<iframe src="//www.googletagmanager.com/ns.html?id=GTM-5TSRKG" height="0" width="0" style="display: none; visibility: hidden">
Review Article
No access
Published Online: 18 September 2009

Targeting and Regulation of Reactive Oxygen Species Generation by Nox Family NADPH Oxidases

Publication: Antioxidants & Redox Signaling
Volume 11, Issue Number 10

Abstract

Nox family NADPH oxidases serve a variety of functions requiring reactive oxygen species (ROS) generation, including antimicrobial defense, biosynthetic processes, oxygen sensing, and redox-based cellular signaling. We explored targeting, assembly, and activation of several Nox family oxidases, since ROS production appears to be regulated both spatially and temporally. Nox1 and Nox3 are similar to the phagocytic (Nox2-based) oxidase, functioning as multicomponent superoxide-generating enzymes. Factors regulating their activities include cytosolic activator and organizer proteins and GTP-Rac. Their regulation varies, with the following rank order: Nox2 > Nox1 > Nox3. Determinants of subcellular targeting include: (a) formation of Nox-p22phox heterodimeric complexes allowing plasma membrane translocation, (b) phospholipids-binding specificities of PX domain-containing organizer proteins (p47phox or Nox organizer 1 (Noxo1 and p40phox), and (c) variably splicing of Noxo1 PX domains directing them to nuclear or plasma membranes. Dual oxidases (Duox1 and Duox2) are targeted by different mechanisms. Plasma membrane targeting results in H2O2 release, not superoxide, to support extracellular peroxidases. Human Duox1 and Duox2 have no demonstrable peroxidase activity, despite their extensive homology with heme peroxidases. The dual oxidases were reconstituted by Duox activator 2 (Duoxa2) or two Duoxa1 variants, which dictate maturation, subcellular localization, and the type of ROS generated by forming stable complexes with Duox. Antioxid Redox Signal. 11, 000–000.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Abo APick EHall ATotty NTeahan CGSegal AW. Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1Nature353668-6701991. 1. Abo A, Pick E, Hall A, Totty N, Teahan CG, and Segal AW. Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature 353: 668–670, 1991.
2.
Ago TNunoi HIto TSumimoto H. Mechanism for phosphorylation-induced activation of the phagocyte NADPH oxidase protein p47phox. Triple replacement of serines 303, 304, and 328 with aspartates disrupts the SH3 domain-mediated intramolecular interaction in p47(phox), thereby activating the oxidaseJ Biol Chem27433644-336531999. 2. Ago T, Nunoi H, Ito T, and Sumimoto H. Mechanism for phosphorylation-induced activation of the phagocyte NADPH oxidase protein p47phox. Triple replacement of serines 303, 304, and 328 with aspartates disrupts the SH3 domain-mediated intramolecular interaction in p47(phox), thereby activating the oxidase. J Biol Chem 274: 33644–33653, 1999.
2616
3.
Ambasta RKKumar PGriendling KKSchmidt HHHWBusse RBrandes RP. Direct interaction of the novel Nox proteins with p22phox is required for the formation of a functionally active NADPH oxidaseJ Biol Chem27945935-459412004. 3. Ambasta RK, Kumar P, Griendling KK, Schmidt HHHW, Busse R, and Brandes RP. Direct interaction of the novel Nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase. J Biol Chem 279: 45935–45941, 2004.
4.
Ameziane–El-Hassani RMorand SBoucher JLFrapart YMApostolou DAgnandji DGnidehou SOhayon RNoel–Hudson MSFrancon JLalaoui KVirion ADupuy C. Dual oxidase-2 has an intrinsic Ca2+-dependent H2O2-generating activityJ Biol Chem28030046-300542005. 4. Ameziane–El-Hassani R, Morand S, Boucher JL, Frapart YM, Apostolou D, Agnandji D, Gnidehou S, Ohayon R, Noel–Hudson MS, Francon J, Lalaoui K, Virion A, and Dupuy C. Dual oxidase-2 has an intrinsic Ca2+-dependent H2O2-generating activity. J Biol Chem 280: 30046–30054, 2005.
5.
Anderson KEBoyle KDavidson KChessa TAKulkarni SJarvis GESindrilaru AScharffetter–Kochanek KRausch OStephens LRHawkins PT. CD18-dependent activation of the neutrophil NADPH oxidase during phagocytosis of E. coli or S. aureus is regulated by Class III but not Class I or II PI3KsBlood1125205-52112008. 5. Anderson KE, Boyle K, Davidson K, Chessa TA, Kulkarni S, Jarvis GE, Sindrilaru A, Scharffetter–Kochanek K, Rausch O, Stephens LR, and Hawkins PT. CD18-dependent activation of the neutrophil NADPH oxidase during phagocytosis of E. coli or S. aureus is regulated by Class III but not Class I or II PI3Ks. Blood 112: 5205–5211, 2008.
6.
Banfi BClark RASteger KKrause KH. Two novel proteins activate superoxide generation by the NADPH oxidase NOX1J Biol Chem2783510-35132003. 6. Banfi B, Clark RA, Steger K, and Krause KH. Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J Biol Chem 278: 3510–3513, 2003.
7.
Banfi BTirone FDurussel IKnisz JMoskwa PMolnar GZKrause KHCox JA. Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5)J Biol Chem27918583-185912004. 7. Banfi B, Tirone F, Durussel I, Knisz J, Moskwa P, Molnar GZ, Krause KH, and Cox JA. Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5). J Biol Chem 279: 18583–18591, 2004.
8.
Bedard KKrause KH. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiologyPhysiol Rev87245-3132007. 8. Bedard K and Krause KH. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol Rev 87: 245–313, 2007.
9.
Bedard KLardy BKrause KH. Nox family NADPH oxidase not just in mammalsBiochimie891107-11122007. 9. Bedard K, Lardy B, Krause KH. Nox family NADPH oxidase not just in mammals. Biochimie 89: 1107–1112, 2007.
10.
Bissonnette SAGlazier CMStewart MQBrown GEEllson CDYaffe MB. Phosphatidylinositol 3-phosphate-dependent and -independent functions of p40phox in activation of the neutrophil NADPH oxidaseJ Biol Chem2832108-21192008. 10. Bissonnette SA, Glazier CM, Stewart MQ, Brown GE, Ellson CD, and Yaffe MB. Phosphatidylinositol 3-phosphate-dependent and -independent functions of p40phox in activation of the neutrophil NADPH oxidase. J Biol Chem 283: 2108–2119, 2008.
11.
Bjorkman UEkholm RDenef JF. Cytochemical localization of hydrogen peroxide in isolated thyroid folliclesJ Ultrastruct Res74105-1151981. 11. Bjorkman U, Ekholm R, and Denef JF. Cytochemical localization of hydrogen peroxide in isolated thyroid follicles. J Ultrastruct Res 74: 105–115, 1981.
12.
Bolscher BGvan Zwieten RKramer IMWeening RSVerhoeven AJRoos D. A phosphoprotein of Mr 47,000, defective in autosomal chronic granulomatous disease, copurifies with one of two soluble components required for NADPH:O2 oxidoreductase activity in human neutrophilsJ Clin Invest83757-7631989. 12. Bolscher BG, van Zwieten R, Kramer IM, Weening RS, Verhoeven AJ, and Roos D. A phosphoprotein of Mr 47,000, defective in autosomal chronic granulomatous disease, copurifies with one of two soluble components required for NADPH:O2 oxidoreductase activity in human neutrophils. J Clin Invest 83: 757–763, 1989.
13.
Borregaard NHeiple JMSimons ERClark RA. Subcellular localization of the b-cytochrome component of the human neutrophil microbicidal oxidase: translocation during activationJ Cell Biol9752-611983. 13. Borregaard N, Heiple JM, Simons ER, and Clark RA. Subcellular localization of the b-cytochrome component of the human neutrophil microbicidal oxidase: translocation during activation. J Cell Biol 97: 52–61, 1983.
14.
Caillou BDupuy CLacroix LNocera MTalbot MOhayon RDeme DBidart JMSchlumberger MVirion A. Expression of reduced nicotinamide adenine dinucleotide phosphate oxidase (ThoX, LNOX, Duox) genes and proteins in human thyroid tissuesJ Clin Endocrinol Metab863351-33582001. 14. Caillou B, Dupuy C, Lacroix L, Nocera M, Talbot M, Ohayon R, Deme D, Bidart JM, Schlumberger M, and Virion A. Expression of reduced nicotinamide adenine dinucleotide phosphate oxidase (ThoX, LNOX, Duox) genes and proteins in human thyroid tissues. J Clin Endocrinol Metab 86: 3351–3358, 2001.
15.
Cheeseman KLUeyama TMichaud TMKashiwagi KWang DFlax LAShirai YLoegering DJSaito NLennartz MR. Targeting of protein kinase C-ε during Fcgamma receptor-dependent phagocytosis requires the epsilonC1B domain and phospholipase C-γMol Biol Cell17799-8132006. 15. Cheeseman KL, Ueyama T, Michaud TM, Kashiwagi K, Wang D, Flax LA, Shirai Y, Loegering DJ, Saito N, and Lennartz MR. Targeting of protein kinase C-ε during Fcgamma receptor-dependent phagocytosis requires the epsilonC1B domain and phospholipase C-γ. Mol Biol Cell 17: 799–813, 2006.
16.
Chen JHe RMinshall RDDinauer MCYe RD. Characterization of a mutation in the Phox homology domain of the NADPH oxidase component p40phox identifies a mechanism for negative regulation of superoxide productionJ Biol Chem28230273-302842007. 16. Chen J, He R, Minshall RD, Dinauer MC, and Ye RD. Characterization of a mutation in the Phox homology domain of the NADPH oxidase component p40phox identifies a mechanism for negative regulation of superoxide production. J Biol Chem 282: 30273–30284, 2007.
17.
Cheng GDiebold BAHughes YLambeth JD. Nox1-dependent reactive oxygen generation is regulated by Rac1J Biol Chem28117718-177262006. 17. Cheng G, Diebold BA, Hughes Y, and Lambeth JD. Nox1-dependent reactive oxygen generation is regulated by Rac1. J Biol Chem 281: 17718–17726, 2006.
18.
Cheng GLambeth JD. Alternative mRNA splice forms of NOXO1: differential tissue expression and regulation of Nox1 and Nox3Gene356118-1262005. 18. Cheng G and Lambeth JD. Alternative mRNA splice forms of NOXO1: differential tissue expression and regulation of Nox1 and Nox3. Gene 356: 118–126, 2005.
19.
Cheng GLambeth JD. NOXO1, regulation of lipid binding, localization, and activation of Nox1 by the Phox homology (PX) domainJ Biol Chem2794737-47422004. 19. Cheng G and Lambeth JD. NOXO1, regulation of lipid binding, localization, and activation of Nox1 by the Phox homology (PX) domain. J Biol Chem 279: 4737–4742, 2004.
20.
Choi HLeto TLHunyady LCatt KJBae YSRhee SG. Mechanism of angiotensin II-induced superoxide production in cells reconstituted with angiotensin type 1 receptor and the components of NADPH oxidaseJ Biol Chem283255-2672008. 20. Choi H, Leto TL, Hunyady L, Catt KJ, Bae YS, and Rhee SG. Mechanism of angiotensin II-induced superoxide production in cells reconstituted with angiotensin type 1 receptor and the components of NADPH oxidase. J Biol Chem 283: 255–267, 2008.
21.
Cross ARSegal AW. The NADPH oxidase of professional phagocytes–prototype of the NOX electron transport chain systemsBiochim Biophys Acta16571-222004. 21. Cross AR and Segal AW. The NADPH oxidase of professional phagocytes–prototype of the NOX electron transport chain systems. Biochim Biophys Acta 1657: 1–22, 2004.
22.
De Deken XWang DDumont JEMiot F. Characterization of ThOX proteins as components of the thyroid H2O2-generating systemExp Cell Res273187-1962002. 22. De Deken X, Wang D, Dumont JE, and Miot F. Characterization of ThOX proteins as components of the thyroid H2O2-generating system. Exp Cell Res 273: 187–196, 2002.
23.
De Deken XWang DMany MCCostagliola SLibert FVassart GDumont JEMiot F. Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase familyJ Biol Chem27523227-232332000. 23. De Deken X, Wang D, Many MC, Costagliola S, Libert F, Vassart G, Dumont JE, and Miot F. Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family. J Biol Chem 275: 23227–23233, 2000.
24.
Deme DVirion AHammou NAPommier J. NADPH-dependent generation of H2O2 in a thyroid particulate fraction requires Ca2+FEBS Lett186107-1101985. 24. Deme D, Virion A, Hammou NA, and Pommier J. NADPH-dependent generation of H2O2 in a thyroid particulate fraction requires Ca2+. FEBS Lett 186: 107–110, 1985.
25.
Dikalova AClempus RLassegue BCheng GMcCoy JDikalov SSan Martin ALyle AWeber DSWeiss DTaylor WRSchmidt HHOwens GKLambeth JDGriendling KK. Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic miceCirculation1122668-26762005. 25. Dikalova A, Clempus R, Lassegue B, Cheng G, McCoy J, Dikalov S, San Martin A, Lyle A, Weber DS, Weiss D, Taylor WR, Schmidt HH, Owens GK, Lambeth JD, and Griendling KK. Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. Circulation 112: 2668–2676, 2005.
26.
Donko APeterfi ZSum ALeto TGeiszt M. Dual oxidasesPhilos Trans R Soc Lond B Biol Sci3602301-23082005. 26. Donko A, Peterfi Z, Sum A, Leto T, and Geiszt M. Dual oxidases. Philos Trans R Soc Lond B Biol Sci 360: 2301–2308, 2005.
27.
Dupuy CKaniewski JDeme DPommier JVirion A. NADPH-dependent H2O2 generation catalyzed by thyroid plasma membranes. Studies with electron scavengersEur J Biochem185597-6031989. 27. Dupuy C, Kaniewski J, Deme D, Pommier J, and Virion A. NADPH-dependent H2O2 generation catalyzed by thyroid plasma membranes. Studies with electron scavengers. Eur J Biochem 185: 597–603, 1989.
28.
Dupuy COhayon RValent ANoel-Hudson MSDeme DVirion A. Purification of a novel flavoprotein involved in the thyroid NADPH oxidase. Cloning of the porcine and human cDNAsJ Biol Chem27437265-372691999. 28. Dupuy C, Ohayon R, Valent A, Noel-Hudson MS, Deme D, and Virion A. Purification of a novel flavoprotein involved in the thyroid NADPH oxidase. Cloning of the porcine and human cDNAs. J Biol Chem 274: 37265–37269, 1999.
29.
Dupuy CPomerance MOhayon RNoel–Hudson MSDeme DChaaraoui MFrancon JVirion A. Thyroid oxidase (THOX2) gene expression in the rat thyroid cell line FRTL-5Biochem Biophys Res Commun277287-2922000. 29. Dupuy C, Pomerance M, Ohayon R, Noel–Hudson MS, Deme D, Chaaraoui M, Francon J, and Virion A. Thyroid oxidase (THOX2) gene expression in the rat thyroid cell line FRTL-5. Biochem Biophys Res Commun 277: 287–292, 2000.
30.
Ekholm R. Iodination of thyroglobulin. An intracellular or extracellular process?Mol Cell Endocrinol24141-1631981. 30. Ekholm R. Iodination of thyroglobulin. An intracellular or extracellular process? Mol Cell Endocrinol 24: 141–163, 1981.
31.
El Hassani RABenfares NCaillou BTalbot MSabourin JCBelotte VMorand SGnidehou SAgnandji DOhayon RKaniewski JNoel–Hudson MSBidart JMSchlumberger MVirion ADupuy C. Dual oxidase2 is expressed all along the digestive tractAm J Physiol Gastrointest Liver Physiol288G933-9422005. 31. El Hassani RA, Benfares N, Caillou B, Talbot M, Sabourin JC, Belotte V, Morand S, Gnidehou S, Agnandji D, Ohayon R, Kaniewski J, Noel–Hudson MS, Bidart JM, Schlumberger M, Virion A, and Dupuy C. Dual oxidase2 is expressed all along the digestive tract. Am J Physiol Gastrointest Liver Physiol 288: G933–942, 2005.
32.
Ellson CDavidson KAnderson KStephens LRHawkins PT. PtdIns3P binding to the PX domain of p40phox is a physiological signal in NADPH oxidase activationEMBO J254468-44782006. 32. Ellson C, Davidson K, Anderson K, Stephens LR, and Hawkins PT. PtdIns3P binding to the PX domain of p40phox is a physiological signal in NADPH oxidase activation. EMBO J 25: 4468–4478, 2006.
33.
Ellson CDDavidson KFerguson GJO'Connor RStephens LRHawkins PT. Neutrophils from p40phox-/- mice exhibit severe defects in NADPH oxidase regulation and oxidant-dependent bacterial killingJ Exp Med2031927-19372006. 33. Ellson CD, Davidson K, Ferguson GJ, O'Connor R, Stephens LR, and Hawkins PT. Neutrophils from p40phox-/- mice exhibit severe defects in NADPH oxidase regulation and oxidant-dependent bacterial killing. J Exp Med 203: 1927–1937, 2006.
2617
34.
Ellson CDGobert–Gosse SAnderson KEDavidson KErdjument-Bromage HTempst PThuring JWCooper MALim ZYHolmes ABGaffney PRCoadwell JChilvers ERHawkins PTStephens LR. PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40phoxNat Cell Biol3679-682.2001. 34. Ellson CD, Gobert–Gosse S, Anderson KE, Davidson K, Erdjument-Bromage H, Tempst P, Thuring JW, Cooper MA, Lim ZY, Holmes AB, Gaffney PR, Coadwell J, Chilvers ER, Hawkins PT, and Stephens LR. PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40phox. Nat Cell Biol 3: 679–682., 2001.
35.
Fontayne ADang PMGougerot–Pocidalo MAEl–Benna J. Phosphorylation of p47phox sites by PKC alpha, beta II, delta, and zeta: effect on binding to p22phox and on NADPH oxidase activationBiochemistry417743-77502002. 35. Fontayne A, Dang PM, Gougerot–Pocidalo MA, and El–Benna J. Phosphorylation of p47phox sites by PKC alpha, beta II, delta, and zeta: effect on binding to p22phox and on NADPH oxidase activation. Biochemistry 41: 7743–7750, 2002.
36.
Fortemaison NMiot FDumont JEDremier S. Regulation of H2O2 generation in thyroid cells does not involve Rac1 activationEur J Endocrinol152127-1332005. 36. Fortemaison N, Miot F, Dumont JE, and Dremier S. Regulation of H2O2 generation in thyroid cells does not involve Rac1 activation. Eur J Endocrinol 152: 127–133, 2005.
37.
Forteza RSalathe MMiot FConner GE. Regulated hydrogen peroxide production by Duox in human airway epithelial cellsAm J Respir Cell Mol Biol32462-4692005. 37. Forteza R, Salathe M, Miot F, and Conner GE. Regulated hydrogen peroxide production by Duox in human airway epithelial cells. Am J Respir Cell Mol Biol 32: 462–469, 2005.
38.
Gavazzi GBanfi BDeffert CFiette LSchappi MHerrmann FKrause KH. Decreased blood pressure in NOX1-deficient miceFEBS Lett580497-5042006. 38. Gavazzi G, Banfi B, Deffert C, Fiette L, Schappi M, Herrmann F, and Krause KH. Decreased blood pressure in NOX1-deficient mice. FEBS Lett 580: 497–504, 2006.
39.
Geiszt MKopp JBVarnai PLeto TL. Identification of renox, an NAD(P)H oxidase in kidneyProc Natl Acad Sci USA978010-80142000. 39. Geiszt M, Kopp JB, Varnai P, and Leto TL. Identification of renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci USA 97: 8010–8014, 2000.
40.
Geiszt MLekstrom KWitta JLeto TL. Proteins homologous to p47phox and p67phox support superoxide production by NAD(P)H oxidase 1 in colon epithelial cellsJ Biol Chem27820006-200122003. 40. Geiszt M, Lekstrom K, Witta J, and Leto TL. Proteins homologous to p47phox and p67phox support superoxide production by NAD(P)H oxidase 1 in colon epithelial cells. J Biol Chem 278: 20006–20012, 2003.
41.
Geiszt MLeto TL. The Nox family of NAD(P)H oxidases: Host defense and beyondJ Biol Chem27951715-517182004. 41. Geiszt M and Leto TL. The Nox family of NAD(P)H oxidases: Host defense and beyond. J Biol Chem 279: 51715–51718, 2004.
42.
Geiszt MWitta JBaffi JLekstrom KLeto TL. Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defenseFASEB J171502-15042003. 42. Geiszt M, Witta J, Baffi J, Lekstrom K, and Leto TL. Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. FASEB J 17: 1502–1504, 2003.
43.
Gillooly DJMorrow ICLindsay MGould RBryant NJGaullier JMParton RGStenmark H. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cellsEMBO J194577-45882000. 43. Gillooly DJ, Morrow IC, Lindsay M, Gould R, Bryant NJ, Gaullier JM, Parton RG, and Stenmark H. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J 19: 4577–4588, 2000.
44.
Grasberger HRefetoff S. Identification of the maturation factor for dual oxidase. Evolution of an eukaryotic operon equivalentJ Biol Chem28118269-182722006. 44. Grasberger H and Refetoff S. Identification of the maturation factor for dual oxidase. Evolution of an eukaryotic operon equivalent. J Biol Chem 281: 18269–18272, 2006.
45.
Groemping YLapouge KSmerdon SJRittinger K. Molecular basis of phosphorylation-induced activation of the NADPH oxidaseCell113343-3552003. 45. Groemping Y, Lapouge K, Smerdon SJ, and Rittinger K. Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell 113: 343–355, 2003.
46.
Guex NPeitsch MC. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modelingElectrophoresis182714-27231997. 46. Guex N and Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18: 2714–2723, 1997.
47.
Heinecke JWShapiro BM. Respiratory burst oxidase of fertilizationProc Natl Acad Sci USA861259-12631989. 47. Heinecke JW and Shapiro BM. Respiratory burst oxidase of fertilization. Proc Natl Acad Sci USA 86: 1259–1263, 1989.
48.
Helmcke IHeumuller STikkanen RSchröder KBrandes RP. Identification of structural elements in Nox1 and Nox4 controlling localization and activityAntioxid Redox Signal111279-12872009. 48. Helmcke I, Heumuller S, Tikkanen R, Schröder K, and Brandes RP. Identification of structural elements in Nox1 and Nox4 controlling localization and activity. Antioxid Redox Signal 11: 1279–1287, 2009.
49.
Heyworth PBohl BBokoch GCurnutte J. Rac translocates independently of the neutrophil NADPH oxidase components p47phox and p67phoxJ Biol Chem26930749-307521994. 49. Heyworth P, Bohl B, Bokoch G, and Curnutte J. Rac translocates independently of the neutrophil NADPH oxidase components p47phox and p67phox. J Biol Chem 269: 30749–30752, 1994.
50.
Honbou KMinakami RYuzawa STakeya RSuzuki NNKamakura SSumimoto HInagaki F. Full-length p40phox structure suggests a basis for regulation mechanism of its membrane bindingEMBO J261176-11862007. 50. Honbou K, Minakami R, Yuzawa S, Takeya R, Suzuki NN, Kamakura S, Sumimoto H, and Inagaki F. Full-length p40phox structure suggests a basis for regulation mechanism of its membrane binding. EMBO J 26: 1176–1186, 2007.
51.
Johnson KRMarden CCWard–Bailey PGagnon LHBronson RTDonahue LR. Congenital hypothyroidism, dwarfism, and hearing impairment caused by a missense mutation in the mouse dual oxidase 2 gene, Duox2Mol Endocrinol211593-16022007. 51. Johnson KR, Marden CC, Ward–Bailey P, Gagnon LH, Bronson RT, and Donahue LR. Congenital hypothyroidism, dwarfism, and hearing impairment caused by a missense mutation in the mouse dual oxidase 2 gene, Duox2. Mol Endocrinol 21: 1593–1602, 2007.
52.
Kanai FLiu HField SJAkbary HMatsuo TBrown GECantley LCYaffe MB. The PX domains of p47phox and p40phox bind to lipid products of PI(3)KNat Cell Biol3675-6782001. 52. Kanai F, Liu H, Field SJ, Akbary H, Matsuo T, Brown GE, Cantley LC, and Yaffe MB. The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nat Cell Biol 3: 675–678, 2001.
53.
Kao YYGianni DBohl BTaylor RMBokoch GM. Identification of a conserved Rac-binding site on NADPH oxidases supports a direct GTPase regulatory mechanismJ Biol Chem28312736-127462008. 53. Kao YY, Gianni D, Bohl B, Taylor RM, and Bokoch GM. Identification of a conserved Rac-binding site on NADPH oxidases supports a direct GTPase regulatory mechanism. J Biol Chem 283: 12736–12746, 2008.
54.
Karathanassis DStahelin RVBravo JPerisic OPacold CMCho WWilliams RL. Binding of the PX domain of p47phox to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interactionEMBO J215057-50682002. 54. Karathanassis D, Stahelin RV, Bravo J, Perisic O, Pacold CM, Cho W, and Williams RL. Binding of the PX domain of p47phox to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO J 21: 5057–5068, 2002.
55.
Kawahara TKohjima MKuwano YMino HTeshima–Kondo STakeya RTsunawaki SWada ASumimoto HRokutan K. Helicobacter pylori lipopolysaccharide activates Rac1 and transcription of NADPH oxidase Nox1 and its organizer NOXO1 in guinea pig gastric mucosal cellsAm J Physiol Cell Physiol288C450-4572005. 55. Kawahara T, Kohjima M, Kuwano Y, Mino H, Teshima–Kondo S, Takeya R, Tsunawaki S, Wada A, Sumimoto H, and Rokutan K. Helicobacter pylori lipopolysaccharide activates Rac1 and transcription of NADPH oxidase Nox1 and its organizer NOXO1 in guinea pig gastric mucosal cells. Am J Physiol Cell Physiol 288: C450–457, 2005.
56.
Kawahara TLambeth JD. Phosphatidylinositol (4,5)-bisphosphate modulates Nox5 localization via an N-terminal polybasic regionMol Biol Cell194020-40312008. 56. Kawahara T and Lambeth JD. Phosphatidylinositol (4,5)-bisphosphate modulates Nox5 localization via an N-terminal polybasic region. Mol Biol Cell 19: 4020–4031, 2008.
57.
Kawahara TQuinn MTLambeth JD. Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymesBMC Evol Biol71092007. 57. Kawahara T, Quinn MT, and Lambeth JD. Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes. BMC Evol Biol 7: 109, 2007.
58.
Kawahara TRitsick DCheng GLambeth JD. Point mutations in the proline-rich region of p22phox are dominant inhibitors of Nox1- and Nox2-dependent reactive oxygen generationJ Biol Chem28031859-318692005. 58. Kawahara T, Ritsick D, Cheng G, and Lambeth JD. Point mutations in the proline-rich region of p22phox are dominant inhibitors of Nox1- and Nox2-dependent reactive oxygen generation. J Biol Chem 280: 31859–31869, 2005.
59.
Kim JSDiebold BABabior BMKnaus UGBokoch GM. Regulation of Nox1 activity via protein kinase A-mediated phosphorylation of NoxA1 and 14-3-3 bindingJ Biol Chem28234787-348002007. 59. Kim JS, Diebold BA, Babior BM, Knaus UG, and Bokoch GM. Regulation of Nox1 activity via protein kinase A-mediated phosphorylation of NoxA1 and 14-3-3 binding. J Biol Chem 282: 34787–34800, 2007.
60.
Kiss PJKnisz JZhang YBaltrusaitis JSigmund CDThalmann RSmith RJVerpy EBanfi B. Inactivation of NADPH oxidase organizer 1 results in severe imbalanceCurr Biol16208-2132006. 60. Kiss PJ, Knisz J, Zhang Y, Baltrusaitis J, Sigmund CD, Thalmann R, Smith RJ, Verpy E, and Banfi B. Inactivation of NADPH oxidase organizer 1 results in severe imbalance. Curr Biol 16: 208–213, 2006.
61.
Kuroda JNakagawa KYamasaki TNakamura KTakeya RKuribayashi FImajoh–Ohmi SIgarashi KShibata YSueishi KSumimoto H. The superoxide-producing NAD(P)H oxidase Nox4 in the nucleus of human vascular endothelial cellsGenes Cells101139-11512005. 61. Kuroda J, Nakagawa K, Yamasaki T, Nakamura K, Takeya R, Kuribayashi F, Imajoh–Ohmi S, Igarashi K, Shibata Y, Sueishi K, and Sumimoto H. The superoxide-producing NAD(P)H oxidase Nox4 in the nucleus of human vascular endothelial cells. Genes Cells 10: 1139–1151, 2005.
62.
Kuwano YTominaga KKawahara TSasaki HTakeo KNishida KMasuda KKawai TTeshima–Kondo SRokutan K. Tumor necrosis factor α activates transcription of the NADPH oxidase organizer 1 (NOXO1) gene and upregulates superoxide production in colon epithelial cellsFree Radic Biol Med451642-16522008. 62. Kuwano Y, Tominaga K, Kawahara T, Sasaki H, Takeo K, Nishida K, Masuda K, Kawai T, Teshima–Kondo S, and Rokutan K. Tumor necrosis factor α activates transcription of the NADPH oxidase organizer 1 (NOXO1) gene and upregulates superoxide production in colon epithelial cells. Free Radic Biol Med 45: 1642–1652, 2008.
63.
Lambeth JDKawahara TDiebold B. Regulation of Nox and Duox enzymatic activity and expressionFree Radic Biol Med43319-3312007. 63. Lambeth JD, Kawahara T, and Diebold B. Regulation of Nox and Duox enzymatic activity and expression. Free Radic Biol Med 43: 319–331, 2007.
64.
Lapouge KSmith SJGroemping YRittinger K. Architecture of the p40-p47-p67phox complex in the resting state of the NADPH oxidaseJ Biol Chem27710121-101282002. 64. Lapouge K, Smith SJ, Groemping Y, and Rittinger K. Architecture of the p40-p47-p67phox complex in the resting state of the NADPH oxidase. J Biol Chem 277: 10121–10128, 2002.
65.
Leto TLGallin JISnyderman R.Inflammation Basic Principles and Clinical CorrelatesPhiladelphiaLippincott Williams & Wilkins1999769-787. 65. Leto TL. Inflammation Basic Principles and Clinical Correlates. edited by Gallin JI, and Snyderman R. Philadelphia: Lippincott Williams & Wilkins, 1999, p. 769–787.
66.
Leto TLAdams AGde Mendez I. Assembly of the phagocyte NADPH oxidase: binding of Src homology 3 domains to proline-rich targetsProc Natl Acad Sci USA9110650-106541994. 66. Leto TL, Adams AG, and de Mendez I. Assembly of the phagocyte NADPH oxidase: binding of Src homology 3 domains to proline-rich targets. Proc Natl Acad Sci USA 91: 10650–10654, 1994.
2618
67.
Martyn KDFrederick LMvon Loehneysen KDinauer MCKnaus UG. Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidasesCell Signal1869-822006. 67. Martyn KD, Frederick LM, von Loehneysen K, Dinauer MC, and Knaus UG. Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal 18: 69–82, 2006.
68.
Matsuno KYamada HIwata KJin DKatsuyama MMatsuki MTakai SYamanishi KMiyazaki MMatsubara HYabe–Nishimura C. Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient miceCirculation1122677-26852005. 68. Matsuno K, Yamada H, Iwata K, Jin D, Katsuyama M, Matsuki M, Takai S, Yamanishi K, Miyazaki M, Matsubara H, and Yabe–Nishimura C. Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice. Circulation 112: 2677–2685, 2005.
69.
Miyano KUeno NTakeya RSumimoto H. Direct involvement of the small GTPase Rac in activation of the superoxide-producing NADPH oxidase Nox1J Biol Chem28121857-218682006. 69. Miyano K, Ueno N, Takeya R, and Sumimoto H. Direct involvement of the small GTPase Rac in activation of the superoxide-producing NADPH oxidase Nox1. J Biol Chem 281: 21857–21868, 2006.
70.
Mizukami YMatsubara FMatsukawa S. Cytochemical localization of peroxidase and hydrogen-peroxide-producing NAD(P)H-oxidase in thyroid follicular cells of propylthiouracil-treated ratsHistochemistry82263-2681985. 70. Mizukami Y, Matsubara F, and Matsukawa S. Cytochemical localization of peroxidase and hydrogen-peroxide-producing NAD(P)H-oxidase in thyroid follicular cells of propylthiouracil-treated rats. Histochemistry 82: 263–268, 1985.
71.
Morand SAgnandji DNoel–Hudson MSNicolas VBuisson SMacon–Lemaitre LGnidehou SKaniewski JOhayon RVirion ADupuy C. Targeting of the dual oxidase 2 N-terminal region to the plasma membraneJ Biol Chem27930244-302512004. 71. Morand S, Agnandji D, Noel–Hudson MS, Nicolas V, Buisson S, Macon–Lemaitre L, Gnidehou S, Kaniewski J, Ohayon R, Virion A, and Dupuy C. Targeting of the dual oxidase 2 N-terminal region to the plasma membrane. J Biol Chem 279: 30244–30251, 2004.
72.
Morand SUeyama TTsujibe SSaito NKorzeniowska ALeto TL. Duox maturation factors form cell surface complexes with Duox affecting the specificity of reactive oxygen species generationFASEB J231205-12182008. 72. Morand S, Ueyama T, Tsujibe S, Saito N, Korzeniowska A, and Leto TL. Duox maturation factors form cell surface complexes with Duox affecting the specificity of reactive oxygen species generation. FASEB J 23: 1205–1218, 2008.
73.
Moreland JGDavis APBailey GNauseef WMLamb FS. Anion channels, including ClC-3, are required for normal neutrophil oxidative function, phagocytosis, and transendothelial migrationJ Biol Chem28112277-122882006. 73. Moreland JG, Davis AP, Bailey G, Nauseef WM, and Lamb FS. Anion channels, including ClC-3, are required for normal neutrophil oxidative function, phagocytosis, and transendothelial migration. J Biol Chem 281: 12277–12288, 2006.
74.
Moreno JCBikker HKempers MJvan Trotsenburg ASBaas Fde Vijlder JJVulsma TRis–Stalpers C. Inactivating mutations in the gene for thyroid oxidase 2 (THOX2) and congenital hypothyroidismN Engl J Med34795-1022002. 74. Moreno JC, Bikker H, Kempers MJ, van Trotsenburg AS, Baas F, de Vijlder JJ, Vulsma T, and Ris–Stalpers C. Inactivating mutations in the gene for thyroid oxidase 2 (THOX2) and congenital hypothyroidism. N Engl J Med 347: 95–102, 2002.
75.
Moskwa PLorentzen DExcoffon KJZabner JMcCray PB Jr.Nauseef WMDupuy CBanfi B. A novel host defense system of airways is defective in cystic fibrosisAm J Respir Crit Care Med175174-1832007. 75. Moskwa P, Lorentzen D, Excoffon KJ, Zabner J, McCray PB, Jr., Nauseef WM, Dupuy C, and Banfi B. A novel host defense system of airways is defective in cystic fibrosis. Am J Respir Crit Care Med 175: 174–183, 2007.
76.
Mumbengegwi DRLi QLi CBear CEEngelhardt JF. Evidence for a superoxide permeability pathway in endosomal membranesMol Cell Biol283700-37122008. 76. Mumbengegwi DR, Li Q, Li C, Bear CE, and Engelhardt JF. Evidence for a superoxide permeability pathway in endosomal membranes. Mol Cell Biol 28: 3700–3712, 2008.
77.
Nakamura YOgihara SOhtaki S. Activation by ATP of calcium-dependent NADPH-oxidase generating hydrogen peroxide in thyroid plasma membranesJ Biochem1021121-11321987. 77. Nakamura Y, Ogihara S, and Ohtaki S. Activation by ATP of calcium-dependent NADPH-oxidase generating hydrogen peroxide in thyroid plasma membranes. J Biochem 102: 1121–1132, 1987.
78.
Nakano YLongo–Guess CMBergstrom DENauseef WMJones SMBanfi B. Mutation of the Cyba gene encoding p22phox causes vestibular and immune defects in miceJ Clin Invest1181176-11852008. 78. Nakano Y, Longo–Guess CM, Bergstrom DE, Nauseef WM, Jones SM, and Banfi B. Mutation of the Cyba gene encoding p22phox causes vestibular and immune defects in mice. J Clin Invest 118: 1176–1185, 2008.
79.
Nauseef WM. Assembly of the phagocyte NADPH oxidaseHistochem Cell Biol122277-2912004. 79. Nauseef WM. Assembly of the phagocyte NADPH oxidase. Histochem Cell Biol 122: 277–291, 2004.
80.
Paffenholz RBergstrom RAPasutto FWabnitz PMunroe RJJagla WHeinzmann UMarquardt ABareiss ALaufs JRuss AStumm GSchimenti JCBergstrom DE. Vestibular defects in head-tilt mice result from mutations in Nox3, encoding an NADPH oxidaseGenes Dev18486-4912004. 80. Paffenholz R, Bergstrom RA, Pasutto F, Wabnitz P, Munroe RJ, Jagla W, Heinzmann U, Marquardt A, Bareiss A, Laufs J, Russ A, Stumm G, Schimenti JC, and Bergstrom DE. Vestibular defects in head-tilt mice result from mutations in Nox3, encoding an NADPH oxidase. Genes Dev 18: 486–491, 2004.
81.
Park HSLee SHPark DLee JSRyu SHLee WJRhee SGBae YS. Sequential activation of phosphatidylinositol 3-kinase, bPix, Rac1, and Nox1 in growth factor-induced production of H2O2Mol Cell Biol244384-43942004. 81. Park HS, Lee SH, Park D, Lee JS, Ryu SH, Lee WJ, Rhee SG, and Bae YS. Sequential activation of phosphatidylinositol 3-kinase, bPix, Rac1, and Nox1 in growth factor-induced production of H2O2. Mol Cell Biol 24: 4384–4394, 2004.
82.
Parkos CADinauer MCJesaitis AJOrkin SHCurnutte JT. Absence of both the 91kD and 22kD subunits of human neutrophil cytochrome b in two genetic forms of chronic granulomatous diseaseBlood731416-14201989. 82. Parkos CA, Dinauer MC, Jesaitis AJ, Orkin SH, and Curnutte JT. Absence of both the 91kD and 22kD subunits of human neutrophil cytochrome b in two genetic forms of chronic granulomatous disease. Blood 73: 1416–1420, 1989.
83.
Quinn MTAmmons MCDeleo FR. The expanding role of NADPH oxidases in health and disease: No longer just agents of death and destructionClin Sci (Lond)1111-202006. 83. Quinn MT, Ammons MC, and Deleo FR. The expanding role of NADPH oxidases in health and disease: No longer just agents of death and destruction. Clin Sci (Lond) 111: 1–20, 2006.
84.
Rada BLekstrom KDamian SDupuy CLeto TL. The Pseudomonas toxin pyocyanin inhibits the dual oxidase-based antimicrobial system as it imposes oxidative stress on airway epithelial cellsJ Immunol1814883-48932008. 84. Rada B, Lekstrom K, Damian S, Dupuy C, and Leto TL. The Pseudomonas toxin pyocyanin inhibits the dual oxidase-based antimicrobial system as it imposes oxidative stress on airway epithelial cells. J Immunol 181: 4883–4893, 2008.
85.
Rotrosen DLeto TL. Phosphorylation of neutrophil 47-kDa cytosolic oxidase factorJ Biol Chem26519910-199151990. 85. Rotrosen D and Leto TL. Phosphorylation of neutrophil 47-kDa cytosolic oxidase factor. J Biol Chem 265: 19910–19915, 1990.
86.
Schwarzer CMachen TEIllek BFischer H. NADPH oxidase-dependent acid production in airway epithelial cellsJ Biol Chem27936454-364612004. 86. Schwarzer C, Machen TE, Illek B, and Fischer H. NADPH oxidase-dependent acid production in airway epithelial cells. J Biol Chem 279: 36454–36461, 2004.
87.
Segal A. Absence of both cytochrome b-245 subunits from neutrophils in X-linked chronic granulomatous diseaseNature32688-911987. 87. Segal A. Absence of both cytochrome b-245 subunits from neutrophils in X-linked chronic granulomatous disease. Nature 326: 88–91, 1987.
88.
Segal AWHeyworth PGCockcroft SBarrowman MM. Stimulated neutrophils from patients with autosomal recessive chronic granulomatous disease fail to phosphorylate a Mr-44,000 proteinNature316547-5491985. 88. Segal AW, Heyworth PG, Cockcroft S, and Barrowman MM. Stimulated neutrophils from patients with autosomal recessive chronic granulomatous disease fail to phosphorylate a Mr-44,000 protein. Nature 316: 547–549, 1985.
89.
Serrander LCartier LBedard KBanfi BLardy BPlastre OSienkiewicz AForro LSchlegel WKrause KH. NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generationBiochem J406105-1142007. 89. Serrander L, Cartier L, Bedard K, Banfi B, Lardy B, Plastre O, Sienkiewicz A, Forro L, Schlegel W, and Krause KH. NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. Biochem J 406: 105–114, 2007.
90.
Shen KSergeant SHantgan RRMcPhail LCHorita DA. Mutations in the PX-SH3A linker of p47phox decouple PI(3,4)P2 binding from NADPH oxidase activationBiochemistry478855-88652008. 90. Shen K, Sergeant S, Hantgan RR, McPhail LC, and Horita DA. Mutations in the PX-SH3A linker of p47phox decouple PI(3,4)P2 binding from NADPH oxidase activation. Biochemistry 47: 8855–8865, 2008.
91.
Sugawara MSugawara YWen KGiulivi C. Generation of oxygen free radicals in thyroid cells and inhibition of thyroid peroxidaseExp Biol Med (Maywood)227141-1462002. 91. Sugawara M, Sugawara Y, Wen K, and Giulivi C. Generation of oxygen free radicals in thyroid cells and inhibition of thyroid peroxidase. Exp Biol Med (Maywood) 227: 141–146, 2002.
92.
Suh C-IStull NDLi XJTian WPrice MOGrinstein SYaffe MBAtkinson SDinauer MC. The phosphoinositide-binding protein p40phox activates the NADPH oxidase during FcgIIA receptor-induced phagocytosisJ Exp Med2031915-19252006. 92. Suh C-I, Stull ND, Li XJ, Tian W, Price MO, Grinstein S, Yaffe MB, Atkinson S, and Dinauer MC. The phosphoinositide-binding protein p40phox activates the NADPH oxidase during FcgIIA receptor-induced phagocytosis. J Exp Med 203: 1915–1925, 2006.
93.
Sumimoto H. Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen speciesFEBS J2753249-32772008. 93. Sumimoto H. Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J 275: 3249–3277, 2008.
94.
Sumimoto HKage YNunoi HSasaki HNose TFukumaki YOhno MMinakami STakeshige K. Role of Src homology 3 domains in assembly and activation of the phagocyte NADPH oxidaseProc Natl Acad Sci USA915345-53491994. 94. Sumimoto H, Kage Y, Nunoi H, Sasaki H, Nose T, Fukumaki Y, Ohno M, Minakami S, and Takeshige K. Role of Src homology 3 domains in assembly and activation of the phagocyte NADPH oxidase. Proc Natl Acad Sci USA 91: 5345–5349, 1994.
95.
Takeya RTaura MYamasaki TNaito SSumimoto H. Expression and function of Noxo1gamma, an alternative splicing form of the NADPH oxidase organizer 1Febs J2733663-36772006. 95. Takeya R, Taura M, Yamasaki T, Naito S, and Sumimoto H. Expression and function of Noxo1gamma, an alternative splicing form of the NADPH oxidase organizer 1. Febs J 273: 3663–3677, 2006.
96.
Takeya RUeno NKami KTaura MKohjima MIzaki TNunoi HSumimoto H. Novel human homologues of p47phox and p67phox participate in activation of superoxide-producing NADPH oxidasesJ Biol Chem27825234-252462003. 96. Takeya R, Ueno N, Kami K, Taura M, Kohjima M, Izaki T, Nunoi H, and Sumimoto H. Novel human homologues of p47phox and p67phox participate in activation of superoxide-producing NADPH oxidases. J Biol Chem 278: 25234–25246, 2003.
97.
Tian WLi XJStull NDMing WSuh CIBissonnette SAYaffe MBGrinstein SAtkinson SJDinauer MC. FcγR-stimulated activation of the NADPH oxidase: phosphoinositide-binding protein p40phox regulates NADPH oxidase activity after enzyme assembly on the phagosomeBlood1123867-38772008. 97. Tian W, Li XJ, Stull ND, Ming W, Suh CI, Bissonnette SA, Yaffe MB, Grinstein S, Atkinson SJ, and Dinauer MC. FcγR-stimulated activation of the NADPH oxidase: phosphoinositide-binding protein p40phox regulates NADPH oxidase activity after enzyme assembly on the phagosome. Blood 112: 3867–3877, 2008.
2619
98.
Ueno NTakeya RMiyano KKikuchi HSumimoto H. The NADPH oxidase Nox3 constitutively produces superoxide in a p22phox-dependent manner: Its regulation by oxidase organizers and activatorsJ Biol Chem28023328-233392005. 98. Ueno N, Takeya R, Miyano K, Kikuchi H, and Sumimoto H. The NADPH oxidase Nox3 constitutively produces superoxide in a p22phox-dependent manner: Its regulation by oxidase organizers and activators. J Biol Chem 280: 23328–23339, 2005.
99.
Ueyama TEto MKami KTatsuno TKobayashi TShirai YLennartz MRTakeya RSumimoto HSaito N. Isoform-specific membrane targeting mechanism of Rac during FcgR-mediated phagocytosis: Positive charge-dependent and independent targeting mechanism of Rac to the phagosomeJ Immunol1752381-23902005. 99. Ueyama T, Eto M, Kami K, Tatsuno T, Kobayashi T, Shirai Y, Lennartz MR, Takeya R, Sumimoto H, and Saito N. Isoform-specific membrane targeting mechanism of Rac during FcgR-mediated phagocytosis: Positive charge-dependent and independent targeting mechanism of Rac to the phagosome. J Immunol 175: 2381–2390, 2005.
100.
Ueyama TGeiszt MLeto TL. Involvement of Rac1 in activation of multicomponent Nox1- and Nox3-based NADPH oxidasesMol Cell Biol262160-21742006. 100. Ueyama T, Geiszt M, and Leto TL. Involvement of Rac1 in activation of multicomponent Nox1- and Nox3-based NADPH oxidases. Mol Cell Biol 26: 2160–2174, 2006.
101.
Ueyama TKusakabe TKarasawa SKawasaki TShimizu ASon JLeto TLMiyawaki ASaito N. Sequential binding of cytosolic phox complex to phagosomes through regulated adaptor proteins: evaluation using the novel monomeric Kusabira–Green System and live imaging of phagocytosisJ Immunol181629-6402008. 101. Ueyama T, Kusakabe T, Karasawa S, Kawasaki T, Shimizu A, Son J, Leto TL, Miyawaki A, and Saito N. Sequential binding of cytosolic phox complex to phagosomes through regulated adaptor proteins: evaluation using the novel monomeric Kusabira–Green System and live imaging of phagocytosis. J Immunol 181: 629–640, 2008.
102.
Ueyama TLekstrom KTsujibe SSaito NLeto TL. Subcellular localization and function of alternatively spliced Noxo1 isoformsFree Radic Biol Med42180-1902007. 102. Ueyama T, Lekstrom K, Tsujibe S, Saito N, and Leto TL. Subcellular localization and function of alternatively spliced Noxo1 isoforms. Free Radic Biol Med 42: 180–190, 2007.
103.
Ueyama TLennartz MRNoda YKobayashi TShirai YRikitake KYamasaki THayashi SSakai NSeguchi HSawada MSumimoto HSaito N. Superoxide production at phagosomal cup/phagosome through bI protein kinase C during FcγR-mediated phagocytosis in microgliaJ Immunol1734582-45892004. 103. Ueyama T, Lennartz MR, Noda Y, Kobayashi T, Shirai Y, Rikitake K, Yamasaki T, Hayashi S, Sakai N, Seguchi H, Sawada M, Sumimoto H, and Saito N. Superoxide production at phagosomal cup/phagosome through bI protein kinase C during FcγR-mediated phagocytosis in microglia. J Immunol 173: 4582–4589, 2004.
104.
Ueyama TTatsuno TKawasaki TTsujibe SShirai YSumimoto HLeto TLSaito N. A regulated adaptor function of p40phox: distinct p67phox membrane targeting by p40phox and by p47phoxMol Biol Cell18441-4542007. 104. Ueyama T, Tatsuno T, Kawasaki T, Tsujibe S, Shirai Y, Sumimoto H, Leto TL, and Saito N. A regulated adaptor function of p40phox: distinct p67phox membrane targeting by p40phox and by p47phox. Mol Biol Cell 18: 441–454, 2007.
105.
Ushio–Fukai M. Compartmentalization of redox signaling through NADPH oxidase-derived ROSAntioxid Redox Signal111289-12992009. 105. Ushio–Fukai M. Compartmentalization of redox signaling through NADPH oxidase-derived ROS. Antioxid Redox Signal 11: 1289–1299, 2009.
106.
Vieira OVBotelho RJRameh LBrachmann SMMatsuo TDavidson HWSchreiber ABacker JMCantley LCGrinstein S. Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturationJ Cell Biol15519-252001. 106. Vieira OV, Botelho RJ, Rameh L, Brachmann SM, Matsuo T, Davidson HW, Schreiber A, Backer JM, Cantley LC, and Grinstein S. Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J Cell Biol 155: 19–25, 2001.
107.
Virion AMichot JLDeme DKaniewski JPommier J. NADPH-dependent H2O2 generation and peroxidase activity in thyroid particular fractionMol Cell Endocrinol3695-1051984. 107. Virion A, Michot JL, Deme D, Kaniewski J, and Pommier J. NADPH-dependent H2O2 generation and peroxidase activity in thyroid particular fraction. Mol Cell Endocrinol 36: 95–105, 1984.
108.
von Lohneysen KNoack DJesaitis AJDinauer MCKnaus UG. Mutational analysis reveals distinct features of the Nox4-p22phox complexJ Biol Chem28335273-352822008. 108. von Lohneysen K, Noack D, Jesaitis AJ, Dinauer MC, and Knaus UG. Mutational analysis reveals distinct features of the Nox4-p22phox complex. J Biol Chem 283: 35273–35282, 2008.
109.
Wesley UVBove PFHristova MMcCarthy Svan der Vliet A. Airway epithelial cell migration and wound repair by ATP-mediated activation of dual oxidase 1J Biol Chem2823213-32202007. 109. Wesley UV, Bove PF, Hristova M, McCarthy S, and van der Vliet A. Airway epithelial cell migration and wound repair by ATP-mediated activation of dual oxidase 1. J Biol Chem 282: 3213–3220, 2007.
110.
Wong JLCreton RWessel GM. The oxidative burst at fertilization is dependent upon activation of the dual oxidase Udx1Dev Cell7801-8142004. 110. Wong JL, Creton R, and Wessel GM. The oxidative burst at fertilization is dependent upon activation of the dual oxidase Udx1. Dev Cell 7: 801–814, 2004.
111.
Zamproni IGrasberger HCortinovis FVigone MCChiumello GMora SOnigata KFugazzola LRefetoff SPersani LWeber G. Biallelic inactivation of the dual oxidase maturation factor 2 (DUOXA2) gene as a novel cause of congenital hypothyroidismJ Clin Endocrinol Metab93605-6102008. 111. Zamproni I, Grasberger H, Cortinovis F, Vigone MC, Chiumello G, Mora S, Onigata K, Fugazzola L, Refetoff S, Persani L, and Weber G. Biallelic inactivation of the dual oxidase maturation factor 2 (DUOXA2) gene as a novel cause of congenital hypothyroidism. J Clin Endocrinol Metab 93: 605–610, 2008.
112.
Zhao TBenard VBohl BPBokoch GM. The molecular basis for adhesion-mediated suppression of reactive oxygen species generation by human neutrophilsJ Clin Invest1121732-17402003. 112. Zhao T, Benard V, Bohl BP, and Bokoch GM. The molecular basis for adhesion-mediated suppression of reactive oxygen species generation by human neutrophils. J Clin Invest 112: 1732–1740, 2003.
113.
Zhu YMarchal CCCasbon AJStull Nvon Lohneysen KKnaus UGJesaitis AJMcCormick SNauseef WMDinauer MC. Deletion mutagenesis of p22phox subunit of flavocytochrome b558: Identification of regions critical for gp91phox maturation and NADPH oxidase activityJ Biol Chem28130336-303462006. 113. Zhu Y, Marchal CC, Casbon AJ, Stull N, von Lohneysen K, Knaus UG, Jesaitis AJ, McCormick S, Nauseef WM, and Dinauer MC. Deletion mutagenesis of p22phox subunit of flavocytochrome b558: Identification of regions critical for gp91phox maturation and NADPH oxidase activity. J Biol Chem 281: 30336–30346, 2006.

Information & Authors

Information

Published In

cover image Antioxidants & Redox Signaling
Antioxidants & Redox Signaling
Volume 11Issue Number 10October 2009
Pages: 2607 - 2619
PubMed: 19438290

History

Published in print: October 2009
Published online: 18 September 2009
Published ahead of print: 5 August 2009
Published ahead of production: 13 May 2009
Accepted: 13 May 2009
Received: 21 April 2009

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Thomas L. Leto
Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.
Stanislas Morand
Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.
Darrell Hurt
Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.
Takehiko Ueyama
Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan.

Notes

Address correspondence to:
Thomas L. Leto
NIAID/NIH Twinbrook II facility
12441 Parklawn Drive
Rockville, 20852 MD
E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top