<iframe src="//www.googletagmanager.com/ns.html?id=GTM-5TSRKG" height="0" width="0" style="display: none; visibility: hidden">
Research Article
No access
Published Online: 12 May 2011

Oxidative Stress Stimulates Autophagic Flux During Ischemia/Reperfusion

Publication: Antioxidants & Redox Signaling
Volume 14, Issue Number 11

Abstract

Autophagy is a bulk degradation process in which cytosolic proteins and organelles are degraded through lysosomes. To evaluate autophagic flux in cardiac myocytes, we generated adenovirus and cardiac-specific transgenic mice harboring tandem fluorescent mRFP-GFP-LC3. Starvation significantly increased the number of mRFP-GFP-LC3 dots representing both autophagosomes and autolysosomes per cell, suggesting that autophagic flux is increased in cardiac myocytes. H2O2 significantly increased autophagic flux, which was attenuated in the presence of N-2-mercaptopropionyl glycine (MPG), an antioxidant, suggesting that oxidative stress stimulates autophagy in cardiac myocytes. Myocardial ischemia/reperfusion (I/R) increased both autophagosomes and autolysosomes, thereby increasing autophagic flux. Treatment with MPG attenuated I/R-induced increases in oxidative stress, autophagic flux, and Beclin-1 expression, accompanied by a decrease in the size of myocardial infarction (MI)/area at risk (AAR), suggesting that oxidative stress plays an important role in mediating autophagy and myocardial injury during I/R. MI/AAR after I/R was significantly reduced in beclin1+/− mice, whereas beclin1+/− mice treated with MPG exhibited no additional reduction in the size of MI/AAR after I/R. These results suggest that oxidative stress plays an important role in mediating autophagy during I/R, and that activation of autophagy through oxidative stress mediates myocardial injury in response to I/R in the mouse heart. Antioxid. Redox Signal. 14, 2179–2190.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Ago TKuroda JPain JFu CLi HSadoshima J. Upregulation of Nox4 by hypertrophic stimuli promotes apoptosis and mitochondrial dysfunction in cardiac myocytesCirc Res1061253-12642004. 1. Ago T, Kuroda J, Pain J, Fu C, Li H, and Sadoshima J. Upregulation of Nox4 by hypertrophic stimuli promotes apoptosis and mitochondrial dysfunction in cardiac myocytes. Circ Res 106: 1253–1264, 2004.
2.
Bjorkoy GLamark TBrech AOutzen HPerander MOvervatn AStenmark HJohansen T. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell deathJ Cell Biol171603-6142005. 2. Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, and Johansen T. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171: 603–614, 2005.
3.
Bopassa JCMichel PGateau-Roesch OOvize MFerrera R. Low-pressure reperfusion alters mitochondrial permeability transitionAm J Physiol Heart Circ Physiol288H2750-H27552005. 3. Bopassa JC, Michel P, Gateau-Roesch O, Ovize M, and Ferrera R. Low-pressure reperfusion alters mitochondrial permeability transition. Am J Physiol Heart Circ Physiol 288: H2750–H2755, 2005.
4.
Carreira RSLee YGhochani MGustafsson ABGottlieb RA. Cyclophilin D is required for mitochondrial removal by autophagy in cardiac cellsAutophagy62010[epub ahead of print.]. 4. Carreira RS, Lee Y, Ghochani M, Gustafsson AB, and Gottlieb RA. Cyclophilin D is required for mitochondrial removal by autophagy in cardiac cells. Autophagy 6, 2010 [epub ahead of print.].
5.
Garcia-Dorado DAgullo LSartorio CLRuiz-Meana M. Myocardial protection against reperfusion injury: the cGMP pathwayThromb Haemost101635-6422009. 5. Garcia-Dorado D, Agullo L, Sartorio CL, and Ruiz-Meana M. Myocardial protection against reperfusion injury: the cGMP pathway. Thromb Haemost 101: 635–642, 2009.
6.
Gurusamy NDas DK. Autophagy, redox signaling, and ventricular remodelingAntioxid Redox Signal111975-19882009. 6. Gurusamy N and Das DK. Autophagy, redox signaling, and ventricular remodeling. Antioxid Redox Signal 11: 1975–1988, 2009.
7.
Gustafsson ABGottlieb RA. Autophagy in ischemic heart diseaseCirc Res104150-1582009. 7. Gustafsson AB and Gottlieb RA. Autophagy in ischemic heart disease. Circ Res 104: 150–158, 2009.
8.
Gustafsson ABGottlieb RA. Eat your heart out: role of autophagy in myocardial ischemia/reperfusionAutophagy4416-4212008. 8. Gustafsson AB and Gottlieb RA. Eat your heart out: role of autophagy in myocardial ischemia/reperfusion. Autophagy 4: 416–421, 2008.
9.
Halestrap AP. Calcium, mitochondria and reperfusion injury: a pore way to dieBiochem Soc Trans34232-2372006. 9. Halestrap AP. Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans 34: 232–237, 2006.
10.
Hamacher-Brady ABrady NRLogue SESayen MRJinno MKirshenbaum LAGottlieb RAGustafsson AB. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagyCell Death Differ14146-1572007. 10. Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA, Gottlieb RA, and Gustafsson AB. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ 14: 146–157, 2007.
11.
Horwitz LDFennessey PVShikes RHKong Y. Marked reduction in myocardial infarct size due to prolonged infusion of an antioxidant during reperfusionCirculation891792-18011994. 11. Horwitz LD, Fennessey PV, Shikes RH, and Kong Y. Marked reduction in myocardial infarct size due to prolonged infusion of an antioxidant during reperfusion. Circulation 89: 1792–1801, 1994.
12.
Kiffin RBandyopadhyay UCuervo AM. Oxidative stress and autophagyAntioxid Redox Signal8152-1622006. 12. Kiffin R, Bandyopadhyay U, and Cuervo AM. Oxidative stress and autophagy. Antioxid Redox Signal 8: 152–162, 2006.
13.
Kimura SNoda TYoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3Autophagy3452-4602007. 13. Kimura S, Noda T, and Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3: 452–460, 2007.
14.
Klionsky DJAbeliovich HAgostinis PAgrawal DKAliev GAskew DSBaba MBaehrecke EHBahr BABallabio ABamber BABassham DCBergamini EBi XBiard-Piechaczyk MBlum JSBredesen DEBrodsky JLBrumell JHBrunk UTBursch WCamougrand NCebollero ECecconi FChen YChin LSChoi AChu CTChung J et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotesAutophagy4151-1752008. 14. Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA, Ballabio A, Bamber BA, Bassham DC, Bergamini E, Bi X, Biard-Piechaczyk M, Blum JS, Bredesen DE, Brodsky JL, Brumell JH, Brunk UT, Bursch W, Camougrand N, Cebollero E, Cecconi F, Chen Y, Chin LS, Choi A, Chu CT, Chung J, et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4: 151–175, 2008.
15.
Levine BKroemer G. Autophagy in the pathogenesis of diseaseCell13227-422008. 15. Levine B and Kroemer G. Autophagy in the pathogenesis of disease. Cell 132: 27–42, 2008.
16.
Li WYuan XMIvanova STracey KJEaton JWBrunk UT. 3-Aminopropanol, formed during cerebral ischaemia, is a potent lysosomotropic neurotoxinBiochem J371429-4362003. 16. Li W, Yuan XM, Ivanova S, Tracey KJ, Eaton JW, and Brunk UT. 3-Aminopropanol, formed during cerebral ischaemia, is a potent lysosomotropic neurotoxin. Biochem J 371: 429–436, 2003.
17.
Matsui YKyoi STakagi HHsu CPHariharan NAgo TVatner SFSadoshima J. Molecular mechanisms and physiological significance of autophagy during myocardial ischemia and reperfusionAutophagy4409-4152008. 17. Matsui Y, Kyoi S, Takagi H, Hsu CP, Hariharan N, Ago T, Vatner SF, and Sadoshima J. Molecular mechanisms and physiological significance of autophagy during myocardial ischemia and reperfusion. Autophagy 4: 409–415, 2008.
18.
Matsui YTakagi HQu XAbdellatif MSakoda HAsano TLevine BSadoshima J. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagyCirc Res100914-9222007. 18. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B, and Sadoshima J. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 100: 914–922, 2007.
19.
Misra MKSarwat MBhakuni PTuteja RTuteja N. Oxidative stress and ischemic myocardial syndromesMed Sci Monit15RA209-RA2192009. 19. Misra MK, Sarwat M, Bhakuni P, Tuteja R, and Tuteja N. Oxidative stress and ischemic myocardial syndromes. Med Sci Monit 15: RA209–RA219, 2009.
20.
Mitsos SEAskew TEFantone JCKunkel SLAbrams GDSchork ALucchesi BR. Protective effects of N-2-mercaptopropionyl glycine against myocardial reperfusion injury after neutrophil depletion in the dog: evidence for the role of intracellular-derived free radicalsCirculation731077-10861986. 20. Mitsos SE, Askew TE, Fantone JC, Kunkel SL, Abrams GD, Schork A, and Lucchesi BR. Protective effects of N-2-mercaptopropionyl glycine against myocardial reperfusion injury after neutrophil depletion in the dog: evidence for the role of intracellular-derived free radicals. Circulation 73: 1077–1086, 1986.
21.
Mitsos SEFantone JCGallagher KPWalden KMSimpson PJAbrams GDSchork MALucchesi BR. Canine myocardial reperfusion injury: protection by a free radical scavenger, N-2-mercaptopropionyl glycineJ Cardiovasc Pharmacol8978-9881986. 21. Mitsos SE, Fantone JC, Gallagher KP, Walden KM, Simpson PJ, Abrams GD, Schork MA, and Lucchesi BR. Canine myocardial reperfusion injury: protection by a free radical scavenger, N-2-mercaptopropionyl glycine. J Cardiovasc Pharmacol 8: 978–988, 1986.
22.
Mizushima N. Autophagy: process and functionGenes Dev212861-28732007. 22. Mizushima N. Autophagy: process and function. Genes Dev 21: 2861–2873, 2007.
23.
Mizushima NYamamoto AMatsui MYoshimori TOhsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome markerMol Biol Cell151101-11112004. 23. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, and Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15: 1101–1111, 2004.
24.
Mizushima NYoshimori TLevine B. Methods in mammalian autophagy researchCell140313-3262006. 24. Mizushima N, Yoshimori T, and Levine B. Methods in mammalian autophagy research. Cell 140: 313–326, 2006.
25.
Nishida KKyoi SYamaguchi OSadoshima JOtsu K. The role of autophagy in the heartCell Death Differ1631-382009. 25. Nishida K, Kyoi S, Yamaguchi O, Sadoshima J, and Otsu K. The role of autophagy in the heart. Cell Death Differ 16: 31–38, 2009.
26.
Pankiv SClausen THLamark TBrech ABruun JAOutzen HOvervatn ABjorkoy GJohansen T. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagyJ Biol Chem28224131-241452007. 26. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, and Johansen T. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282: 24131–24145, 2007.
27.
Scherz-Shouval RShvets EFass EShorer HGil LElazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4EMBO J261749-17602007. 27. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, and Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26: 1749–1760, 2007.
28.
Sinha SLevine B. The autophagy effector Beclin 1: a novel BH3-only proteinOncogene27suppl 1S137-S1482008. 28. Sinha S and Levine B. The autophagy effector Beclin 1: a novel BH3-only protein. Oncogene 27 (suppl 1): S137–S148, 2008.
29.
Suzuki KKirisako TKamada YMizushima NNoda TOhsumi Y. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formationEMBO J205971-59812001. 29. Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, and Ohsumi Y. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 20: 5971–5981, 2001.
30.
Takagi HMatsui YSadoshima J. The role of autophagy in mediating cell survival and death during ischemia and reperfusion in the heartAntioxid Redox Signal91373-13812007. 30. Takagi H, Matsui Y, and Sadoshima J. The role of autophagy in mediating cell survival and death during ischemia and reperfusion in the heart. Antioxid Redox Signal 9: 1373–1381, 2007.
31.
Terada MNobori KMunehisa YKakizaki MOhba TTakahashi YKoyama TTerata YIshida MIino KKosaka TWatanabe HHasegawa HIto H. Double transgenic mice crossed GFP-LC3 transgenic mice with alphaMyHC-mCherry-LC3 transgenic mice are a new and useful tool to examine the role of autophagy in the heartCirc J74203-2062008. 31. Terada M, Nobori K, Munehisa Y, Kakizaki M, Ohba T, Takahashi Y, Koyama T, Terata Y, Ishida M, Iino K, Kosaka T, Watanabe H, Hasegawa H, and Ito H. Double transgenic mice crossed GFP-LC3 transgenic mice with alphaMyHC-mCherry-LC3 transgenic mice are a new and useful tool to examine the role of autophagy in the heart. Circ J 74: 203–206, 2008.
32.
Yan LSadoshima JVatner DEVatner SF. Autophagy in ischemic preconditioning and hibernating myocardiumAutophagy5709-7122009. 32. Yan L, Sadoshima J, Vatner DE, and Vatner SF. Autophagy in ischemic preconditioning and hibernating myocardium. Autophagy 5: 709–712, 2009.
33.
Yan LVatner DEKim SJGe HMasurekar MMassover WHYang GMatsui YSadoshima JVatner SF. Autophagy in chronically ischemic myocardiumProc Natl Acad Sci U S A10213807-138122005. 33. Yan L, Vatner DE, Kim SJ, Ge H, Masurekar M, Massover WH, Yang G, Matsui Y, Sadoshima J, and Vatner SF. Autophagy in chronically ischemic myocardium. Proc Natl Acad Sci U S A 102: 13807–13812, 2005.

Information & Authors

Information

Published In

cover image Antioxidants & Redox Signaling
Antioxidants & Redox Signaling
Volume 14Issue Number 11June 2011
Pages: 2179 - 2190
PubMed: 20812860

History

Published in print: June 2011
Published online: 12 May 2011
Published ahead of print: 27 January 2011
Published ahead of production: 2 September 2010
Accepted: 2 September 2010
Received: 16 August 2010

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Nirmala Hariharan
Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, UMDNJ, New Jersey Medical School, New Jersey.
Peiyong Zhai
Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, UMDNJ, New Jersey Medical School, New Jersey.
Junichi Sadoshima
Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, UMDNJ, New Jersey Medical School, New Jersey.

Notes

Address correspondence to:Prof. Junichi SadoshimaCardiovascular Research InstituteUniversity of Medicine and Dentistry of New JerseyNew Jersey Medical School185 South Orange AvenueMedical Science Building G-609Newark, NJ 07103E-mail: [email protected]

Author Disclosure Statement

No competing financial interests exist.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top