<iframe src="//www.googletagmanager.com/ns.html?id=GTM-5TSRKG" height="0" width="0" style="display: none; visibility: hidden">
Research Article
No access
Published Online: 4 October 2013

Histone H3 Glutathionylation in Proliferating Mammalian Cells Destabilizes Nucleosomal Structure

Publication: Antioxidants & Redox Signaling
Volume 19, Issue Number 12

Abstract

Aims: Here we report that chromatin, the complex and dynamic eukaryotic DNA packaging structure, is able to sense cellular redox changes. Histone H3, the only nucleosomal protein that possesses cysteine(s), can be modified by glutathione (GSH). Results: Using Biotin labeled glutathione ethyl ester (BioGEE) treatment of nucleosomes in vitro, we show that GSH, the most abundant antioxidant in mammals, binds to histone H3. BioGEE treatment of NIH3T3 cells indicates that glutathionylation of H3 is maximal in fast proliferating cells, correlating well with enhanced levels of H3 glutathionylation in different tumor cell lines. Furthermore, glutathionylation of H3 in vivo decreases in livers from aged SAMP8 and C57BL/6J mice. We demonstrate biochemically and by mass spectrometry that histone variants H3.2/H3.3 are glutathionylated on their cysteine residue 110. Furthermore, circular dichroism, thermal denaturation of reconstituted nucleosomes, and molecular modeling indicate that glutathionylation of histone H3 produces structural changes affecting nucleosomal stability. Innovation: We characterize the implications of histone H3 glutathionylation in cell physiology and the modulation of core histone proteins structure affected by this modification. Conclusion: Histone H3 senses cellular redox changes through glutathionylation of Cys, which increases during cell proliferation and decreases during aging. Glutathionylation of histone H3 affects nucleosome stability structure leading to a more open chromatin structure. Antioxid. Redox Signal. 19, 1305–1320.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Banks DDGloss LM. Folding mechanism of the (H3-H4)2 histone tetramer of the core nucleosomeProtein Sci131304-13162004. 1. Banks DD and Gloss LM. Folding mechanism of the (H3-H4)2 histone tetramer of the core nucleosome. Protein Sci 13: 1304–1316, 2004.
2.
Barrett WCDeGnore JPKeng YFZhang ZYYim MBChock PB. Roles of superoxide radical anion in signal transduction mediated by reversible regulation of protein-tyrosine phosphatase 1BJ Biol Chem27434543-345461999. 2. Barrett WC, DeGnore JP, Keng YF, Zhang ZY, Yim MB, and Chock PB. Roles of superoxide radical anion in signal transduction mediated by reversible regulation of protein-tyrosine phosphatase 1B. J Biol Chem 274: 34543–34546, 1999.
3.
Barrett WCDeGnore JPKonig SFales HMKeng YFZhang ZYYim MBChock PB. Regulation of PTP1B via glutathionylation of the active site cysteine 215Biochemistry386699-67051999. 3. Barrett WC, DeGnore JP, Konig S, Fales HM, Keng YF, Zhang ZY, Yim MB, and Chock PB. Regulation of PTP1B via glutathionylation of the active site cysteine 215. Biochemistry 38: 6699–6705, 1999.
4.
Berger SL. The complex language of chromatin regulation during transcriptionNature447407-4122007. 4. Berger SL. The complex language of chromatin regulation during transcription. Nature 447: 407–412, 2007.
5.
Bode JHenco KWingender E. Modulation of the nucleosome structure by histone acetylationEur J Biochem110143-1521980. 5. Bode J, Henco K, and Wingender E. Modulation of the nucleosome structure by histone acetylation. Eur J Biochem 110: 143–152, 1980.
6.
Bohm LHayashi HCary PDMoss TCrane-Robinson CBradbury EM. Sites of histone/histone interaction in the H3- H4 complexEur J Biochem77487-4931977. 6. Bohm L, Hayashi H, Cary PD, Moss T, Crane-Robinson C, and Bradbury EM. Sites of histone/histone interaction in the H3- H4 complex. Eur J Biochem 77: 487–493, 1977.
7.
Brigelius R. Glutathione oxidation and activation of pentose phosphate cycle during hydroperoxide metabolism. A comparison of livers from fed and fasted ratsHoppe Seylers Z Physiol Chem364989-9961983. 7. Brigelius R. Glutathione oxidation and activation of pentose phosphate cycle during hydroperoxide metabolism. A comparison of livers from fed and fasted rats. Hoppe Seylers Z Physiol Chem 364: 989–996, 1983.
8.
Camerini-Otero RDFelsenfeld G. Histone H3 disulfide dimers and nucleosome structureProc Natl Acad Sci U S A745519-55231977. 8. Camerini-Otero RD, and Felsenfeld G. Histone H3 disulfide dimers and nucleosome structure. Proc Natl Acad Sci U S A 74: 5519–5523, 1977.
9.
Chi PAllis CDWang GG. Covalent histone modifications—miswritten, misinterpreted and mis-erased in human cancersNat Rev Cancer10457-4692010. 9. Chi P, Allis CD, and Wang GG. Covalent histone modifications—miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer 10: 457–469, 2010.
10.
Chow JCBrown CJ. Forming facultative heterochromatin: silencing of an X chromosome in mammalian femalesCell Mol Life Sci602586-26032003. 10. Chow JC and Brown CJ. Forming facultative heterochromatin: silencing of an X chromosome in mammalian females. Cell Mol Life Sci 60: 2586–2603, 2003.
11.
de Luca AMoroni NSerafino APrimavera APastore APedersen JZPetruzzelli RFarrace MGPierimarchi PMoroni GFederici GSinibaldi Vallebona PLo Bello M. Treatment of doxorubicin-resistant MCF7/Dx cells with nitric oxide causes histone glutathionylation and reversal of drug resistanceBiochem J440175-1832011. 11. de Luca A, Moroni N, Serafino A, Primavera A, Pastore A, Pedersen JZ, Petruzzelli R, Farrace MG, Pierimarchi P, Moroni G, Federici G, Sinibaldi Vallebona P, Lo and Bello M. Treatment of doxorubicin-resistant MCF7/Dx cells with nitric oxide causes histone glutathionylation and reversal of drug resistance. Biochem J 440: 175–183, 2011.
12.
Diaz Vivancos PWolff TMarkovic JPallardo FVFoyer CH. A nuclear glutathione cycle within the cell cycleBiochem J431169-1782010. 12. Diaz Vivancos P, Wolff T, Markovic J, Pallardo FV, and Foyer CH. A nuclear glutathione cycle within the cell cycle. Biochem J 431: 169–178, 2010.
13.
Dixit KKhan MASharma YDMoinuddin Alam K. Physicochemical studies on peroxynitrite-modified H3 histoneInt J Biol Macromol4620-262010. 13. Dixit K, Khan MA, Sharma YD, Moinuddin, and Alam K. Physicochemical studies on peroxynitrite-modified H3 histone. Int J Biol Macromol 46: 20–26, 2010.
14.
Downs JANussenzweig MCNussenzweig A. Chromatin dynamics and the preservation of genetic informationNature447951-9582007. 14. Downs JA, Nussenzweig MC, and Nussenzweig A. Chromatin dynamics and the preservation of genetic information. Nature 447: 951–958, 2007.
15.
Drake JPetroze RCastegna ADing QKeller JNMarkesbery WRLovell MAButterfield DA. 4-Hydroxynonenal oxidatively modifies histones: implications for Alzheimer's diseaseNeurosci Lett356155-1582004. 15. Drake J, Petroze R, Castegna A, Ding Q, Keller JN, Markesbery WR, Lovell MA, and Butterfield DA. 4-Hydroxynonenal oxidatively modifies histones: implications for Alzheimer's disease. Neurosci Lett 356: 155–158, 2004.
16.
Dwivedi RSHerman JGMcCaffrey TARaj DS. Beyond genetics: epigenetic code in chronic kidney diseaseKidney Int7923-322011. 16. Dwivedi RS, Herman JG, McCaffrey TA, and Raj DS. Beyond genetics: epigenetic code in chronic kidney disease. Kidney Int 79: 23–32, 2011.
17.
Garcia-Gimenez JLLedesma AMEsmoris IRoma-Mateo CSanz PVina JPallardo FV. Histone carbonylation occurs in proliferating cellsFree Radic Biol Med521453-14642012. 17. Garcia-Gimenez JL, Ledesma AM, Esmoris I, Roma-Mateo C, Sanz P, Vina J, and Pallardo FV. Histone carbonylation occurs in proliferating cells. Free Radic Biol Med 52: 1453–1464, 2012.
18.
Garcia BAHake SBDiaz RLKauer MMorris SARecht JShabanowitz JMishra NStrahl BDAllis CDHunt DF. Organismal differences in post-translational modifications in histones H3 and H4J Biol Chem2827641-76552007. 18. Garcia BA, Hake SB, Diaz RL, Kauer M, Morris SA, Recht J, Shabanowitz J, Mishra N, Strahl BD, Allis CD, and Hunt DF. Organismal differences in post-translational modifications in histones H3 and H4. J Biol Chem 282: 7641–7655, 2007.
19.
Greenfield NJ. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactionsNat Protoc12527-25352006. 19. Greenfield NJ. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat Protoc 1: 2527–2535, 2006.
20.
Gutmann IWahlefeld A. Methods of Enzymatic AnalysisBergmeyer HUNew YorkAcademic Press19741464-1468. 20. Gutmann I and Wahlefeld A. Methods of Enzymatic Analysis, edited by Bergmeyer HU. New York: Academic Press, 1974, pp. 1464–1468.
21.
Hake SBAllis CD. Histone H3 variants and their potential role in indexing mammalian genomes: the “H3 barcode hypothesis”Proc Natl Acad Sci U S A1036428-64352006. 21. Hake SB and Allis CD. Histone H3 variants and their potential role in indexing mammalian genomes: the “H3 barcode hypothesis”. Proc Natl Acad Sci U S A 103: 6428–6435, 2006.
22.
Hake SBGarcia BADuncan EMKauer MDellaire GShabanowitz JBazett-Jones DPAllis CDHunt DF. Expression patterns and post-translational modifications associated with mammalian histone H3 variantsJ Biol Chem281559-5682006. 22. Hake SB, Garcia BA, Duncan EM, Kauer M, Dellaire G, Shabanowitz J, Bazett-Jones DP, Allis CD, and Hunt DF. Expression patterns and post-translational modifications associated with mammalian histone H3 variants. J Biol Chem 281: 559–568, 2006.
23.
Iakova PAwad SSTimchenko NA. Aging reduces proliferative capacities of liver by switching pathways of C/EBPalpha growth arrestCell113495-5062003. 23. Iakova P, Awad SS, and Timchenko NA. Aging reduces proliferative capacities of liver by switching pathways of C/EBPalpha growth arrest. Cell 113: 495–506, 2003.
24.
Jenuwein TAllis CD. Translating the histone codeScience2931074-10802001. 24. Jenuwein T and Allis CD. Translating the histone code. Science 293: 1074–1080, 2001.
25.
Johnson LMollah SGarcia BAMuratore TLShabanowitz JHunt DFJacobsen SE. Mass spectrometry analysis of Arabidopsis histone H3 reveals distinct combinations of post-translational modificationsNucleic Acids Res326511-65182004. 25. Johnson L, Mollah S, Garcia BA, Muratore TL, Shabanowitz J, Hunt DF, and Jacobsen SE. Mass spectrometry analysis of Arabidopsis histone H3 reveals distinct combinations of post-translational modifications. Nucleic Acids Res 32: 6511–6518, 2004.
26.
Kawakami KNakamura AIshigami AGoto STakahashi R. Age-related difference of site-specific histone modifications in rat liverBiogerontology10415-4212009. 26. Kawakami K, Nakamura A, Ishigami A, Goto S, and Takahashi R. Age-related difference of site-specific histone modifications in rat liver. Biogerontology 10: 415–421, 2009.
27.
Klatt PPineda Molina EPerez-Sala DLamas S. Novel application of S-nitrosoglutathione-Sepharose to identify proteins that are potential targets for S-nitrosoglutathione-induced mixed-disulphide formationBiochem J349567-5782000. 27. Klatt P, Pineda Molina E, Perez-Sala D, and Lamas S. Novel application of S-nitrosoglutathione-Sepharose to identify proteins that are potential targets for S-nitrosoglutathione-induced mixed-disulphide formation. Biochem J 349: 567–578, 2000.
28.
Kouzarides T. Chromatin modifications and their functionCell128693-7052007. 28. Kouzarides T. Chromatin modifications and their function. Cell 128: 693–705, 2007.
29.
Lachner MJenuwein T. The many faces of histone lysine methylationCurr Opin Cell Biol14286-2982002. 29. Lachner M and Jenuwein T. The many faces of histone lysine methylation. Curr Opin Cell Biol 14: 286–298, 2002.
30.
Lewis PNChiu SS. Effect of histone H3 sulfhydryl modifications on histone-histone interactions and nucleosome formation and structureEur J Biochem109369-3761980. 30. Lewis PN and Chiu SS. Effect of histone H3 sulfhydryl modifications on histone-histone interactions and nucleosome formation and structure. Eur J Biochem 109: 369–376, 1980.
31.
Livak KJSchmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) MethodMethods25402-4082001. 31. Livak KJ and Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408, 2001.
32.
Luger KMader AWRichmond RKSargent DFRichmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolutionNature389251-2601997. 32. Luger K, Mader AW, Richmond RK, Sargent DF, and Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251–260, 1997.
33.
Markovic JBorras COrtega ASastre JVina JPallardo FV. Glutathione is recruited into the nucleus in early phases of cell proliferationJ Biol Chem28220416-204242007. 33. Markovic J, Borras C, Ortega A, Sastre J, Vina J, and Pallardo FV. Glutathione is recruited into the nucleus in early phases of cell proliferation. J Biol Chem 282: 20416–20424, 2007.
34.
Markovic JGarcia-Gimenez JLGimeno AVina JPallardo FV. Role of glutathione in cell nucleusFree Radic Res44721-7332010. 34. Markovic J, Garcia-Gimenez JL, Gimeno A, Vina J, and Pallardo FV. Role of glutathione in cell nucleus. Free Radic Res 44: 721–733, 2010.
35.
Markovic JMora NJBroseta AMGimeno Ade-la-Concepcion NVina JPallardo FV. The depletion of nuclear glutathione impairs cell proliferation in 3t3 fibroblastsPLoS One4e64132009. 35. Markovic J, Mora NJ, Broseta AM, Gimeno A, de-la-Concepcion N, Vina J, and Pallardo FV. The depletion of nuclear glutathione impairs cell proliferation in 3t3 fibroblasts. PLoS One 4: e6413, 2009.
36.
McKittrick EGafken PRAhmad KHenikoff S. Histone H3.3 is enriched in covalent modifications associated with active chromatinProc Natl Acad Sci U S A1011525-15302004. 36. McKittrick E, Gafken PR, Ahmad K, and Henikoff S. Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc Natl Acad Sci U S A 101: 1525–1530, 2004.
37.
McNairn AJGilbert DM. Epigenomic replication: linking epigenetics to DNA replicationBioessays25647-6562003. 37. McNairn AJ and Gilbert DM. Epigenomic replication: linking epigenetics to DNA replication. Bioessays 25: 647–656, 2003.
38.
Menon SGGoswami PC. A redox cycle within the cell cycle: ring in the old with the newOncogene261101-11092007. 38. Menon SG and Goswami PC. A redox cycle within the cell cycle: ring in the old with the new. Oncogene 26: 1101–1109, 2007.
39.
Nagata TRedman RSLakshman R. Isolation of intact nuclei of high purity from mouse liverAnal Biochem398178-1842010. 39. Nagata T, Redman RS, and Lakshman R. Isolation of intact nuclei of high purity from mouse liver. Anal Biochem 398: 178–184, 2010.
40.
Nakamura AKawakami KKametani FNakamoto HGoto S. Biological significance of protein modifications in aging and calorie restrictionAnn N Y Acad Sci119733-392010. 40. Nakamura A, Kawakami K, Kametani F, Nakamoto H, and Goto S. Biological significance of protein modifications in aging and calorie restriction. Ann N Y Acad Sci 1197: 33–39, 2010.
41.
Olins DEBryan PNHarrington REHill WEOlins AL. Conformational states of chromatin nu bodies induced by ureaNucleic Acids Res41911-19311977. 41. Olins DE, Bryan PN, Harrington RE, Hill WE, and Olins AL. Conformational states of chromatin nu bodies induced by urea. Nucleic Acids Res 4: 1911–1931, 1977.
42.
Pallardo FVMarkovic JGarcia JLVina J. Role of nuclear glutathione as a key regulator of cell proliferationMol Aspects Med3077-852009. 42. Pallardo FV, Markovic J, Garcia JL, and Vina J. Role of nuclear glutathione as a key regulator of cell proliferation. Mol Aspects Med 30: 77–85, 2009.
43.
Panyim SSommer KRChalkley R. Oxidation of the cysteine-containing histone F3. Detection of an evolutionary mutation in a conservative histoneBiochemistry103911-39171971. 43. Panyim S, Sommer KR, and Chalkley R. Oxidation of the cysteine-containing histone F3. Detection of an evolutionary mutation in a conservative histone. Biochemistry 10: 3911–3917, 1971.
44.
Penella ESandoval JZaragoza RGarcia CVina JRTorres LGarcia-Trevijano ER. Molecular mechanisms of Id2 down-regulation in rat liver after acetaminophen overdose. Protection by N-acetyl-L-cysteineFree Radic Res441044-10532010. 44. Penella E, Sandoval J, Zaragoza R, Garcia C, Vina JR, Torres L, and Garcia-Trevijano ER. Molecular mechanisms of Id2 down-regulation in rat liver after acetaminophen overdose. Protection by N-acetyl-L-cysteine. Free Radic Res 44: 1044–1053, 2010.
45.
Pineda-Molina EKlatt PVazquez JMarina AGarcia de Lacoba MPerez-Sala DLamas S. Glutathionylation of the p50 subunit of NF-kappaB: a mechanism for redox-induced inhibition of DNA bindingBiochemistry4014134-141422001. 45. Pineda-Molina E, Klatt P, Vazquez J, Marina A, Garcia de Lacoba M, Perez-Sala D, and Lamas S. Glutathionylation of the p50 subunit of NF-kappaB: a mechanism for redox-induced inhibition of DNA binding. Biochemistry 40: 14134–14142, 2001.
46.
Polo SEAlmouzni G. Chromatin assembly: a basic recipe with various flavoursCurr Opin Genet Dev16104-1112006. 46. Polo SE and Almouzni G. Chromatin assembly: a basic recipe with various flavours. Curr Opin Genet Dev 16: 104–111, 2006.
47.
Prior CPCantor CRJohnson EMLittau VCAllfrey VG. Reversible changes in nucleosome structure and histone H3 accessibility in transcriptionally active and inactive states of rDNA chromatinCell341033-10421983. 47. Prior CP, Cantor CR, Johnson EM, Littau VC, and Allfrey VG. Reversible changes in nucleosome structure and histone H3 accessibility in transcriptionally active and inactive states of rDNA chromatin. Cell 34: 1033–1042, 1983.
48.
Rahman IMarwick JKirkham P. Redox modulation of chromatin remodeling: impact on histone acetylation and deacetylation, NF-kappaB and pro-inflammatory gene expressionBiochem Pharmacol681255-12672004. 48. Rahman I, Marwick J, and Kirkham P. Redox modulation of chromatin remodeling: impact on histone acetylation and deacetylation, NF-kappaB and pro-inflammatory gene expression. Biochem Pharmacol 68: 1255–1267, 2004.
49.
Ramaswamy ABahar IIoshikhes I. Structural dynamics of nucleosome core particle: comparison with nucleosomes containing histone variantsProteins58683-6962005. 49. Ramaswamy A, Bahar I, and Ioshikhes I. Structural dynamics of nucleosome core particle: comparison with nucleosomes containing histone variants. Proteins 58: 683–696, 2005.
50.
Robyt JFAckerman RJChittenden CG. Reaction of protein disulfide groups with Ellman's reagent: a case study of the number of sulfhydryl and disulfide groups in Aspergillus oryzae -amylase, papain, and lysozymeArch Biochem Biophys147262-2691971. 50. Robyt JF, Ackerman RJ, and Chittenden CG. Reaction of protein disulfide groups with Ellman's reagent: a case study of the number of sulfhydryl and disulfide groups in Aspergillus oryzae -amylase, papain, and lysozyme. Arch Biochem Biophys 147: 262–269, 1971.
51.
Schaftenaar GNoordik JH. Molden: a pre- and post-processing program for molecular and electronic structuresJ Comput Aided Mol Des14123-1342000. 51. Schaftenaar G and Noordik JH. Molden: a pre- and post-processing program for molecular and electronic structures. J Comput Aided Mol Des 14: 123–134, 2000.
52.
Sharma RNakamura ATakahashi RNakamoto HGoto S. Carbonyl modification in rat liver histones: decrease with age and increase by dietary restrictionFree Radic Biol Med401179-11842006. 52. Sharma R, Nakamura A, Takahashi R, Nakamoto H, and Goto S. Carbonyl modification in rat liver histones: decrease with age and increase by dietary restriction. Free Radic Biol Med 40: 1179–1184, 2006.
53.
Shechter DDormann HLAllis CDHake SB. Extraction, purification and analysis of histonesNat Protoc21445-14572007. 53. Shechter D, Dormann HL, Allis CD, and Hake SB. Extraction, purification and analysis of histones. Nat Protoc 2: 1445–1457, 2007.
54.
Sterner RBoffa LCChen TAAllfrey VG. Cell cycle-dependent changes in conformation and composition of nucleosomes containing human histone gene sequencesNucleic Acids Res154375-43911987. 54. Sterner R, Boffa LC, Chen TA, and Allfrey VG. Cell cycle-dependent changes in conformation and composition of nucleosomes containing human histone gene sequences. Nucleic Acids Res 15: 4375–4391, 1987.
55.
Strahl BDAllis CD. The language of covalent histone modificationsNature40341-452000. 55. Strahl BD and Allis CD. The language of covalent histone modifications. Nature 403: 41–45, 2000.
56.
Strohalm MHassman MKosata BKodicek M. mMass data miner: an open source alternative for mass spectrometric data analysisRapid Commun Mass Spectrom22905-9082008. 56. Strohalm M, Hassman M, Kosata B, and Kodicek M. mMass data miner: an open source alternative for mass spectrometric data analysis. Rapid Commun Mass Spectrom 22: 905–908, 2008.
57.
Sullivan DMWehr NBFergusson MMLevine RLFinkel T. Identification of oxidant-sensitive proteins: TNF-alpha induces protein glutathiolationBiochemistry3911121-111282000. 57. Sullivan DM, Wehr NB, Fergusson MM, Levine RL, and Finkel T. Identification of oxidant-sensitive proteins: TNF-alpha induces protein glutathiolation. Biochemistry 39: 11121–11128, 2000.
58.
Tao LEnglish AM. Protein S-glutathiolation triggered by decomposed S-nitrosoglutathioneBiochemistry434028-40382004. 58. Tao L and English AM. Protein S-glutathiolation triggered by decomposed S-nitrosoglutathione. Biochemistry 43: 4028–4038, 2004.
59.
Tatchell KVan Holde KE. Reconstitution of chromatin core particlesBiochemistry165295-53031977. 59. Tatchell K and Van Holde KE. Reconstitution of chromatin core particles. Biochemistry 16: 5295–5303, 1977.
60.
Tsunaka YKajimura NTate SMorikawa K. Alteration of the nucleosomal DNA path in the crystal structure of a human nucleosome core particleNucleic Acids Res333424-34342005. 60. Tsunaka Y, Kajimura N, Tate S, and Morikawa K. Alteration of the nucleosomal DNA path in the crystal structure of a human nucleosome core particle. Nucleic Acids Res 33: 3424–3434, 2005.
61.
Veech RLEggleston LVKrebs HA. The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liverBiochem J115609-6191969. 61. Veech RL, Eggleston LV, and Krebs HA. The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver. Biochem J 115: 609–619, 1969.
62.
Vivancos PDDong YZiegler KMarkovic JPallardo FVPellny TKVerrier PJFoyer CH. Recruitment of glutathione into the nucleus during cell proliferation adjusts whole-cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shieldPlant J64825-8382010. 62. Vivancos PD, Dong Y, Ziegler K, Markovic J, Pallardo FV, Pellny TK, Verrier PJ, and Foyer CH. Recruitment of glutathione into the nucleus during cell proliferation adjusts whole-cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield. Plant J 64: 825–838, 2010.
63.
Wang CFu MMani SWadler SSenderowicz AMPestell RG. Histone acetylation and the cell-cycle in cancerFront Biosci6D610-D6292001. 63. Wang C, Fu M, Mani S, Wadler S, Senderowicz AM, and Pestell RG. Histone acetylation and the cell-cycle in cancer. Front Biosci 6: D610–D629, 2001.
64.
Wiedemann SMMildner SNBonisch CIsrael LMaiser AMatheisl SStraub TMerkl RLeonhardt HKremmer ESchermelleh LHake SB. Identification and characterization of two novel primate-specific histone H3 variants, H3.X and H3.YJ Cell Biol190777-7912010. 64. Wiedemann SM, Mildner SN, Bonisch C, Israel L, Maiser A, Matheisl S, Straub T, Merkl R, Leonhardt H, Kremmer E, Schermelleh L, and Hake SB. Identification and characterization of two novel primate-specific histone H3 variants, H3.X and H3.Y. J Cell Biol 190: 777–791, 2010.
65.
Wood CMSodngam SNicholson JMLambert SJReynolds CDBaldwin JP. The oxidised histone octamer does not form a H3 disulphide bondBiochim Biophys Acta17641356-13622006. 65. Wood CM, Sodngam S, Nicholson JM, Lambert SJ, Reynolds CD, and Baldwin JP. The oxidised histone octamer does not form a H3 disulphide bond. Biochim Biophys Acta 1764: 1356–1362, 2006.
66.
Xu MLong CChen XHuang CChen SZhu B. Partitioning of histone H3-H4 tetramers during DNA replication-dependent chromatin assemblyScience32894-982010. 66. Xu M, Long C, Chen X, Huang C, Chen S, and Zhu B. Partitioning of histone H3-H4 tetramers during DNA replication-dependent chromatin assembly. Science 328: 94–98, 2010.
67.
Zhong LArner ESHolmgren A. Structure and mechanism of mammalian thioredoxin reductase: the active site is a redox-active selenolthiol/selenenylsulfide formed from the conserved cysteine-selenocysteine sequenceProc Natl Acad Sci U S A975854-58592000. 67. Zhong L, Arner ES, and Holmgren A. Structure and mechanism of mammalian thioredoxin reductase: the active site is a redox-active selenolthiol/selenenylsulfide formed from the conserved cysteine-selenocysteine sequence. Proc Natl Acad Sci U S A 97: 5854–5859, 2000.

Information & Authors

Information

Published In

cover image Antioxidants & Redox Signaling
Antioxidants & Redox Signaling
Volume 19Issue Number 12October 20, 2013
Pages: 1305 - 1320
PubMed: 23541030

History

Published in print: October 20, 2013
Published online: 4 October 2013
Published ahead of print: 21 May 2013
Published ahead of production: 31 March 2013
Accepted: 31 March 2013
Revision received: 12 March 2013
Received: 19 October 2012

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

José Luis García-Giménez
CIBERER, Biomedical Network Research Center for Rare Diseases, Valencia, Spain.
Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.
Institute of Health Research INCLIVA, Valencia, Spain.
Gloria Olaso
Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.
Sandra B. Hake
Department of Molecular Biology, Adolf Butenandt Institute, Ludwig-Maximilians-University Munich, Munich, Germany.
Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-University Munich, Munich, Germany.
Clemens Bönisch
Department of Molecular Biology, Adolf Butenandt Institute, Ludwig-Maximilians-University Munich, Munich, Germany.
Sonja M. Wiedemann
Department of Molecular Biology, Adolf Butenandt Institute, Ludwig-Maximilians-University Munich, Munich, Germany.
Jelena Markovic
CIBERER, Biomedical Network Research Center for Rare Diseases, Valencia, Spain.
Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.
Institute of Health Research INCLIVA, Valencia, Spain.
Francisco Dasí
Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.
Institute of Health Research INCLIVA, Valencia, Spain.
Amparo Gimeno
CIBERER, Biomedical Network Research Center for Rare Diseases, Valencia, Spain.
Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.
Institute of Health Research INCLIVA, Valencia, Spain.
Carme Pérez-Quilis
Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.
Òscar Palacios
Department of Inorganic Chemistry, Science Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Spain.
Mercè Capdevila
Department of Inorganic Chemistry, Science Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Spain.
José Viña
Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.
Institute of Health Research INCLIVA, Valencia, Spain.
Federico V. Pallardó
CIBERER, Biomedical Network Research Center for Rare Diseases, Valencia, Spain.
Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.
Institute of Health Research INCLIVA, Valencia, Spain.

Notes

Address correspondence to:Dr. Federico V. PallardóDepartament de FisiologíaFacultat de MedicinaUniversitat de ValènciaAvda. Blasco Ibañez No. 1546010 ValenciaSpain
E-mail: [email protected]
Dr. José Luis García GiménezDepartament de FisiologíaFacultat de MedicinaUniversitat de ValènciaAvda. Blasco Ibañez No. 1546010 ValenciaSpain
E-mail: [email protected]

Author Disclosure Statement

No competing financial interests exist for any of the authors.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top