<iframe src="//www.googletagmanager.com/ns.html?id=GTM-5TSRKG" height="0" width="0" style="display: none; visibility: hidden">
Review Article
No access
Published Online: 30 September 2010

Redox Regulation of Cell Survival

Publication: Antioxidants & Redox Signaling
Volume 10, Issue Number 8

Abstract

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play important roles in regulation of cell survival. In general, moderate levels of ROS/RNS may function as signals to promote cell proliferation and survival, whereas severe increase of ROS/RNS can induce cell death. Under physiologic conditions, the balance between generation and elimination of ROS/RNS maintains the proper function of redox-sensitive signaling proteins. Normally, the redox homeostasis ensures that the cells respond properly to endogenous and exogenous stimuli. However, when the redox homeostasis is disturbed, oxidative stress may lead to aberrant cell death and contribute to disease development. This review focuses on the roles of key transcription factors, signal-transduction pathways, and cell-death regulators in affecting cell survival, and how the redox systems regulate the functions of these molecules. The current understanding of how disturbance in redox homeostasis may affect cell death and contribute to the development of diseases such as cancer and degenerative disorders is reviewed. We also discuss how the basic knowledge on redox regulation of cell survival can be used to develop strategies for the treatment or prevention of those diseases. Antioxid. Redox Signal. 10, 1343–1374.

Abstract

I.
Redox Biology and Regulatory Mechanisms
A.
Redox homeostasis: ROS production and elimination
B.
Oxidative stress and its consequences
C.
Redox-mediated mechanisms in regulation of cellular processes
1.
Transcriptional regulation
2.
Direct oxidative modification
3.
Regulation of redox-sensitive interacting proteins
4.
Regulation of redox-sensitive modifying enzymes
5.
Regulation of protein turnover
II.
Redox Regulation of Signaling Proteins Affecting Cell Death and Survival
A.
Redox regulation of cell survival at the transcription level
1.
NF-κB
a.
Role of NF-κB in cell survival
b.
Redox regulation of NF-κB
c.
Redox regulation of nuclear NF-κB
d.
Cytoplasmic regulation of NF-κB
2.
AP-1
a.
Role of AP-1 in cell survival
b.
Redox regulation of AP-1
3.
Nrf2
a.
Role of Nrf2 in cell survival
b.
Redox regulation of Nrf2
4.
HIF
a.
Role of HIF in cell survival
b.
Redox regulation of HIF
B.
Redox regulation of cell survival at the signal-transduction level
1.
Mitogen-activated protein kinase
a.
Role of MAPK for cell survival under oxidative stress
b.
Redox regulation of MAPK
2.
PI3K/Akt pathway
a.
Role of PI3K/Akt in cell survival
b.
Redox regulation of PI3K/Akt
C.
Redox regulation of cell survival at the cell death–execution level
1.
Caspases
a.
Role of caspases in cell death and survival
b.
Redox regulation of caspases
2.
Bcl-2
a.
Role of Bcl-2 in cell survival
b.
Redox regulation of Bcl-2
3.
Cytochrome c
a.
Role of cytochrome c in cell survival
b.
Redox regulation of cytochrome c
D.
Integration of redox-sensitive signaling pathways in the regulation of cell survival
1.
Crosstalk between signaling pathways
2.
Role of p53
a.
P53 serves as an antioxidant to maintain redox homeostasis and normal cell survival
b.
Role of p53 in cell death
c.
Redox regulation of p53
III.
Role of Redox Regulation of Cell Survival in Pathogenesis of Diseases
A.
Aberrant prolonged cell survival leads to cancer
1.
Oncogene activation
a.
Ras
b.
c-Myc
c.
Bcr-Abl
2.
Loss of functional p53
3.
Aberrant expression of antioxidant enzymes
a.
Superoxide dismutase (SOD)
b.
Glutathione peroxidase (GPX) and peroxiredoxin (Prx)
B.
Diseases with excessive cell death: aging and degenerative disorders
IV.
Therapeutic Strategies Based on Redox Regulation of Cell Survival
A.
Manipulating redox homeostasis
1.
Pro-oxidants as a therapeutic strategy for cancer
2.
Antioxidants for prevention of degenerative diseases
B.
Modulating redox-sensitive signaling molecules
V.
Concluding Remarks

Get full access to this article

View all available purchase options and get full access to this article.

Abbreviations Used

ARE, antioxidant responsive element; ASK1, apoptosis-regulating signal kinase 1; EpRE, electrophile responsive element; ER, endoplasmic reticulum; ERK, extracellular regulated kinase; GPX, glutathione peroxidase; GRX, glutaredoxin; GSH, reduced glutathione; GSSG, oxidized glutathione; GST, glutathione-S-transferase; HAT, histone acetylase; HDAC, histone deacetylase; HIF, hypoxia-inducible factor; HNE, 4-hydroxy-2-nonenal; HO·, hydroxyl radical; H2O2, hydrogen peroxide; Hsp, heat-shock protein; IкB, inhibitor of NF-κB; JNK, c-Jun-N-terminal kinase; Keap1, Kelch-like ECH-associating protein 1; MAPK, mitogen-activated protein kinase; MDA, malondialdehyde; MPT, mitochondrial permeability transition; NAC, N-acetylcysteine; NADPH, nicotinamide adenine dinucleotide phosphate (reduced); NF-κB, nuclear factor kappa B; NO·, nitric oxide; NOS, nitric oxide synthase; NOX, NAD(P)H oxidase; Nrf2, NF-E2–related factor 2; O2, superoxide; ONOO, peroxynitrite; Prx, peroxyredoxins; PTEN, phosphatase and tensin homologue; PTK, phosphotyrosine kinase; PTPase, protein tyrosine phosphatase; RNS, reactive nitrogen species; ROS, reactive oxygen species; SAPK, stress-activated protein kinases; SCO2, synthesis of cytochrome c oxidase 2; SOD, superoxide dismutase; TIGAR, TP53-induced glycolysis and apoptosis regulator; TRX, thioredoxin; ub, ubiquitin; XO, xanthine oxidase.

References

1.
Adler VYin ZFuchs SYBenezra MRosario LTew KDPincus MRSardana MHenderson CJWolf CRDavis RJRonai Z. Regulation of JNK signaling by GSTpEMBO J181321-13341999. 1. Adler V, Yin Z, Fuchs SY, Benezra M, Rosario L, Tew KD, Pincus MR, Sardana M, Henderson CJ, Wolf CR, Davis RJ, and Ronai Z. Regulation of JNK signaling by GSTp. EMBO J 18: 1321–1334, 1999.
2.
Alexandre JNicco CChereau CLaurent AWeill BGoldwasser FBatteux F. Improvement of the therapeutic index of anticancer drugs by the superoxide dismutase mimic mangafodipirJ Natl Cancer Inst98236-2442006. 2. Alexandre J, Nicco C, Chereau C, Laurent A, Weill B, Goldwasser F, and Batteux F. Improvement of the therapeutic index of anticancer drugs by the superoxide dismutase mimic mangafodipir. J Natl Cancer Inst 98: 236–244, 2006.
3.
Angel PKarin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformationBiochim Biophys Acta1072129-1571991. 3. Angel P and Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1072: 129–157, 1991.
4.
O'Brian CAChu F. Review: post-translational disulfide modifications in cell signaling: role of inter-protein, intra-protein, S-glutathionyl, and S-cysteaminyl disulfide modifications in signal transmissionFree Radic Res39471-4802005. 4. O'Brian CA and Chu F. Review: post-translational disulfide modifications in cell signaling: role of inter-protein, intra-protein, S-glutathionyl, and S-cysteaminyl disulfide modifications in signal transmission. Free Radic Res 39: 471–480, 2005.
5.
Arakawa MIto Y. N-acetylcysteine and neurodegenerative diseases: basic and clinical pharmacologyCerebellum6308-3142007. 5. Arakawa M and Ito Y. N-acetylcysteine and neurodegenerative diseases: basic and clinical pharmacology. Cerebellum 6: 308–314, 2007.
6.
Armstrong JS. Mitochondrial membrane permeabilization: the sine qua non for cell deathBioessays28253-2602006. 6. Armstrong JS. Mitochondrial membrane permeabilization: the sine qua non for cell death. Bioessays 28: 253–260, 2006.
7.
Attardi LDDonehower LA. Probing p53 biological functions through the use of genetically engineered mouse modelsMutat Res5764-212005. 7. Attardi LD and Donehower LA. Probing p53 biological functions through the use of genetically engineered mouse models. Mutat Res 576: 4–21, 2005.
8.
Awasthi YCSharma RCheng JZYang YSharma ASinghal SSAwasthi S. Role of 4-hydroxynonenal in stress-mediated apoptosis signalingMol Aspects Med24219-2302003. 8. Awasthi YC, Sharma R, Cheng JZ, Yang Y, Sharma A, Singhal SS, and Awasthi S. Role of 4-hydroxynonenal in stress-mediated apoptosis signaling. Mol Aspects Med 24: 219–230, 2003.
9.
Aylon YOren M. Living with p53, dying of p53Cell130597-6002007. 9. Aylon Y and Oren M. Living with p53, dying of p53. Cell 130: 597–600, 2007.
10.
Bannister AJMiska EA. Regulation of gene expression by transcription factor acetylationCell Mol Life Sci (CMLS)571184-11922000. 10. Bannister AJ and Miska EA. Regulation of gene expression by transcription factor acetylation. Cell Mol Life Sci (CMLS) 57: 1184–1192, 2000.
11.
Basu ADuBois GHaldar S. Posttranslational modifications of Bcl2 family members: a potential therapeutic target for human malignancyFrontiers Biosci111508-15212006. 11. Basu A, DuBois G, and Haldar S. Posttranslational modifications of Bcl2 family members: a potential therapeutic target for human malignancy. Frontiers Biosci 11: 1508–1521, 2006.
12.
Bauer MKVogt MLos MSiegel JWesselborg SSchulze-Osthoff K. Role of reactive oxygen intermediates in activation-induced CD95 (APO-1/Fas) ligand expressionJ Biol Chem2738048-80551998. 12. Bauer MK, Vogt M, Los M, Siegel J, Wesselborg S, and Schulze-Osthoff K. Role of reactive oxygen intermediates in activation-induced CD95 (APO-1/Fas) ligand expression. J Biol Chem 273: 8048–8055, 1998.
13.
Bayir HFadeel BPalladino MJWitasp EKurnikov IVTyurina YYTyurin VAAmoscato AAJiang JKochanek PMDeKosky STGreenberger JSShvedova AAKagan VE. Apoptotic interactions of cytochrome c: redox flirting with anionic phospholipids within and outside of mitochondriaBiochim Biophys Acta1757648-6592006. 13. Bayir H, Fadeel B, Palladino MJ, Witasp E, Kurnikov IV, Tyurina YY, Tyurin VA, Amoscato AA, Jiang J, Kochanek PM, DeKosky ST, Greenberger JS, Shvedova AA, and Kagan VE. Apoptotic interactions of cytochrome c: redox flirting with anionic phospholipids within and outside of mitochondria. Biochim Biophys Acta 1757: 648–659, 2006.
14.
Bea FHudson FNChait AKavanagh TJRosenfeld ME. Induction of glutathione synthesis in macrophages by oxidized low-density lipoproteins is mediated by consensus antioxidant response elementsCirc Res92386-3932003. 14. Bea F, Hudson FN, Chait A, Kavanagh TJ, and Rosenfeld ME. Induction of glutathione synthesis in macrophages by oxidized low-density lipoproteins is mediated by consensus antioxidant response elements. Circ Res 92: 386–393, 2003.
15.
Beckman KBAmes BN. Oxidative decay of DNAJ Biol Chem27219633-196361997. 15. Beckman KB and Ames BN. Oxidative decay of DNA. J Biol Chem 272: 19633–19636, 1997.
16.
Behrend LHenderson GZwacka RM. Reactive oxygen species in oncogenic transformationBiochem Soc Trans311441-14442003. 16. Behrend L, Henderson G, and Zwacka RM. Reactive oxygen species in oncogenic transformation. Biochem Soc Trans 31: 1441–1444, 2003.
17.
BelAiba RSDjordjevic TBonello SFlugel DHess JKietzmann TGorlach A. Redox-sensitive regulation of the HIF pathway under non-hypoxic conditions in pulmonary artery smooth muscle cellsBiol Chem385249-2572004. 17. BelAiba RS, Djordjevic T, Bonello S, Flugel D, Hess J, Kietzmann T, and Gorlach A. Redox-sensitive regulation of the HIF pathway under non-hypoxic conditions in pulmonary artery smooth muscle cells. Biol Chem 385: 249–257, 2004.
18.
Bell ELChandel NS. Mitochondrial oxygen sensing: regulation of hypoxia-inducible factor by mitochondrial generated reactive oxygen speciesEssays Biochem4317-272007. 18. Bell EL and Chandel NS. Mitochondrial oxygen sensing: regulation of hypoxia-inducible factor by mitochondrial generated reactive oxygen species. Essays Biochem 43: 17–27, 2007.
19.
Benassi BFanciulli MFiorentino FPorrello AChiorino GLoda MZupi GBiroccio A. c-Myc phosphorylation is required for cellular response to oxidative stressMol Cell21509-5192006. 19. Benassi B, Fanciulli M, Fiorentino F, Porrello A, Chiorino G, Loda M, Zupi G, and Biroccio A. c-Myc phosphorylation is required for cellular response to oxidative stress. Mol Cell 21: 509–519, 2006.
20.
Bensaad KTsuruta ASelak MAVidal MNNakano KBartrons RGottlieb EVousden KH. TIGAR, a p53-inducible regulator of glycolysis and apoptosisCell126107-1202006. 20. Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E, and Vousden KH. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126: 107–120, 2006.
21.
Bensaad KVousden KH. p53: New roles in metabolismTrends Cell Biol17286-2912007. 21. Bensaad K and Vousden KH. p53: New roles in metabolism. Trends Cell Biol 17: 286–291, 2007.
22.
Bhaskar PTHay N. The two TORCs and AktDev Cell12487-5022007. 22. Bhaskar PT and Hay N. The two TORCs and Akt. Dev Cell 12: 487–502, 2007.
23.
Bigelow DJSquier TC. Redox modulation of cellular signaling and metabolism through reversible oxidation of methionine sensors in calcium regulatory proteinsBiochim Biophys Acta1703121-1342005. 23. Bigelow DJ and Squier TC. Redox modulation of cellular signaling and metabolism through reversible oxidation of methionine sensors in calcium regulatory proteins. Biochim Biophys Acta 1703: 121–134, 2005.
24.
Biroccio ABenassi BAmodei SGabellini CDel Bufalo DZupi G. c-Myc down-regulation increases susceptibility to cisplatin through reactive oxygen species-mediated apoptosis in M14 human melanoma cellsMol Pharmacol60174-1822001. 24. Biroccio A, Benassi B, Amodei S, Gabellini C, Del Bufalo D, and Zupi G. c-Myc down-regulation increases susceptibility to cisplatin through reactive oxygen species-mediated apoptosis in M14 human melanoma cells. Mol Pharmacol 60: 174–182, 2001.
25.
Borsello TForloni G. JNK signalling: a possible target to prevent neurodegenerationCurr Pharm Des131875-18862007. 25. Borsello T and Forloni G. JNK signalling: a possible target to prevent neurodegeneration. Curr Pharm Des 13: 1875–1886, 2007.
26.
Bossy-Wetzel EBakiri LYaniv M. Induction of apoptosis by the transcription factor c-JunEMBO J161695-17091997. 26. Bossy-Wetzel E, Bakiri L, and Yaniv M. Induction of apoptosis by the transcription factor c-Jun. EMBO J 16: 1695–1709, 1997.
27.
Bourdon EBlache D. The importance of proteins in defense against oxidationAntioxid Redox Signal3293-3112001. 27. Bourdon E and Blache D. The importance of proteins in defense against oxidation. Antioxid Redox Signal 3: 293–311, 2001.
28.
Bragado PArmesilla ASilva APorras A. Apoptosis by cisplatin requires p53 mediated p38alpha MAPK activation through ROS generationApoptosis121733-17422007. 28. Bragado P, Armesilla A, Silva A, and Porras A. Apoptosis by cisplatin requires p53 mediated p38alpha MAPK activation through ROS generation. Apoptosis 12: 1733–1742, 2007.
29.
Brahimi-Horn MCPouyssegur J. Oxygen, a source of life and stressFEBS Lett5813582-912007. 29. Brahimi-Horn MC and Pouyssegur J. Oxygen, a source of life and stress. FEBS Lett 581: 3582–91, 2007.
30.
Brahimi-Horn MCPouyssegur J. Hypoxia in cancer cell metabolism and pH regulationEssays Biochem43165-1782007. 30. Brahimi-Horn MC and Pouyssegur J. Hypoxia in cancer cell metabolism and pH regulation. Essays Biochem 43: 165–178, 2007.
31.
Breen APMurphy JA. Reactions of oxyl radicals with DNAFree Radic Biol Med181033-10771995 31. Breen AP and Murphy JA. Reactions of oxyl radicals with DNA. Free Radic Biol Med 18: 1033–1077, 1995
32.
Breitschopf KHaendeler JMalchow PZeiher AMDimmeler S. Posttranslational modification of Bcl-2 facilitates its proteasome-dependent degradation: molecular characterization of the involved signaling pathwayMol Cell Biol201886-18962000. 32. Breitschopf K, Haendeler J, Malchow P, Zeiher AM, and Dimmeler S. Posttranslational modification of Bcl-2 facilitates its proteasome-dependent degradation: molecular characterization of the involved signaling pathway. Mol Cell Biol 20: 1886–1896, 2000.
33.
Brigelius-Flohe R. Glutathione peroxidases and redox-regulated transcription factorsBiol Chem3871329-13352006. 33. Brigelius-Flohe R. Glutathione peroxidases and redox-regulated transcription factors. Biol Chem 387: 1329–1335, 2006.
34.
Brune BZhou J. The role of nitric oxide (NO) in stability regulation of hypoxia inducible factor-1alpha (HIF-1alpha)Curr Med Chem10845-8552003. 34. Brune B and Zhou J. The role of nitric oxide (NO) in stability regulation of hypoxia inducible factor-1alpha (HIF-1alpha). Curr Med Chem 10: 845–855, 2003.
35.
Bubici CPapa SDean KFranzoso G. Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significanceOncogene256731-67482006. 35. Bubici C, Papa S, Dean K, and Franzoso G. Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance. Oncogene 25: 6731–6748, 2006.
36.
Bucci BD'Agnano IAmendola DCitti ARaza GHMiceli RDe Paula UMarchese RAlbini SFelsani ABrunetti EVecchione A. Myc down-regulation sensitizes melanoma cells to radiotherapy by inhibiting MLH1 and MSH2 mismatch repair proteinsClin Cancer Res112756-27672005. 36. Bucci B, D'Agnano I, Amendola D, Citti A, Raza GH, Miceli R, De Paula U, Marchese R, Albini S, Felsani A, Brunetti E, and Vecchione A. Myc down-regulation sensitizes melanoma cells to radiotherapy by inhibiting MLH1 and MSH2 mismatch repair proteins. Clin Cancer Res 11: 2756–2767, 2005.
37.
Busuttil RAGarcia AMCabrera CRodriguez ASuh YKim WHHuang TTVijg J. Organ-specific increase in mutation accumulation and apoptosis rate in CuZn-superoxide dismutase-deficient miceCancer Res6511271-112752005. 37. Busuttil RA, Garcia AM, Cabrera C, Rodriguez A, Suh Y, Kim WH, Huang TT, and Vijg J. Organ-specific increase in mutation accumulation and apoptosis rate in CuZn-superoxide dismutase-deficient mice. Cancer Res 65: 11271–11275, 2005.
38.
Cahuana GMTejedo JRJimenez JRamirez RSobrino FBedoya FJ. Nitric oxide-induced carbonylation of Bcl-2, GAPDH and ANT precedes apoptotic events in insulin-secreting RINm5F cellsExp Cell Res29322-302004. 38. Cahuana GM, Tejedo JR, Jimenez J, Ramirez R, Sobrino F, and Bedoya FJ. Nitric oxide-induced carbonylation of Bcl-2, GAPDH and ANT precedes apoptotic events in insulin-secreting RINm5F cells. Exp Cell Res 293: 22–30, 2004.
39.
Cai JWu MNelson KCSternberg P JrJones DP. Oxidant-induced apoptosis in cultured human retinal pigment epithelial cellsInvest Ophthalmol Vis Sci40959-9661999. 39. Cai J, Wu M, Nelson KC, Sternberg P Jr, and Jones DP. Oxidant-induced apoptosis in cultured human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 40: 959–966, 1999.
40.
Callapina MZhou JSchmid TKohl RBrune B. NO restores HIF-1alpha hydroxylation during hypoxia: role of reactive oxygen speciesFree Radic Biol Med39925-9362005. 40. Callapina M, Zhou J, Schmid T, Kohl R, and Brune B. NO restores HIF-1alpha hydroxylation during hypoxia: role of reactive oxygen species. Free Radic Biol Med 39: 925–936, 2005.
41.
Cappellini ATazzari PLMantovani IBilli AMTassi CRicci FConte RMartelli AM. Antiapoptotic role of p38 mitogen activated protein kinase in Jurkat T cells and normal human T lymphocytes treated with 8-methoxypsoralen and ultraviolet-A radiationApoptosis10141-1522005. 41. Cappellini A, Tazzari PL, Mantovani I, Billi AM, Tassi C, Ricci F, Conte R, and Martelli AM. Antiapoptotic role of p38 mitogen activated protein kinase in Jurkat T cells and normal human T lymphocytes treated with 8-methoxypsoralen and ultraviolet-A radiation. Apoptosis 10: 141–152, 2005.
42.
Catz SDJohnson JL. Transcriptional regulation of bcl-2 by nuclear factor kappa B and its significance in prostate cancerOncogene207342-73512001. 42. Catz SD and Johnson JL. Transcriptional regulation of bcl-2 by nuclear factor kappa B and its significance in prostate cancer. Oncogene 20: 7342–7351, 2001.
43.
Chan KHan X-DKan YW. An important function of Nrf2 in combating oxidative stress: detoxification of acetaminophenProc Natl Acad Sci USA984611-46162001. 43. Chan K, Han X-D and Kan YW. An important function of Nrf2 in combating oxidative stress: detoxification of acetaminophen. Proc Natl Acad Sci USA 98: 4611–4616, 2001.
44.
Chen KAlbano AHo AKeaney JF Jr. Activation of p53 by oxidative stress involves platelet-derived growth factor-beta receptor-mediated ataxia telangiectasia mutated (ATM) kinase activationJ Biol Chem27839527-395332003. 44. Chen K, Albano A, Ho A and Keaney JF Jr. Activation of p53 by oxidative stress involves platelet-derived growth factor-beta receptor-mediated ataxia telangiectasia mutated (ATM) kinase activation. J Biol Chem 278: 39527–39533, 2003.
45.
Chen KHu ZWang LESturgis EMEl-Naggar AKZhang WWei Q. Single-nucleotide polymorphisms at the TP53-binding or responsive promoter regions of BAX and BCL2 genes and risk of squamous cell carcinoma of the head and neckCarcinogenesis282008-20122007. 45. Chen K, Hu Z, Wang LE, Sturgis EM, El-Naggar AK, Zhang W, and Wei Q. Single-nucleotide polymorphisms at the TP53-binding or responsive promoter regions of BAX and BCL2 genes and risk of squamous cell carcinoma of the head and neck. Carcinogenesis 28: 2008–2012, 2007.
46.
Chen WMartindale JLHolbrook NJLiu Y. Tumor promoter arsenite activates extracellular signal-regulated kinase through a signaling pathway mediated by epidermal growth factor receptor and ShcMol Cell Biol185178-51881998. 46. Chen W, Martindale JL, Holbrook NJ, and Liu Y. Tumor promoter arsenite activates extracellular signal-regulated kinase through a signaling pathway mediated by epidermal growth factor receptor and Shc. Mol Cell Biol 18: 5178–5188, 1998.
47.
Chen ZTrotman LCShaffer DLin HKDotan ZANiki MKoutcher JAScher HILudwig TGerald WCordon-Cardo CPandolfi PP. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesisNature436725-7302005. 47. Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, Koutcher JA, Scher HI, Ludwig T, Gerald W, Cordon-Cardo C, and Pandolfi PP. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436: 725–730, 2005.
48.
Chiarugi P. PTPs versus PTKs: the redox side of the coinFree Radic Res39353-3642005. 48. Chiarugi P. PTPs versus PTKs: the redox side of the coin. Free Radic Res 39: 353–364, 2005.
49.
Chinery RBrockman JAPeeler MOShyr YBeauchamp RDCoffey RJ. Antioxidants enhance the cytotoxicity of chemotherapeutic agents in colorectal cancer: a p53-independent induction of p21WAF1/CIP1 via C/EBPbetaNat Med31233-12411997. 49. Chinery R, Brockman JA, Peeler MO, Shyr Y, Beauchamp RD, and Coffey RJ. Antioxidants enhance the cytotoxicity of chemotherapeutic agents in colorectal cancer: a p53-independent induction of p21WAF1/CIP1 via C/EBPbeta. Nat Med 3: 1233–1241, 1997.
50.
Cho SHLee CHAhn YKim HKim HAhn CYYang KSLee SR. Redox regulation of PTEN and protein tyrosine phosphatases in H(2)O(2) mediated cell signalingFEBS Lett5607-132004. 50. Cho SH, Lee CH, Ahn Y, Kim H, Kim H, Ahn CY, Yang KS, and Lee SR. Redox regulation of PTEN and protein tyrosine phosphatases in H(2)O(2) mediated cell signaling. FEBS Lett 560: 7–13, 2004.
51.
Cobbs CSSamanta MHarkins LEGillespie GYMerrick BAMacMillan-Crow LA. Evidence for peroxynitrite-mediated modifications to p53 in human gliomas: possible functional consequencesArch Biochem Biophys394167-1722001. 51. Cobbs CS, Samanta M, Harkins LE, Gillespie GY, Merrick BA, and MacMillan-Crow LA. Evidence for peroxynitrite-mediated modifications to p53 in human gliomas: possible functional consequences. Arch Biochem Biophys 394: 167–172, 2001.
52.
Cobbs CSWhisenhunt TRWesemann DRHarkins LEVan Meir EGSamanta M. Inactivation of wild-type p53 protein function by reactive oxygen and nitrogen species in malignant glioma cellsCancer Res638670-86732003. 52. Cobbs CS, Whisenhunt TR, Wesemann DR, Harkins LE, Van Meir EG, and Samanta M. Inactivation of wild-type p53 protein function by reactive oxygen and nitrogen species in malignant glioma cells. Cancer Res 63: 8670–8673, 2003.
53.
Colotta FPolentarutti NSironi MMantovani A. Expression and involvement of c-fos and c-jun protooncogenes in programmed cell death induced by growth factor deprivation in lymphoid cell linesJ Biol Chem26718278-182831992. 53. Colotta F, Polentarutti N, Sironi M, and Mantovani A. Expression and involvement of c-fos and c-jun protooncogenes in programmed cell death induced by growth factor deprivation in lymphoid cell lines. J Biol Chem 267: 18278–18283, 1992.
54.
Cross JVTempleton DJ. Oxidative stress inhibits MEKK1 by site-specific glutathionylation in the ATP-binding domainBiochem J381675-6832004. 54. Cross JV and Templeton DJ. Oxidative stress inhibits MEKK1 by site-specific glutathionylation in the ATP-binding domain. Biochem J 381: 675–683, 2004.
55.
Cross JVTempleton DJ. Regulation of signal transduction through protein cysteine oxidationAntioxid Redox Signal81819-18272006. 55. Cross JV and Templeton DJ. Regulation of signal transduction through protein cysteine oxidation. Antioxid Redox Signal 8: 1819–1827, 2006.
56.
Cullinan SBZhang DHannink MArvisais EKaufman RJDiehl JA. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survivalMol Cell Biol237198-72092003. 56. Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, and Diehl JA. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol 23: 7198–7209, 2003.
57.
Dai YRahmani MDent PGrant S. Blockade of histone deacetylase inhibitor-induced RelA/p65 acetylation and NF-kappaB activation potentiates apoptosis in leukemia cells through a process mediated by oxidative damage, XIAP downregulation, and c-Jun N-terminal kinase 1 activationMol Cell Biol255429-54442005. 57. Dai Y, Rahmani M, Dent P, and Grant S. Blockade of histone deacetylase inhibitor-induced RelA/p65 acetylation and NF-kappaB activation potentiates apoptosis in leukemia cells through a process mediated by oxidative damage, XIAP downregulation, and c-Jun N-terminal kinase 1 activation. Mol Cell Biol 25: 5429–5444, 2005.
58.
Daley GQBaltimore D. Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific P210bcr/abl proteinProc Natl Acad Sci U S A859312-93161988. 58. Daley GQ and Baltimore D. Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific P210bcr/abl protein. Proc Natl Acad Sci U S A 85: 9312–9316, 1988.
59.
Dalle-Donne IAldini GCarini MColombo RRossi RMilzani A. Protein carbonylation, cellular dysfunction, and disease progressionJ Cell Mol Med10389-4062006. 59. Dalle-Donne I, Aldini G, Carini M, Colombo R, Rossi R, and Milzani A. Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med 10: 389–406, 2006.
60.
David SSO'Shea VLKundu S. Base-excision repair of oxidative DNA damageNature447941-9502007. 60. David SS, O'Shea VL, and Kundu S. Base-excision repair of oxidative DNA damage. Nature 447: 941–950, 2007.
61.
De Smaele EZazzeroni FPapa SNguyen DUJin RJones JCong RFranzoso G. Induction of gadd45beta by NF-kappaB downregulates pro-apoptotic JNK signallingNature414308-3132001. 61. De Smaele E, Zazzeroni F, Papa S, Nguyen DU, Jin R, Jones J, Cong R, and Franzoso G. Induction of gadd45beta by NF-kappaB downregulates pro-apoptotic JNK signalling. Nature 414: 308–313, 2001.
62.
Dean RTFu SStocker RDavies MJ. Biochemistry and pathology of radical-mediated protein oxidationBiochem J3241-181997. 62. Dean RT, Fu S, Stocker R, and Davies MJ. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324: 1–18, 1997.
63.
Delphin CCahen PLawrence JJBaudier J. Characterization of baculovirus recombinant wild-type p53: dimerization of p53 is required for high-affinity DNA binding and cysteine oxidation inhibits p53 DNA bindingEur J Biochem223683-6921994. 63. Delphin C, Cahen P, Lawrence JJ, and Baudier J. Characterization of baculovirus recombinant wild-type p53: dimerization of p53 is required for high-affinity DNA binding and cysteine oxidation inhibits p53 DNA binding. Eur J Biochem 223: 683–692, 1994.
64.
Deng HXHentati ATainer JAIqbal ZCayabyab AHung WYGetzoff EDHu PHerzfeldt BRoos RPWarner CDeng GSoriano ESmyth CParge HEAhmed ARoses ADHallewell RAPericak-Vance MASiddique T. Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutaseScience2611047-10511993. 64. Deng HX, Hentati A, Tainer JA, Iqbal Z, Cayabyab A, Hung WY, Getzoff ED, Hu P, Herzfeldt B, Roos RP, Warner C, Deng G, Soriano E, Smyth C, Parge HE, Ahmed A, Roses AD, Hallewell RA, Pericak-Vance MA, and Siddique T. Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science 261: 1047–1051, 1993.
65.
Deng XXiao LLang WGao FRuvolo PMay WS Jr. Novel role for JNK as a stress-activated Bcl2 kinaseJ Biol Chem27623681-236882001. 65. Deng X, Xiao L, Lang W, Gao F, Ruvolo P, and May WS Jr. Novel role for JNK as a stress-activated Bcl2 kinase. J Biol Chem 276: 23681–23688, 2001.
66.
Dhakshinamoorthy SPorter AG. Nitric oxide-induced transcriptional up-regulation of protective genes by Nrf2 via the antioxidant response element counteracts apoptosis of neuroblastoma cellsJ Biol Chem27920096-201072004. 66. Dhakshinamoorthy S and Porter AG. Nitric oxide-induced transcriptional up-regulation of protective genes by Nrf2 via the antioxidant response element counteracts apoptosis of neuroblastoma cells. J Biol Chem 279: 20096–20107, 2004.
67.
Dickey DTWu YJMuldoon LLNeuwelt EA. Protection against cisplatin-induced toxicities by N-acetylcysteine and sodium thiosulfate as assessed at the molecular, cellular, and in vivo levelsJ Pharmacol Exp Ther3141052-10582005. 67. Dickey DT, Wu YJ, Muldoon LL, and Neuwelt EA. Protection against cisplatin-induced toxicities by N-acetylcysteine and sodium thiosulfate as assessed at the molecular, cellular, and in vivo levels. J Pharmacol Exp Ther 314: 1052–1058, 2005.
68.
Dillon RLWhite DEMuller WJ. The phosphatidyl inositol 3-kinase signaling network: implications for human breast cancerOncogene261338-13452007. 68. Dillon RL, White DE, and Muller WJ. The phosphatidyl inositol 3-kinase signaling network: implications for human breast cancer. Oncogene 26: 1338–1345, 2007.
69.
Ding BChi SGKim SHKang SCho JHKim DSCho NH. Role of p53 in antioxidant defense of HPV-positive cervical carcinoma cells following H2O2 exposureJ Cell Sci1202284-22942007. 69. Ding B, Chi SG, Kim SH, Kang S, Cho JH, Kim DS, and Cho NH. Role of p53 in antioxidant defense of HPV-positive cervical carcinoma cells following H2O2 exposure. J Cell Sci 120: 2284–2294, 2007.
70.
Dinkova-Kostova ATHoltzclaw WDCole RNItoh KWakabayashi NKatoh YYamamoto MTalalay P. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidantsProc Natl Acad Sci U S A9911908-119132002. 70. Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y, Yamamoto M, and Talalay P. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci U S A 99: 11908–11913, 2002.
71.
Dong CYang DDWysk MWhitmarsh AJDavis RJFlavell RA. Defective T cell differentiation in the absence of Jnk1Science2822092-20951998. 71. Dong C, Yang DD, Wysk M, Whitmarsh AJ, Davis RJ, and Flavell RA. Defective T cell differentiation in the absence of Jnk1. Science 282: 2092–2095, 1998.
72.
Draczynska-Lusiak BDoung ASun AY. Oxidized lipoproteins may play a role in neuronal cell death in Alzheimer diseaseMol Chem Neuropathol33139-1481998. 72. Draczynska-Lusiak B, Doung A, and Sun AY. Oxidized lipoproteins may play a role in neuronal cell death in Alzheimer disease. Mol Chem Neuropathol 33: 139–148, 1998.
73.
Droge W. Free radicals in the physiological control of cell functionPhysiol Rev8247-952002. 73. Droge W. Free radicals in the physiological control of cell function. Physiol Rev 82: 47–95, 2002.
74.
Droge WKinscherf RHildebrandt WSchmitt T. The deficit in low molecular weight thiols as a target for antiageing therapyCurr Drug Targets71505-15122006. 74. Droge W, Kinscherf R, Hildebrandt W, and Schmitt T. The deficit in low molecular weight thiols as a target for antiageing therapy. Curr Drug Targets 7: 1505–1512, 2006.
75.
Droge WSchipper HM. Oxidative stress and aberrant signaling in aging and cognitive declineAging Cell6361-702007. 75. Droge W and Schipper HM. Oxidative stress and aberrant signaling in aging and cognitive decline. Aging Cell 6: 361–70, 2007.
76.
Duran ADiaz-Meco MTMoscat J. Essential role of RelA Ser311 phosphorylation by zetaPKC in NF-kappaB transcriptional activationEMBO J223910-39182003. 76. Duran A, Diaz-Meco MT, and Moscat J. Essential role of RelA Ser311 phosphorylation by zetaPKC in NF-kappaB transcriptional activation. EMBO J 22: 3910–3918, 2003.
77.
el-Remessy ABBartoli MPlatt DHFulton DCaldwell RB. Oxidative stress inactivates VEGF survival signaling in retinal endothelial cells via PI 3-kinase tyrosine nitrationJ Cell Sci118243-2522005. 77. el-Remessy AB, Bartoli M, Platt DH, Fulton D, and Caldwell RB. Oxidative stress inactivates VEGF survival signaling in retinal endothelial cells via PI 3-kinase tyrosine nitration. J Cell Sci 118: 243–252, 2005.
78.
Elchuri SOberley TDQi WEisenstein RSJackson Roberts LVan Remmen HEpstein CJHuang TT. CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in lifeOncogene24367-3802005. 78. Elchuri S, Oberley TD, Qi W, Eisenstein RS, Jackson Roberts L, Van Remmen H, Epstein CJ, and Huang TT. CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene 24: 367–380, 2005.
79.
Ellerby LMEllerby HMPark SMHolleran ALMurphy ANFiskum GKane DJTesta MPKayalar CBredesen DE. Shift of the cellular oxidation-reduction potential in neural cells expressing Bcl-2J Neurochem671259-12671996. 79. Ellerby LM, Ellerby HM, Park SM, Holleran AL, Murphy AN, Fiskum G, Kane DJ, Testa MP, Kayalar C, and Bredesen DE. Shift of the cellular oxidation-reduction potential in neural cells expressing Bcl-2. J Neurochem 67: 1259–1267, 1996.
80.
Emerling BMPlatanias LCBlack ENebreda ARDavis RJChandel NS. Mitochondrial reactive oxygen species activation of p38 mitogen-activated protein kinase is required for hypoxia signalingMol Cell Biol254853-48622005. 80. Emerling BM, Platanias LC, Black E, Nebreda AR, Davis RJ, and Chandel NS. Mitochondrial reactive oxygen species activation of p38 mitogen-activated protein kinase is required for hypoxia signaling. Mol Cell Biol 25: 4853–4862, 2005.
81.
England KCotter TG. Direct oxidative modifications of signalling proteins in mammalian cells and their effects on apoptosisRedox Rep10237-2452005. 81. England K and Cotter TG. Direct oxidative modifications of signalling proteins in mammalian cells and their effects on apoptosis. Redox Rep 10: 237–245, 2005.
82.
Fantin VRSt-Pierre JLeder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenanceCancer Cell9425-4342006. 82. Fantin VR, St-Pierre J, and Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9: 425–434, 2006.
83.
Faraci FMDidion SP. Vascular protection: superoxide dismutase isoforms in the vessel wallArterioscler Thromb Vasc Biol241367-13732004. 83. Faraci FM and Didion SP. Vascular protection: superoxide dismutase isoforms in the vessel wall. Arterioscler Thromb Vasc Biol 24: 1367–1373, 2004.
84.
Faraonio RVergara PDi Marzo DPierantoni MGNapolitano MRusso TCimino F. p53 suppresses the Nrf2-dependent transcription of antioxidant response genesJ Biol Chem28139776-397842006. 84. Faraonio R, Vergara P, Di Marzo D, Pierantoni MG, Napolitano M, Russo T, and Cimino F. p53 suppresses the Nrf2-dependent transcription of antioxidant response genes. J Biol Chem 281: 39776–39784, 2006.
85.
Felsher DWBishop JM. Transient excess of MYC activity can elicit genomic instability and tumorigenesisProc Natl Acad Sci U S A963940-39441999. 85. Felsher DW and Bishop JM. Transient excess of MYC activity can elicit genomic instability and tumorigenesis. Proc Natl Acad Sci U S A 96: 3940–3944, 1999.
86.
Fernandez-Luna JL. Bcr-Abl and inhibition of apoptosis in chronic myelogenous leukemia cellsApoptosis5315-3182000. 86. Fernandez-Luna JL. Bcr-Abl and inhibition of apoptosis in chronic myelogenous leukemia cells. Apoptosis 5: 315–318, 2000.
87.
Fischer USchulze-Osthoff K. Apoptosis-based therapies and drug targetsCell Death Differ12suppl 1942-9612005. 87. Fischer U and Schulze-Osthoff K. Apoptosis-based therapies and drug targets. Cell Death Differ 12(suppl 1): 942–961, 2005.
88.
Franco RCidlowski JA. SLCO/OATP-like transport of glutathione in fasL-induced Apoptosis: glutathione efflux is coupled to an organic anion exchange and is necessary for the progression of the execution phase of apoptosisJ Biol Chem28129542-295572006. 88. Franco R and Cidlowski JA. SLCO/OATP-like transport of glutathione in fasL-induced Apoptosis: glutathione efflux is coupled to an organic anion exchange and is necessary for the progression of the execution phase of apoptosis. J Biol Chem 281: 29542–29557, 2006.
89.
Fruehauf JPMeyskens FL Jr. Reactive oxygen species: a breath of life or death?Clin Cancer Res13789-7942007. 89. Fruehauf JP and Meyskens FL Jr. Reactive oxygen species: a breath of life or death? Clin Cancer Res 13: 789–794, 2007.
90.
Fulda SDebatin KM. HIF-1-regulated glucose metabolism: a key to apoptosis resistance?Cell Cycle6790-7922007 90. Fulda S and Debatin KM. HIF-1-regulated glucose metabolism: a key to apoptosis resistance? Cell Cycle 6: 790–792, 2007
91.
Geisler FAlgul HPaxian SSchmid RM. Genetic inactivation of RelA/p65 sensitizes adult mouse hepatocytes to TNF-induced apoptosis in vivo and in vitroGastroenterology1322489-25032007. 91. Geisler F, Algul H, Paxian S, and Schmid RM. Genetic inactivation of RelA/p65 sensitizes adult mouse hepatocytes to TNF-induced apoptosis in vivo and in vitro. Gastroenterology 132: 2489–2503, 2007.
92.
Gerald DBerra EFrapart YMChan DAGiaccia AJMansuy DPouyssegur JYaniv MMechta-Grigoriou F. JunD reduces tumor angiogenesis by protecting cells from oxidative stressCell118781-7942004. 92. Gerald D, Berra E, Frapart YM, Chan DA, Giaccia AJ, Mansuy D, Pouyssegur J, Yaniv M, and Mechta-Grigoriou F. JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 118: 781–794, 2004.
93.
Ghafourifar PCadenas E. Mitochondrial nitric oxide synthaseTrends Pharmacol Sci26190-1952005. 93. Ghafourifar P and Cadenas E. Mitochondrial nitric oxide synthase. Trends Pharmacol Sci 26: 190–195, 2005.
94.
Ghezzi P. Review: regulation of protein function by glutathionylationFree Radic Res39573-5802005. 94. Ghezzi P. Review: regulation of protein function by glutathionylation. Free Radic Res 39: 573–580, 2005.
95.
Ghibelli LFanelli CRotilio GLafavia ECoppola SColussi CCivitareale PCiriolo MR. Rescue of cells from apoptosis by inhibition of active GSH extrusionFASEB J12479-4861998. 95. Ghibelli L, Fanelli C, Rotilio G, Lafavia E, Coppola S, Colussi C, Civitareale P, and Ciriolo MR. Rescue of cells from apoptosis by inhibition of active GSH extrusion. FASEB J 12: 479–486, 1998.
96.
Gilmore TD. Introduction to NF-kappaB: players, pathways, perspectivesOncogene256680-66842006. 96. Gilmore TD. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25: 6680–6684, 2006.
97.
Giorgio MMigliaccio EOrsini FPaolucci DMoroni MContursi CPelliccia GLuzi LMinucci SMarcaccio MPinton PRizzuto RBernardi PPaolucci FPelicci PG. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosisCell122221-2332005. 97. Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C, Pelliccia G, Luzi L, Minucci S, Marcaccio M, Pinton P, Rizzuto R, Bernardi P, Paolucci F, and Pelicci PG. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122: 221–233, 2005.
98.
Girotti AW. Lipid hydroperoxide generation, turnover, and effector action in biological systemsJ Lipid Res391529-15421998. 98. Girotti AW. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J Lipid Res 39: 1529–1542, 1998.
99.
Gogvadze VOrrenius SZhivotovsky B. Multiple pathways of cytochrome c release from mitochondria in apoptosisBiochim Biophys Acta1757639-6472006. 99. Gogvadze V, Orrenius S, and Zhivotovsky B. Multiple pathways of cytochrome c release from mitochondria in apoptosis. Biochim Biophys Acta 1757: 639–647, 2006.
100.
Gorlach ADiebold ISchini-Kerth VBBerchner-Pfannschmidt URoth UBrandes RPKietzmann TBusse R. Thrombin activates the hypoxia-inducible factor-1 signaling pathway in vascular smooth muscle cells: role of the p22(phox)-containing NADPH oxidaseCirc Res8947-542001. 100. Gorlach A, Diebold I, Schini-Kerth VB, Berchner-Pfannschmidt U, Roth U, Brandes RP, Kietzmann T, and Busse R. Thrombin activates the hypoxia-inducible factor-1 signaling pathway in vascular smooth muscle cells: role of the p22(phox)-containing NADPH oxidase. Circ Res 89: 47–54, 2001.
101.
Gotoh YCooper JA. Reactive oxygen species- and dimerization-induced activation of apoptosis signal-regulating kinase 1 in tumor necrosis factor-alpha signal transductionJ Biol Chem27317477-174821998. 101. Gotoh Y and Cooper JA. Reactive oxygen species- and dimerization-induced activation of apoptosis signal-regulating kinase 1 in tumor necrosis factor-alpha signal transduction. J Biol Chem 273: 17477–17482, 1998.
102.
Green DRChipuk JE. p53 and metabolism: Inside the TIGARCell12630-322006. 102. Green DR and Chipuk JE. p53 and metabolism: Inside the TIGAR. Cell 126: 30–32, 2006.
103.
Green RMGraham MR.O'Donovan MChipman JKHodges JN. Subcellular compartmentalization of glutathione: correlations with parameters of oxidative stress related to genotoxicityMutagenesis21383-3902006. 103. Green RM, Graham M, R.O'Donovan M, Chipman JK, and Hodges JN. Subcellular compartmentalization of glutathione: correlations with parameters of oxidative stress related to genotoxicity. Mutagenesis 21: 383–390, 2006.
104.
Greijer AEvan der Wall E. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosisJ Clin Pathol571009-10142004. 104. Greijer AE and van der Wall E. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J Clin Pathol 57: 1009–1014, 2004.
105.
Guo JZhu TXiao Z-XJChen C-Y. Modulation of intracellular signaling pathways to induce apoptosis in prostate cancer cellsJ Biol Chem28224364-243722007. 105. Guo J, Zhu T, Xiao Z-XJ, and Chen C-Y. Modulation of intracellular signaling pathways to induce apoptosis in prostate cancer cells. J Biol Chem 282: 24364–24372, 2007.
106.
Guzman MLLi XCorbett CARossi RMBushnell TLiesveld JLHebert JYoung FJordan CT. Rapid and selective death of leukemia stem and progenitor cells induced by the compound 4-benzyl, 2-methyl, 1,2,4-thiadiazolidine, 3,5 dione (TDZD-8)Blood1104436-44442007. 106. Guzman ML, Li X, Corbett CA, Rossi RM, Bushnell T, Liesveld JL, Hebert J, Young F and Jordan CT. Rapid and selective death of leukemia stem and progenitor cells induced by the compound 4-benzyl, 2-methyl, 1,2,4-thiadiazolidine, 3,5 dione (TDZD-8). Blood 110: 4436–4444, 2007.
107.
Haddad JJ. Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factorsCell Signal14879-8972002. 107. Haddad JJ. Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cell Signal 14: 879–897, 2002.
108.
Hagen TTaylor CTLam FMoncada S. Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1alphaScience3021975-19782003. 108. Hagen T, Taylor CT, Lam F, and Moncada S. Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1alpha. Science 302: 1975–1978, 2003.
109.
Haghdoost SCzene SNaslund ISkog SHarms-Ringdahl M. Extracellular 8-oxo-dG as a sensitive parameter for oxidative stress in vivo and in vitroFree Radic Res39153-1622005. 109. Haghdoost S, Czene S, Naslund I, Skog S, and Harms-Ringdahl M. Extracellular 8-oxo-dG as a sensitive parameter for oxidative stress in vivo and in vitro. Free Radic Res 39: 153–162, 2005.
110.
Hainaut PMilner J. Redox modulation of p53 conformation and sequence-specific DNA binding in vitroCancer Res534469-44731993. 110. Hainaut P and Milner J. Redox modulation of p53 conformation and sequence-specific DNA binding in vitro. Cancer Res 53: 4469–4473, 1993.
111.
Hainaut PMann K. Zinc binding and redox control of p53 structure and functionAntioxid Redox Signal3611-6232001. 111. Hainaut P and Mann K. Zinc binding and redox control of p53 structure and function. Antioxid Redox Signal 3: 611–623, 2001.
112.
Hampton MBOrrenius S. Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosisFEBS Lett414552-5561997. 112. Hampton MB and Orrenius S. Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Lett 414: 552–556, 1997.
113.
Hanahan DWeinberg RA. The hallmarks of cancerCell10057-702000. 113. Hanahan D and Weinberg RA. The hallmarks of cancer Cell 100: 57–70, 2000.
114.
Hancock JTDesikan RNeill SJ. Does the redox status of cytochrome c act as a fail-safe mechanism in the regulation of programmed cell death?Free Radic Biol Med31697-7032001. 114. Hancock JT, Desikan R, and Neill SJ. Does the redox status of cytochrome c act as a fail-safe mechanism in the regulation of programmed cell death? Free Radic Biol Med 31: 697–703, 2001.
115.
Hentze HKunstle GVolbracht CErtel WWendel A. CD95-Mediated murine hepatic apoptosis requires an intact glutathione statusHepatology30177-1851999. 115. Hentze H, Kunstle G, Volbracht C, Ertel W, and Wendel A. CD95-Mediated murine hepatic apoptosis requires an intact glutathione status. Hepatology 30: 177–185, 1999.
116.
Haupt YMaya RKazaz AOren M. Mdm2 promotes the rapid degradation of p53Nature387296-2991997. 116. Haupt Y, Maya R, Kazaz A, and Oren M. Mdm2 promotes the rapid degradation of p53. Nature 387: 296–299, 1997.
117.
Hayden MSGhosh S. Signaling to NF-kappaBGenes Dev182195-22042004. 117. Hayden MS and Ghosh S. Signaling to NF-kappaB. Genes Dev 18: 2195–2204, 2004.
118.
Hayes JDMcMahon M. Molecular basis for the contribution of the antioxidant responsive element to cancer chemopreventionCancer Lett174103-1132001. 118. Hayes JD and McMahon M. Molecular basis for the contribution of the antioxidant responsive element to cancer chemoprevention. Cancer Lett 174: 103–113, 2001.
119.
Heneberg PDraber P. Regulation of cys-based protein tyrosine phosphatases via reactive oxygen and nitrogen species in mast cells and basophilsCurr Med Chem121859-18712005. 119. Heneberg P and Draber P. Regulation of cys-based protein tyrosine phosphatases via reactive oxygen and nitrogen species in mast cells and basophils. Curr Med Chem 12: 1859–1871, 2005.
120.
Hess DTMatsumoto AKim SOMarshall HEStamler JS. Protein S-nitrosylation: purview and parametersNat Rev Mol Cell Biol6150-1662005. 120. Hess DT, Matsumoto A, Kim SO, Marshall HE, and Stamler JS. Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6: 150–166, 2005.
121.
Hilberg FAguzzi AHowells NWagner EF. c-Jun is essential for normal mouse development and hepatogenesisNature365179-1811993. 121. Hilberg F, Aguzzi A, Howells N, and Wagner EF. c-Jun is essential for normal mouse development and hepatogenesis. Nature 365: 179–181, 1993.
122.
Hockenbery DMOltvai ZNYin XMMilliman CLKorsmeyer SJ. Bcl-2 functions in an antioxidant pathway to prevent apoptosisCell75241-2511993. 122. Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, and Korsmeyer SJ. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75: 241–251, 1993.
123.
Holmgren AAslund F. GlutaredoxinMethods Enzymol252283-2921995. 123. Holmgren A and Aslund F. Glutaredoxin. Methods Enzymol 252: 283–292, 1995.
124.
Horn HFVousden KH. Coping with stress: multiple ways to activate p53Oncogene261306-13162007. 124. Horn HF and Vousden KH. Coping with stress: multiple ways to activate p53. Oncogene 26: 1306–1316, 2007.
125.
Hu YRosen DGZhou YFeng LYang GLiu JHuang P. Mitochondrial manganese-superoxide dismutase expression in ovarian cancer: role in cell proliferation and response to oxidative stressJ Biol Chem28039485-394922005. 125. Hu Y, Rosen DG, Zhou Y, Feng L, Yang G, Liu J, and Huang P. Mitochondrial manganese-superoxide dismutase expression in ovarian cancer: role in cell proliferation and response to oxidative stress. J Biol Chem 280: 39485–39492, 2005.
126.
Huang HCNguyen TPickett CB. Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcriptionJ Biol Chem27742769-427742002. 126. Huang HC, Nguyen T, and Pickett CB. Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem 277: 42769–42774, 2002.
127.
Huang LEArany ZLivingston DMBunn HF. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunitJ Biol Chem27132253-322591996. 127. Huang LE, Arany Z, Livingston DM, and Bunn HF. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem 271: 32253–32259, 1996.
128.
Huang PFeng LOldham EAKeating MJPlunkett W. Superoxide dismutase as a target for the selective killing of cancer cellsNature407390-3952000. 128. Huang P, Feng L, Oldham EA, Keating MJ, and Plunkett W. Superoxide dismutase as a target for the selective killing of cancer cells. Nature 407: 390–395, 2000.
129.
Inoue MSato EFNishikawa MPark AMKira YImada IUtsumi K. Mitochondrial generation of reactive oxygen species and its role in aerobic lifeCurr Med Chem102495-25052003. 129. Inoue M, Sato EF, Nishikawa M, Park AM, Kira Y, Imada I, and Utsumi K. Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem 10: 2495–2505, 2003.
130.
Irani KXia YZweier JLSollott SJDer CJFearon ERSundaresan MFinkel TGoldschmidt-Clermont PJ. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblastsScience2751649-16521997. 130. Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ, Fearon ER, Sundaresan M, Finkel T, and Goldschmidt-Clermont PJ. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 275: 1649–1652, 1997.
131.
Ishii TItoh KTakahashi SSato HYanagawa TKatoh YBannai SYamamoto M. Transcription factor nrf2 coordinately regulates a group of oxidative stress-inducible genes in macro-phagesJ Biol Chem27516023-160292000. 131. Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y, Bannai S, and Yamamoto M. Transcription factor nrf2 coordinately regulates a group of oxidative stress-inducible genes in macro-phages. J Biol Chem 275: 16023–16029, 2000.
132.
Itoh KChiba TTakahashi SIshii TIgarashi KKatoh YOyake THayashi NSatoh KHatayama IYamamoto MNabeshima Y-i. An Nrf2/Small maf heterodimer mediates the induction of phase ii detoxifying enzyme genes through antioxidant response elementsBiochem Biophys Res Commun236313-3221997. 132. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, and Nabeshima Y-i. An Nrf2/Small maf heterodimer mediates the induction of phase ii detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236: 313–322, 1997.
133.
Itoh KWakabayashi NKatoh YIshii TIgarashi KEngel JDYamamoto M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the aminoterminal NeH2 domainGenes Dev1376-861999. 133. Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, and Yamamoto M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the aminoterminal NeH2 domain. Genes Dev 13: 76–86, 1999.
134.
Jaakkola PMole DRTian YMWilson MIGielbert JGaskell SJKriegsheim AHebestreit HFMukherji MSchofield CJMaxwell PHPugh CWRatcliffe PJ. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylationScience292468-4722001. 134. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, and Ratcliffe PJ. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292: 468–472, 2001.
135.
Jaspers IZhang WFraser ASamet JMReed W. Hydrogen peroxide has opposing effects on IKK activity and Ikappa-Balpha breakdown in airway epithelial cellsAm J Respir Cell Mol Biol24769-7772001. 135. Jaspers I, Zhang W, Fraser A, Samet JM, and Reed W. Hydrogen peroxide has opposing effects on IKK activity and Ikappa-Balpha breakdown in airway epithelial cells. Am J Respir Cell Mol Biol 24: 769–777, 2001.
136.
Jeong WSJun MKong AN. Nrf2: a potential molecular target for cancer chemoprevention by natural compoundsAntioxid Redox Signal899-1062006. 136. Jeong WS, Jun M, and Kong AN. Nrf2: a potential molecular target for cancer chemoprevention by natural compounds. Antioxid Redox Signal 8: 99–106, 2006.
137.
Johnson L. Protein kinases and their therapeutic exploitationBiochem Soc Trans0357-112007. 137. Johnson L. Protein kinases and their therapeutic exploitation. Biochem Soc Trans 035: 7–11, 2007.
138.
Johnstone RWRuefli AALowe SW. Apoptosis: a link between cancer genetics and chemotherapyCell108153-1642002. 138. Johnstone RW, Ruefli AA, and Lowe SW. Apoptosis: a link between cancer genetics and chemotherapy. Cell 108: 153–164, 2002.
139.
KC SCarcamo JMGolde DW. Antioxidants prevent oxidative DNA damage and cellular transformation elicited by the over-expression of c-MYCMutat Res59364-792006. 139. KC S, Carcamo JM, and Golde DW. Antioxidants prevent oxidative DNA damage and cellular transformation elicited by the over-expression of c-MYC. Mutat Res 593: 64–79, 2006.
140.
Kabe YAndo KHirao SYoshida MHanda H. Redox regulation of NF-κB activation: distinct redox regulation between the cytoplasm and the nucleusAntioxid Redox Signal7395-4032005. 140. Kabe Y, Ando K, Hirao S, Yoshida M, and Handa H. Redox regulation of NF-κB activation: distinct redox regulation between the cytoplasm and the nucleus. Antioxid Redox Signal 7: 395–403, 2005.
141.
Kagan VEFabisiak JPShvedova AATyurina YYTyurin VASchor NFKawai K. Oxidative signaling pathway for externalization of plasma membrane phosphatidylserine during apoptosisFEBS Lett4771-72000. 141. Kagan VE, Fabisiak JP, Shvedova AA, Tyurina YY, Tyurin VA, Schor NF, and Kawai K. Oxidative signaling pathway for externalization of plasma membrane phosphatidylserine during apoptosis. FEBS Lett 477: 1–7, 2000.
142.
Kagan VETyurin VAJiang JTyurina YYRitov VBAmoscato AAOsipov ANBelikova NAKapralov AAKini VVlasova IIZhao QZou MDi PSvistunenko DAKurnikov IVBorisenko GG. cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factorsNat Chem Biol1223-2322005. 142. Kagan VE, Tyurin VA, Jiang J, Tyurina YY, Ritov VB, Amoscato AA, Osipov AN, Belikova NA, Kapralov AA, Kini V, Vlasova, II, Zhao Q, Zou M, Di P, Svistunenko DA, Kurnikov IV, and Borisenko GG. cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat Chem Biol 1: 223–232, 2005.
143.
Kamata HHirata H. Redox regulation of cellular signallingCell Signal111-141999. 143. Kamata H and Hirata H. Redox regulation of cellular signalling. Cell Signal 11: 1–14, 1999.
144.
Kamata HManabe TOka SKamata KHirata H. Hydrogen peroxide activates IkappaB kinases through phosphorylation of serine residues in the activation loopsFEBS Lett519231-2372002. 144. Kamata H, Manabe T, Oka S, Kamata K, and Hirata H. Hydrogen peroxide activates IkappaB kinases through phosphorylation of serine residues in the activation loops. FEBS Lett 519: 231–237, 2002.
145.
Kamata HHonda SMaeda SChang LHirata HKarin M. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatasesCell120649-6612005. 145. Kamata H, Honda S, Maeda S, Chang L, Hirata H, and Karin M. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120: 649–661, 2005.
146.
Karin M. The regulation of AP-1 activity by mitogen-activated protein kinasesJ Biol Chem27016483-164861995. 146. Karin M. The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 270: 16483–16486, 1995.
147.
Karin MLin A. NF-kappaB at the crossroads of life and deathNat Immunol3221-2272002. 147. Karin M and Lin A. NF-kappaB at the crossroads of life and death. Nat Immunol 3: 221–227, 2002.
148.
Kasuno KTakabuchi SFukuda KKizaka-Kondoh SYodoi JAdachi TSemenza GLHirota K. Nitric oxide induces hypoxia-inducible factor 1 activation that is dependent on MAPK and phosphatidylinositol 3-kinase signalingJ Biol Chem2792550-25582004. 148. Kasuno K, Takabuchi S, Fukuda K, Kizaka-Kondoh S, Yodoi J, Adachi T, Semenza GL, and Hirota K. Nitric oxide induces hypoxia-inducible factor 1 activation that is dependent on MAPK and phosphatidylinositol 3-kinase signaling. J Biol Chem 279: 2550–2558, 2004.
149.
Katsuoka FMotohashi HEngel JDYamamoto M. Nrf2 transcriptionally activates the mafG gene through an antioxidant response elementJ Biol Chem2804483-44902005. 149. Katsuoka F, Motohashi H, Engel JD, and Yamamoto M. Nrf2 transcriptionally activates the mafG gene through an antioxidant response element. J Biol Chem 280: 4483–4490, 2005.
150.
Katsuoka FMotohashi HIshii TAburatani HEngel JDYamamoto M. Genetic evidence that small maf proteins are essential for the activation of antioxidant response element-dependent genesMol Cell Biol258044-80512005. 150. Katsuoka F, Motohashi H, Ishii T, Aburatani H, Engel JD, and Yamamoto M. Genetic evidence that small maf proteins are essential for the activation of antioxidant response element-dependent genes. Mol Cell Biol 25: 8044–8051, 2005.
151.
Kehrer JP. The Haber-Weiss reaction and mechanisms of toxicityToxicology14943-502000. 151. Kehrer JP. The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 149: 43–50, 2000.
152.
Kietzmann TFreimann SBratke JJungermann K. Regulation of the gluconeogenic phosphoenolpyruvate carboxykinase and glycolytic aldolase A gene expression by O2 in rat hepatocyte cultures: involvement of hydrogen peroxide as mediator in the response to O2FEBS Lett388228-2321996. 152. Kietzmann T, Freimann S, Bratke J, and Jungermann K. Regulation of the gluconeogenic phosphoenolpyruvate carboxykinase and glycolytic aldolase A gene expression by O2 in rat hepatocyte cultures: involvement of hydrogen peroxide as mediator in the response to O2. FEBS Lett 388: 228–232, 1996.
153.
Kietzmann TGorlach A. Reactive oxygen species in the control of hypoxia-inducible factor-mediated gene expressionSemin Cell Dev Biol16474-4862005. 153. Kietzmann T and Gorlach A. Reactive oxygen species in the control of hypoxia-inducible factor-mediated gene expression. Semin Cell Dev Biol 16: 474–486, 2005.
154.
Kim AHKhursigara GSun XFranke TFChao MV. Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1Mol Cell Biol21893-9012001. 154. Kim AH, Khursigara G, Sun X, Franke TF, and Chao MV. Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol Cell Biol 21: 893–901, 2001.
155.
Kim JWTchernyshyov ISemenza GLDang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxiaCell Metab3177-1852006 155. Kim JW, Tchernyshyov I, Semenza GL, and Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3: 177–185, 2006
156.
Kim Y-MTalanian RVBilliar TR. Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanismsJ Biol Chem27231138-311481997. 156. Kim Y-M, Talanian RV, and Billiar TR. Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms. J Biol Chem 272: 31138–31148, 1997.
157.
Kissil JLWalmsley MJHanlon LHaigis KMBender Kim CFSweet-Cordero AEckman MSTuveson DACapobianco AJTybulewicz VLJacks T. Requirement for Rac1 in a K-ras induced lung cancer in the mouseCancer Res678089-80942007. 157. Kissil JL, Walmsley MJ, Hanlon L, Haigis KM, Bender Kim CF, Sweet-Cordero A, Eckman MS, Tuveson DA, Capobianco AJ, Tybulewicz VL, and Jacks T. Requirement for Rac1 in a K-ras induced lung cancer in the mouse. Cancer Res 67: 8089–8094, 2007.
158.
Klatt PMolina EPLamas S. Nitric oxide inhibits c-jun DNA binding by specifically targeted S-glutathionylationJ Biol Chem27415857-158641999. 158. Klatt P, Molina EP, and Lamas S. Nitric oxide inhibits c-jun DNA binding by specifically targeted S-glutathionylation. J Biol Chem 274: 15857–15864, 1999.
159.
Knebel ARahmsdorf HJUllrich AHerrlich P. Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agentsEMBO J155314-53251996. 159. Knebel A, Rahmsdorf HJ, Ullrich A, and Herrlich P. Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents. EMBO J 15: 5314–5325, 1996.
160.
Knowles HJRaval RRHarris ALRatcliffe PJ. Effect of ascorbate on the activity of hypoxia-inducible factor in cancer cellsCancer Res631764-17682003. 160. Knowles HJ, Raval RR, Harris AL, and Ratcliffe PJ. Effect of ascorbate on the activity of hypoxia-inducible factor in cancer cells. Cancer Res 63: 1764–1768, 2003.
161.
Kobayashi AKang M-IOkawa HOhtsuji MZenke YChiba TIgarashi KYamamoto M. Oxidative stress sensor keap1 functions as an adaptor for cul3-based e3 ligase to regulate proteasomal degradation of Nrf2Mol Cell Biol247130-71392004. 161. Kobayashi A, Kang M-I, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, and Yamamoto M. Oxidative stress sensor keap1 functions as an adaptor for cul3-based e3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 24: 7130–7139, 2004.
162.
Kobayashi MYamamoto M. Molecular mechanisms activating the nrf2-keap1 pathway of antioxidant gene regulationAntioxid Redox Signal7385-3942005. 162. Kobayashi M and Yamamoto M. Molecular mechanisms activating the nrf2-keap1 pathway of antioxidant gene regulation. Antioxid Redox Signal 7: 385–394, 2005.
163.
Kobayashi MYamamoto M. Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen speciesAdv Enzyme Regul46113-1402006. 163. Kobayashi M and Yamamoto M. Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv Enzyme Regul 46: 113–140, 2006.
164.
Kokoszka JECoskun PEsposito LAWallace DC. Increased mitochondrial oxidative stress in the Sod2 (+/−) mouse results in the age-related decline of mitochondrial function culminating in increased apoptosisProc Natl Acad Sci U S A982278-22832001. 164. Kokoszka JE, Coskun P, Esposito LA, and Wallace DC. Increased mitochondrial oxidative stress in the Sod2 (+/−) mouse results in the age-related decline of mitochondrial function culminating in increased apoptosis. Proc Natl Acad Sci U S A 98: 2278–2283, 2001.
165.
Kopnin PBAgapova LSKopnin BPChumakov PM. Repression of sestrin family genes contributes to oncogenic Ras-induced reactive oxygen species up-regulation and genetic instabilityCancer Res674671-46782007. 165. Kopnin PB, Agapova LS, Kopnin BP, and Chumakov PM. Repression of sestrin family genes contributes to oncogenic Ras-induced reactive oxygen species up-regulation and genetic instability. Cancer Res 67: 4671–4678, 2007.
166.
Kotlo KUYehiely FEfimova EHarasty HHesabi BShchors KEinat PRozen ABerent EDeiss LP. Nrf2 is an inhibitor of the Fas pathway as identified by Achilles' heel method, a new function-based approach to gene identification in human cellsOncogene22797-8062003. 166. Kotlo KU, Yehiely F, Efimova E, Harasty H, Hesabi B, Shchors K, Einat P, Rozen A, Berent E, and Deiss LP. Nrf2 is an inhibitor of the Fas pathway as identified by Achilles' heel method, a new function-based approach to gene identification in human cells. Oncogene 22: 797–806, 2003.
167.
Kowaltowski AJVercesi AEFiskum G. Bcl-2 prevents mitochondrial permeability transition and cytochrome c release via maintenance of reduced pyridine nucleotidesCell Death Differ7903-9102000. 167. Kowaltowski AJ, Vercesi AE, and Fiskum G. Bcl-2 prevents mitochondrial permeability transition and cytochrome c release via maintenance of reduced pyridine nucleotides. Cell Death Differ 7: 903–910, 2000.
168.
Kowaltowski AJCastilho RFVercesi AE. Mitochondrial permeability transition and oxidative stressFEBS Lett49512-152001. 168. Kowaltowski AJ, Castilho RF, and Vercesi AE. Mitochondrial permeability transition and oxidative stress. FEBS Lett 495: 12–15, 2001.
169.
Kubbutat MHJones SNVousden KH. Regulation of p53 stability by Mdm2Nature387299-3031997. 169. Kubbutat MH, Jones SN, and Vousden KH. Regulation of p53 stability by Mdm2. Nature 387: 299–303, 1997.
170.
Kujoth GCHiona APugh TDSomeya SPanzer KWohlgemuth SEHofer TSeo AYSullivan RJobling WAMorrow JDVan Remmen HSedivy JMYamasoba TTanokura MWeindruch RLeeuwenburgh CProlla TA. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian agingScience309481-4842005. 170. Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA, Morrow JD, Van Remmen H, Sedivy JM, Yamasoba T, Tanokura M, Weindruch R, Leeuwenburgh C, and Prolla TA. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309: 481–484, 2005.
171.
Kwak MKWakabayashi NItoh KMotohashi HYamamoto MKensler TW. Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway. Identification of novel gene clusters for cell survivalJ Biol Chem2788135-81452003. 171. Kwak MK, Wakabayashi N, Itoh K, Motohashi H, Yamamoto M, and Kensler TW. Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway. Identification of novel gene clusters for cell survival. J Biol Chem 278: 8135–8145, 2003.
172.
Kyriakis JMAvruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammationPhysiol Rev81807-8692001. 172. Kyriakis JM and Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81: 807–869, 2001.
173.
Lamkanfi MFestjens NDeclercq WVanden Berghe TVandenabeele P. Caspases in cell survival, proliferation and differentiationCell Death Differ1444-552007. 173. Lamkanfi M, Festjens N, Declercq W, Vanden Berghe T, and Vandenabeele P. Caspases in cell survival, proliferation and differentiation. Cell Death Differ 14: 44–55, 2007.
174.
Lander HMMilbank AJTauras JMHajjar DPHempstead BLSchwartz GDKraemer RTMirza UAChait BTBurk SCQuilliam LA. Redox regulation of cell signallingNature381380-3811996. 174. Lander HM, Milbank AJ, Tauras JM, Hajjar DP, Hempstead BL, Schwartz GD, Kraemer RT, Mirza UA, Chait BT, Burk SC, and Quilliam LA. Redox regulation of cell signalling. Nature 381: 380–381, 1996.
175.
Lando DPeet DJGorman JJWhelan DAWhitelaw MLBruick RK. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factorGenes Dev161466-14712002. 175. Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, and Bruick RK. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev 16: 1466–1471, 2002.
176.
Lau FCShukitt-Hale BJoseph JA. Nutritional intervention in brain aging: reducing the effects of inflammation and oxidative stressSubcell Biochem42299-3182007. 176. Lau FC, Shukitt-Hale B, and Joseph JA. Nutritional intervention in brain aging: reducing the effects of inflammation and oxidative stress. Subcell Biochem 42: 299–318, 2007.
177.
Le Bras MClement MVPervaiz SBrenner C. Reactive oxygen species and the mitochondrial signaling pathway of cell deathHistol Histopathol20205-2192005. 177. Le Bras M, Clement MV, Pervaiz S, and Brenner C. Reactive oxygen species and the mitochondrial signaling pathway of cell death. Histol Histopathol 20: 205–219, 2005.
178.
Lee J-MCalkins MJChan KKan YWJohnson JA. Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysisJ Biol Chem27812029-120382003. 178. Lee J-M, Calkins MJ, Chan K, Kan YW, and Johnson JA. Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J Biol Chem 278: 12029–12038, 2003.
179.
Lee SRKwon KSKim SRRhee SG. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factorJ Biol Chem27315366-153721998. 179. Lee SR, Kwon KS, Kim SR, and Rhee SG. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem 273: 15366–15372, 1998.
180.
Lee SRYang KSKwon JLee CJeong WRhee SG. Reversible inactivation of the tumor suppressor PTEN by H2O2J Biol Chem27720336-203422002. 180. Lee SR, Yang KS, Kwon J, Lee C, Jeong W, and Rhee SG. Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem 277: 20336–20342, 2002.
181.
Leppa SEriksson MSaffrich RAnsorge WBohmann D. Complex functions of AP-1 transcription factors in differentiation and survival of PC12 cellsMol Cell Biol214369-43782001. 181. Leppa S, Eriksson M, Saffrich R, Ansorge W, and Bohmann D. Complex functions of AP-1 transcription factors in differentiation and survival of PC12 cells. Mol Cell Biol 21: 4369–4378, 2001.
182.
Leslie NR. The redox regulation of PI 3-kinase-dependent signalingAntioxid Redox Signal81765-17742006. 182. Leslie NR. The redox regulation of PI 3-kinase-dependent signaling. Antioxid Redox Signal 8: 1765–1774, 2006.
183.
Li FSonveaux PRabbani ZNLiu SYan BHuang QVujaskovic ZDewhirst MWLi CY. Regulation of HIF-1alpha stability through S-nitrosylationMol Cell2663-742007. 183. Li F, Sonveaux P, Rabbani ZN, Liu S, Yan B, Huang Q, Vujaskovic Z, Dewhirst MW, and Li CY. Regulation of HIF-1alpha stability through S-nitrosylation. Mol Cell 26: 63–74, 2007.
184.
Lillig CHHolmgren A. Thioredoxin and related molecules: from biology to health and diseaseAntioxid Redox Signal925-472007. 184. Lillig CH and Holmgren A. Thioredoxin and related molecules: from biology to health and disease. Antioxid Redox Signal 9: 25–47, 2007.
185.
Lin BKolluri SKLin FLiu WHan Y-HCao XDawson MIReed JCZhang X-K. Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor nur77/TR3Cell116527-5402004. 185. Lin B, Kolluri SK, Lin F, Liu W, Han Y-H, Cao X, Dawson MI, Reed JC, and Zhang X-K. Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor nur77/TR3. Cell 116: 527–540, 2004.
186.
Liu HNishitoh HIchijo HKyriakis JM. Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxinMol Cell Biol202198-22082000. 186. Liu H, Nishitoh H, Ichijo H, and Kyriakis JM. Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin. Mol Cell Biol 20: 2198–2208, 2000.
187.
Liu QBerchner-Pfannschmidt UMoller UBrecht MWotzlaw CAcker HJungermann KKietzmann T. A Fenton reaction at the endoplasmic reticulum is involved in the redox control of hypoxia-inducible gene expressionProc Natl Acad Sci U S A1014302-43072004. 187. Liu Q, Berchner-Pfannschmidt U, Moller U, Brecht M, Wotzlaw C, Acker H, Jungermann K, and Kietzmann T. A Fenton reaction at the endoplasmic reticulum is involved in the redox control of hypoxia-inducible gene expression. Proc Natl Acad Sci U S A 101: 4302–4307, 2004.
188.
Liu R-MChoi J. Age-associated decline in [gamma]-glutamylcysteine synthetase gene expression in ratsFree Radic Biol Med28566-5742000. 188. Liu R-M and Choi J. Age-associated decline in [gamma]-glutamylcysteine synthetase gene expression in rats. Free Radic Biol Med 28: 566–574, 2000.
189.
Liu X-MPeyton KJEnsenat DWang HHannink MAlam JDurante W. Nitric oxide stimulates heme oxygenase-1 gene transcription via the Nrf2/ARE complex to promote vascular smooth muscle cell survivalCardiovasc Res75381-3892007. 189. Liu X-M, Peyton KJ, Ensenat D, Wang H, Hannink M, Alam J, and Durante W. Nitric oxide stimulates heme oxygenase-1 gene transcription via the Nrf2/ARE complex to promote vascular smooth muscle cell survival. Cardiovasc Res 75: 381–389, 2007.
190.
Liu YKern JTWalker JRJohnson JASchultz PGLuesch H. A genomic screen for activators of the antioxidant response elementProc Natl Acad Sci U S A1045205-52102007. 190. Liu Y, Kern JT, Walker JR, Johnson JA, Schultz PG, and Luesch H. A genomic screen for activators of the antioxidant response element. Proc Natl Acad Sci U S A 104: 5205–5210, 2007.
191.
Lizundia RChaussepied MHuerre MWerling DDi Santo JPLangsley G. c-Jun NH2-terminal kinase/c-Jun signaling promotes survival and metastasis of B lymphocytes transformed by TheileriaCancer Res666105-61102006. 191. Lizundia R, Chaussepied M, Huerre M, Werling D, Di Santo JP, and Langsley G. c-Jun NH2-terminal kinase/c-Jun signaling promotes survival and metastasis of B lymphocytes transformed by Theileria. Cancer Res 66: 6105–6110, 2006.
192.
Loeb LAWallace DCMartin GM. The mitochondrial theory of aging and its relationship to reactive oxygen species damage and somatic mtDNA mutationsProc Natl Acad Sci U S A10218769-187702005. 192. Loeb LA, Wallace DC, and Martin GM. The mitochondrial theory of aging and its relationship to reactive oxygen species damage and somatic mtDNA mutations. Proc Natl Acad Sci U S A. 102: 18769–18770, 2005.
193.
Lu BWang LStehlik CMedan DHuang CHu SChen FShi XRojanasakul Y. Phosphatidylinositol 3-kinase/Akt positively regulates Fas (CD95)-mediated apoptosis in epidermal Cl41 cellsJ Immunol1766785-67932006. 193. Lu B, Wang L, Stehlik C, Medan D, Huang C, Hu S, Chen F, Shi X, and Rojanasakul Y. Phosphatidylinositol 3-kinase/Akt positively regulates Fas (CD95)-mediated apoptosis in epidermal Cl41 cells. J Immunol 176: 6785–6793, 2006.
194.
Lu HForbes RAVerma A. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesisJ Biol Chem27723111-231152002. 194. Lu H, Forbes RA, and Verma A. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 277: 23111–23115, 2002.
195.
Lu YPLou YRYen PNewmark HLMirochnitchenko OIInouye MHuang MT. Enhanced skin carcinogenesis in transgenic mice with high expression of glutathione peroxidase or both glutathione peroxidase and superoxide dismutaseCancer Res571468-14741997. 195. Lu YP, Lou YR, Yen P, Newmark HL, Mirochnitchenko OI, Inouye M, and Huang MT. Enhanced skin carcinogenesis in transgenic mice with high expression of glutathione peroxidase or both glutathione peroxidase and superoxide dismutase. Cancer Res 57: 1468–1474, 1997.
196.
Madrid LVMayo MWReuther JYBaldwin AS Jr. Akt stimulates the transactivation potential of the relA/p65 subunit of NF-kappa B through utilization of the Ikappa B kinase and activation of the mitogen-activated protein kinase p38J Biol Chem27618934-189402001. 196. Madrid LV, Mayo MW, Reuther JY, and Baldwin AS Jr. Akt stimulates the transactivation potential of the relA/p65 subunit of NF-kappa B through utilization of the Ikappa B kinase and activation of the mitogen-activated protein kinase p38. J Biol Chem 276: 18934–18940, 2001.
197.
Maiorino MAumann KDBrigelius-Flohe RDoria Dvan den Heuvel JMcCarthy JRoveri AUrsini FFlohe L. Probing the presumed catalytic triad of a selenium-containing peroxidase by mutational analysisZ Ernahrungswiss37suppl 1118-1211998. 197. Maiorino M, Aumann KD, Brigelius-Flohe R, Doria D, van den Heuvel J, McCarthy J, Roveri A, Ursini F, and Flohe L. Probing the presumed catalytic triad of a selenium-containing peroxidase by mutational analysis. Z Ernahrungswiss 37(suppl 1): 118–121, 1998.
198.
Maki CGHuibregtse JMHowley PM. In vivo ubiquitination and proteasome-mediated degradation of p53(1)Cancer Res562649-26541996. 198. Maki CG, Huibregtse JM, and Howley PM. In vivo ubiquitination and proteasome-mediated degradation of p53(1). Cancer Res 56: 2649–2654, 1996.
199.
Mallis RJBuss JEThomas JA. Oxidative modification of H-ras: S-thiolation and S-nitrosylation of reactive cysteinesBiochem J355145-532001. 199. Mallis RJ, Buss JE, and Thomas JA. Oxidative modification of H-ras: S-thiolation and S-nitrosylation of reactive cysteines. Biochem J 355: 145–53, 2001.
200.
Marshall HEStamler JS. Inhibition of NF-kappa B by S-nitrosylationBiochemistry401688-16932001. 200. Marshall HE and Stamler JS. Inhibition of NF-kappa B by S-nitrosylation. Biochemistry 40: 1688–1693, 2001.
201.
Matheu AMaraver AKlatt PFlores IGarcia-Cao IBorras CFlores JMVina JBlasco MASerrano M. Delayed ageing through damage protection by the Arf/p53 pathwayNature448375-3792007. 201. Matheu A, Maraver A, Klatt P, Flores I, Garcia-Cao I, Borras C, Flores JM, Vina J, Blasco MA, and Serrano M. Delayed ageing through damage protection by the Arf/p53 pathway. Nature 448: 375–379, 2007.
202.
Matoba SKang JGPatino WDWragg ABoehm MGavrilova OHurley PJBunz FHwang PM. p53 regulates mitochondrial respirationScience3121650-16532006. 202. Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, and Hwang PM. p53 regulates mitochondrial respiration. Science 312: 1650–1653, 2006.
203.
Matsuzawa AIchijo H. Stress-responsive protein kinases in redox-regulated apoptosis signalingAntioxid Redox Signal7472-4812005. 203. Matsuzawa A and Ichijo H. Stress-responsive protein kinases in redox-regulated apoptosis signaling. Antioxid Redox Signal 7: 472–481, 2005.
204.
Matthews JRWakasugi NVirelizier JLYodoi JHay RT. Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction of a disulphide bond involving cysteine 62Nucleic Acids Res203821-38301992. 204. Matthews JR, Wakasugi N, Virelizier JL, Yodoi J, and Hay RT. Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res 20: 3821–3830, 1992.
205.
Mattson MP. Neuronal life-and-death signaling, apoptosis, and neurodegenerative disordersAntioxid Redox Signal81997-20062006. 205. Mattson MP. Neuronal life-and-death signaling, apoptosis, and neurodegenerative disorders. Antioxid Redox Signal 8: 1997–2006, 2006.
206.
McCubrey JALaHair MMFranklin RA. Reactive oxygen species-induced activation of the MAP kinase signaling pathwaysAntioxid Redox Signal81775-17892006. 206. McCubrey JA, LaHair MM, and Franklin RA. Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid Redox Signal 8: 1775–1789, 2006.
207.
Meng TCFukada TTonks NK. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivoMol Cell9387-3992002. 207. Meng TC, Fukada T, and Tonks NK. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 9: 387–399, 2002.
208.
Metzen EZhou JJelkmann WFandrey JBrune B. Nitric oxide impairs normoxic degradation of HIF-1alpha by inhibition of prolyl hydroxylasesMol Biol Cell143470-34812003. 208. Metzen E, Zhou J, Jelkmann W, Fandrey J, and Brune B. Nitric oxide impairs normoxic degradation of HIF-1alpha by inhibition of prolyl hydroxylases. Mol Biol Cell 14: 3470–3481, 2003.
209.
Migliaccio EGiorgio MMele SPelicci GReboldi PPandolfi PPLanfrancone LPelicci PG. The p66shc adaptor protein controls oxidative stress response and life span in mammalsNature402309-3131999. 209. Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P, Pandolfi PP, Lanfrancone L, and Pelicci PG. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402: 309–313, 1999.
210.
Mitomo KNakayama KFujimoto KSun XSeki SYamamoto K. Two different cellular redox systems regulate the DNA-binding activity of the p50 subunit of NF-kappa B in vitroGene145197-2031994. 210. Mitomo K, Nakayama K, Fujimoto K, Sun X, Seki S, and Yamamoto K. Two different cellular redox systems regulate the DNA-binding activity of the p50 subunit of NF-kappa B in vitro. Gene 145: 197–203, 1994.
211.
Monks TJXie RTikoo KLau SS. Ros-induced histone modifications and their role in cell survival and cell deathDrug Metab Rev38755-7672006. 211. Monks TJ, Xie R, Tikoo K, and Lau SS. Ros-induced histone modifications and their role in cell survival and cell death. Drug Metab Rev 38: 755–767, 2006.
212.
Morita KSaitoh MTobiume KMatsuura HEnomoto SNishitoh HIchijo H. Negative feedback regulation of ASK1 by protein phosphatase 5 (PP5) in response to oxidative stressEMBO J206028-60362001. 212. Morita K, Saitoh M, Tobiume K, Matsuura H, Enomoto S, Nishitoh H, and Ichijo H. Negative feedback regulation of ASK1 by protein phosphatase 5 (PP5) in response to oxidative stress. EMBO J 20: 6028–6036, 2001.
213.
Morito NYoh KItoh KHirayama AKoyama AYamamoto MTakahashi S. Nrf2 regulates the sensitivity of death receptor signals by affecting intracellular glutathione levelsOncogene229275-92812003. 213. Morito N, Yoh K, Itoh K, Hirayama A, Koyama A, Yamamoto M, and Takahashi S. Nrf2 regulates the sensitivity of death receptor signals by affecting intracellular glutathione levels. Oncogene 22: 9275–9281, 2003.
214.
Moss RW. Do antioxidants interfere with radiation therapy for cancer?Integr Cancer Ther6281-2922007. 214. Moss RW. Do antioxidants interfere with radiation therapy for cancer? Integr Cancer Ther 6: 281–292, 2007.
215.
Motohashi HKatsuoka FEngel JDYamamoto M. Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathwayProc Natl Acad Sci U S A1016379-63842004. 215. Motohashi H, Katsuoka F, Engel JD, and Yamamoto M. Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway. Proc Natl Acad Sci U S A 101: 6379–6384, 2004.
216.
Mottet DDumont VDeccache YDemazy CNinane NRaes MMichiels C. Regulation of hypoxia-inducible factor-1alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta pathway in HepG2 cellsJ Biol Chem27831277-312852003. 216. Mottet D, Dumont V, Deccache Y, Demazy C, Ninane N, Raes M, and Michiels C. Regulation of hypoxia-inducible factor-1alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta pathway in HepG2 cells. J Biol Chem 278: 31277–31285, 2003.
217.
Mu ZMYin XYProchownik EV. Pag, a putative tumor suppressor, interacts with the Myc Box II domain of c-Myc and selectively alters its biological function and target gene expressionJ Biol Chem27743175-431842002. 217. Mu ZM, Yin XY, and Prochownik EV. Pag, a putative tumor suppressor, interacts with the Myc Box II domain of c-Myc and selectively alters its biological function and target gene expression. J Biol Chem 277: 43175–43184, 2002.
218.
Muller FLLustgarten MSJang YRichardson AVan Remmen H. Trends in oxidative aging theoriesFree Radic Biol Med43477-5032007. 218. Muller FL, Lustgarten MS, Jang Y, Richardson A, and Van Remmen H. Trends in oxidative aging theories. Free Radic Biol Med 43: 477–503, 2007.
219.
Murata HIhara YNakamura HYodoi JSumikawa KKondo T. Glutaredoxin exerts an antiapoptotic effect by regulating the redox state of AktJ Biol Chem27850226-502332003. 219. Murata H, Ihara Y, Nakamura H, Yodoi J, Sumikawa K, and Kondo T. Glutaredoxin exerts an antiapoptotic effect by regulating the redox state of Akt. J Biol Chem 278: 50226–50233, 2003.
220.
Muto ATashiro STsuchiya HKume AKanno MIto EYamamoto MIgarashi K. Activation of Maf/AP-1 repressor BacH2 by oxidative stress promotes apoptosis and its interaction with promyelocytic leukemia nuclear bodiesJ Biol Chem27720724-207332002. 220. Muto A, Tashiro S, Tsuchiya H, Kume A, Kanno M, Ito E, Yamamoto M, and Igarashi K. Activation of Maf/AP-1 repressor BacH2 by oxidative stress promotes apoptosis and its interaction with promyelocytic leukemia nuclear bodies. J Biol Chem 277: 20724–20733, 2002.
221.
Nadeau PJCharette SJToledano MBLandry J. Disulfide bond-mediated multimerization of ask1 and its reduction by thioredoxin-1 regulate H2O2-induced c-jun NH2-terminal kinase activation and apoptosisMol Biol Cell183903-39132007. 221. Nadeau PJ, Charette SJ, Toledano MB, and Landry J. Disulfide bond-mediated multimerization of ask1 and its reduction by thioredoxin-1 regulate H2O2-induced c-jun NH2-terminal kinase activation and apoptosis. Mol Biol Cell 18: 3903–3913, 2007.
222.
Nakamura HNakamura KYodoi J. Redox regulation of cellular activationAnnu Rev Immunol15351-3691997. 222. Nakamura H, Nakamura K, and Yodoi J. Redox regulation of cellular activation. Annu Rev Immunol 15: 351–369, 1997.
223.
Nakamura TGu ZLipton SA. Contribution of glutamatergic signaling to nitrosative stress-induced protein misfolding in normal brain aging and neurodegenerative diseasesAging Cell6351-3592007. 223. Nakamura T, Gu Z, and Lipton SA. Contribution of glutamatergic signaling to nitrosative stress-induced protein misfolding in normal brain aging and neurodegenerative diseases. Aging Cell 6: 351–359, 2007.
224.
Nakano HNakajima ASakon-Komazawa SPiao JHXue XOkumura K. Reactive oxygen species mediate crosstalk between NF-kappaB and JNKCell Death Differ13730-7372006. 224. Nakano H, Nakajima A, Sakon-Komazawa S, Piao JH, Xue X, and Okumura K. Reactive oxygen species mediate crosstalk between NF-kappaB and JNK. Cell Death Differ 13: 730–737, 2006.
225.
Nawata RYujiri TNakamura YAriyoshi KTakahashi TSato YOka YTanizawa Y. MEK kinase 1 mediates the antiapoptotic effect of the Bcr-Abl oncogene through NF-kappaB activationOncogene227774-77802003. 225. Nawata R, Yujiri T, Nakamura Y, Ariyoshi K, Takahashi T, Sato Y, Oka Y, and Tanizawa Y. MEK kinase 1 mediates the antiapoptotic effect of the Bcr-Abl oncogene through NF-kappaB activation. Oncogene 22: 7774–7780, 2003.
226.
Nemoto SDiDonato JALin A. Coordinate regulation of IkappaB kinases by mitogen-activated protein kinase kinase kinase 1 and NF-kappaB-inducing kinaseMol Cell Biol187336-73431998. 226. Nemoto S, DiDonato JA, and Lin A. Coordinate regulation of IkappaB kinases by mitogen-activated protein kinase kinase kinase 1 and NF-kappaB-inducing kinase. Mol Cell Biol 18: 7336–7343, 1998.
227.
Nowicki MOFalinski RKoptyra MSlupianek AStoklosa TGloc ENieborowska-Skorska MBlasiak JSkorski T. BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaksBlood1043746-37532004. 227. Nowicki MO, Falinski R, Koptyra M, Slupianek A, Stoklosa T, Gloc E, Nieborowska-Skorska M, Blasiak J, and Skorski T. BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks. Blood 104: 3746–3753, 2004.
228.
Oberley TDOberley LW. Antioxidant enzyme levels in cancerHistol Histopathol12525-5351997. 228. Oberley TD and Oberley LW. Antioxidant enzyme levels in cancer. Histol Histopathol 12: 525–535, 1997.
229.
Ogryzko VVSchiltz RLRussanova VHoward BHNakatani Y. The transcriptional coactivators p300 and CBP are histone acetyltransferasesCell87953-9591996. 229. Ogryzko VV, Schiltz RL, Russanova V, Howard BH, and Nakatani Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87: 953–959, 1996.
230.
Oliner JDKinzler KWMeltzer PSGeorge DLVogelstein B. Amplification of a gene encoding a p53-associated protein in human sarcomasNature35880-831992. 230. Oliner JD, Kinzler KW, Meltzer PS, George DL, and Vogelstein B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358: 80–83, 1992.
231.
Omenn GSGoodman GEThornquist MDBalmes JCullen MRGlass AKeogh JPMeyskens FL JrValanis BWilliams JH Jr.Barnhart SCherniack MGBrodkin CAHammar S. Risk factors for lung cancer and for intervention effects in CARET, the Beta-Carotene and Retinol Efficacy TrialJ Natl Cancer Inst881550-15591996. 231. Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, Glass A, Keogh JP, Meyskens FL Jr, Valanis B, Williams JH, Jr., Barnhart S, Cherniack MG, Brodkin CA, and Hammar S. Risk factors for lung cancer and for intervention effects in CARET, the Beta-Carotene and Retinol Efficacy Trial. J Natl Cancer Inst 88: 1550–1559, 1996.
232.
Omenn GSGoodman GEThornquist MDBalmes JCullen MRGlass AKeogh JPMeyskens FLValanis BWilliams JHBarnhart SHammar S. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular diseaseN Engl J Med3341150-11551996. 232. Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, Glass A, Keogh JP, Meyskens FL, Valanis B, Williams JH, Barnhart S, and Hammar S. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med 334: 1150–1155, 1996.
233.
Ott MZhivotovsky BOrrenius S. Role of cardiolipin in cytochrome c release from mitochondriaCell Death Differ141243-12472007. 233. Ott M, Zhivotovsky B and Orrenius S. Role of cardiolipin in cytochrome c release from mitochondria. Cell Death Differ 14: 1243–1247, 2007.
234.
Palmer LADoctor AChhabra PSheram MLLaubach VEKarlinsey MZForbes MSMacdonald TGaston B. S-nitrosothiols signal hypoxia-mimetic vascular pathologyJ Clin Invest1172592-26012007. 234. Palmer LA, Doctor A, Chhabra P, Sheram ML, Laubach VE, Karlinsey MZ, Forbes MS, Macdonald T, and Gaston B. S-nitrosothiols signal hypoxia-mimetic vascular pathology. J Clin Invest 117: 2592–2601, 2007.
235.
Pan SBerk BC. Glutathiolation regulates tumor necrosis factor-alpha-induced caspase-3 cleavage and apoptosis: key role for glutaredoxin in the death pathwayCirc Res100213-2192007. 235. Pan S and Berk BC. Glutathiolation regulates tumor necrosis factor-alpha-induced caspase-3 cleavage and apoptosis: key role for glutaredoxin in the death pathway. Circ Res 100: 213–219, 2007.
236.
Pantano CReynaert NLvan der Vliet AJanssen-Heininger YM. Redox-sensitive kinases of the nuclear factor-kappaB signaling pathwayAntioxid Redox Signal81791-18062006. 236. Pantano C, Reynaert NL, van der Vliet A, and Janssen-Heininger YM. Redox-sensitive kinases of the nuclear factor-kappaB signaling pathway. Antioxid Redox Signal 8: 1791–1806, 2006.
237.
Park HSHuh SHKim MSLee SHChoi EJ. Nitric oxide negatively regulates c-Jun N-terminal kinase/stress-activated protein kinase by means of S-nitrosylationProc Natl Acad Sci U S A9714382-143872000. 237. Park HS, Huh SH, Kim MS, Lee SH, and Choi EJ. Nitric oxide negatively regulates c-Jun N-terminal kinase/stress-activated protein kinase by means of S-nitrosylation. Proc Natl Acad Sci U S A 97: 14382–14387, 2000.
238.
Park HSLee JSHuh SHSeo JSChoi EJ. Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinaseEMBO J20446-4562001. 238. Park HS, Lee JS, Huh SH, Seo JS, and Choi EJ. Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase. EMBO J 20: 446–456, 2001.
239.
Pelicano HCarney DHuang P. ROS stress in cancer cells and therapeutic implicationsDrug Resist Update797-1102004. 239. Pelicano H, Carney D, and Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist Update 7: 97–110, 2004.
240.
Pelicano HXu RHDu MFeng LSasaki RCarew JSHu YRamdas LHu LKeating MJZhang WPlunkett WHuang P. Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanismJ Cell Biol175913-9232006. 240. Pelicano H, Xu RH, Du M, Feng L, Sasaki R, Carew JS, Hu Y, Ramdas L, Hu L, Keating MJ, Zhang W, Plunkett W, and Huang P. Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism. J Cell Biol 175: 913–923, 2006.
241.
Pennington JDWang TJNguyen PSun LBisht KSmart DGius D. Redox-sensitive signaling factors as a novel molecular targets for cancer therapyDrug Resist Update8322-3302005. 241. Pennington JD, Wang TJ, Nguyen P, Sun L, Bisht K, Smart D, and Gius D. Redox-sensitive signaling factors as a novel molecular targets for cancer therapy. Drug Resist Update 8: 322–330, 2005.
242.
Pervaiz S. Pro-oxidant milieu blunts scissors: insight into tumor progression, drug resistance, and novel druggable targetsCurr Pharm Des124469-44772006. 242. Pervaiz S. Pro-oxidant milieu blunts scissors: insight into tumor progression, drug resistance, and novel druggable targets. Curr Pharm Des 12: 4469–4477, 2006.
243.
Pinchuk ISchnitzer ELichtenberg D. Kinetic analysis of copper-induced peroxidation of LDLBiochim Biophys Acta1389155-1721998. 243. Pinchuk I, Schnitzer E and Lichtenberg D. Kinetic analysis of copper-induced peroxidation of LDL. Biochim Biophys Acta 1389: 155–172, 1998.
244.
Pineda-Molina EKlatt PVazquez JMarina AGarcia de Lacoba MPerez-Sala DLamas S. Glutathionylation of the p50 subunit of NF-kappaB: a mechanism for redox-induced inhibition of DNA bindingBiochemistry4014134-141422001. 244. Pineda-Molina E, Klatt P, Vazquez J, Marina A, Garcia de Lacoba M, Perez-Sala D, and Lamas S. Glutathionylation of the p50 subunit of NF-kappaB: a mechanism for redox-induced inhibition of DNA binding. Biochemistry 40: 14134–14142, 2001.
245.
Poeggeler B. Melatonin, aging, and age-related diseases: perspectives for prevention, intervention, and therapyEndocrine27201-2122005. 245. Poeggeler B. Melatonin, aging, and age-related diseases: perspectives for prevention, intervention, and therapy. Endocrine 27: 201–212, 2005.
246.
Poole LBKarplus PAClaiborne A. Protein sulfenic acids in redox signalingAnnu Rev Pharmacol Toxicol44325-3472004. 246. Poole LB, Karplus PA, and Claiborne A. Protein sulfenic acids in redox signaling. Annu Rev Pharmacol Toxicol 44: 325–347, 2004.
247.
Poppek DGrune T. Proteasomal defense of oxidative protein modificationsAntioxid Redox Signal8173-1842006. 247. Poppek D and Grune T. Proteasomal defense of oxidative protein modifications. Antioxid Redox Signal 8: 173–184, 2006.
248.
Pouyssegur JMechta-Grigoriou F. Redox regulation of the hypoxia-inducible factorBiol Chem3871337-13462006. 248. Pouyssegur J and Mechta-Grigoriou F. Redox regulation of the hypoxia-inducible factor. Biol Chem 387: 1337–1346, 2006.
249.
Radi RPeluffo GAlvarez MNNaviliat MCayota A. Unraveling peroxynitrite formation in biological systemsFree Radic Biol Med30463-4882001. 249. Radi R, Peluffo G, Alvarez MN, Naviliat M, and Cayota A. Unraveling peroxynitrite formation in biological systems. Free Radic Biol Med 30: 463–488, 2001.
250.
Radisky DCLevy DDLittlepage LELiu HNelson CMFata JELeake DGodden ELAlbertson DGNieto MAWerb ZBissell MJ. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instabilityNature436123-1272005. 250. Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE, Leake D, Godden EL, Albertson DG, Nieto MA, Werb Z, and Bissell MJ. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436: 123–127, 2005.
251.
Rahman IGilmour PSJimenez LAMacNee W. Oxidative stress and TNF-alpha induce histone acetylation and NF-kap-paB/AP-1 activation in alveolar epithelial cells: potential mechanism in gene transcription in lung inflammationMol Cell Biochem234–235239-2482002. 251. Rahman I, Gilmour PS, Jimenez LA, and MacNee W. Oxidative stress and TNF-alpha induce histone acetylation and NF-kap-paB/AP-1 activation in alveolar epithelial cells: potential mechanism in gene transcription in lung inflammation. Mol Cell Biochem 234–235: 239–248, 2002.
252.
Rahman IMarwick JKirkham P. Redox modulation of chromatin remodeling: impact on histone acetylation and deacetylation, NF-kappaB and pro-inflammatory gene expressionBiochem Pharmacol681255-12672004. 252. Rahman I, Marwick J, and Kirkham P. Redox modulation of chromatin remodeling: impact on histone acetylation and deacetylation, NF-kappaB and pro-inflammatory gene expression. Biochem Pharmacol 68:1255–1267, 2004.
253.
Ran QLiang HGu MQi WWalter CARoberts LJ 2ndHerman BRichardson AVan Remmen H. Transgenic mice over-expressing glutathione peroxidase 4 are protected against oxidative stress-induced apoptosisJ Biol Chem27955137-551462004. 253. Ran Q, Liang H, Gu M, Qi W, Walter CA, Roberts LJ 2nd, Herman B, Richardson A, and Van Remmen H. Transgenic mice over-expressing glutathione peroxidase 4 are protected against oxidative stress-induced apoptosis. J Biol Chem 279: 55137–55146, 2004.
254.
Rauhala PLin AMChiueh CC. Neuroprotection by S-nitrosoglutathione of brain dopamine neurons from oxidative stressFASEB J12165-1731998. 254. Rauhala P, Lin AM, and Chiueh CC. Neuroprotection by S-nitrosoglutathione of brain dopamine neurons from oxidative stress. FASEB J 12: 165–173, 1998.
255.
Rebrin IKamzalov SSohal RS. Effects of age and caloric restriction on glutathione redox state in miceFree Radic Biol Med35626-6352003. 255. Rebrin I, Kamzalov S, and Sohal RS. Effects of age and caloric restriction on glutathione redox state in mice. Free Radic Biol Med 35: 626–635, 2003.
256.
Reinstein ECiechanover A. Narrative review: protein degradation and human diseases: the ubiquitin connectionAnn Intern Med145676-6842006. 256. Reinstein E and Ciechanover A. Narrative review: protein degradation and human diseases: the ubiquitin connection. Ann Intern Med 145: 676–684, 2006.
257.
Requena JRFu MXAhmed MUJenkins AJLyons TJThorpe SR. Lipoxidation products as biomarkers of oxidative damage to proteins during lipid peroxidation reactionsNephrol Dial Transplant11suppl 548-531996. 257. Requena JR, Fu MX, Ahmed MU, Jenkins AJ, Lyons TJ, and Thorpe SR. Lipoxidation products as biomarkers of oxidative damage to proteins during lipid peroxidation reactions. Nephrol Dial Transplant 11(suppl 5): 48–53, 1996.
258.
Reynaert NLCless KKorn SHVos NGuala ASWouters EFvan der Vliet AJanssen-Heininger YM. Nitric oxide represses inhibitory kappaB kinase through S-nitrosylationProc Natl Acad Sci U S A1018945-89502004. 258. Reynaert NL, Cless K, Korn SH, Vos N, Guala AS, Wouters EF, van der Vliet A, and Janssen-Heininger YM. Nitric oxide represses inhibitory kappaB kinase through S-nitrosylation. Proc Natl Acad Sci U S A 101: 8945–8950, 2004.
259.
Reynaert NLvan der Vliet AGuala ASMcGovern THristova MPantano CHeintz NHHeim JHo YSMatthews DEWouters EFJanssen-Heininger YM. Dynamic redox control of NF-kappaB through glutaredoxin-regulated S-glutathionylation of inhibitory kappaB kinase betaProc Natl Acad Sci U S A10313086-130912006. 259. Reynaert NL, van der Vliet A, Guala AS, McGovern T, Hristova M, Pantano C, Heintz NH, Heim J, Ho YS, Matthews DE, Wouters EF, and Janssen-Heininger YM. Dynamic redox control of NF-kappaB through glutaredoxin-regulated S-glutathionylation of inhibitory kappaB kinase beta. Proc Natl Acad Sci U S A 103: 13086–13091, 2006.
260.
Rhee SGYang K-SKang SWWoo HAChang T-S. Controlled elimination of intracellular H2O2: regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modificationAntioxid Redox Signal7619-6262005. 260. Rhee SG, Yang K-S, Kang SW, Woo HA, and Chang T-S. Controlled elimination of intracellular H2O2: regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modification. Antioxid Redox Signal 7: 619–626, 2005.
261.
Rivera AMaxwell SA. The p53-induced gene-6 (proline oxidase) mediates apoptosis through a calcineurin-dependent pathwayJ Biol Chem28029346-293542005. 261. Rivera A and Maxwell SA. The p53-induced gene-6 (proline oxidase) mediates apoptosis through a calcineurin-dependent pathway. J Biol Chem 280: 29346–29354, 2005.
262.
Rosen DRSiddique TPatterson DFiglewicz DASapp PHentati ADonaldson DGoto JO'Regan JPDeng H-XRahmani ZKrizus AMcKenna-Yasek DCayabyab AGaston SMBerger RTanzi REHalperin JJHerzfeldt Bden Bergh RVHung W-YBird TDeng GMulder DWSmyth CLaing NGSoriano EPericak-Vance MAHaines JRouleau GAGusella JSHorvitz HRBrown RH. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosisNature36259-621993. 262. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan JP, Deng H-X, Rahmani Z, Krizus A, McKenna-Yasek D, Cayabyab A, Gaston SM, Berger R, Tanzi RE, Halperin JJ, Herzfeldt B, den Bergh RV, Hung W-Y, Bird T, Deng G, Mulder DW, Smyth C, Laing NG, Soriano E, Pericak-Vance MA, Haines J, Rouleau GA, Gusella JS, Horvitz HR, and Brown RH. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362: 59–62, 1993.
263.
Sablina AABudanov AVIlyinskaya GVAgapova LSKravchenko JEChumakov PM. The antioxidant function of the p53 tumor suppressorNat Med111306-13132005. 263. Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, and Chumakov PM. The antioxidant function of the p53 tumor suppressor. Nat Med 11: 1306–1313, 2005.
264.
Saitoh MNishitoh HFujii MTakeda KTobiume KSawada YKawabata MMiyazono KIchijo H. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1EMBO J172596-26061998. 264. Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, and Ichijo H. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17: 2596–2606, 1998.
265.
Salmeen ABarford D. Functions and mechanisms of redox regulation of cysteine-based phosphatasesAntioxid Redox Signal7560-5772005. 265. Salmeen A and Barford D. Functions and mechanisms of redox regulation of cysteine-based phosphatases. Antioxid Redox Signal 7: 560–577, 2005.
266.
Sarbassov DDGuertin DAAli SMSabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complexScience3071098-11012005. 266. Sarbassov DD, Guertin DA, Ali SM, and Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307: 1098–1101, 2005.
267.
Sarkisian CJKeister BAStairs DBBoxer RBMoody SEChodosh LA. Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesisNat Cell Biol9493-5052007. 267. Sarkisian CJ, Keister BA, Stairs DB, Boxer RB, Moody SE, and Chodosh LA. Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nat Cell Biol 9: 493–505, 2007.
268.
Sattler MVerma SShrikhande GByrne CHPride YBWinkler TGreenfield EASalgia RGriffin JD. The BCR/ABL tyrosine kinase induces production of reactive oxygen species in hematopoietic cellsJ Biol Chem27524273-242782000. 268. Sattler M, Verma S, Shrikhande G, Byrne CH, Pride YB, Winkler T, Greenfield EA, Salgia R, and Griffin JD. The BCR/ABL tyrosine kinase induces production of reactive oxygen species in hematopoietic cells. J Biol Chem 275: 24273–24278, 2000.
269.
Schieke SMBriviba KKlotz LOSies H. Activation pattern of mitogen-activated protein kinases elicited by peroxynitrite: attenuation by selenite supplementationFEBS Lett448301-3031999. 269. Schieke SM, Briviba K, Klotz LO, and Sies H. Activation pattern of mitogen-activated protein kinases elicited by peroxynitrite: attenuation by selenite supplementation. FEBS Lett 448: 301–303, 1999.
270.
Schofield CJRatcliffe PJ. Signalling hypoxia by HIF hydroxylasesBiochem Biophys Res Commun338617-6262005. 270. Schofield CJ and Ratcliffe PJ. Signalling hypoxia by HIF hydroxylases. Biochem Biophys Res Commun 338: 617–626, 2005.
271.
Schonhoff CMGaston BMannick JB. Nitrosylation of cytochrome c during apoptosisJ Biol Chem27818265-182702003. 271. Schonhoff CM, Gaston B, and Mannick JB. Nitrosylation of cytochrome c during apoptosis. J Biol Chem 278: 18265–18270, 2003.
272.
Schopfer FJBaker PRSFreeman BA. NO-dependent protein nitration: a cell signaling event or an oxidative inflammatory response?Trends Biochem Sci28646-6542003. 272. Schopfer FJ, Baker PRS, and Freeman BA. NO-dependent protein nitration: a cell signaling event or an oxidative inflammatory response? Trends Biochem Sci 28: 646–654, 2003.
273.
Schriner SELinford NJMartin GMTreuting POgburn CEEmond MCoskun PELadiges WWolf NVan Remmen HWallace DCRabinovitch PS. Extension of murine life span by overexpression of catalase targeted to mitochondriaScience3081909-19112005. 273. Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, and Rabinovitch PS. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308: 1909–1911, 2005.
274.
Schwartz JL. The dual roles of nutrients as antioxidants and prooxidants: their effects on tumor cell growthJ Nutr1261221S-1227S1996. 274. Schwartz JL. The dual roles of nutrients as antioxidants and prooxidants: their effects on tumor cell growth. J Nutr 126: 1221S–1227S, 1996.
275.
Serrano MLin AWMcCurrach MEBeach DLowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4aCell88593-6021997. 275. Serrano M, Lin AW, McCurrach ME, Beach D, and Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602, 1997.
276.
Shatrov VASumbayev VVZhou JBrune B. Oxidized low-density lipoprotein (oxLDL) triggers hypoxia-inducible factor-1alpha (HIF-1alpha) accumulation via redox-dependent mechanismsBlood1014847-48492003. 276. Shatrov VA, Sumbayev VV, Zhou J, and Brune B. Oxidized low-density lipoprotein (oxLDL) triggers hypoxia-inducible factor-1alpha (HIF-1alpha) accumulation via redox-dependent mechanisms. Blood 101: 4847–4849, 2003.
277.
Shaulian ESchreiber MPiu FBeeche MWagner EFKarin M. The mammalian UV response: c-jun induction is required for exit from p53-imposed growth arrestCell103897-9072000. 277. Shaulian E, Schreiber M, Piu F, Beeche M, Wagner EF, and Karin M. The mammalian UV response: c-jun induction is required for exit from p53-imposed growth arrest. Cell 103: 897–907, 2000.
278.
Shaulian EKarin M. AP-1 as a regulator of cell life and deathNat Cell Biol4E131-E1362002. 278. Shaulian E and Karin M. AP-1 as a regulator of cell life and death. Nat Cell Biol 4: E131–E136, 2002.
279.
Sheehan DMeade GFoley VMDowd CA. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamilyBiochem J3601-162001. 279. Sheehan D, Meade G, Foley VM, and Dowd CA. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360: 1–16, 2001.
280.
Shen HMLiu ZG. JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen speciesFree Radic Biol Med40928-9392006. 280. Shen HM and Liu ZG. JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radic Biol Med 40: 928–939, 2006.
281.
Shi Y. Caspase activation: revisiting the induced proximity modelCell117855-8582004. 281. Shi Y. Caspase activation: revisiting the induced proximity model. Cell 117: 855–858, 2004.
282.
Shrivastava PPantano CWatkin RMcElhinney BGuala APoynter MLPersinger RLBudd RJanssen-Heininger Y. Reactive nitrogen species-induced cell death requires Fas-dependent activation of c-Jun N-terminal kinaseMol Cell Biol246763-67722004. 282. Shrivastava P, Pantano C, Watkin R, McElhinney B, Guala A, Poynter ML, Persinger RL, Budd R, and Janssen-Heininger Y. Reactive nitrogen species-induced cell death requires Fas-dependent activation of c-Jun N-terminal kinase. Mol Cell Biol 24: 6763–6772, 2004.
283.
Song JJRhee JGSuntharalingam MWalsh SASpitz DRLee YJ. Role of glutaredoxin in metabolic oxidative stress: glutaredoxin as a sensor of oxidative stress mediated by H2O2J Biol Chem27746566-465752002. 283. Song JJ, Rhee JG, Suntharalingam M, Walsh SA, Spitz DR, and Lee YJ. Role of glutaredoxin in metabolic oxidative stress: glutaredoxin as a sensor of oxidative stress mediated by H2O2. J Biol Chem 277: 46566–46575, 2002.
284.
Soussi TWiman KG. Shaping genetic alterations in human cancer: the p53 mutation paradigmCancer Cell12303-3122007. 284. Soussi T and Wiman KG. Shaping genetic alterations in human cancer: the p53 mutation paradigm. Cancer Cell 12: 303–312, 2007.
285.
Squier TC. Redox modulation of cellular metabolism through targeted degradation of signaling proteins by the proteasomeAntioxid Redox Signal8217-2282006. 285. Squier TC. Redox modulation of cellular metabolism through targeted degradation of signaling proteins by the proteasome. Antioxid Redox Signal 8: 217–228, 2006.
286.
Srinivasan ALehmler HJRobertson LWLudewig G. Production of DNA strand breaks in vitro and reactive oxygen species in vitro and in HL-60 cells by PCB metabolitesToxicol Sci6092-1022001. 286. Srinivasan A, Lehmler HJ, Robertson LW, and Ludewig G. Production of DNA strand breaks in vitro and reactive oxygen species in vitro and in HL-60 cells by PCB metabolites. Toxicol Sci 60: 92–102, 2001.
287.
Stadtman ER. Role of oxidant species in agingCurr Med Chem111105-11122004. 287. Stadtman ER. Role of oxidant species in aging. Curr Med Chem 11: 1105–1112, 2004.
288.
Su HBidere NZheng LCubre ASakai KDale JSalmena LHakem RStraus SLenardo M. Requirement for caspase-8 in NF-kappaB activation by antigen receptorScience3071465-14682005. 288. Su H, Bidere N, Zheng L, Cubre A, Sakai K, Dale J, Salmena L, Hakem R, Straus S, and Lenardo M. Requirement for caspase-8 in NF-kappaB activation by antigen receptor. Science 307: 1465–1468, 2005.
289.
Suh JHShenvi SVDixon BMLiu HJaiswal AKLiu R-MHagen TM. Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acidProc Natl Acad Sci US A1013381-33862004. 289. Suh JH, Shenvi SV, Dixon BM, Liu H, Jaiswal AK, Liu R-M, and Hagen TM. Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc Natl Acad Sci US A 101: 3381–3386, 2004.
290.
Sui HWang WWang PHLiu LS. Protective effect of antioxidant ebselen (PZ51) on the cerebral cortex of stroke-prone spontaneously hypertensive ratsHypertens Res28249-2542005. 290. Sui H, Wang W, Wang PH, and Liu LS. Protective effect of antioxidant ebselen (PZ51) on the cerebral cortex of stroke-prone spontaneously hypertensive rats. Hypertens Res 28: 249–254, 2005.
291.
Sumbayev VVYasinska IM. Regulation of MAP kinase-dependent apoptotic pathway: implication of reactive oxygen and nitrogen speciesArch Biochem Biophys436406-4122005. 291. Sumbayev VV and Yasinska IM. Regulation of MAP kinase-dependent apoptotic pathway: implication of reactive oxygen and nitrogen species. Arch Biochem Biophys 436: 406–412, 2005.
292.
Sun JSteenbergen CMurphy E. S-Nitrosylation: no-related redox signaling to protect against oxidative stressAntioxid Redox Signal81693-17052006. 292. Sun J, Steenbergen C, and Murphy E. S-Nitrosylation: no-related redox signaling to protect against oxidative stress. Antioxid Redox Signal 8: 1693–1705, 2006.
293.
Szabo CIschiropoulos HRadi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeuticsNat Rev Drug Discov6662-6802007. 293. Szabo C, Ischiropoulos H, and Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 6: 662–680, 2007.
294.
Szatrowski TPNathan CF. Production of large amounts of hydrogen peroxide by human tumor cellsCancer Res51794-7981991. 294. Szatrowski TP and Nathan CF. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51: 794–798, 1991.
295.
Tan KPYang MIto S. Activation of Nrf2 by toxic bile acids provokes adaptive Defense responses to enhance cell survival at the emergence of oxidative stressMol Pharmacol Epub ahead of print2007. 295. Tan KP, Yang M, and Ito S. Activation of Nrf2 by toxic bile acids provokes adaptive Defense responses to enhance cell survival at the emergence of oxidative stress. Mol Pharmacol Epub ahead of print, 2007.
296.
Tanaka HMatsumura IEzoe SSatoh YSakamaki TAlbanese CMachii TPestell RGKanakura Y. E2F1 and c-Myc potentiate apoptosis through inhibition of NF-kappaB activity that facilitates MnSOD-mediated ROS eliminationMol Cell91017-10292002. 296. Tanaka H, Matsumura I, Ezoe S, Satoh Y, Sakamaki T, Albanese C, Machii T, Pestell RG, and Kanakura Y. E2F1 and c-Myc potentiate apoptosis through inhibition of NF-kappaB activity that facilitates MnSOD-mediated ROS elimination. Mol Cell 9: 1017–1029, 2002.
297.
Tobiume KMatsuzawa ATakahashi TNishitoh HMorita KTakeda KMinowa OMiyazono KNoda TIchijo H. ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosisEMBO Rep2222-2282001. 297. Tobiume K, Matsuzawa A, Takahashi T, Nishitoh H, Morita K, Takeda K, Minowa O, Miyazono K, Noda T, and Ichijo H. ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep 2: 222–228, 2001.
298.
Toledano MBLeonard WJ. Modulation of transcription factor NF-kappa B binding activity by oxidation-reduction in vitroProc Natl Acad Sci U S A884328-43321991. 298. Toledano MB and Leonard WJ. Modulation of transcription factor NF-kappa B binding activity by oxidation-reduction in vitro. Proc Natl Acad Sci U S A 88: 4328–4332, 1991.
299.
Tomita YMarchenko NErster SNemajerova ADehner AKlein CPan HKessler HPancoska PMoll UM. WT p53, but not tumor-derived mutants, bind to Bcl2 via the DNA binding domain and induce mitochondrial permeabilizationJ Biol Chem2818600-86062006. 299. Tomita Y, Marchenko N, Erster S, Nemajerova A, Dehner A, Klein C, Pan H, Kessler H, Pancoska P, and Moll UM. WT p53, but not tumor-derived mutants, bind to Bcl2 via the DNA binding domain and induce mitochondrial permeabilization. J Biol Chem 281: 8600–8606, 2006.
300.
Tomko RJ JrBansal PLazo JS. Airing out an antioxidant role for the tumor suppressor p53Mol Intervent623-252006. 300. Tomko RJ Jr, Bansal P, and Lazo JS. Airing out an antioxidant role for the tumor suppressor p53. Mol Intervent 6: 23–25, 2006.
301.
Torres M. Mitogen-activated protein kinase pathways in redox signalingFront Biosci8d369-d3912003. 301. Torres M. Mitogen-activated protein kinase pathways in redox signaling. Front Biosci 8: d369–d391, 2003.
302.
Trachootham DZhou YZhang HDemizu YChen ZPelicano HChiao PJAchanta GArlinghaus RBLiu JHuang P. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanateCancer Cell10241-2522006. 302. Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, Chiao PJ, Achanta G, Arlinghaus RB, Liu J, and Huang P. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 10: 241–252, 2006.
303.
Trifunovic AWredenberg AFalkenberg MSpelbrink JNRovio ATBruder CEBohlooly YMGidlof SOldfors AWibom RTornell JJacobs HTLarsson NG. Premature ageing in mice expressing defective mitochondrial DNA polymeraseNature429417-4232004. 303. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly YM, Gidlof S, Oldfors A, Wibom R, Tornell J, Jacobs HT, and Larsson NG. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429: 417–423, 2004.
304.
Trifunovic A. Mitochondrial DNA and ageingBiochim Biophys Acta1757611-6172006. 304. Trifunovic A. Mitochondrial DNA and ageing. Biochim Biophys Acta 1757: 611–617, 2006.
305.
Tsuzuki TNakatsu YNakabeppu Y. Significance of error-avoiding mechanisms for oxidative DNA damage in carcinogenesisCancer Sci98465-4702007. 305. Tsuzuki T, Nakatsu Y, and Nakabeppu Y. Significance of error-avoiding mechanisms for oxidative DNA damage in carcinogenesis. Cancer Sci 98: 465–470, 2007.
306.
Turpaev KT. Reactive oxygen species and regulation of gene expressionBiochemistry (Moscow)67281-2922002. 306. Turpaev KT. Reactive oxygen species and regulation of gene expression. Biochemistry (Moscow) 67: 281–292, 2002.
307.
Tyner SDVenkatachalam SChoi JJones SGhebranious NIgelmann HLu XSoron GCooper BBrayton CHee Park SThompson TKarsenty GBradley ADonehower LA. p53 Mutant mice that display early ageing-associated phenotypesNature41545-532002. 307. Tyner SD, Venkatachalam S, Choi J, Jones S, Ghebranious N, Igelmann H, Lu X, Soron G, Cooper B, Brayton C, Hee Park S, Thompson T, Karsenty G, Bradley A, and Donehower LA. p53 Mutant mice that display early ageing-associated phenotypes. Nature 415: 45–53, 2002.
308.
Vafa OWade MKern SBeeche MPandita TKHampton GMWahl GM. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instabilityMol Cell91031-10442002. 308. Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM, and Wahl GM. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 9: 1031–1044, 2002.
309.
Valko MRhodes CJMoncol JIzakovic MMazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancerChem Biol Interact1601-402006. 309. Valko M, Rhodes CJ, Moncol J, Izakovic M, and Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160: 1–40, 2006.
310.
Valko MLeibfritz DMoncol JCronin MTDMazur MTelser J. Free radicals and antioxidants in normal physiological functions and human diseaseInt J Biochem Cell Biol3944-842007. 310. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, and Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39: 44–84, 2007.
311.
Van Laethem ANys KVan Kelst SClaerhout SIchijo HVandenheede JRGarmyn MAgostinis P. Apoptosis signal regulating kinase-1 connects reactive oxygen species to p38 MAPK-induced mitochondrial apoptosis in UVB-irradiated human keratinocytesFree Radic Biol Med411361-13712006. 311. Van Laethem A, Nys K, Van Kelst S, Claerhout S, Ichijo H, Vandenheede JR, Garmyn M, and Agostinis P. Apoptosis signal regulating kinase-1 connects reactive oxygen species to p38 MAPK-induced mitochondrial apoptosis in UVB-irradiated human keratinocytes. Free Radic Biol Med 41: 1361–1371, 2006.
312.
Van Remmen HIkeno YHamilton MPahlavani MWolf NThorpe SRAlderson NLBaynes JWEpstein CJHuang TTNelson JStrong RRichardson A. Life-long reduction in Mn-SOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate agingPhysiol Genomics1629-372003. 312. Van Remmen H, Ikeno Y, Hamilton M, Pahlavani M, Wolf N, Thorpe SR, Alderson NL, Baynes JW, Epstein CJ, Huang TT, Nelson J, Strong R, and Richardson A. Life-long reduction in Mn-SOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol Genomics 16: 29–37, 2003.
313.
Van Waes C. Nuclear factor-kappaB in development, prevention, and therapy of cancerClin Cancer Res131076-10822007. 313. Van Waes C. Nuclear factor-kappaB in development, prevention, and therapy of cancer. Clin Cancer Res 13: 1076–1082, 2007.
314.
Vandermoere FEl Yazidi-Belkoura IAdriaenssens ELemoine JHondermarck H. The antiapoptotic effect of fibroblast growth factor-2 is mediated through nuclear factor-kappaB activation induced via interaction between Akt and IkappaB kinase-beta in breast cancer cellsOncogene245482-54912005. 314. Vandermoere F, El Yazidi-Belkoura I, Adriaenssens E, Lemoine J, and Hondermarck H. The antiapoptotic effect of fibroblast growth factor-2 is mediated through nuclear factor-kappaB activation induced via interaction between Akt and IkappaB kinase-beta in breast cancer cells. Oncogene 24: 5482–5491, 2005.
315.
Vanhaesebroeck BAlessi DR. The PI3K-PDK1 connection: more than just a road to PKBBiochem J346561-5762000. 315. Vanhaesebroeck B and Alessi DR. The PI3K-PDK1 connection: more than just a road to PKB. Biochem J 346: 561–576, 2000.
316.
Veis DJSorenson CMShutter JRKorsmeyer SJ. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hairCell75229-2401993. 316. Veis DJ, Sorenson CM, Shutter JR, and Korsmeyer SJ. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75: 229–240, 1993.
317.
Velu CSNiture SKDoneanu CEPattabiraman NSrivenugopal KS. Human p53 is inhibited by glutathionylation of cysteines present in the proximal DNA-binding domain during oxidative stressBiochemistry467765-77802007. 317. Velu CS, Niture SK, Doneanu CE, Pattabiraman N, and Srivenugopal KS. Human p53 is inhibited by glutathionylation of cysteines present in the proximal DNA-binding domain during oxidative stress. Biochemistry 46: 7765–7780, 2007.
318.
Venugopal RJaiswal AK. Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymesOncogene173145-31561998. 318. Venugopal R and Jaiswal AK. Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes. Oncogene 17: 3145–3156, 1998.
319.
Vermeulen LDe Wilde GVan Damme PVanden Berghe WHaegeman G. Transcriptional activation of the NF-kappaB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1)EMBO J221313-13242003. 319. Vermeulen L, De Wilde G, Van Damme P, Vanden Berghe W, and Haegeman G. Transcriptional activation of the NF-kappaB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1). EMBO J 22: 1313–1324, 2003.
320.
Vermulst MBielas JHKujoth GCLadiges WCRabinovitch PSProlla TALoeb LA. Mitochondrial point mutations do not limit the natural lifespan of miceNat Genet39540-5432007. 320. Vermulst M, Bielas JH, Kujoth GC, Ladiges WC, Rabinovitch PS, Prolla TA, and Loeb LA. Mitochondrial point mutations do not limit the natural lifespan of mice. Nat Genet 39: 540–543, 2007.
321.
Victor VMRocha M. Targeting antioxidants to mitochondria: a potential new therapeutic strategy for cardiovascular diseasesCurr Pharm Des13845-8632007. 321. Victor VM and Rocha M. Targeting antioxidants to mitochondria: a potential new therapeutic strategy for cardiovascular diseases. Curr Pharm Des 13: 845–863, 2007.
322.
Vila MPrzedborski S. Targeting programmed cell death in neurodegenerative diseasesNat Rev Neurosci4365-3752003. 322. Vila M and Przedborski S. Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci 4: 365–375, 2003.
323.
Vlasova IITyurin VAKapralov AAKurnikov IVOsipov ANPotapovich MVStoyanovsky DAKagan VE. Nitric oxide inhibits peroxidase activity of cytochrome c cardiolipin complex and blocks cardiolipin oxidationJ Biol Chem28114554-146122006. 323. Vlasova, II, Tyurin VA, Kapralov AA, Kurnikov IV, Osipov AN, Potapovich MV, Stoyanovsky DA, and Kagan VE. Nitric oxide inhibits peroxidase activity of cytochrome c cardiolipin complex and blocks cardiolipin oxidation. J Biol Chem 281: 14554–14612, 2006.
324.
Voehringer DWMeyn RE. Redox aspects of Bcl-2 functionAntioxid Redox Signal2537-5502000. 324. Voehringer DW and Meyn RE. Redox aspects of Bcl-2 function. Antioxid Redox Signal 2: 537–550, 2000.
325.
Wang GLJiang BHSemenza GL. Effect of altered redox states on expression and DNA-binding activity of hypoxia-inducible factor 1Biochem Biophys Res Commun212550-5561995. 325. Wang GL, Jiang BH, and Semenza GL. Effect of altered redox states on expression and DNA-binding activity of hypoxia-inducible factor 1. Biochem Biophys Res Commun 212: 550–556, 1995.
326.
Wang TArifoglu PRonai ZTew KD. Glutathione S-transferase P1–1 (GSTP1–1) inhibits c-Jun N-terminal kinase (JNK1) signaling through interaction with the C terminusJ Biol Chem27620999-210032001. 326. Wang T, Arifoglu P, Ronai Z, and Tew KD. Glutathione S-transferase P1–1 (GSTP1–1) inhibits c-Jun N-terminal kinase (JNK1) signaling through interaction with the C terminus. J Biol Chem 276: 20999–21003, 2001.
327.
Wang XMcCullough KDFranke TFHolbrook NJ. Epidermal growth factor receptor-dependent Akt activation by oxidative stress enhances cell survivalJ Biol Chem27514624-146312000. 327. Wang X, McCullough KD, Franke TF, and Holbrook NJ. Epidermal growth factor receptor-dependent Akt activation by oxidative stress enhances cell survival. J Biol Chem 275: 14624–14631, 2000.
328.
Wang YZeigler MMLam GKHunter MGEubank TDKhramtsov VVTridandapani SSen CKMarsh CB. The role of the NADPH oxidase complex, p38 MAPK, and Akt in regulating human monocyte/macrophage survivalAm J Respir Cell Mol Biol3668-772007. 328. Wang Y, Zeigler MM, Lam GK, Hunter MG, Eubank TD, Khramtsov VV, Tridandapani S, Sen CK, and Marsh CB. The role of the NADPH oxidase complex, p38 MAPK, and Akt in regulating human monocyte/macrophage survival. Am J Respir Cell Mol Biol 36: 68–77, 2007.
329.
Wek RCCavener DR. Translational control and the unfolded protein response. Antioxid Redox SignalEpub ahead of print2007. 329. Wek RC and Cavener DR. Translational control and the unfolded protein response. Antioxid Redox Signal. Epub ahead of print, 2007.
330.
Welch HCCoadwell WJStephens LRHawkins PT. Phosphoinositide 3-kinase-dependent activation of RacFEBS Lett54693-972003. 330. Welch HC, Coadwell WJ, Stephens LR, and Hawkins PT. Phosphoinositide 3-kinase-dependent activation of Rac. FEBS Lett 546: 93–97, 2003.
331.
Weston CRDavis RJ. The JNK signal transduction pathwayCurr Opin Cell Biol19142-1492007. 331. Weston CR and Davis RJ. The JNK signal transduction pathway. Curr Opin Cell Biol 19: 142–149, 2007.
332.
Wood ZASchroder ERobin Harris JPoole LB. Structure, mechanism and regulation of peroxiredoxinsTrends Biochem Sci2832-402003. 332. Wood ZA, Schroder E, Robin Harris J, and Poole LB. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28: 32–40, 2003.
333.
Xia YWang JXu SJohnson GLHunter TLu Z. MEKK1 mediates the ubiquitination and degradation of c-Jun in response to osmotic stressMol Cell Biol27510-5172007. 333. Xia Y, Wang J, Xu S, Johnson GL, Hunter T, and Lu Z. MEKK1 mediates the ubiquitination and degradation of c-Jun in response to osmotic stress. Mol Cell Biol 27: 510–517, 2007.
334.
Xia YWang JLiu T-JYung WKAHunter TLu Z. c-Jun downregulation by HDAC3-dependent transcriptional repression promotes osmotic stress-induced cell apoptosisMol Cell25219-2322007. 334. Xia Y, Wang J, Liu T-J, Yung WKA, Hunter T, and Lu Z. c-Jun downregulation by HDAC3-dependent transcriptional repression promotes osmotic stress-induced cell apoptosis. Mol Cell 25: 219–232, 2007.
335.
Xiao LLang W. A dominant role for the c-Jun Nh2-terminal kinase in oncogenic ras-induced morphologic transformation of human lung carcinoma cellsCancer Res60400-4082000. 335. Xiao L and Lang W. A dominant role for the c-Jun Nh2-terminal kinase in oncogenic ras-induced morphologic transformation of human lung carcinoma cells. Cancer Res 60: 400–408, 2000.
336.
Xue WZender LMiething CDickins RAHernando EKrizhanovsky VCordon-Cardo CLowe SW. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomasNature445656-6602007. 336. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, and Lowe SW. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445: 656–660, 2007.
337.
Yamaguchi TSano KTakakura KSaito IShinohara YAsano TYasuhara H. Ebselen in acute ischemic stroke: a placebo-controlled, double-blind clinical trial: Ebselen Study GroupStroke2912-171998. 337. Yamaguchi T, Sano K, Takakura K, Saito I, Shinohara Y, Asano T, and Yasuhara H. Ebselen in acute ischemic stroke: a placebo-controlled, double-blind clinical trial: Ebselen Study Group. Stroke 29: 12–17, 1998.
338.
Yang DDKuan C-YWhitmarsh AJRinocn MZheng TSDavis RJRakic PFlavell RA. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 geneNature389865-8701997. 338. Yang DD, Kuan C-Y, Whitmarsh AJ, Rinocn M, Zheng TS, Davis RJ, Rakic P, and Flavell RA. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389: 865–870, 1997.
339.
Yarian CSToroser DSohal RS. Aconitase is the main functional target of aging in the citric acid cycle of kidney mitochondria from miceMech Ageing Dev12779-842006. 339. Yarian CS, Toroser D, and Sohal RS. Aconitase is the main functional target of aging in the citric acid cycle of kidney mitochondria from mice. Mech Ageing Dev 127: 79–84, 2006.
340.
Yasukawa TTokunaga EOta HSugita HMartyn JAKaneki M. S-nitrosylation-dependent inactivation of Akt/protein kinase B in insulin resistanceJ Biol Chem2807511-75182005. 340. Yasukawa T, Tokunaga E, Ota H, Sugita H, Martyn JA, and Kaneki M. S-nitrosylation-dependent inactivation of Akt/protein kinase B in insulin resistance. J Biol Chem 280: 7511–7518, 2005.
341.
Young TWMei FCYang GThompson-Lanza JALiu JCheng X. Activation of antioxidant pathways in ras-mediated oncogenic transformation of human surface ovarian epithelial cells revealed by functional proteomics and mass spectrometryCancer Res644577-45842004. 341. Young TW, Mei FC, Yang G, Thompson-Lanza JA, Liu J, and Cheng X. Activation of antioxidant pathways in ras-mediated oncogenic transformation of human surface ovarian epithelial cells revealed by functional proteomics and mass spectrometry. Cancer Res 64: 4577–4584, 2004.
342.
Yu CXLi SWhorton AR. Redox regulation of PTEN by S-nitrosothiolsMol Pharmacol68847-8542005. 342. Yu CX, Li S, and Whorton AR. Redox regulation of PTEN by S-nitrosothiols. Mol Pharmacol 68: 847–854, 2005.
343.
Zhao YWang ZBXu JX. Effect of cytochrome c on the generation and elimination of O2*- and H2O2 in mitochondriaJ Biol Chem2782356-23602003. 343. Zhao Y, Wang ZB, and Xu JX. Effect of cytochrome c on the generation and elimination of O2*- and H2O2 in mitochondria. J Biol Chem 278: 2356–2360, 2003.
344.
Zhong HSuYang HErdjument-Bromage HTempst PGhosh S. The transcriptional activity of NF-kappaB is regulated by the IkappaB-associated PKAc subunit through a cyclic AMP-independent mechanismCell89413-4241997. 344. Zhong H, SuYang H, Erdjument-Bromage H, Tempst P, and Ghosh S. The transcriptional activity of NF-kappaB is regulated by the IkappaB-associated PKAc subunit through a cyclic AMP-independent mechanism. Cell 89: 413–424, 1997.

Information & Authors

Information

Published In

cover image Antioxidants & Redox Signaling
Antioxidants & Redox Signaling
Volume 10Issue Number 8August 2008
Pages: 1343 - 1374
PubMed: 18522489

History

Published online: 30 September 2010
Published in print: August 2008
Accepted: 6 February 2008
Revision received: 6 February 2008
Received: 17 October 2007

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Dunyaporn Trachootham
Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas.
Faculty of Dentistry, Thammasat University (Rangsit Campus), Pathum-thani, Thailand.
Weiqin Lu
Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas.
Marcia A. Ogasawara
Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas.
Nilsa Rivera-Del Valle
Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas.
Peng Huang
Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas.

Notes

Address reprint requests to:Peng HuangDepartment of Molecular PathologyUniversity of Texas M.D. Anderson Cancer CenterBox 09511515 Holcombe BoulevardHouston, TX 77030E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top