfamily of Glycoside Hydrolase Family 3 with Permuted Domain Topology. Journal of Biological Chemistry 2016, 291 (46) , 24200-24214. https://doi.org/10.1074/jbc.M116.747527
    91. Jennifer Chow, Wolfgang R. Streit. Screening of Enzymes: Novel Screening Technologies to Exploit Noncultivated Microbes for Biotechnology. 2016, 13-30. https://doi.org/10.1002/9783527677122.ch2
    92. Boxue Tian, C. Dale Poulter, Matthew P. Jacobson, . Defining the Product Chemical Space of Monoterpenoid Synthases. PLOS Computational Biology 2016, 12 (8) , e1005053. https://doi.org/10.1371/journal.pcbi.1005053
    93. Matthew J. O’Meara, Sara Ballouz, Brian K. Shoichet, Jesse Gillis, . Ligand Similarity Complements Sequence, Physical Interaction, and Co-Expression for Gene Function Prediction. PLOS ONE 2016, 11 (7) , e0160098. https://doi.org/10.1371/journal.pone.0160098
    94. Umesh Yadava, Matthew W. Vetting, Nawar Al Obaidi, Michael S. Carter, John A. Gerlt, Steven C. Almo. Structure of an ABC transporter solute-binding protein specific for the amino sugars glucosamine and galactosamine. Acta Crystallographica Section F Structural Biology Communications 2016, 72 (6) , 467-472. https://doi.org/10.1107/S2053230X16007500
    95. William H Parsons, Matthew J Kolar, Siddhesh S Kamat, Armand B Cognetta III, Jonathan J Hulce, Enrique Saez, Barbara B Kahn, Alan Saghatelian, Benjamin F Cravatt. AIG1 and ADTRP are atypical integral membrane hydrolases that degrade bioactive FAHFAs. Nature Chemical Biology 2016, 12 (5) , 367-372. https://doi.org/10.1038/nchembio.2051
    96. Marek Grabowski, Ewa Niedzialkowska, Matthew D. Zimmerman, Wladek Minor. The impact of structural genomics: the first quindecennial. Journal of Structural and Functional Genomics 2016, 17 (1) , 1-16. https://doi.org/10.1007/s10969-016-9201-5
    97. Handan Melike Dönertaş, Sergio Martínez Cuesta, Syed Asad Rahman, Janet M. Thornton, . Characterising Complex Enzyme Reaction Data. PLOS ONE 2016, 11 (2) , e0147952. https://doi.org/10.1371/journal.pone.0147952
    98. Pablo Carbonell, Andrew Currin, Adrian J. Jervis, Nicholas J. W. Rattray, Neil Swainston, Cunyu Yan, Eriko Takano, Rainer Breitling. Bioinformatics for the synthetic biology of natural products: integrating across the Design–Build–Test cycle. Natural Product Reports 2016, 33 (8) , 925-932. https://doi.org/10.1039/C6NP00018E
    99. Daniel J. Wichelecki, Matthew W. Vetting, Liyushang Chou, Nawar Al-Obaidi, Jason T. Bouvier, Steven C. Almo, John A. Gerlt. ATP-binding Cassette (ABC) Transport System Solute-binding Protein-guided Identification of Novel d-Altritol and Galactitol Catabolic Pathways in Agrobacterium tumefaciens C58. Journal of Biological Chemistry 2015, 290 (48) , 28963-28976. https://doi.org/10.1074/jbc.M115.686857
    100. Kai Deng, Taichi E. Takasuka, Christopher M. Bianchetti, Lai F. Bergeman, Paul D. Adams, Trent R. Northen, Brian G. Fox. Use of Nanostructure-Initiator Mass Spectrometry to Deduce Selectivity of Reaction in Glycoside Hydrolases. Frontiers in Bioengineering and Biotechnology 2015, 3 https://doi.org/10.3389/fbioe.2015.00165
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect