ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Membrane “Lens” Effect:  Focusing the Formation of Reactive Nitrogen Oxides from the NO/O2 Reaction

View Author Information
Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias, and Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo 11400, Uruguay, and Departments of Anesthesiology, Physiology & Biophysics, and Environmental Health Sciences, Center for Free Radical Biology, the University of Alabama at Birmingham, Birmingham, Alabama 35294
Cite this: Chem. Res. Toxicol. 2007, 20, 4, 709–714
Publication Date (Web):March 28, 2007
https://doi.org/10.1021/tx700010h
Copyright © 2007 American Chemical Society

    Article Views

    487

    Altmetric

    -

    Citations

    82
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    It was previously observed that lipid membranes accelerate NO disappearance (Liu et al. (1998) Proc. Natl. Acad. Sci. U.S.A.95, 2175), and here, we demonstrate that this translates into increased rates of NO2 production and nitrosative chemistry. Not only the phospholipid membranes but also the atherosclerosis-related low-density lipoprotein (LDL) were able to accelerate the formation of NO2, studied by stopped-flow spectrophotometry using ABTS as a probe. In addition, membranes, LDL, and Triton X-100 micelles significantly accelerated S-nitrosation of glutathione and captopril. It is shown here that autoxidation of NO occurs 30 times more rapidly within the hydrophobic interior of these particles than in an equal volume of water, approximately 1 order of magnitude less than previous reports. This acceleration can be explained by the ∼3 times higher solubility of NO and O2 into these hydrophobic phases relative to water, which results in a higher local concentration of reactants (“lens effect”) and, therefore, a higher rate of reaction. It is predicted that 50% of the oxidizing and nitrosating species derived from NO autoxidation in cells will be formed in the small volume comprising cellular membranes (3% of the total); thus, biomolecules near the membranes will be exposed to fluxes of reactive nitrogen species 30-fold higher than their cytosolic counterparts.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Universidad de la República.

    §

     Both authors contributed equally to this work.

     University of Alabama at Birmingham.

     Current address:  Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294.

    *

     To whom correspondence should be addressed. Tel/Fax:  (5982) 5250749. E-mail:  [email protected].

    Cited By

    This article is cited by 82 publications.

    1. Matthew R. Dent, Anthony W. DeMartino, Jesús Tejero, Mark T. Gladwin. Endogenous Hemoprotein-Dependent Signaling Pathways of Nitric Oxide and Nitrite. Inorganic Chemistry 2021, 60 (21) , 15918-15940. https://doi.org/10.1021/acs.inorgchem.1c01048
    2. Linyue Chen, Zixin Deng, Changming Zhao. Nitrogen–Nitrogen Bond Formation Reactions Involved in Natural Product Biosynthesis. ACS Chemical Biology 2021, 16 (4) , 559-570. https://doi.org/10.1021/acschembio.1c00052
    3. Candice E. Paulsen and Kate S. Carroll . Cysteine-Mediated Redox Signaling: Chemistry, Biology, and Tools for Discovery. Chemical Reviews 2013, 113 (7) , 4633-4679. https://doi.org/10.1021/cr300163e
    4. Birandra K. Sinha, Suchandra Bhattacharjee, Saurabh Chatterjee, JinJie Jiang, Ann G. Motten, Ashutosh Kumar, Michael Graham Espey, and Ronald P. Mason . Role of Nitric Oxide in the Chemistry and Anticancer Activity of Etoposide (VP-16,213). Chemical Research in Toxicology 2013, 26 (3) , 379-387. https://doi.org/10.1021/tx300480q
    5. Verónica Silva, Gonzalo Genta, Matías N. Möller, Martín Masner, Leonor Thomson, Natalia Romero, Rafael Radi, Denise C. Fernandes, Francisco R. M. Laurindo, Horacio Heinzen, Walter Fierro, and Ana Denicola . Antioxidant Activity of Uruguayan Propolis. In Vitro and Cellular Assays. Journal of Agricultural and Food Chemistry 2011, 59 (12) , 6430-6437. https://doi.org/10.1021/jf201032y
    6. Silvina Bartesaghi, Jorge Wenzel, Madia Trujillo, Marcos López, Joy Joseph, Balaraman Kalyanaraman and Rafael Radi . Lipid Peroxyl Radicals Mediate Tyrosine Dimerization and Nitration in Membranes. Chemical Research in Toxicology 2010, 23 (4) , 821-835. https://doi.org/10.1021/tx900446r
    7. Chang Hoon Lim, Peter C. Dedon and William M. Deen . Kinetic Analysis of Intracellular Concentrations of Reactive Nitrogen Species. Chemical Research in Toxicology 2008, 21 (11) , 2134-2147. https://doi.org/10.1021/tx800213b
    8. Sebastian A. Suarez. Decoding the enigmatic last gasotransmitter. The intriguing journey of HNO: From hidden origins to clues on reactivity and detection. Redox Biochemistry and Chemistry 2024, 8 , 100024. https://doi.org/10.1016/j.rbc.2024.100024
    9. Matías N. Moller, Darío A. Vitturi. The Chemical Biology of Dinitrogen Trioxide. Redox Biochemistry and Chemistry 2024, 117 , 100026. https://doi.org/10.1016/j.rbc.2024.100026
    10. Junjie Li, Anthea LoBue, Sophia K. Heuser, Miriam M. Cortese-Krott. Determination of Nitric Oxide and Its Metabolites in Biological Tissues Using Ozone-Based Chemiluminescence Detection: A State-of-the-Art Review. Antioxidants 2024, 13 (2) , 179. https://doi.org/10.3390/antiox13020179
    11. John Jimenez, Parul Dubey, Bethany Carter, John M. Koomen, Joseph Markowitz. A metabolic perspective on nitric oxide function in melanoma. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2024, 1879 (1) , 189038. https://doi.org/10.1016/j.bbcan.2023.189038
    12. E. V Kalinina, M. D Novichkova. S-glutathionylation and S-nitrosylation as modulators of redox-dependent processes in cancer cell. Биохимия 2023, 88 (7) , 1137-1161. https://doi.org/10.31857/S0320972523070060
    13. Elena V. Kalinina, Maria D. Novichkova. S‑Glutathionylation and S‑Nitrosylation as Modulators of Redox-Dependent Processes in Cancer Cell. Biochemistry (Moscow) 2023, 88 (7) , 924-943. https://doi.org/10.1134/S0006297923070064
    14. Sheryse Taylor, Alexa Murray, Mary Francis, Elena Abramova, Changjiang Guo, Debra L. Laskin, Andrew J. Gow. Regulation of macrophage activation by S-Nitrosothiols following ozone-induced lung injury. Toxicology and Applied Pharmacology 2022, 457 , 116281. https://doi.org/10.1016/j.taap.2022.116281
    15. Miriam M. Cortese‐Krott. Hydrogen Sulfide, Reactive Nitrogen Species, and “The Joy of the Experimental Play*”. 2022, 77-102. https://doi.org/10.1002/9781119799900.ch4
    16. Witold K. Subczynski, Justyna Widomska, Marija Raguz, Marta Pasenkiewicz-Gierula. Molecular Oxygen as a Probe Molecule in EPR Spin Labeling Studies of Membrane Structure and Dynamics. Oxygen 2022, 2 (3) , 295-316. https://doi.org/10.3390/oxygen2030021
    17. Jun Jing, Kai Qi, Guohui Dong, Mengmeng Wang, Wingkei Ho. The photocatalytic •OH production activity of g-C3N4 improved by the introduction of NO. Chinese Chemical Letters 2022, https://doi.org/10.1016/j.cclet.2021.12.071
    18. Witold K. Subczynski, Marta Pasenkiewicz-Gierula, Justyna Widomska, Natalia Stein. Role of cholesterol in maintaining the physical properties of the plasma membrane. 2022, 41-71. https://doi.org/10.1016/B978-0-323-85857-1.00034-1
    19. Ana Denicola. Incoming new IUPAB councilor 2021: Ana Denicola. Biophysical Reviews 2021, 13 (6) , 827-830. https://doi.org/10.1007/s12551-021-00901-x
    20. Junjie Li, Anthea LoBue, Sophia K. Heuser, Francesca Leo, Miriam M. Cortese-Krott. Using diaminofluoresceins (DAFs) in nitric oxide research. Nitric Oxide 2021, 115 , 44-54. https://doi.org/10.1016/j.niox.2021.07.002
    21. Christopher M. Massa, Ziping Liu, Sheryse Taylor, Ashley P. Pettit, Marena N. Stakheyeva, Elena Korotkova, Valentina Popova, Elena N. Atochina-Vasserman, Andrew J. Gow. Biological Mechanisms of S-Nitrosothiol Formation and Degradation: How Is Specificity of S-Nitrosylation Achieved?. Antioxidants 2021, 10 (7) , 1111. https://doi.org/10.3390/antiox10071111
    22. Vandana Sharma, Veani Fernando, Joshua Letson, Yashna Walia, Xunzhen Zheng, Daniel Fackelman, Saori Furuta. S-Nitrosylation in Tumor Microenvironment. International Journal of Molecular Sciences 2021, 22 (9) , 4600. https://doi.org/10.3390/ijms22094600
    23. Э.С. Аллахвердиев, Г.В. Максимов, О.В. Родненков, О.Г. Лунева, Г.В. Цораев, А.Д. Иванов, А.И. Юсипович, Т.В. Мартынюк. Влияние динитрозильных комплексов железа на конформацию альбумина. Биохимия 2021, 86 (5) , 740-748. https://doi.org/10.31857/S0320972521050092
    24. Elvin S. Allakhverdiev, Georgy V. Maksimov, Oleg V. Rodnenkov, Oksana G. Luneva, Georgy V. Tsoraev, Aleksey D. Ivanov, Alexander I. Yusipovich, Tamila V. Martynyuk. Effect of Dinitrosyl Iron Complex on Albumin Conformation. Biochemistry (Moscow) 2021, 86 (5) , 533-539. https://doi.org/10.1134/S0006297921050023
    25. Sebastián A. Suarez, Paola Vargas, Fabio A. Doctorovich. Updating NO•/HNO interconversion under physiological conditions: A biological implication overview. Journal of Inorganic Biochemistry 2021, 216 , 111333. https://doi.org/10.1016/j.jinorgbio.2020.111333
    26. Tatiana Vasilieva, Oscar Goñi, Patrick Quille, Shane O’Connell, Dmitry Kosyakov, Semen Shestakov, Nikolay Ul’yanovskii, Michael Vasiliev. Chitosan Plasma Chemical Processing in Beam-Plasma Reactors as a Way of Environmentally Friendly Phytostimulants Production. Processes 2021, 9 (1) , 103. https://doi.org/10.3390/pr9010103
    27. Peter C. Ford, Katrina M. Miranda. The solution chemistry of nitric oxide and other reactive nitrogen species. Nitric Oxide 2020, 103 , 31-46. https://doi.org/10.1016/j.niox.2020.07.004
    28. Marina V. Navarro, Alison F. A. Chaves, Daniele G. Castilho, Isis Casula, Juliana C. P. Calado, Palloma M. Conceição, Leo K. Iwai, Beatriz F. de Castro, Wagner L. Batista. Effect of Nitrosative Stress on the S-Nitroso-Proteome of Paracoccidioides brasiliensis. Frontiers in Microbiology 2020, 11 https://doi.org/10.3389/fmicb.2020.01184
    29. T. M. Vasilieva, I. K. Naumova, O. V. Galkina, E. V. Udoratina, L. A. Kuvschinova, M. N. Vasiliev, Khin Maung Htay, Htet Ko Ko Zaw. Electron-Beam Plasma for Biomass Modification. IEEE Transactions on Plasma Science 2020, 48 (4) , 1035-1041. https://doi.org/10.1109/TPS.2020.2980200
    30. Matías N. Möller, Natalia Rios, Madia Trujillo, Rafael Radi, Ana Denicola, Beatriz Alvarez. Detection and quantification of nitric oxide–derived oxidants in biological systems. Journal of Biological Chemistry 2019, 294 (40) , 14776-14802. https://doi.org/10.1074/jbc.REV119.006136
    31. Veani Fernando, Xunzhen Zheng, Yashna Walia, Vandana Sharma, Joshua Letson, Saori Furuta. S-Nitrosylation: An Emerging Paradigm of Redox Signaling. Antioxidants 2019, 8 (9) , 404. https://doi.org/10.3390/antiox8090404
    32. Anjali Khajuria, Shagun Bali, Priyanka Sharma, Ravinderjit Kaur, Shivam Jasrotia, Poonam Saini, Puja Ohri, Renu Bhardwaj. S ‐Nitrosoglutathione (GSNO) and Plant Stress Responses. 2019, 627-644. https://doi.org/10.1002/9781119468677.ch26
    33. Matías N. Möller, Ana Denicola. Acceleration of the autoxidation of nitric oxide by proteins. Nitric Oxide 2019, 85 , 28-34. https://doi.org/10.1016/j.niox.2019.01.014
    34. Matias N. Möller, Ernesto Cuevasanta, Florencia Orrico, Ana C. Lopez, Leonor Thomson, Ana Denicola. Diffusion and Transport of Reactive Species Across Cell Membranes. 2019, 3-19. https://doi.org/10.1007/978-3-030-11488-6_1
    35. Matías N. Möller, Ana Denicola. Diffusion of nitric oxide and oxygen in lipoproteins and membranes studied by pyrene fluorescence quenching. Free Radical Biology and Medicine 2018, 128 , 137-143. https://doi.org/10.1016/j.freeradbiomed.2018.04.553
    36. Xinfu Zhang, Benlei Wang, Yi Xiao, Chao Wang, Ling He. Targetable, two-photon fluorescent probes for local nitric oxide capture in the plasma membranes of live cells and brain tissues. The Analyst 2018, 143 (17) , 4180-4188. https://doi.org/10.1039/C8AN00905H
    37. Jack R. Lancaster. How are nitrosothiols formed de novo in vivo ?. Archives of Biochemistry and Biophysics 2017, 617 , 137-144. https://doi.org/10.1016/j.abb.2016.10.015
    38. Sarah L. Wynia-Smith, Brian C. Smith. Nitrosothiol formation and S-nitrosation signaling through nitric oxide synthases. Nitric Oxide 2017, 63 , 52-60. https://doi.org/10.1016/j.niox.2016.10.001
    39. Rakesh P. Patel, Shuai Yuan, Christopher G. Kevil. S-Nitrosothiols and Nitric Oxide Biology. 2017, 45-56. https://doi.org/10.1016/B978-0-12-804273-1.00004-1
    40. Sruti Shiva, Laura Castro, Paul S. Brookes. Mitochondria and Nitric Oxide. 2017, 137-156. https://doi.org/10.1016/B978-0-12-804273-1.00011-9
    41. Kurt Vrancken, Hobe J. Schroeder, Lawrence D. Longo, Gordon G. Power, Arlin B. Blood. Postprandial lipids accelerate and redirect nitric oxide consumption in plasma. Nitric Oxide 2016, 55-56 , 70-81. https://doi.org/10.1016/j.niox.2016.03.004
    42. Zimei Rong, Zhihui Ye. Analytical Expression for the NO Concentration Profile Following NONOate Decomposition in the Presence of Oxygen. 2016, 435-441. https://doi.org/10.1007/978-3-319-38810-6_57
    43. Ivana Milic, Eva Griesser, Venukumar Vemula, Naoya Ieda, Hidehiko Nakagawa, Naoki Miyata, Jean-Marie Galano, Camille Oger, Thierry Durand, Maria Fedorova. Profiling and relative quantification of multiply nitrated and oxidized fatty acids. Analytical and Bioanalytical Chemistry 2015, 407 (19) , 5587-5602. https://doi.org/10.1007/s00216-015-8766-3
    44. Dario A Vitturi, Lucia Minarrieta, Sonia R Salvatore, Edward M Postlethwait, Marco Fazzari, Gerardo Ferrer-Sueta, Jack R Lancaster, Bruce A Freeman, Francisco J Schopfer. Convergence of biological nitration and nitrosation via symmetrical nitrous anhydride. Nature Chemical Biology 2015, 11 (7) , 504-510. https://doi.org/10.1038/nchembio.1814
    45. Miriam M. Cortese-Krott, Bernadette O. Fernandez, Malte Kelm, Anthony R. Butler, Martin Feelisch. On the chemical biology of the nitrite/sulfide interaction. Nitric Oxide 2015, 46 , 14-24. https://doi.org/10.1016/j.niox.2014.12.009
    46. Qian Li, Chuanyu Li, Harry K. Mahtani, Jian Du, Aashka R. Patel, Jack R. Lancaster. Nitrosothiol Formation and Protection against Fenton Chemistry by Nitric Oxide-induced Dinitrosyliron Complex Formation from Anoxia-initiated Cellular Chelatable Iron Increase. Journal of Biological Chemistry 2014, 289 (29) , 19917-19927. https://doi.org/10.1074/jbc.M114.569764
    47. Ari Zeida, Carlos M. Guardia, Pablo Lichtig, Laura L. Perissinotti, Lucas A. Defelipe, Adrián Turjanski, Rafael Radi, Madia Trujillo, Darío A. Estrin. Thiol redox biochemistry: insights from computer simulations. Biophysical Reviews 2014, 6 (1) , 27-46. https://doi.org/10.1007/s12551-013-0127-x
    48. Jaimeen D. Majmudar, Brent R. Martin, . Strategies for profiling native S -nitrosylation. Biopolymers 2014, 101 (2) , 173-179. https://doi.org/10.1002/bip.22342
    49. Birandra K. Sinha, Ashutosh Kumar, Suchandra Bhattacharjee, Michael G. Espey, Ronald P. Mason. Effect of Nitric Oxide on the Anticancer Activity of the Topoisomerase-Active Drugs Etoposide and Adriamycin in Human Melanoma Cells. Journal of Pharmacology and Experimental Therapeutics 2013, 347 (3) , 607-614. https://doi.org/10.1124/jpet.113.207928
    50. Kurt Vrancken, Hobe J. Schroeder, Lawrence D. Longo, Gordon G. Power, Arlin B. Blood. Role of ceruloplasmin in nitric oxide metabolism in plasma of humans and sheep: a comparison of adults and fetuses. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2013, 305 (11) , R1401-R1410. https://doi.org/10.1152/ajpregu.00266.2013
    51. Andrés Trostchansky, Lucía Bonilla, Lucía González-Perilli, Homero Rubbo. Nitro-Fatty Acids: Formation, Redox Signaling, and Therapeutic Potential. Antioxidants & Redox Signaling 2013, 19 (11) , 1257-1265. https://doi.org/10.1089/ars.2012.5023
    52. Antonio Martínez-Ruiz, Inês M. Araújo, Alicia Izquierdo-Álvarez, Pablo Hernansanz-Agustín, Santiago Lamas, Juan M. Serrador. Specificity in S-Nitrosylation: A Short-Range Mechanism for NO Signaling?. Antioxidants & Redox Signaling 2013, 19 (11) , 1220-1235. https://doi.org/10.1089/ars.2012.5066
    53. Bruno Manta, Marcelo Comini, Andrea Medeiros, Martín Hugo, Madia Trujillo, Rafael Radi. Trypanothione: A unique bis-glutathionyl derivative in trypanosomatids. Biochimica et Biophysica Acta (BBA) - General Subjects 2013, 1830 (5) , 3199-3216. https://doi.org/10.1016/j.bbagen.2013.01.013
    54. Katarzyna A. Broniowska, Anne R. Diers, Neil Hogg. S-Nitrosoglutathione. Biochimica et Biophysica Acta (BBA) - General Subjects 2013, 1830 (5) , 3173-3181. https://doi.org/10.1016/j.bbagen.2013.02.004
    55. Ahlam A. Ali, Jonathan A. Coulter, Claire H. Ogle, Marie M. Migaud, David G. Hirst, Tracy Robson, Helen O. McCarthy. The contribution of N2O3 to the cytotoxicity of the nitric oxide donor DETA/NO: an emerging role for S-nitrosylation. Bioscience Reports 2013, 33 (2) https://doi.org/10.1042/BSR20120120
    56. Sophie Griveau, Fethi Bedioui. Electroanalytical methodologies for the detection of S-nitrosothiols in biological fluids. The Analyst 2013, 138 (18) , 5173. https://doi.org/10.1039/c3an00488k
    57. Brian C Smith, Michael A Marletta. Mechanisms of S-nitrosothiol formation and selectivity in nitric oxide signaling. Current Opinion in Chemical Biology 2012, 16 (5-6) , 498-506. https://doi.org/10.1016/j.cbpa.2012.10.016
    58. Katarzyna A. Broniowska, Neil Hogg. The Chemical Biology of S-Nitrosothiols. Antioxidants & Redox Signaling 2012, 17 (7) , 969-980. https://doi.org/10.1089/ars.2012.4590
    59. Moshood K. Morakinyo, Itai Chipinda, Justin Hettick, Paul D. Siegel, Jonathan Abramson, Robert Strongin, Bice S. Martincigh, Reuben H. Simoyi. Detailed mechanistic investigation into the S-nitrosation of cysteamine. Canadian Journal of Chemistry 2012, 90 (9) , 724-738. https://doi.org/10.1139/v2012-051
    60. Christopher H. Switzer, Sharon A. Glynn, Robert Y.-S. Cheng, Lisa A. Ridnour, Jeffrey E. Green, Stefan Ambs, David A. Wink. S-Nitrosylation of EGFR and Src Activates an Oncogenic Signaling Network in Human Basal-Like Breast Cancer. Molecular Cancer Research 2012, 10 (9) , 1203-1215. https://doi.org/10.1158/1541-7786.MCR-12-0124
    61. Ernesto Cuevasanta, Ana Denicola, Beatriz Alvarez, Matías N. Möller, . Solubility and Permeation of Hydrogen Sulfide in Lipid Membranes. PLoS ONE 2012, 7 (4) , e34562. https://doi.org/10.1371/journal.pone.0034562
    62. Katarzyna A. Broniowska, Agnes Keszler, Swati Basu, Daniel B. Kim-Shapiro, Neil Hogg. Cytochrome c -mediated formation of S -nitrosothiol in cells. Biochemical Journal 2012, 442 (1) , 191-197. https://doi.org/10.1042/BJ20111294
    63. Rebecca S. Silkstone, Maria G. Mason, Peter Nicholls, Chris E. Cooper. Nitrogen dioxide oxidizes mitochondrial cytochrome c. Free Radical Biology and Medicine 2012, 52 (1) , 80-87. https://doi.org/10.1016/j.freeradbiomed.2011.09.024
    64. Tahira Farooqui, Akhlaq A. Farooqui. Pathogenesis of Neurodegenerative Diseases: Contribution of Oxidative Stress and Neuroinflammation. 2011, 103-116. https://doi.org/10.1002/9781118148143.ch7
    65. Santiago Signorelli, Matías N. Möller, E. Laura Coitiño, Ana Denicola. Nitrogen dioxide solubility and permeation in lipid membranes. Archives of Biochemistry and Biophysics 2011, 512 (2) , 190-196. https://doi.org/10.1016/j.abb.2011.06.003
    66. Michael F. Davis, Dom Vigil, Sharon L. Campbell. Regulation of Ras proteins by reactive nitrogen species. Free Radical Biology and Medicine 2011, 51 (3) , 565-575. https://doi.org/10.1016/j.freeradbiomed.2011.05.003
    67. John T. Anderson, Meiqin Zeng, Qian Li, Ryan Stapley, Doyle Ray Moore, Balachandra Chenna, Naomi Fineberg, Jaroslaw Zmijewski, Isam-Eldin Eltoum, Gene P. Siegal, Amit Gaggar, Stephen Barnes, Sadanandan E. Velu, Victor J. Thannickal, Edward Abraham, Rakesh P. Patel, Jack R. Lancaster, David D. Chaplin, Mark T. Dransfield, Jessy S. Deshane. Elevated levels of NO are localized to distal airways in asthma. Free Radical Biology and Medicine 2011, 50 (11) , 1679-1688. https://doi.org/10.1016/j.freeradbiomed.2011.03.015
    68. Michael S. De Mott, Peter C. Dedon. Chemistry of Inflammation and DNA Damage: Biological Impact of Reactive Nitrogen Species. 2010, 21-51. https://doi.org/10.1002/9783527630110.ch2
    69. Julie Heinecke, Peter C. Ford. Mechanistic studies of nitrite reactions with metalloproteins and models relevant to mammalian physiology. Coordination Chemistry Reviews 2010, 254 (3-4) , 235-247. https://doi.org/10.1016/j.ccr.2009.07.021
    70. Douglas D. Thomas, Wilmarie Flores-Santana, Christopher H. Switzer, David A. Wink, Lisa A. Ridnour. Determinants of Nitric Oxide Chemistry. 2010, 3-25. https://doi.org/10.1016/B978-0-12-373866-0.00001-0
    71. Andrés Trostchansky, Matías N. Möller, Silvina Bartesaghi, Horacio Botti, Ana Denicola, Rafael Radi, Homero Rubbo. Nitric Oxide Redox Biochemistry in Lipid Environments. 2010, 27-60. https://doi.org/10.1016/B978-0-12-373866-0.00002-2
    72. Agnes Keszler, Yanhong Zhang, Neil Hogg. Reaction between nitric oxide, glutathione, and oxygen in the presence and absence of protein: How are S-nitrosothiols formed?. Free Radical Biology and Medicine 2010, 48 (1) , 55-64. https://doi.org/10.1016/j.freeradbiomed.2009.10.026
    73. Giuseppe L. Squadrito, Edward M. Postlethwait. On the hydrophobicity of nitrogen dioxide: Could there be a “lens” effect for NO2 reaction kinetics?. Nitric Oxide 2009, 21 (2) , 104-109. https://doi.org/10.1016/j.niox.2009.05.008
    74. Qian Li, Jack R. Lancaster. Calibration of nitric oxide flux generation from diazeniumdiolate NO donors. Nitric Oxide 2009, 21 (1) , 69-75. https://doi.org/10.1016/j.niox.2009.04.001
    75. Dario A. Vitturi, David M. Krzywanski, Edward M. Postlethwait, Rakesh P. Patel. Nitric Oxide Regulation in Redox Signaling. 2009, 271-291. https://doi.org/10.1002/9783527627585.ch12
    76. Paul R.S. Baker, Francisco J. Schopfer, Valerie B. O’Donnell, Bruce A. Freeman. Convergence of nitric oxide and lipid signaling: Anti-inflammatory nitro-fatty acids. Free Radical Biology and Medicine 2009, 46 (8) , 989-1003. https://doi.org/10.1016/j.freeradbiomed.2008.11.021
    77. Thomas E. Taylor-Clark, Srinivas Ghatta, Weston Bettner, Bradley J. Undem. Nitrooleic Acid, an Endogenous Product of Nitrative Stress, Activates Nociceptive Sensory Nerves via the Direct Activation of TRPA1. Molecular Pharmacology 2009, 75 (4) , 820-829. https://doi.org/10.1124/mol.108.054445
    78. Witold K. Subczynski, Justyna Widomska, Jimmy B. Feix. Physical properties of lipid bilayers from EPR spin labeling and their influence on chemical reactions in a membrane environment. Free Radical Biology and Medicine 2009, 46 (6) , 707-718. https://doi.org/10.1016/j.freeradbiomed.2008.11.024
    79. Douglas D. Thomas, Lisa A. Ridnour, Jeffrey S. Isenberg, Wilmarie Flores-Santana, Christopher H. Switzer, Sonia Donzelli, Perwez Hussain, Cecilia Vecoli, Nazareno Paolocci, Stefan Ambs, Carol A. Colton, Curtis C. Harris, David D. Roberts, David A. Wink. The chemical biology of nitric oxide: Implications in cellular signaling. Free Radical Biology and Medicine 2008, 45 (1) , 18-31. https://doi.org/10.1016/j.freeradbiomed.2008.03.020
    80. Kejing Chen, Roland N. Pittman, Aleksander S. Popel. Nitric Oxide in the Vasculature: Where Does It Come From and Where Does It Go? A Quantitative Perspective. Antioxidants & Redox Signaling 2008, 10 (7) , 1185-1198. https://doi.org/10.1089/ars.2007.1959
    81. Matías N. Möller, Jack R. Lancaster, Ana Denicola. Chapter 2 The Interaction of Reactive Oxygen and Nitrogen Species with Membranes. 2008, 23-42. https://doi.org/10.1016/S1063-5823(08)00202-0
    82. PEDRO CABRALES, BEATRIZ Y. SALAZAR VÁZQUEZ, ADOLFO CHÁVEZ NEGRETE, MARCOS INTAGLIETTA. Perfluorocarbons as gas transporters for O 2 , NO, CO and volatile anesthetics. Transfusion Alternatives in Transfusion Medicine 2007, 9 (4) , 294-303. https://doi.org/10.1111/j.1778-428X.2007.00085.x

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect