<iframe src="//www.googletagmanager.com/ns.html?id=GTM-5TSRKG" height="0" width="0" style="display: none; visibility: hidden">
Review Article
No access
Published Online: 20 June 2011

The Redox Basis of Epigenetic Modifications: From Mechanisms to Functional Consequences

Publication: Antioxidants & Redox Signaling
Volume 15, Issue Number 2

Abstract

Epigenetic modifications represent mechanisms by which cells may effectively translate multiple signaling inputs into phenotypic outputs. Recent research is revealing that redox metabolism is an increasingly important determinant of epigenetic control that may have significant ramifications in both human health and disease. Numerous characterized epigenetic marks, including histone methylation, acetylation, and ADP-ribosylation, as well as DNA methylation, have direct linkages to central metabolism through critical redox intermediates such as NAD+, S-adenosyl methionine, and 2-oxoglutarate. Fluctuations in these intermediates caused by both normal and pathologic stimuli may thus have direct effects on epigenetic signaling that lead to measurable changes in gene expression. In this comprehensive review, we present surveys of both metabolism-sensitive epigenetic enzymes and the metabolic processes that may play a role in their regulation. To close, we provide a series of clinically relevant illustrations of the communication between metabolism and epigenetics in the pathogenesis of cardiovascular disease, Alzheimer disease, cancer, and environmental toxicity. We anticipate that the regulatory mechanisms described herein will play an increasingly large role in our understanding of human health and disease as epigenetics research progresses. Antioxid. Redox Signal. 15, 551–589.

Abstract

I.
Introduction
II.
Epigenetic Control of Gene Expression
A.
Histone methylation
1.
Histone methyltransferases
2.
History of histone demethylation
3.
Mechanisms of histone demethylases
4.
Kinetic considerations of histone demethylases
B.
Histone acetylation
1.
Histone acetyltransferases
2.
Histone deacetylases
3.
Nonsirtuin HDACs
4.
Sirtuin deacetylases
C.
Histone ADP-ribosylation
1.
PARP activity and functionality
2.
Indirect effects of ADP-ribosylation
D.
DNA methylation
1.
DNA methyltransferases
2.
DNA demethylases
E.
Noncoding RNA and epigenetic regulation
1.
Long ncRNAs
2.
Short ncRNAs
III.
Epigenetic Regulation and Redox Metabolism
IV.
Redox Metabolism
A.
The citric acid cycle and intermediates of central metabolism
1.
2-Hydroxyglutarate: oncometabolite or normal regulator?
B.
GSH and the recycling of SAM
C.
The NAD+/NADH ratio
1.
The NAD+/NADH ratio and central metabolism
2.
Caloric restriction, the NAD+/NADH ratio, and sirtuins
3.
PARP, NAD+, and sirtuin activity
4.
Plasma membrane redox system and NAD+
D.
Maintenance of the intracellular iron redox status and epigenetic enzymes
1.
Labile iron and oxidative stress
2.
Iron–sulfur center proteins and epigenetic modification
3.
Direct interaction with epigenetic enzyme iron loading
4.
Ascorbate and 2-OG and Fe(II)-dependent dioxygenases
5.
Nitric oxide and iron
E.
Redox regulation and noncoding RNA
F.
Direct modulation of HDAC activity by ROS
G.
Oxygen tension and epigenetic phenomena
V.
Toward a Global Model for Redox Epigenetic Maintenance
VI.
Metabolic Epigenetics and Disease
A.
Cardiovascular disease
B.
Alzheimer disease
C.
Cancer
D.
Environmental toxicology and epigenetics
1.
Alcohol
VII.
Challenges and Future Directions
VIII.
Conclusions

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Ackrell BA. Cytopathies involving mitochondrial complex IIMol Aspects Med23369-3842002. 1. Ackrell BA. Cytopathies involving mitochondrial complex II. Mol Aspects Med 23: 369–384, 2002.
2.
Aghili MZahedi FRafiee E. Hydroxyglutaric aciduria and malignant brain tumor: a case report and literature reviewJ Neurooncol91233-2362009. 2. Aghili M, Zahedi F, and Rafiee E. Hydroxyglutaric aciduria and malignant brain tumor: a case report and literature review. J Neurooncol 91: 233–236, 2009.
3.
Ahringer J. NuRD and SIN3 histone deacetylase complexes in developmentTrends Genet16351-3562000. 3. Ahringer J. NuRD and SIN3 histone deacetylase complexes in development. Trends Genet 16: 351–356, 2000.
4.
Allis CDBerger SLCote JDent SJenuwien TKouzarides TPillus LReinberg DShi YShiekhattar R et al. New nomenclature for chromatin-modifying enzymesCell131633-6362007. 4. Allis CD, Berger SL, Cote J, Dent S, Jenuwien T, Kouzarides T, Pillus L, Reinberg D, Shi Y, Shiekhattar R, et al. New nomenclature for chromatin-modifying enzymes. Cell 131: 633–636, 2007.
5.
Althaus FRHofferer LKleczkowska HEMalanga MNaegeli HPanzeter PLRealini CA. Histone shuttling by poly ADP-ribosylationMol Cell Biochem13853-591994. 5. Althaus FR, Hofferer L, Kleczkowska HE, Malanga M, Naegeli H, Panzeter PL, and Realini CA. Histone shuttling by poly ADP-ribosylation. Mol Cell Biochem 138: 53–59, 1994.
6.
Anderson RMBitterman KJWood JGMedvedik OCohen HLin SSManchester JKGordon JISinclair DA. Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levelsJ Biol Chem27718881-188902002. 6. Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Cohen H, Lin SS, Manchester JK, Gordon JI, and Sinclair DA. Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels. J Biol Chem 277: 18881–18890, 2002.
7.
Anekonda TSReddy PH. Neuronal protection by sirtuins in Alzheimer's diseaseJ Neurochem96305-3132006. 7. Anekonda TS and Reddy PH. Neuronal protection by sirtuins in Alzheimer's disease. J Neurochem 96: 305–313, 2006.
8.
Anzilotti CPratesi FTommasi CMigliorini P. Peptidylarginine deiminase 4 and citrullination in health and diseaseAutoimmun Rev9158-1602010. 8. Anzilotti C, Pratesi F, Tommasi C, and Migliorini P. Peptidylarginine deiminase 4 and citrullination in health and disease. Autoimmun Rev 9: 158–160, 2010.
9.
Avery OTMacleod CMMcCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type IIIJ Exp Med79137-1581944. 9. Avery OT, Macleod CM, and McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 79: 137–158, 1944.
10.
Avila MABerasain CTorres LMartin-Duce ACorrales FJYang HPrieto JLu SCCaballeria JRodes J et al. Reduced mRNA abundance of the main enzymes involved in methionine metabolism in human liver cirrhosis and hepatocellular carcinomaJ Hepatol33907-9142000. 10. Avila MA, Berasain C, Torres L, Martin-Duce A, Corrales FJ, Yang H, Prieto J, Lu SC, Caballeria J, Rodes J, et al. Reduced mRNA abundance of the main enzymes involved in methionine metabolism in human liver cirrhosis and hepatocellular carcinoma. J Hepatol 33: 907–914, 2000.
11.
Ayoub NNoma KIsaac SKahan TGrewal SICohen A. A novel jmjC domain protein modulates heterochromatization in fission yeastMol Cell Biol234356-43702003. 11. Ayoub N, Noma K, Isaac S, Kahan T, Grewal SI, and Cohen A. A novel jmjC domain protein modulates heterochromatization in fission yeast. Mol Cell Biol 23: 4356–4370, 2003.
12.
Barak AJBeckenhauer HCTuma DJ. Methionine synthase. a possible prime site of the ethanolic lesion in liverAlcohol2665-672002. 12. Barak AJ, Beckenhauer HC, and Tuma DJ. Methionine synthase. a possible prime site of the ethanolic lesion in liver. Alcohol 26: 65–67, 2002.
13.
Berchner-Pfannschmidt UTug SKirsch MFandrey J. Oxygen-sensing under the influence of nitric oxideCell Signal22349-3562010. 13. Berchner-Pfannschmidt U, Tug S, Kirsch M, and Fandrey J. Oxygen-sensing under the influence of nitric oxide. Cell Signal 22: 349–356, 2010.
14.
Berchner-Pfannschmidt UYamac HTrinidad BFandrey J. Nitric oxide modulates oxygen sensing by hypoxia-inducible factor 1-dependent induction of prolyl hydroxylase 2J Biol Chem2821788-17962007. 14. Berchner-Pfannschmidt U, Yamac H, Trinidad B, and Fandrey J. Nitric oxide modulates oxygen sensing by hypoxia-inducible factor 1-dependent induction of prolyl hydroxylase 2. J Biol Chem 282: 1788–1796, 2007.
15.
Berger SJSudar DCBerger NA. Metabolic consequences of DNA damage: DNA damage induces alterations in glucose metabolism by activation of poly (ADP-ribose) polymeraseBiochem Biophys Res Commun134227-2321986. 15. Berger SJ, Sudar DC, and Berger NA. Metabolic consequences of DNA damage: DNA damage induces alterations in glucose metabolism by activation of poly (ADP-ribose) polymerase. Biochem Biophys Res Commun 134: 227–232, 1986.
16.
Bestor TH. The DNA methyltransferases of mammalsHum Mol Genet92395-24022000. 16. Bestor TH. The DNA methyltransferases of mammals. Hum Mol Genet 9: 2395–2402, 2000.
17.
Bilsborough JVan Pel AUyttenhove CBoon TVan den Eynde BJ. Identification of a second major tumor-specific antigen recognized by CTLs on mouse mastocytoma P815J Immunol1623534-35401999. 17. Bilsborough J, Van Pel A, Uyttenhove C, Boon T, and Van den Eynde BJ. Identification of a second major tumor-specific antigen recognized by CTLs on mouse mastocytoma P815. J Immunol 162: 3534–3540, 1999.
18.
Bird A. Perceptions of epigeneticsNature447396-3982007. 18. Bird A. Perceptions of epigenetics. Nature 447: 396–398, 2007.
19.
Bitterman KJAnderson RMCohen HYLatorre-Esteves MSinclair DA. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1J Biol Chem27745099-451072002. 19. Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, and Sinclair DA. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem 277: 45099–45107, 2002.
20.
Bogdanovic OVeenstra GJ. DNA methylation and methyl-CpG binding proteins: developmental requirements and functionChromosoma118549-5652009. 20. Bogdanovic O and Veenstra GJ. DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma 118: 549–565, 2009.
21.
Bohm LSchneeweiss FASharan RNFeinendegen LE. Influence of histone acetylation on the modification of cytoplasmic and nuclear proteins by ADP-ribosylation in response to free radicalsBiochim Biophys Acta1334149-1541997. 21. Bohm L, Schneeweiss FA, Sharan RN, and Feinendegen LE. Influence of histone acetylation on the modification of cytoplasmic and nuclear proteins by ADP-ribosylation in response to free radicals. Biochim Biophys Acta 1334: 149–154, 1997.
22.
Brahmachari HDJoseph S. Cobalt compounds for the control of hypoxic stressAerosp Med44636-6381973. 22. Brahmachari HD and Joseph S. Cobalt compounds for the control of hypoxic stress. Aerosp Med 44: 636–638, 1973.
23.
Brickell KLLeverenz JBSteinbart EJRumbaugh MSchellenberg GDNochlin DLampe THHolm IEVan Deerlin VYuan W et al. Clinicopathological concordance and discordance in three monozygotic twin pairs with familial Alzheimer's diseaseJ Neurol Neurosurg Psychiatry781050-10552007. 23. Brickell KL, Leverenz JB, Steinbart EJ, Rumbaugh M, Schellenberg GD, Nochlin D, Lampe TH, Holm IE, Van Deerlin V, Yuan W, et al. Clinicopathological concordance and discordance in three monozygotic twin pairs with familial Alzheimer's disease. J Neurol Neurosurg Psychiatry 78: 1050–1055, 2007.
24.
Broday LPeng WKuo MHSalnikow KZoroddu MCosta M. Nickel compounds are novel inhibitors of histone H4 acetylationCancer Res60238-2412000. 24. Broday L, Peng W, Kuo MH, Salnikow K, Zoroddu M, and Costa M. Nickel compounds are novel inhibitors of histone H4 acetylation. Cancer Res 60: 238–241, 2000.
25.
Brunengraber H. Alpha-ketoglutarate is the precursor of L-2-hydroxyglutarateJ Inherit Metab Dis306282007. 25. Brunengraber H. Alpha-ketoglutarate is the precursor of L-2-hydroxyglutarate. J Inherit Metab Dis 30: 628, 2007.
26.
Brunengraber HRoe CR. Anaplerotic molecules: current and futureJ Inherit Metab Dis29327-3312006. 26. Brunengraber H and Roe CR. Anaplerotic molecules: current and future. J Inherit Metab Dis 29: 327–331, 2006.
27.
Bubber PHaroutunian VFisch GBlass JPGibson GE. Mitochondrial abnormalities in Alzheimer brain: mechanistic implicationsAnn Neurol57695-7032005. 27. Bubber P, Haroutunian V, Fisch G, Blass JP, and Gibson GE. Mitochondrial abnormalities in Alzheimer brain: mechanistic implications. Ann Neurol 57: 695–703, 2005.
28.
Bunik VI. 2-Oxo acid dehydrogenase complexes in redox regulationEur J Biochem2701036-10422003. 28. Bunik VI. 2-Oxo acid dehydrogenase complexes in redox regulation. Eur J Biochem 270: 1036–1042, 2003.
29.
Burns AIliffe S. Alzheimer's diseaseBMJ338b1582009. 29. Burns A and Iliffe S. Alzheimer's disease. BMJ 338: b158, 2009.
30.
Callapina MZhou JSchnitzer SMetzen ELohr CDeitmer JWBrune B. Nitric oxide reverses desferrioxamine- and hypoxia-evoked HIF-1alpha accumulation—implications for prolyl hydroxylase activity and ironExp Cell Res306274-2842005. 30. Callapina M, Zhou J, Schnitzer S, Metzen E, Lohr C, Deitmer JW, and Brune B. Nitric oxide reverses desferrioxamine- and hypoxia-evoked HIF-1alpha accumulation—implications for prolyl hydroxylase activity and iron. Exp Cell Res 306: 274–284, 2005.
31.
Campanero MRArmstrong MIFlemington EK. CpG methylation as a mechanism for the regulation of E2F activityProc Natl Acad Sci U S A976481-64862000. 31. Campanero MR, Armstrong MI, and Flemington EK. CpG methylation as a mechanism for the regulation of E2F activity. Proc Natl Acad Sci U S A 97: 6481–6486, 2000.
32.
Cao DTal TLGraves LMGilmour ILinak WReed WBromberg PASamet JM. Diesel exhaust particulate-induced activation of Stat3 requires activities of EGFR and Src in airway epithelial cellsAm J Physiol Lung Cell Mol Physiol292L422-L4292007. 32. Cao D, Tal TL, Graves LM, Gilmour I, Linak W, Reed W, Bromberg PA, and Samet JM. Diesel exhaust particulate-induced activation of Stat3 requires activities of EGFR and Src in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 292: L422–L429, 2007.
33.
Cardoso SMSantos SSwerdlow RHOliveira CR. Functional mitochondria are required for amyloid beta-mediated neurotoxicityFASEB J151439-14412001. 33. Cardoso SM, Santos S, Swerdlow RH, and Oliveira CR. Functional mitochondria are required for amyloid beta-mediated neurotoxicity. FASEB J 15: 1439–1441, 2001.
34.
Castro LRodriguez MRadi R. Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxideJ Biol Chem26929409-294151994. 34. Castro L, Rodriguez M, and Radi R. Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J Biol Chem 269: 29409–29415, 1994.
35.
Castro RRivera IStruys EAJansen EERavasco PCamilo MEBlom HJJakobs CTavares de Almeida I. Increased homocysteine and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular diseaseClin Chem491292-12962003. 35. Castro R, Rivera I, Struys EA, Jansen EE, Ravasco P, Camilo ME, Blom HJ, Jakobs C, and Tavares de Almeida I. Increased homocysteine and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular disease. Clin Chem 49: 1292–1296, 2003.
36.
Cederbaum AI. Hepatoprotective effects of S-adenosyl-L-methionine against alcohol- and cytochrome P450 2E1-induced liver injuryWorld J Gastroenterol161366-13762010. 36. Cederbaum AI. Hepatoprotective effects of S-adenosyl-L-methionine against alcohol- and cytochrome P450 2E1-induced liver injury. World J Gastroenterol 16: 1366–1376, 2010.
37.
Cervera AMBayley JPDevilee PMcCreath KJ. Inhibition of succinate dehydrogenase dysregulates histone modification in mammalian cellsMol Cancer82009. 37. Cervera AM, Bayley JP, Devilee P, and McCreath KJ. Inhibition of succinate dehydrogenase dysregulates histone modification in mammalian cells. Mol Cancer 8, 2009.
38.
Chambon PWeill JDMandel P. Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzymeBiochem Biophys Res Commun1139-431963. 38. Chambon P, Weill JD, and Mandel P. Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem Biophys Res Commun 11: 39–43, 1963.
39.
Chang BChen YZhao YBruick RK. JMJD6 is a histone arginine demethylaseScience318444-4472007. 39. Chang B, Chen Y, Zhao Y, and Bruick RK. JMJD6 is a histone arginine demethylase. Science 318: 444–447, 2007.
40.
Chang XFang K. PADI4 and tumourigenesisCancer Cell Int1072010. 40. Chang X and Fang K. PADI4 and tumourigenesis. Cancer Cell Int 10: 7, 2010.
41.
Chen HKe QKluz TYan YCosta M. Nickel ions increase histone H3 lysine 9 dimethylation and induce transgene silencingMol Cell Biol263728-37372006. 41. Chen H, Ke Q, Kluz T, Yan, Y, and Costa M. Nickel ions increase histone H3 lysine 9 dimethylation and induce transgene silencing. Mol Cell Biol 26: 3728–3737, 2006.
42.
Chen QEspey MGSun AYLee JHKrishna MCShacter EChoyke PLPooput CKirk KLBuettner GR et al. Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivoProc Natl Acad Sci U S A1048749-87542007. 42. Chen Q, Espey MG, Sun AY, Lee JH, Krishna MC, Shacter E, Choyke PL, Pooput C, Kirk KL, Buettner GR, et al. Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo. Proc Natl Acad Sci U S A 104: 8749–8754, 2007.
43.
Chen QEspey MGSun AYPooput CKirk KLKrishna MCKhosh DBDrisko JLevine M. Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in miceProc Natl Acad Sci U S A10511105-111092008. 43. Chen Q, Espey MG, Sun AY, Pooput C, Kirk KL, Krishna MC, Khosh DB, Drisko, J, and Levine M. Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc Natl Acad Sci U S A 105: 11105–11109, 2008.
44.
Chen ZLi YZhang HHuang PLuthra R. Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expressionOncogene294362-43682010. 44. Chen Z, Li Y, Zhang H, Huang P, and Luthra R. Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression. Oncogene 29: 4362–4368, 2010.
45.
Cheng YLiu XZhang SLin YYang JZhang C. MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4J Mol Cell Cardiol475-142009. 45. Cheng Y, Liu X, Zhang S, Lin Y, Yang J, and Zhang C. MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4. J Mol Cell Cardiol 47: 5–14, 2009.
46.
Chouliaras LRutten BPKenis GPeerbooms OVisser PJVerhey Fvan Os JSteinbusch HWvan den Hove DL. Epigenetic regulation in the pathophysiology of Alzheimer's diseaseProg Neurobiol90498-5102010. 46. Chouliaras L, Rutten BP, Kenis G, Peerbooms O, Visser PJ, Verhey F, van Os J, Steinbusch HW, and van den Hove DL. Epigenetic regulation in the pathophysiology of Alzheimer's disease. Prog Neurobiol 90: 498–510, 2010.
47.
Costa FF. Non-coding RNAs, epigenetics and complexityGene4109-172008. 47. Costa FF. Non-coding RNAs, epigenetics and complexity. Gene 410: 9–17, 2008.
48.
Costa MDavidson TLChen HKe QZhang PYan YHuang CKluz T. Nickel carcinogenesis: epigenetics and hypoxia signalingMutat Res59279-882005. 48. Costa M, Davidson TL, Chen H, Ke Q, Zhang P, Yan Y, Huang C, and Kluz T. Nickel carcinogenesis: epigenetics and hypoxia signaling. Mutat Res 592: 79–88, 2005.
49.
Couture JFCollazo EOrtiz-Tello PABrunzelle JSTrievel RC. Specificity and mechanism of JMJD2A, a trimethyllysine-specific histone demethylaseNat Struct Mol Biol14689-6952007. 49. Couture JF, Collazo E, Ortiz-Tello PA, Brunzelle JS, and Trievel RC. Specificity and mechanism of JMJD2A, a trimethyllysine-specific histone demethylase. Nat Struct Mol Biol 14: 689–695, 2007.
50.
Cozzi ACorsi BLevi SSantambrogio PAlbertini AArosio P. Overexpression of wild type and mutated human ferritin H-chain in HeLa cells: in vivo role of ferritin ferroxidase activityJ Biol Chem27525122-251292000. 50. Cozzi A, Corsi B, Levi S, Santambrogio P, Albertini A, and Arosio P. Overexpression of wild type and mutated human ferritin H-chain in HeLa cells: in vivo role of ferritin ferroxidase activity. J Biol Chem 275: 25122–25129, 2000.
51.
Cullen JJ. Ascorbate induces autophagy in pancreatic cancerAutophagy6421-4222010. 51. Cullen JJ. Ascorbate induces autophagy in pancreatic cancer. Autophagy 6: 421–422, 2010.
52.
Cuthbert GLDaujat SSnowden AWErdjument-Bromage HHagiwara TYamada MSchneider RGregory PDTempst PBannister AJ et al. Histone deimination antagonizes arginine methylationCell118545-5532004. 52. Cuthbert GL, Daujat S, Snowden AW, Erdjument-Bromage H, Hagiwara T, Yamada M, Schneider R, Gregory PD, Tempst P, Bannister AJ, et al. Histone deimination antagonizes arginine methylation. Cell 118: 545–553, 2004.
53.
Dang LWhite DWGross SBennett BDBittinger MADriggers EMFantin VRJang HGJin SKeenan MC et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarateNature462739-7442009. 53. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462: 739–744, 2009.
54.
Dantzer Fde La Rubia GMenissier-De Murcia JHostomsky Zde Murcia GSchreiber V. Base excision repair is impaired in mammalian cells lacking Poly(ADP-ribose) polymerase-1Biochemistry397559-75692000. 54. Dantzer F, de La Rubia G, Menissier-De Murcia J, Hostomsky Z, de Murcia G, and Schreiber V. Base excision repair is impaired in mammalian cells lacking Poly(ADP-ribose) polymerase-1. Biochemistry 39: 7559–7569, 2000.
55.
de Capoa AFebbo FRGiovannelli FNiveleau AZardo GMarenzi SCaiafa P. Reduced levels of poly(ADP-ribosyl)ation result in chromatin compaction and hypermethylation as shown by cell-by-cell computer-assisted quantitative analysisFASEB J1389-931999. 55. de Capoa A, Febbo FR, Giovannelli F, Niveleau A, Zardo G, Marenzi S, and Caiafa P. Reduced levels of poly(ADP-ribosyl)ation result in chromatin compaction and hypermethylation as shown by cell-by-cell computer-assisted quantitative analysis. FASEB J 13: 89–93, 1999.
56.
De Luca ASacchetta PNieddu MDi Ilio CFavaloro B. Important roles of multiple Sp1 binding sites and epigenetic modifications in the regulation of the methionine sulfoxide reductase B1 (MsrB1) promoterBMC Mol Biol8392007. 56. De Luca A, Sacchetta P, Nieddu M, Di Ilio, C and Favaloro B. Important roles of multiple Sp1 binding sites and epigenetic modifications in the regulation of the methionine sulfoxide reductase B1 (MsrB1) promoter. BMC Mol Biol 8: 39, 2007.
57.
de Murcia GHuletsky ALamarre DGaudreau APouyet JDaune MPoirier GG. Modulation of chromatin superstructure induced by poly(ADP-ribose) synthesis and degradationJ Biol Chem2617011-70171986. 57. de Murcia G, Huletsky A, Lamarre D, Gaudreau A, Pouyet J, Daune M, and Poirier GG. Modulation of chromatin superstructure induced by poly(ADP-ribose) synthesis and degradation. J Biol Chem 261: 7011–7017, 1986.
58.
Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumourNat Rev Cancer8705-7132008. 58. Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8: 705–713, 2008.
59.
Deubzer BMayer FKuci ZNiewisch MMerkel GHandgretinger RBruchelt G. H(2)O(2)-mediated cytotoxicity of pharmacologic ascorbate concentrations to neuroblastoma cells: potential role of lactate and ferritinCell Physiol Biochem25767-7742010. 59. Deubzer B, Mayer F, Kuci Z, Niewisch M, Merkel G, Handgretinger R, and Bruchelt G. H(2)O(2)-mediated cytotoxicity of pharmacologic ascorbate concentrations to neuroblastoma cells: potential role of lactate and ferritin. Cell Physiol Biochem 25: 767–774, 2010.
60.
Di Pietro GMagno LARios-Santos F. Glutathione S-transferases: an overview in cancer researchExpert Opin Drug Metab Toxicol6153-1702010. 60. Di Pietro G, Magno LA, and Rios-Santos F. Glutathione S-transferases: an overview in cancer research. Expert Opin Drug Metab Toxicol 6: 153–170, 2010.
61.
Dillon SCZhang XTrievel RCCheng X. The SET-domain protein superfamily: protein lysine methyltransferasesGenome Biol62272005. 61. Dillon SC, Zhang X, Trievel RC, and Cheng X. The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol 6: 227, 2005.
62.
Dje N'Guessan PRiediger FVardarova KScharf SEitel JOpitz BSlevogt HWeichert WHocke ACSchmeck B et al. Statins control oxidized LDL-mediated histone modifications and gene expression in cultured human endothelial cellsArterioscler Thromb Vasc Biol29380-3862009. 62. Dje N'Guessan P, Riediger F, Vardarova K, Scharf S, Eitel J, Opitz B, Slevogt H, Weichert W, Hocke AC, Schmeck B, et al. Statins control oxidized LDL-mediated histone modifications and gene expression in cultured human endothelial cells. Arterioscler Thromb Vasc Biol 29: 380–386, 2009.
63.
Domann FERice JCHendrix MJFutscher BW. Epigenetic silencing of maspin gene expression in human breast cancersInt J Cancer85805-8102000. 63. Domann FE, Rice JC, Hendrix MJ, and Futscher BW. Epigenetic silencing of maspin gene expression in human breast cancers. Int J Cancer 85: 805–810, 2000.
64.
Donald SPSun XYHu CAYu JMei JMValle DPhang JM. Proline oxidase, encoded by p53-induced gene-6, catalyzes the generation of proline-dependent reactive oxygen speciesCancer Res611810-18152001. 64. Donald SP, Sun XY, Hu CA, Yu J, Mei JM, Valle D, and Phang JM. Proline oxidase, encoded by p53-induced gene-6, catalyzes the generation of proline-dependent reactive oxygen species. Cancer Res 61: 1810–1815, 2001.
65.
Doyle KFitzpatrick FA. Redox signaling, alkylation (carbonylation) of conserved cysteines inactivates class I histone deacetylases 1, 2, and 3 and antagonizes their transcriptional repressor functionJ Biol Chem28517417-174242010. 65. Doyle, K and Fitzpatrick FA. Redox signaling, alkylation (carbonylation) of conserved cysteines inactivates class I histone deacetylases 1, 2, and 3 and antagonizes their transcriptional repressor function. J Biol Chem 285: 17417–17424, 2010.
66.
Duce AMOrtiz PCabrero CMato JM. S-adenosyl-L-methionine synthetase and phospholipid methyltransferase are inhibited in human cirrhosisHepatology865-681988. 66. Duce AM, Ortiz P, Cabrero C, and Mato JM. S-adenosyl-L-methionine synthetase and phospholipid methyltransferase are inhibited in human cirrhosis. Hepatology 8: 65–68, 1988.
67.
Duncan TTrewick SCKoivisto PBates PALindahl TSedgwick B. Reversal of DNA alkylation damage by two human dioxygenasesProc Natl Acad Sci U S A9916660-166652002. 67. Duncan T, Trewick SC, Koivisto P, Bates PA, Lindahl T, and Sedgwick B. Reversal of DNA alkylation damage by two human dioxygenases. Proc Natl Acad Sci U S A 99: 16660–16665, 2002.
68.
Ecker JRDavis RW. Inhibition of gene expression in plant cells by expression of antisense RNAProc Natl Acad Sci U S A835372-53761986. 68. Ecker JR and Davis RW. Inhibition of gene expression in plant cells by expression of antisense RNA. Proc Natl Acad Sci U S A 83: 5372–5376, 1986.
68a.
El Ramy RMagroun NMessadecq NGauthier LRBoussin FDKolthur-Seetharam USchreiber VMcBurney MWSassone-Corsi PDantzer F. Functional interplay between Parp-1 and SirT1 in genome integrity and chromatin-based processesCell Mol Life Sci663219-32342009. 68a. El Ramy R, Magroun N, Messadecq N, Gauthier LR, Boussin FD, Kolthur-Seetharam U, Schreiber V, McBurney MW, Sassone-Corsi P, and Dantzer F. Functional interplay between Parp-1 and SirT1 in genome integrity and chromatin-based processes. Cell Mol Life Sci 66: 3219–3234, 2009.
69.
Estiu GWest NMazitschek RGreenberg EBradner JEWiest O. On the inhibition of histone deacetylase 8Bioorg Med Chem184103-41102010. 69. Estiu G, West N, Mazitschek R, Greenberg E, Bradner JE, and Wiest O. On the inhibition of histone deacetylase 8. Bioorg Med Chem 18: 4103–4110, 2010.
70.
Falnes POJohansen RFSeeberg E. AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coliNature419178-1822002. 70. Falnes PO, Johansen RF, and Seeberg E. AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coli. Nature 419: 178–182, 2002.
71.
Favaro ERamachandran AMcCormick RGee HBlancher CCrosby MDevlin CBlick CBuffa FLi JL et al. MicroRNA-210 regulates mitochondrial free radical response to hypoxia and krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCUPLoS ONE5e103452010. 71. Favaro E, Ramachandran A, McCormick R, Gee H, Blancher C, Crosby M, Devlin C, Blick C, Buffa F, Li JL, et al. MicroRNA-210 regulates mitochondrial free radical response to hypoxia and krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU. PLoS ONE 5: e10345, 2010.
72.
Favier JBriere JJBurnichon NRiviere JVescovo LBenit PGiscos-Douriez IDe Reynies ABertherat JBadoual C et al. The Warburg effect is genetically determined in inherited pheochromocytomasPLoS ONE4e70942009. 72. Favier J, Briere JJ, Burnichon N, Riviere J, Vescovo L, Benit P, Giscos-Douriez I, De Reynies A, Bertherat J, Badoual C, et al. The Warburg effect is genetically determined in inherited pheochromocytomas. PLoS ONE 4: e7094, 2009.
73.
Feinberg APOhlsson RHenikoff S. The epigenetic progenitor origin of human cancerNat Rev Genet721-332006. 73. Feinberg AP, Ohlsson R, and Henikoff S. The epigenetic progenitor origin of human cancer. Nat Rev Genet 7: 21–33, 2006.
74.
Fernandez-Checa JCColell AGarcia-Ruiz C. S-Adenosyl-L-methionine and mitochondrial reduced glutathione depletion in alcoholic liver diseaseAlcohol27179-1832002. 74. Fernandez-Checa JC, Colell A, and Garcia-Ruiz C. S-Adenosyl-L-methionine and mitochondrial reduced glutathione depletion in alcoholic liver disease. Alcohol 27: 179–183, 2002.
75.
Finsterer J. Leigh and Leigh-like syndrome in children and adultsPediatr Neurol39223-2352008. 75. Finsterer J. Leigh and Leigh-like syndrome in children and adults. Pediatr Neurol 39: 223–235, 2008.
76.
Flashman EDavies SLYeoh KKSchofield CJ. Investigating the dependence of the hypoxia-inducible factor hydroxylases (factor inhibiting HIF and prolyl hydroxylase domain 2) on ascorbate and other reducing agentsBiochem J427135-1422010. 76. Flashman E, Davies SL, Yeoh KK, and Schofield CJ. Investigating the dependence of the hypoxia-inducible factor hydroxylases (factor inhibiting HIF and prolyl hydroxylase domain 2) on ascorbate and other reducing agents. Biochem J 427: 135–142, 2010.
77.
Flint DHTuminello JFEmptage MH. The inactivation of Fe-S cluster containing hydro-lyases by superoxideJ Biol Chem26822369-223761993. 77. Flint DH, Tuminello JF, and Emptage MH. The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J Biol Chem 268: 22369–22376, 1993.
78.
Forneris FBattaglioli EMattevi ABinda C. New roles of flavoproteins in molecular cell biology: histone demethylase LSD1 and chromatinFEBS J2764304-43122009. 78. Forneris F, Battaglioli E, Mattevi A, and Binda C. New roles of flavoproteins in molecular cell biology: histone demethylase LSD1 and chromatin. FEBS J 276: 4304–4312, 2009.
79.
Forneris FBinda CVanoni MAMattevi ABattaglioli E. Histone demethylation catalysed by LSD1 is a flavin-dependent oxidative processFEBS Lett5792203-22072005. 79. Forneris F, Binda C, Vanoni MA, Mattevi A, and Battaglioli E. Histone demethylation catalysed by LSD1 is a flavin-dependent oxidative process. FEBS Lett 579: 2203–2207, 2005.
80.
Friedman JMLiang GLiu CCWolff EMTsai YCYe WZhou XJones PA. The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2Cancer Res692623-26292009. 80. Friedman JM, Liang G, Liu CC, Wolff EM, Tsai YC, Ye W, Zhou X, and Jones PA. The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res 69: 2623–2629, 2009.
81.
Fry I. The Role of natural selection in the origin of lifeOrig Life Evol Biosph413-162011. 81. Fry I. The Role of natural selection in the origin of life. Orig Life Evol Biosph 41: 3–16, 2011.
82.
Frye RA. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activityBiochem Biophys Res Commun260273-2791999. 82. Frye RA. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun 260: 273–279, 1999.
83.
Fujita NWatanabe SIchimura TTsuruzoe SShinkai YTachibana MChiba TNakao M. Methyl-CpG binding domain 1 (MBD1) interacts with the Suv39h1-HP1 heterochromatic complex for DNA methylation-based transcriptional repressionJ Biol Chem27824132-241382003. 83. Fujita N, Watanabe S, Ichimura T, Tsuruzoe S, Shinkai Y, Tachibana M, Chiba T, and Nakao M. Methyl-CpG binding domain 1 (MBD1) interacts with the Suv39h1-HP1 heterochromatic complex for DNA methylation-based transcriptional repression. J Biol Chem 278: 24132–24138, 2003.
84.
Fuks FHurd PJDeplus RKouzarides T. The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferaseNucleic Acids Res312305-23122003. 84. Fuks F, Hurd PJ, Deplus R, and Kouzarides T. The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res 31: 2305–2312, 2003.
85.
Futscher BWO'Meara MMKim CJRennels MALu DGruman LMSeftor REHendrix MJDomann FE. Aberrant methylation of the maspin promoter is an early event in human breast cancerNeoplasia6380-3892004. 85. Futscher BW, O'Meara MM, Kim CJ, Rennels MA, Lu D, Gruman LM, Seftor RE, Hendrix MJ, and Domann FE. Aberrant methylation of the maspin promoter is an early event in human breast cancer. Neoplasia 6: 380–389, 2004.
86.
Gantt SLGattis SGFierke CA. Catalytic activity and inhibition of human histone deacetylase 8 is dependent on the identity of the active site metal ionBiochemistry456170-61782006. 86. Gantt SL, Gattis SG, and Fierke CA. Catalytic activity and inhibition of human histone deacetylase 8 is dependent on the identity of the active site metal ion. Biochemistry 45: 6170–6178, 2006.
87.
Gao YSHubbert CCYao TP. The microtubule-associated histone deacetylase 6 (HDAC6) regulates epidermal growth factor receptor (EGFR) endocytic trafficking and degradationJ Biol Chem28511219-112262010. 87. Gao YS, Hubbert CC, and Yao TP. The microtubule-associated histone deacetylase 6 (HDAC6) regulates epidermal growth factor receptor (EGFR) endocytic trafficking and degradation. J Biol Chem 285: 11219–11226, 2010.
88.
Gardner PRFridovich I. Superoxide sensitivity of the Escherichia coli aconitaseJ Biol Chem26619328-193331991. 88. Gardner PR and Fridovich I. Superoxide sensitivity of the Escherichia coli aconitase. J Biol Chem 266: 19328–19333, 1991.
89.
Gardner PRRaineri IEpstein LBWhite CW. Superoxide radical and iron modulate aconitase activity in mammalian cellsJ Biol Chem27013399-134051995. 89. Gardner PR, Raineri I, Epstein LB, and White CW. Superoxide radical and iron modulate aconitase activity in mammalian cells. J Biol Chem 270: 13399–13405, 1995.
90.
Gatz MFratiglioni LJohansson BBerg SMortimer JAReynolds CAFiske APedersen NL. Complete ascertainment of dementia in the Swedish Twin Registry: the HARMONY studyNeurobiol Aging26439-4472005. 90. Gatz M, Fratiglioni L, Johansson B, Berg S, Mortimer JA, Reynolds CA, Fiske A, and Pedersen NL. Complete ascertainment of dementia in the Swedish Twin Registry: the HARMONY study. Neurobiol Aging 26: 439–447, 2005.
91.
Gatz MMortimer JAFratiglioni LJohansson BBerg SReynolds CAPedersen NL. Potentially modifiable risk factors for dementia in identical twinsAlzheimers Dement2110-1172006. 91. Gatz M, Mortimer JA, Fratiglioni L, Johansson B, Berg S, Reynolds CA, and Pedersen NL. Potentially modifiable risk factors for dementia in identical twins. Alzheimers Dement 2: 110–117, 2006.
92.
Gatz MReynolds CAFratiglioni LJohansson BMortimer JABerg SFiske APedersen NL. Role of genes and environments for explaining Alzheimer diseaseArch Gen Psychiatry63168-1742006. 92. Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, Fiske A, and Pedersen NL. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 63: 168–174, 2006.
93.
Gimenez-Roqueplo APFavier JRustin PMourad JJPlouin PFCorvol PRotig AJeunemaitre X. The R22 × mutation of the SDHD gene in hereditary paraganglioma abolishes the enzymatic activity of complex II in the mitochondrial respiratory chain and activates the hypoxia pathwayAm J Hum Genet691186-11972001. 93. Gimenez-Roqueplo AP, Favier J, Rustin P, Mourad JJ, Plouin PF, Corvol P, Rotig A, and Jeunemaitre X. The R22 × mutation of the SDHD gene in hereditary paraganglioma abolishes the enzymatic activity of complex II in the mitochondrial respiratory chain and activates the hypoxia pathway. Am J Hum Genet 69: 1186–1197, 2001.
94.
Gimenez-Roqueplo APFavier JRustin PRieubland CCrespin MNau VKhau Van Kien PCorvol PPlouin PFJeunemaitre X. Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomasCancer Res635615-56212003. 94. Gimenez-Roqueplo AP, Favier J, Rustin P, Rieubland C, Crespin M, Nau V, Khau Van Kien P, Corvol P, Plouin PF, and Jeunemaitre X. Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomas. Cancer Res 63: 5615–5621, 2003.
95.
Golderer GGrobner P. ADP-ribosylation of core histones and their acetylated subspeciesBiochem J277Pt 3607-6101991. 95. Golderer G and Grobner P. ADP-ribosylation of core histones and their acetylated subspecies. Biochem J 277(Pt 3): 607–610, 1991.
96.
Grant S. Targeting histone demethylases in cancer therapyClin Cancer Res157111-71132009. 96. Grant S. Targeting histone demethylases in cancer therapy. Clin Cancer Res 15: 7111–7113, 2009.
97.
Green ABeer P. Somatic mutations of IDH1 and IDH2 in the leukemic transformation of myeloproliferative neoplasmsN Engl J Med362369-3702010. 97. Green A and Beer P. Somatic mutations of IDH1 and IDH2 in the leukemic transformation of myeloproliferative neoplasms. N Engl J Med 362: 369–370, 2010.
98.
Green KNSteffan JSMartinez-Coria HSun XSchreiber SSThompson LMLaFerla FM. Nicotinamide restores cognition in Alzheimer's disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotauJ Neurosci2811500-115102008. 98. Green KN, Steffan JS, Martinez-Coria H, Sun X, Schreiber SS, Thompson LM, and LaFerla FM. Nicotinamide restores cognition in Alzheimer's disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J Neurosci 28: 11500–11510, 2008.
99.
Gregoretti IVLee YMGoodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysisJ Mol Biol33817-312004. 99. Gregoretti IV, Lee YM, and Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338: 17–31, 2004.
100.
Grewal SI. RNAi-dependent formation of heterochromatin and its diverse functionsCurr Opin Genet Dev20134-1412010. 100. Grewal SI. RNAi-dependent formation of heterochromatin and its diverse functions. Curr Opin Genet Dev 20: 134–141, 2010.
101.
Gross SCairns RAMinden MDDriggers EMBittinger MAJang HGSasaki MJin SSchenkein DPSu SM et al. Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutationsJ Exp Med207339-3442010. 101. Gross S, Cairns RA, Minden MD, Driggers EM, Bittinger MA, Jang HG, Sasaki M, Jin S, Schenkein DP, Su SM, et al. Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med 207: 339–344, 2010.
102.
Guarente L. Calorie restriction and SIR2 genes—towards a mechanismMech Ageing Dev126923-9282005. 102. Guarente L. Calorie restriction and SIR2 genes—towards a mechanism. Mech Ageing Dev 126: 923–928, 2005.
103.
Haigis MCGuarente LP. Mammalian sirtuins—emerging roles in physiology, aging, and calorie restrictionGenes Dev202913-29212006. 103. Haigis MC and Guarente LP. Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction. Genes Dev 20: 2913–2921, 2006.
104.
Hajkova PJeffries SJLee CMiller NJackson SPSurani MA. Genome-wide reprogramming in the mouse germ line entails the base excision repair pathwayScience32978-822010. 104. Hajkova P, Jeffries SJ, Lee C, Miller N, Jackson SP, and Surani MA. Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science 329: 78–82, 2010.
105.
Hakme AWong HKDantzer FSchreiber V. The expanding field of poly(ADP-ribosyl)ation reactions. “Protein modifications: beyond the usual suspects” Review SeriesEMBO Rep91094-11002008. 105. Hakme A, Wong HK, Dantzer F, and Schreiber V. The expanding field of poly(ADP-ribosyl)ation reactions. “Protein modifications: beyond the usual suspects” Review Series. EMBO Rep 9: 1094–1100, 2008.
106.
Haliloglu GJobard FOguz KKAnlar BAkalan NCoskun TSass JOFischer JTopcu M. L-2-hydroxyglutaric aciduria and brain tumors in children with mutations in the L2HGDH gene: neuroimaging findingsNeuropediatrics39119-1222008. 106. Haliloglu G, Jobard F, Oguz KK, Anlar B, Akalan N, Coskun T, Sass JO, Fischer, J, and Topcu M. L-2-hydroxyglutaric aciduria and brain tumors in children with mutations in the L2HGDH gene: neuroimaging findings. Neuropediatrics 39: 119–122, 2008.
107.
Hallows WCSmith BCLee SDenu JM. Ure(k)a! Sirtuins Regulate MitochondriaCell137404-4062009. 107. Hallows WC, Smith BC, Lee S, and Denu JM. Ure(k)a! Sirtuins Regulate Mitochondria. Cell 137: 404–406, 2009.
108.
Hao HXKhalimonchuk OSchraders MDephoure NBayley JPKunst HDevilee PCremers CWSchiffman JDBentz BG et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paragangliomaScience3251139-11422009. 108. Hao HX, Khalimonchuk O, Schraders M, Dephoure N, Bayley JP, Kunst H, Devilee P, Cremers CW, Schiffman JD, Bentz BG, et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 325: 1139–1142, 2009.
109.
Hassa POHaenni SSElser MHottiger MO. Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going?Microbiol Mol Biol Rev70789-8292006. 109. Hassa PO, Haenni SS, Elser M, and Hottiger MO. Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 70: 789–829, 2006.
110.
Hassa POHottiger MO. The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerasesFront Biosci133046-30822008. 110. Hassa PO and Hottiger MO. The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front Biosci 13: 3046–3082, 2008.
111.
Hausladen AFridovich I. Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does notJ Biol Chem26929405-294081994. 111. Hausladen A and Fridovich I. Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J Biol Chem 269: 29405–29408, 1994.
112.
Hawkins PGSantoso SAdams CAnest VMorris KV. Promoter targeted small RNAs induce long-term transcriptional gene silencing in human cellsNucleic Acids Res372984-29952009. 112. Hawkins PG, Santoso S, Adams C, Anest V, and Morris KV. Promoter targeted small RNAs induce long-term transcriptional gene silencing in human cells. Nucleic Acids Res 37: 2984–2995, 2009.
113.
Hediger MA. New view at CNat Med8445-4462002. 113. Hediger MA. New view at C. Nat Med 8: 445–446, 2002.
114.
Heintzman NDHon GCHawkins RDKheradpour PStark AHarp LFYe ZLee LKStuart RKChing CW et al. Histone modifications at human enhancers reflect global cell-type-specific gene expressionNature459108-1122009. 114. Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart RK, Ching CW, et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459: 108–112, 2009.
115.
Hewitson KSMcNeill LARiordan MVTian YMBullock ANWelford RWElkins JMOldham NJBhattacharya SGleadle JM et al. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural familyJ Biol Chem27726351-263552002. 115. Hewitson KS, McNeill LA, Riordan MV, Tian YM, Bullock AN, Welford RW, Elkins JM, Oldham NJ, Bhattacharya S, Gleadle JM, et al. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J Biol Chem 277: 26351–26355, 2002.
116.
Hipkiss AR. Energy metabolism, altered proteins, sirtuins and ageing: converging mechanisms?Biogerontology949-552008. 116. Hipkiss AR. Energy metabolism, altered proteins, sirtuins and ageing: converging mechanisms? Biogerontology 9: 49–55, 2008.
117.
Hirai KAliev GNunomura AFujioka HRussell RLAtwood CSJohnson ABKress YVinters HVTabaton M et al. Mitochondrial abnormalities in Alzheimer's diseaseJ Neurosci213017-30232001. 117. Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, Johnson AB, Kress Y, Vinters HV, Tabaton M, et al. Mitochondrial abnormalities in Alzheimer's disease. J Neurosci 21: 3017–3023, 2001.
118.
Hirsila MKoivunen PGunzler VKivirikko KIMyllyharju J. Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factorJ Biol Chem27830772-307802003. 118. Hirsila M, Koivunen P, Gunzler V, Kivirikko KI, and Myllyharju J. Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J Biol Chem 278: 30772–30780, 2003.
119.
Hitchler MJDomann FE. An epigenetic perspective on the free radical theory of developmentFree Radic Biol Med431023-10362007. 119. Hitchler MJ and Domann FE. An epigenetic perspective on the free radical theory of development. Free Radic Biol Med 43: 1023–1036, 2007.
120.
Hitchler MJDomann FE. Metabolic defects provide a spark for the epigenetic switch in cancerFree Radic Biol Med47115-1272009. 120. Hitchler MJ and Domann FE. Metabolic defects provide a spark for the epigenetic switch in cancer. Free Radic Biol Med 47: 115–127, 2009.
121.
Hitchler MJWikainapakul KYu LPowers KAttatippaholkun WDomann FE. Epigenetic regulation of manganese superoxide dismutase expression in human breast cancer cellsEpigenetics1163-1712006. 121. Hitchler MJ, Wikainapakul K, Yu L, Powers K, Attatippaholkun W, and Domann FE. Epigenetic regulation of manganese superoxide dismutase expression in human breast cancer cells. Epigenetics 1: 163–171, 2006.
122.
Holliday R. The inheritance of epigenetic defectsScience238163-1701987. 122. Holliday R. The inheritance of epigenetic defects. Science 238: 163–170, 1987.
123.
Huang YMyers SJDingledine R. Transcriptional repression by REST: recruitment of Sin3A and histone deacetylase to neuronal genesNat Neurosci2867-8721999. 123. Huang Y, Myers SJ, and Dingledine R. Transcriptional repression by REST: recruitment of Sin3A and histone deacetylase to neuronal genes. Nat Neurosci 2: 867–872, 1999.
124.
Hubbert CGuardiola AShao RKawaguchi YIto ANixon AYoshida MWang XFYao TP. HDAC6 is a microtubule-associated deacetylaseNature417455-4582002. 124. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, and Yao TP. HDAC6 is a microtubule-associated deacetylase. Nature 417: 455–458, 2002.
125.
Hyun DHHernandez JOMattson MPde Cabo R. The plasma membrane redox system in agingAgeing Res Rev5209-2202006. 125. Hyun DH, Hernandez JO, Mattson MP, and de Cabo R. The plasma membrane redox system in aging. Ageing Res Rev 5: 209–220, 2006.
126.
Iguchi-Ariga SMSchaffner W. CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activationGenes Dev3612-6191989. 126. Iguchi-Ariga SM and Schaffner W. CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev 3: 612–619, 1989.
127.
Illingworth RSBird AP. CpG islands—“a rough guide.”FEBS Lett5831713-17202009. 127. Illingworth RS and Bird AP. CpG islands—“a rough guide.” FEBS Lett 583: 1713–1720, 2009.
128.
Imai SArmstrong CMKaeberlein MGuarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylaseNature403795-8002000. 128. Imai S, Armstrong CM, Kaeberlein M, and Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403: 795–800, 2000.
129.
Ingrosso DPerna AF. Epigenetics in hyperhomocysteinemic states. A special focus on uremiaBiochim Biophys Acta1790892-8992009. 129. Ingrosso D and Perna AF. Epigenetics in hyperhomocysteinemic states. A special focus on uremia. Biochim Biophys Acta 1790: 892–899, 2009.
130.
Isaacs JSJung YJMole DRLee STorres-Cabala CChung YLMerino MTrepel JZbar BToro J et al. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stabilityCancer Cell8143-1532005. 130. Isaacs JS, Jung YJ, Mole DR, Lee S, Torres-Cabala C, Chung YL, Merino M, Trepel J, Zbar B, Toro J, et al. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 8: 143–153, 2005.
131.
Ito KHanazawa TTomita KBarnes PJAdcock IM. Oxidative stress reduces histone deacetylase 2 activity and enhances IL-8 gene expression: role of tyrosine nitrationBiochem Biophys Res Commun315240-2452004. 131. Ito K, Hanazawa T, Tomita K, Barnes PJ, and Adcock IM. Oxidative stress reduces histone deacetylase 2 activity and enhances IL-8 gene expression: role of tyrosine nitration. Biochem Biophys Res Commun 315: 240–245, 2004.
132.
James LPMayeux PRHinson JA. Acetaminophen-induced hepatotoxicityDrug Metab Dispos311499-15062003. 132. James LP, Mayeux PR, and Hinson JA. Acetaminophen-induced hepatotoxicity. Drug Metab Dispos 31: 1499–1506, 2003.
133.
Jeltsch A. On the enzymatic properties of Dnmt1: specificity, processivity, mechanism of linear diffusion and allosteric regulation of the enzymeEpigenetics163-662006. 133. Jeltsch A. On the enzymatic properties of Dnmt1: specificity, processivity, mechanism of linear diffusion and allosteric regulation of the enzyme. Epigenetics 1: 63–66, 2006.
134.
Jeninga EHSchoonjans KAuwerx J. Reversible acetylation of PGC-1: connecting energy sensors and effectors to guarantee metabolic flexibilityOncogene294617-46242010. 134. Jeninga EH, Schoonjans K, and Auwerx J. Reversible acetylation of PGC-1: connecting energy sensors and effectors to guarantee metabolic flexibility. Oncogene 29: 4617–4624, 2010.
135.
Jensen TJNovak PWnek SMGandolfi AJFutscher BW. Arsenicals produce stable progressive changes in DNA methylation patterns that are linked to malignant transformation of immortalized urothelial cellsToxicol Appl Pharmacol241221-2292009. 135. Jensen TJ, Novak P, Wnek SM, Gandolfi AJ, and Futscher BW. Arsenicals produce stable progressive changes in DNA methylation patterns that are linked to malignant transformation of immortalized urothelial cells. Toxicol Appl Pharmacol 241: 221–229, 2009.
136.
Jensen TJWozniak RJEblin KEWnek SMGandolfi AJFutscher BW. Epigenetic mediated transcriptional activation of WNT5A participates in arsenical-associated malignant transformationToxicol Appl Pharmacol23539-462009. 136. Jensen TJ, Wozniak RJ, Eblin KE, Wnek SM, Gandolfi AJ, and Futscher BW. Epigenetic mediated transcriptional activation of WNT5A participates in arsenical-associated malignant transformation. Toxicol Appl Pharmacol 235: 39–46, 2009.
137.
Jenuwein TAllis CD. Translating the histone codeScience2931074-10802001. 137. Jenuwein T and Allis CD. Translating the histone code. Science 293: 1074–1080, 2001.
138.
Jenuwein TLaible GDorn RReuter G. SET domain proteins modulate chromatin domains in eu- and heterochromatinCell Mol Life Sci5480-931998. 138. Jenuwein T, Laible G, Dorn R, and Reuter G. SET domain proteins modulate chromatin domains in eu- and heterochromatin. Cell Mol Life Sci 54: 80–93, 1998.
139.
Jones JECausey CPKnuckley BSlack-Noyes JLThompson PR. Protein arginine deiminase 4 (PAD4): current understanding and future therapeutic potentialCurr Opin Drug Discov Devel12616-6272009. 139. Jones JE, Causey CP, Knuckley B, Slack-Noyes JL, and Thompson PR. Protein arginine deiminase 4 (PAD4): current understanding and future therapeutic potential. Curr Opin Drug Discov Devel 12: 616–627, 2009.
140.
Julien CTremblay CEmond VLebbadi MSalem N. JrBennett DACalon F. Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer diseaseJ Neuropathol Exp Neurol6848-582009. 140. Julien C, Tremblay C, Emond V, Lebbadi M, Salem N Jr., Bennett DA, and Calon F. Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J Neuropathol Exp Neurol 68: 48–58, 2009.
141.
Kawaguchi YKovacs JJMcLaurin AVance JMIto AYao TP. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stressCell115727-7382003. 141. Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, and Yao TP. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115: 727–738, 2003.
142.
Kawai KLi YSSong MFKasai H. DNA methylation by dimethyl sulfoxide and methionine sulfoxide triggered by hydroxyl radical and implications for epigenetic modificationsBioorg Med Chem Lett20260-2652010. 142. Kawai K, Li YS, Song MF, and Kasai H. DNA methylation by dimethyl sulfoxide and methionine sulfoxide triggered by hydroxyl radical and implications for epigenetic modifications. Bioorg Med Chem Lett 20: 260–265, 2010.
143.
Kharbanda KK. Role of transmethylation reactions in alcoholic liver diseaseWorld J Gastroenterol134947-49542007. 143. Kharbanda KK. Role of transmethylation reactions in alcoholic liver disease. World J Gastroenterol 13: 4947–4954, 2007.
144.
Kim DNguyen MDDobbin MMFischer ASananbenesi FRodgers JTDelalle IBaur JASui GArmour SM et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosisEMBO J263169-31792007. 144. Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT, Delalle I, Baur JA, Sui G, Armour SM, et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J 26: 3169–3179, 2007.
145.
Kim JSShukla SD. Histone h3 modifications in rat hepatic stellate cells by ethanolAlcohol Alcohol40367-3722005. 145. Kim JS and Shukla SD. Histone h3 modifications in rat hepatic stellate cells by ethanol. Alcohol Alcohol 40: 367–372, 2005.
146.
Kim JSShukla SD. Acute in vivo effect of ethanol (binge drinking) on histone H3 modifications in rat tissuesAlcohol Alcohol41126-1322006. 146. Kim JS and Shukla SD. Acute in vivo effect of ethanol (binge drinking) on histone H3 modifications in rat tissues. Alcohol Alcohol 41: 126–132, 2006.
147.
King ASelak MAGottlieb E. Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancerOncogene254675-46822006. 147. King A, Selak MA, and Gottlieb E. Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene 25: 4675–4682, 2006.
148.
Kirkland JB. Niacin status impacts chromatin structureJ Nutr1392397-24012009. 148. Kirkland JB. Niacin status impacts chromatin structure. J Nutr 139: 2397–2401, 2009.
149.
Knowles HJRaval RRHarris ALRatcliffe PJ. Effect of ascorbate on the activity of hypoxia-inducible factor in cancer cellsCancer Res631764-17682003. 149. Knowles HJ, Raval RR, Harris AL, and Ratcliffe PJ. Effect of ascorbate on the activity of hypoxia-inducible factor in cancer cells. Cancer Res 63: 1764–1768, 2003.
150.
Kolthur-Seetharam UDantzer FMcBurney MWde Murcia GSassone-Corsi P. Control of AIF-mediated cell death by the functional interplay of SIRT1 and PARP-1 in response to DNA damageCell Cycle5873-8772006. 150. Kolthur-Seetharam U, Dantzer F, McBurney MW, de Murcia G, and Sassone-Corsi P. Control of AIF-mediated cell death by the functional interplay of SIRT1 and PARP-1 in response to DNA damage. Cell Cycle 5: 873–877, 2006.
151.
Komotar RJStarke RMSisti MBConnolly ES. IDH1 and IDH2 mutations in gliomas and the associated induction of hypoxia-inducible factor and production of 2-hydroxyglutarateNeurosurgery66N20-N212010. 151. Komotar RJ, Starke RM, Sisti MB, and Connolly ES. IDH1 and IDH2 mutations in gliomas and the associated induction of hypoxia-inducible factor and production of 2-hydroxyglutarate. Neurosurgery 66: N20–N21, 2010.
152.
Konijn AMGlickstein HVaisman BMeyron-Holtz EGSlotki INCabantchik ZI. The cellular labile iron pool and intracellular ferritin in K562 cellsBlood942128-21341999. 152. Konijn AM, Glickstein H, Vaisman B, Meyron-Holtz EG, Slotki IN, and Cabantchik ZI. The cellular labile iron pool and intracellular ferritin in K562 cells. Blood 94: 2128–2134, 1999.
153.
Kouzarides T. Chromatin modifications and their functionCell128693-7052007. 153. Kouzarides T. Chromatin modifications and their function. Cell 128: 693–705, 2007.
154.
Kovacs JJMurphy PJGaillard SZhao XWu JTNicchitta CVYoshida MToft DOPratt WBYao TP. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptorMol Cell18601-6072005. 154. Kovacs JJ, Murphy PJ, Gaillard S, Zhao X, Wu JT, Nicchitta CV, Yoshida M, Toft DO, Pratt WB, and Yao TP. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 18: 601–607, 2005.
155.
Koziol MJRinn JL. RNA traffic control of chromatin complexesCurr Opin Genet Dev20142-1482010. 155. Koziol MJ and Rinn JL. RNA traffic control of chromatin complexes. Curr Opin Genet Dev 20: 142–148, 2010.
156.
Kriaucionis SHeintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brainScience324929-9302009. 156. Kriaucionis S and Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324: 929–930, 2009.
157.
Kruszewski M. Labile iron pool: the main determinant of cellular response to oxidative stressMutat Res53181-922003. 157. Kruszewski M. Labile iron pool: the main determinant of cellular response to oxidative stress. Mutat Res 531: 81–92, 2003.
158.
Kulshreshtha RFerracin MWojcik SEGarzon RAlder HAgosto-Perez FJDavuluri RLiu CGCroce CMNegrini M et al. A microRNA signature of hypoxiaMol Cell Biol271859-18672007. 158. Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ, Davuluri R, Liu CG, Croce CM, Negrini M, et al. A microRNA signature of hypoxia. Mol Cell Biol 27: 1859–1867, 2007.
159.
Kuo MHAllis CD. Roles of histone acetyltransferases and deacetylases in gene regulationBioessays20615-6261998. 159. Kuo MH and Allis CD. Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20: 615–626, 1998.
160.
Kutty RKSamuel WJaworski CDuncan TNagineni CNRaghavachari NWiggert BRedmond TM. MicroRNA expression in human retinal pigment epithelial (ARPE-19) cells: increased expression of microRNA-9 by N-(4-hydroxyphenyl)retinamideMol Vis161475-14862010. 160. Kutty RK, Samuel W, Jaworski C, Duncan T, Nagineni CN, Raghavachari N, Wiggert B, and Redmond TM. MicroRNA expression in human retinal pigment epithelial (ARPE-19) cells: increased expression of microRNA-9 by N-(4-hydroxyphenyl)retinamide. Mol Vis 16: 1475–1486, 2010.
161.
Lachner MO'Carroll DRea SMechtler KJenuwein T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteinsNature410116-1202001. 161. Lachner M, O'Carroll D, Rea S, Mechtler K, and Jenuwein T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410: 116–120, 2001.
162.
Lal GPadmanabha LProvenzano MFitzgerald MWeydert JDomann FE. Regulation of 14-3-3 sigma expression in human thyroid carcinoma is epigenetically regulated by aberrant cytosine methylationCancer Lett267165-1742008. 162. Lal G, Padmanabha L, Provenzano M, Fitzgerald M, Weydert J, and Domann FE. Regulation of 14-3-3 sigma expression in human thyroid carcinoma is epigenetically regulated by aberrant cytosine methylation. Cancer Lett 267: 165–174, 2008.
163.
Lander ESLinton LMBirren BNusbaum CZody MCBaldwin JDevon KDewar KDoyle MFitzHugh W et al. Initial sequencing and analysis of the human genomeNature409860-9212001. 163. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, et al. Initial sequencing and analysis of the human genome. Nature 409: 860–921, 2001.
164.
Landry JSlama JTSternglanz R. Role of NAD(+) in the deacetylase activity of the SIR2-like proteinsBiochem Biophys Res Commun278685-6902000. 164. Landry J, Slama JT, and Sternglanz R. Role of NAD(+) in the deacetylase activity of the SIR2-like proteins. Biochem Biophys Res Commun 278: 685–690, 2000.
165.
Landry JSutton ATafrov STHeller RCStebbins JPillus LSternglanz R. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylasesProc Natl Acad Sci U S A975807-58112000. 165. Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J, Pillus L, and Sternglanz R. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci U S A 97: 5807–5811, 2000.
166.
Latini Ada Silva CGFerreira GCSchuck PFScussiato KSarkis JJDutra Filho CSWyse ATWannmacher CMWajner M. Mitochondrial energy metabolism is markedly impaired by D-2-hydroxyglutaric acid in rat tissuesMol Genet Metab86188-1992005. 166. Latini A, da Silva CG, Ferreira GC, Schuck PF, Scussiato K, Sarkis JJ, Dutra Filho CS, Wyse AT, Wannmacher CM, and Wajner M. Mitochondrial energy metabolism is markedly impaired by D-2-hydroxyglutaric acid in rat tissues. Mol Genet Metab 86: 188–199, 2005.
167.
Latini AScussiato KRosa RBLeipnitz GLlesuy SBello-Klein ADutra-Filho CSWajner M. Induction of oxidative stress by L-2-hydroxyglutaric acid in rat brainJ Neurosci Res74103-1102003. 167. Latini A, Scussiato K, Rosa RB, Leipnitz G, Llesuy S, Bello-Klein A, Dutra-Filho CS, and Wajner M. Induction of oxidative stress by L-2-hydroxyglutaric acid in rat brain. J Neurosci Res 74: 103–110, 2003.
168.
Latini AScussiato KRosa RBLlesuy SBello-Klein ADutra-Filho CSWajner M. D-2-hydroxyglutaric acid induces oxidative stress in cerebral cortex of young ratsEur J Neurosci172017-20222003. 168. Latini A, Scussiato K, Rosa RB, Llesuy S, Bello-Klein A, Dutra-Filho CS, and Wajner M. D-2-hydroxyglutaric acid induces oxidative stress in cerebral cortex of young rats. Eur J Neurosci 17: 2017–2022, 2003.
169.
Lawless MWNorris SO'Byrne KJGray SG. Targeting histone deacetylases for the treatment of diseaseJ Cell Mol Med13826-8522009. 169. Lawless MW, Norris S, O'Byrne KJ, and Gray SG. Targeting histone deacetylases for the treatment of disease. J Cell Mol Med 13: 826–852, 2009.
170.
Lee BCDikiy AKim HYGladyshev VN. Functions and evolution of selenoprotein methionine sulfoxide reductasesBiochim Biophys Acta17901471-14772009. 170. Lee BC, Dikiy A, Kim HY, and Gladyshev VN. Functions and evolution of selenoprotein methionine sulfoxide reductases. Biochim Biophys Acta 1790: 1471–1477, 2009.
171.
Leeb MSteffen PAWutz A. X chromosome inactivation sparked by non-coding RNAsRNA Biol694-992009. 171. Leeb M, Steffen PA, and Wutz A. X chromosome inactivation sparked by non-coding RNAs. RNA Biol 6: 94–99, 2009.
172.
Lei KFWang YFZhu XQLu PCSun BSJia HLRen NYe QHSun HCWang L et al. Identification of MSRA gene on chromosome 8p as a candidate metastasis suppressor for human hepatitis B virus-positive hepatocellular carcinomaBMC Cancer71722007. 172. Lei KF, Wang YF, Zhu XQ, Lu PC, Sun BS, Jia HL, Ren N, Ye QH, Sun HC, Wang L, et al. Identification of MSRA gene on chromosome 8p as a candidate metastasis suppressor for human hepatitis B virus-positive hepatocellular carcinoma. BMC Cancer 7: 172, 2007.
173.
Lertratanangkoon KOrkiszewski RSScimeca JM. Methyl-donor deficiency due to chemically induced glutathione depletionCancer Res56995-10051996. 173. Lertratanangkoon K, Orkiszewski RS, and Scimeca JM. Methyl-donor deficiency due to chemically induced glutathione depletion. Cancer Res 56: 995–1005, 1996.
174.
Lertratanangkoon KSavaraj NScimeca JMThomas ML. Glutathione depletion-induced thymidylate insufficiency for DNA repair synthesisBiochem Biophys Res Commun234470-4751997. 174. Lertratanangkoon K, Savaraj N, Scimeca JM, and Thomas ML. Glutathione depletion-induced thymidylate insufficiency for DNA repair synthesis. Biochem Biophys Res Commun 234: 470–475, 1997.
175.
Lertratanangkoon KWu CJSavaraj NThomas ML. Alterations of DNA methylation by glutathione depletionCancer Lett120149-1561997. 175. Lertratanangkoon K, Wu CJ, Savaraj N, and Thomas ML. Alterations of DNA methylation by glutathione depletion. Cancer Lett 120: 149–156, 1997.
176.
Levine MEspey MGChen Q. Losing and finding a way at C: new promise for pharmacologic ascorbate in cancer treatmentFree Radic Biol Med4727-292009. 176. Levine M, Espey MG, and Chen Q. Losing and finding a way at C: new promise for pharmacologic ascorbate in cancer treatment. Free Radic Biol Med 47: 27–29, 2009.
177.
Li QKe QCosta M. Alterations of histone modifications by cobalt compoundsCarcinogenesis301243-12512009. 177. Li Q, Ke Q, and Costa M. Alterations of histone modifications by cobalt compounds. Carcinogenesis 30: 1243–1251, 2009.
178.
Liang GLin JCWei VYoo CCheng JCNguyen CTWeisenberger DJEgger GTakai DGonzales FA et al. Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genomeProc Natl Acad Sci U S A1017357-73622004. 178. Liang G, Lin JC, Wei V, Yoo C, Cheng JC, Nguyen CT, Weisenberger DJ, Egger G, Takai D, Gonzales FA, et al. Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc Natl Acad Sci U S A 101: 7357–7362, 2004.
179.
Lin SJDefossez PAGuarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiaeScience2892126-21282000. 179. Lin SJ, Defossez PA, and Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289: 2126–2128, 2000.
180.
Lin SJGuarente L. Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and diseaseCurr Opin Cell Biol15241-2462003. 180. Lin SJ and Guarente L. Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr Opin Cell Biol 15: 241–246, 2003.
181.
Lin SJKaeberlein MAndalis AASturtz LADefossez PACulotta VCFink GRGuarente L. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respirationNature418344-3482002. 181. Lin SJ, Kaeberlein M, Andalis AA, Sturtz LA, Defossez PA, Culotta VC, Fink GR, and Guarente L. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418: 344–348, 2002.
182.
Lin YLiu XCheng YYang JHuo YZhang C. Involvement of MicroRNAs in hydrogen peroxide-mediated gene regulation and cellular injury response in vascular smooth muscle cellsJ Biol Chem2847903-79132009. 182. Lin Y, Liu X, Cheng Y, Yang J, Huo Y, and Zhang C. Involvement of MicroRNAs in hydrogen peroxide-mediated gene regulation and cellular injury response in vascular smooth muscle cells. J Biol Chem 284: 7903–7913, 2009.
183.
Liu HHu QD'Ercole AJYe P. Histone deacetylase 11 regulates oligodendrocyte-specific gene expression and cell development in OL-1 oligodendroglia cellsGlia571-122009. 183. Liu H, Hu Q, D'Ercole AJ, and Ye P. Histone deacetylase 11 regulates oligodendrocyte-specific gene expression and cell development in OL-1 oligodendroglia cells. Glia 57: 1–12, 2009.
184.
Liu WZabirnyk OWang HShiao YHNickerson MLKhalil SAnderson LMPerantoni AOPhang JM. miR-23b* targets proline oxidase, a novel tumor suppressor protein in renal cancerOncogene294914-49242010. 184. Liu W, Zabirnyk O, Wang H, Shiao YH, Nickerson ML, Khalil S, Anderson LM, Perantoni AO, and Phang JM. miR-23b* targets proline oxidase, a novel tumor suppressor protein in renal cancer. Oncogene 29: 4914–4924, 2010.
185.
Liu YBorchert GLDonald SPSurazynski AHu CAWeydert CJOberley LWPhang JM. MnSOD inhibits proline oxidase-induced apoptosis in colorectal cancer cellsCarcinogenesis261335-13422005. 185. Liu Y, Borchert GL, Donald SP, Surazynski A, Hu CA, Weydert CJ, Oberley LW, and Phang JM. MnSOD inhibits proline oxidase-induced apoptosis in colorectal cancer cells. Carcinogenesis 26: 1335–1342, 2005.
186.
Liu YBorchert GLSurazynski APhang JM. Proline oxidase, a p53-induced gene, targets COX-2/PGE2 signaling to induce apoptosis and inhibit tumor growth in colorectal cancersOncogene276729-67372008. 186. Liu Y, Borchert GL, Surazynski A, and Phang JM. Proline oxidase, a p53-induced gene, targets COX-2/PGE2 signaling to induce apoptosis and inhibit tumor growth in colorectal cancers. Oncogene 27: 6729–6737, 2008.
187.
Lu SC. Regulation of hepatic glutathione synthesis: current concepts and controversiesFASEB J131169-11831999. 187. Lu SC. Regulation of hepatic glutathione synthesis: current concepts and controversies. FASEB J 13: 1169–1183, 1999.
188.
Lu SC. Regulation of glutathione synthesisMol Aspects Med3042-592009. 188. Lu SC. Regulation of glutathione synthesis. Mol Aspects Med 30: 42–59, 2009.
189.
Lukiw WJPogue AI. Induction of specific micro RNA (miRNA) species by ROS-generating metal sulfates in primary human brain cellsJ Inorg Biochem1011265-12692007. 189. Lukiw WJ and Pogue AI. Induction of specific micro RNA (miRNA) species by ROS-generating metal sulfates in primary human brain cells. J Inorg Biochem 101: 1265–1269, 2007.
190.
MacKenzie EDSelak MATennant DAPayne LJCrosby SFrederiksen CMWatson DGGottlieb E. Cell-permeating alpha-ketoglutarate derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cellsMol Cell Biol273282-32892007. 190. MacKenzie ED, Selak MA, Tennant DA, Payne LJ, Crosby S, Frederiksen CM, Watson DG, and Gottlieb E. Cell-permeating alpha-ketoglutarate derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cells. Mol Cell Biol 27: 3282–3289, 2007.
191.
Malecova BMorris KV. Transcriptional gene silencing through epigenetic changes mediated by non-coding RNAsCurr Opin Mol Ther12214-2222010. 191. Malecova B and Morris KV. Transcriptional gene silencing through epigenetic changes mediated by non-coding RNAs. Curr Opin Mol Ther 12: 214–222, 2010.
192.
Marcucci GMaharry KWu YZRadmacher MDMrozek KMargeson DHolland KBWhitman SPBecker HSchwind S et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within De Novo cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B studyJ Clin Oncol282348-23552010. 192. Marcucci G, Maharry K, Wu YZ, Radmacher MD, Mrozek K, Margeson D, Holland KB, Whitman SP, Becker H, Schwind S, et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within De Novo cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study. J Clin Oncol 28: 2348–2355, 2010.
193.
Marmorstein RRoth SY. Histone acetyltransferases: function, structure, and catalysisCurr Opin Genet Dev11155-1612001. 193. Marmorstein R and Roth SY. Histone acetyltransferases: function, structure, and catalysis. Curr Opin Genet Dev 11: 155–161, 2001.
194.
Martin MKettmann RDequiedt F. Class IIa histone deacetylases: regulating the regulatorsOncogene265450-54672007. 194. Martin M, Kettmann R, and Dequiedt F. Class IIa histone deacetylases: regulating the regulators. Oncogene 26: 5450–5467, 2007.
195.
Mastroeni DMcKee AGrover ARogers JColeman PD. Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer's diseasePLoS ONE4e66172009. 195. Mastroeni D, McKee A, Grover A, Rogers J, and Coleman PD. Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer's disease. PLoS ONE 4: e6617, 2009.
196.
Maunakea AKNagarajan RPBilenky MBallinger TJD'Souza CFouse SDJohnson BEHong CNielsen CZhao Y et al. Conserved role of intragenic DNA methylation in regulating alternative promotersNature466253-2572010. 196. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D'Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466: 253–257, 2010.
197.
Maxwell PSalnikow K. HIF-1: an oxygen and metal responsive transcription factorCancer Biol Ther329-352004. 197. Maxwell P and Salnikow K. HIF-1: an oxygen and metal responsive transcription factor. Cancer Biol Ther 3: 29–35, 2004.
198.
Maxwell SAKochevar GJ. Identification of a p53-response element in the promoter of the proline oxidase geneBiochem Biophys Res Commun369308-3132008. 198. Maxwell SA and Kochevar GJ. Identification of a p53-response element in the promoter of the proline oxidase gene. Biochem Biophys Res Commun 369: 308–313, 2008.
199.
McNeill LAFlashman EBuck MRHewitson KSClifton IJJeschke GClaridge TDEhrismann DOldham NJSchofield CJ. Hypoxia-inducible factor prolyl hydroxylase 2 has a high affinity for ferrous iron and 2-oxoglutarateMol Biosyst1321-3242005. 199. McNeill LA, Flashman E, Buck MR, Hewitson KS, Clifton IJ, Jeschke G, Claridge TD, Ehrismann D, Oldham NJ, and Schofield CJ. Hypoxia-inducible factor prolyl hydroxylase 2 has a high affinity for ferrous iron and 2-oxoglutarate. Mol Biosyst 1: 321–324, 2005.
200.
Meister A. Glutathione metabolism and its selective modificationJ Biol Chem26317205-172081988. 200. Meister A. Glutathione metabolism and its selective modification. J Biol Chem 263: 17205–17208, 1988.
201.
Meister AAnderson ME. GlutathioneAnnu Rev Biochem52711-7601983. 201. Meister A and Anderson ME. Glutathione. Annu Rev Biochem 52: 711–760, 1983.
202.
Messner SAltmeyer MZhao HPozivil ARoschitzki BGehrig PRutishauser DHuang DCaflisch AHottiger MO. PARP1 ADP-ribosylates lysine residues of the core histone tailsNucleic Acids Res386350-63622010. 202. Messner S, Altmeyer M, Zhao H, Pozivil A, Roschitzki B, Gehrig P, Rutishauser D, Huang D, Caflisch A, and Hottiger MO. PARP1 ADP-ribosylates lysine residues of the core histone tails. Nucleic Acids Res 38: 6350–6362, 2010.
203.
Metzen EZhou JJelkmann WFandrey JBrune B. Nitric oxide impairs normoxic degradation of HIF-1alpha by inhibition of prolyl hydroxylasesMol Biol Cell143470-34812003. 203. Metzen E, Zhou J, Jelkmann W, Fandrey J, and Brune B. Nitric oxide impairs normoxic degradation of HIF-1alpha by inhibition of prolyl hydroxylases. Mol Biol Cell 14: 3470–3481, 2003.
204.
Meyron-Holtz EGVaisman BCabantchik ZIFibach ERouault TAHershko CKonijn AM. Regulation of intracellular iron metabolism in human erythroid precursors by internalized extracellular ferritinBlood943205-32111999. 204. Meyron-Holtz EG, Vaisman B, Cabantchik ZI, Fibach E, Rouault TA, Hershko C, and Konijn AM. Regulation of intracellular iron metabolism in human erythroid precursors by internalized extracellular ferritin. Blood 94: 3205–3211, 1999.
205.
Mikirova NACasciari JJRiordan NH. Ascorbate inhibition of angiogenesis in aortic rings ex vivo and subcutaneous Matrigel plugs in vivoJ Angiogenes Res222010. 205. Mikirova NA, Casciari JJ, and Riordan NH. Ascorbate inhibition of angiogenesis in aortic rings ex vivo and subcutaneous Matrigel plugs in vivo. J Angiogenes Res 2: 2, 2010.
206.
Miller G. Epigenetics. The seductive allure of behavioral epigeneticsScience32924-272010. 206. Miller G. Epigenetics. The seductive allure of behavioral epigenetics. Science 329: 24–27, 2010.
207.
Mitro NGodio CDe Fabiani EScotti EGalmozzi AGilardi FCaruso DVigil Chacon ABCrestani M. Insights in the regulation of cholesterol 7alpha-hydroxylase gene reveal a target for modulating bile acid synthesisHepatology46885-8972007. 207. Mitro N, Godio C, De Fabiani E, Scotti E, Galmozzi A, Gilardi F, Caruso D, Vigil Chacon AB, and Crestani M. Insights in the regulation of cholesterol 7alpha-hydroxylase gene reveal a target for modulating bile acid synthesis. Hepatology 46: 885–897, 2007.
208.
Mongan PDCapacchione JWest SKaraian JDubois DKeneally RSharma P. Pyruvate improves redox status and decreases indicators of hepatic apoptosis during hemorrhagic shock in swineAm J Physiol Heart Circ Physiol283H1634-H16442002. 208. Mongan PD, Capacchione J, West S, Karaian J, Dubois D, Keneally R, and Sharma P. Pyruvate improves redox status and decreases indicators of hepatic apoptosis during hemorrhagic shock in swine. Am J Physiol Heart Circ Physiol 283: H1634–H1644, 2002.
209.
Moodie FMMarwick JAAnderson CSSzulakowski PBiswas SKBauter MRKilty IRahman I. Oxidative stress and cigarette smoke alter chromatin remodeling but differentially regulate NF-kappaB activation and proinflammatory cytokine release in alveolar epithelial cellsFASEB J181897-18992004. 209. Moodie FM, Marwick JA, Anderson CS, Szulakowski P, Biswas SK, Bauter MR, Kilty I, and Rahman I. Oxidative stress and cigarette smoke alter chromatin remodeling but differentially regulate NF-kappaB activation and proinflammatory cytokine release in alveolar epithelial cells. FASEB J 18: 1897–1899, 2004.
210.
Moreira PIZhu XWang XLee HGNunomura APetersen RBPerry GSmith MA. Mitochondria: a therapeutic target in neurodegenerationBiochim Biophys Acta1802212-2202010. 210. Moreira PI, Zhu X, Wang X, Lee HG, Nunomura A, Petersen RB, Perry G, and Smith MA. Mitochondria: a therapeutic target in neurodegeneration. Biochim Biophys Acta 1802: 212–220, 2010.
211.
Morey LHelin K. Polycomb group protein-mediated repression of transcriptionTrends Biochem Sci35323-3322010. 211. Morey L and Helin K. Polycomb group protein-mediated repression of transcription. Trends Biochem Sci 35: 323–332, 2010.
212.
Moroni IBugiani MD'Incerti LMaccagnano CRimoldi MBissola LPollo BFinocchiaro GUziel G. L-2-hydroxyglutaric aciduria and brain malignant tumors: a predisposing condition?Neurology621882-18842004. 212. Moroni I, Bugiani M, D'Incerti L, Maccagnano C, Rimoldi M, Bissola L, Pollo B, Finocchiaro G, and Uziel G. L-2-hydroxyglutaric aciduria and brain malignant tumors: a predisposing condition? Neurology 62: 1882–1884, 2004.
213.
Mosammaparast NShi Y. Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylasesAnnu Rev Biochem79155-1792010. 213. Mosammaparast N and Shi Y. Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Annu Rev Biochem 79: 155–179, 2010.
214.
Muckenthaler MUGaly BHentze MW. Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory networkAnnu Rev Nutr28197-2132008. 214. Muckenthaler MU, Galy B, and Hentze MW. Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu Rev Nutr 28: 197–213, 2008.
215.
Mueller S. Iron regulatory protein 1 as a sensor of reactive oxygen speciesBiofactors24171-1812005. 215. Mueller S. Iron regulatory protein 1 as a sensor of reactive oxygen species. Biofactors 24: 171–181, 2005.
216.
Murayama AOhmori KFujimura AMinami HYasuzawa-Tanaka KKuroda TOie SDaitoku HOkuwaki MNagata K et al. Epigenetic control of rDNA loci in response to intracellular energy statusCell133627-6392008. 216. Murayama A, Ohmori K, Fujimura A, Minami H, Yasuzawa-Tanaka K, Kuroda T, Oie S, Daitoku H, Okuwaki M, Nagata K, et al. Epigenetic control of rDNA loci in response to intracellular energy status. Cell 133: 627–639, 2008.
217.
Nakayama JRice JCStrahl BDAllis CDGrewal SI. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assemblyScience292110-1132001. 217. Nakayama J, Rice JC, Strahl BD, Allis CD, and Grewal SI. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292: 110–113, 2001.
218.
Ng SSKavanagh KLMcDonough MAButler DPilka ESLienard BMBray JESavitsky PGileadi Ovon Delft F et al. Crystal structures of histone demethylase JMJD2A reveal basis for substrate specificityNature44887-912007. 218. Ng SS, Kavanagh KL, McDonough MA, Butler D, Pilka ES, Lienard BM, Bray JE, Savitsky P, Gileadi O, von Delft F, et al. Crystal structures of histone demethylase JMJD2A reveal basis for substrate specificity. Nature 448: 87–91, 2007.
219.
Nunomura APerry GAliev GHirai KTakeda ABalraj EKJones PKGhanbari HWataya TShimohama S et al. Oxidative damage is the earliest event in Alzheimer diseaseJ Neuropathol Exp Neurol60759-7672001. 219. Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, Jones PK, Ghanbari H, Wataya T, Shimohama S, et al. Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 60: 759–767, 2001.
220.
Nunomura APerry GPappolla MAFriedland RPHirai KChiba SSmith MA. Neuronal oxidative stress precedes amyloid-beta deposition in Down syndromeJ Neuropathol Exp Neurol591011-10172000. 220. Nunomura A, Perry G, Pappolla MA, Friedland RP, Hirai K, Chiba S, and Smith MA. Neuronal oxidative stress precedes amyloid-beta deposition in Down syndrome. J Neuropathol Exp Neurol 59: 1011–1017, 2000.
221.
Nusinow DAHernandez-Munoz IFazzio TGShah GMKraus WLPanning B. Poly(ADP-ribose) polymerase 1 is inhibited by a histone H2A variant, MacroH2A, and contributes to silencing of the inactive X chromosomeJ Biol Chem28212851-128592007. 221. Nusinow DA, Hernandez-Munoz I, Fazzio TG, Shah GM, Kraus WL, and Panning B. Poly(ADP-ribose) polymerase 1 is inhibited by a histone H2A variant, MacroH2A, and contributes to silencing of the inactive X chromosome. J Biol Chem 282: 12851–12859, 2007.
222.
Obrosova IFaller ABurgan JOstrow EWilliamson JR. Glycolytic pathway, redox state of NAD(P)-couples and energy metabolism in lens in galactose-fed rats: effect of an aldose reductase inhibitorCurr Eye Res1634-431997. 222. Obrosova I, Faller A, Burgan J, Ostrow E, and Williamson JR. Glycolytic pathway, redox state of NAD(P)-couples and energy metabolism in lens in galactose-fed rats: effect of an aldose reductase inhibitor. Curr Eye Res 16: 34–43, 1997.
223.
Obrosova IGStevens MJ. Effect of dietary taurine supplementation on GSH and NAD(P)-redox status, lipid peroxidation, and energy metabolism in diabetic precataractous lensInvest Ophthalmol Vis Sci40680-6881999. 223. Obrosova IG and Stevens MJ. Effect of dietary taurine supplementation on GSH and NAD(P)-redox status, lipid peroxidation, and energy metabolism in diabetic precataractous lens. Invest Ophthalmol Vis Sci 40: 680–688, 1999.
224.
Ohno SOhno YSuzuki NSoma GInoue M. High-dose vitamin C (ascorbic acid) therapy in the treatment of patients with advanced cancerAnticancer Res29809-8152009. 224. Ohno S, Ohno Y, Suzuki N, Soma G, and Inoue M. High-dose vitamin C (ascorbic acid) therapy in the treatment of patients with advanced cancer. Anticancer Res 29: 809–815, 2009.
225.
Okar DAManzano ANavarro-Sabate ARiera LBartrons RLange AJ. PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphateTrends Biochem Sci2630-352001. 225. Okar DA, Manzano A, Navarro-Sabate A, Riera L, Bartrons R, and Lange AJ. PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends Biochem Sci 26: 30–35, 2001.
226.
Ooi SKBestor TH. The colorful history of active DNA demethylationCell1331145-11482008. 226. Ooi SK and Bestor TH. The colorful history of active DNA demethylation. Cell 133: 1145–1148, 2008.
227.
Ordovas JMSmith CE. Epigenetics and cardiovascular diseaseNat Rev Cardiol7510-5192010. 227. Ordovas JM and Smith CE. Epigenetics and cardiovascular disease. Nat Rev Cardiol 7: 510–519, 2010.
228.
Oshiro MMKim CJWozniak RJJunk DJMunoz-Rodriguez JLBurr JAFitzgerald MPawar SCCress AEDomann FE et al. Epigenetic silencing of DSC3 is a common event in human breast cancerBreast Cancer Res7R669-R6802005. 228. Oshiro MM, Kim CJ, Wozniak RJ, Junk DJ, Munoz-Rodriguez JL, Burr JA, Fitzgerald M, Pawar SC, Cress AE, Domann FE, et al. Epigenetic silencing of DSC3 is a common event in human breast cancer. Breast Cancer Res 7: R669–R680, 2005.
229.
Otake HMiwa MFujimura SSugimura T. Binding of ADP-ribose polymer with histoneJ Biochem65145-1461969. 229. Otake H, Miwa M, Fujimura S, and Sugimura T. Binding of ADP-ribose polymer with histone. J Biochem 65: 145–146, 1969.
230.
Ozdemir AMasumoto HFitzjohn PVerreault ALogie C. Histone H3 lysine 56 acetylation: a new twist in the chromosome cycleCell Cycle52602-26082006. 230. Ozdemir A, Masumoto H, Fitzjohn P, Verreault A, and Logie C. Histone H3 lysine 56 acetylation: a new twist in the chromosome cycle. Cell Cycle 5: 2602–2608, 2006.
231.
Ozer ABruick RK. Non-heme dioxygenases: cellular sensors and regulators jelly rolled into one?Nat Chem Biol3144-1532007. 231. Ozer A and Bruick RK. Non-heme dioxygenases: cellular sensors and regulators jelly rolled into one? Nat Chem Biol 3: 144–153, 2007.
232.
Ozisik PAAkalan NPalaoglu STopcu M. Medulloblastoma in a child with the metabolic disease L-2-hydroxyglutaric aciduriaPediatr Neurosurg3722-262002. 232. Ozisik PA, Akalan N, Palaoglu S, and Topcu M. Medulloblastoma in a child with the metabolic disease L-2-hydroxyglutaric aciduria. Pediatr Neurosurg 37: 22–26, 2002.
233.
Paik WKKim S. Enzymatic demethylation of calf thymus histonesBiochem Biophys Res Commun51781-7881973. 233. Paik WK and Kim S. Enzymatic demethylation of calf thymus histones. Biochem Biophys Res Commun 51: 781–788, 1973.
234.
Pal-Bhadra MBhadra UJackson DEMamatha LPark PHShukla SD. Distinct methylation patterns in histone H3 at Lys-4 and Lys-9 correlate with up- & down-regulation of genes by ethanol in hepatocytesLife Sci81979-9872007. 234. Pal-Bhadra M, Bhadra U, Jackson DE, Mamatha L, Park PH and Shukla SD. Distinct methylation patterns in histone H3 at Lys-4 and Lys-9 correlate with up- & down-regulation of genes by ethanol in hepatocytes. Life Sci 81: 979–987, 2007.
235.
Pan YMansfield KDBertozzi CCRudenko VChan DAGiaccia AJSimon MC. Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitroMol Cell Biol27912-9252007. 235. Pan Y, Mansfield KD, Bertozzi CC, Rudenko V, Chan DA, Giaccia AJ, and Simon MC. Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro. Mol Cell Biol 27: 912–925, 2007.
236.
Pandhare JCooper SKPhang JM. Proline oxidase, a proapoptotic gene, is induced by troglitazone: evidence for both peroxisome proliferator-activated receptor gamma-dependent and -independent mechanismsJ Biol Chem2812044-20522006. 236. Pandhare J, Cooper SK, and Phang JM. Proline oxidase, a proapoptotic gene, is induced by troglitazone: evidence for both peroxisome proliferator-activated receptor gamma-dependent and -independent mechanisms. J Biol Chem 281: 2044–2052, 2006.
237.
Pardanani ALasho TLFinke CMMai MMcClure RFTefferi A. IDH1 and IDH2 mutation analysis in chronic- and blast-phase myeloproliferative neoplasmsLeukemia241146-11512010. 237. Pardanani A, Lasho TL, Finke CM, Mai M, McClure RF, and Tefferi A. IDH1 and IDH2 mutation analysis in chronic- and blast-phase myeloproliferative neoplasms. Leukemia 24: 1146–1151, 2010.
238.
Park PHMiller RShukla SD. Acetylation of histone H3 at lysine 9 by ethanol in rat hepatocytesBiochem Biophys Res Commun306501-5042003. 238. Park PH, Miller R, and Shukla SD. Acetylation of histone H3 at lysine 9 by ethanol in rat hepatocytes. Biochem Biophys Res Commun 306: 501–504, 2003.
239.
Park PJ. ChIP-seq: advantages and challenges of a maturing technologyNat Rev Genet10669-6802009. 239. Park PJ. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10: 669–680, 2009.
240.
Pasini BStratakis CA. SDH mutations in tumorigenesis and inherited endocrine tumours: lesson from the phaeochromocytoma-paraganglioma syndromesJ Intern Med26619-422009. 240. Pasini B and Stratakis CA. SDH mutations in tumorigenesis and inherited endocrine tumours: lesson from the phaeochromocytoma-paraganglioma syndromes. J Intern Med 266: 19–42, 2009.
241.
Passos JFSaretzki GAhmed SNelson GRichter TPeters HWappler IBirket MJHarold GSchaeuble K et al. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescencePLoS Biol5e1102007. 241. Passos JF, Saretzki G, Ahmed S, Nelson G, Richter T, Peters H, Wappler I, Birket MJ, Harold G, Schaeuble K, et al. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol 5: e110, 2007.
242.
Passos JFvon Zglinicki TSaretzki G. Mitochondrial dysfunction and cell senescence: cause or consequence?Rejuvenation Res964-682006. 242. Passos JF, von Zglinicki T, and Saretzki G. Mitochondrial dysfunction and cell senescence: cause or consequence? Rejuvenation Res 9: 64–68, 2006.
243.
Pearce LLMartinez-Bosch SManzano ELWinnica DEEpperly MWPeterson J. The resistance of electron-transport chain Fe-S clusters to oxidative damage during the reaction of peroxynitrite with mitochondrial complex II and rat-heart pericardiumNitric Oxide20135-1422009. 243. Pearce LL, Martinez-Bosch S, Manzano EL, Winnica DE, Epperly MW, and Peterson J. The resistance of electron-transport chain Fe-S clusters to oxidative damage during the reaction of peroxynitrite with mitochondrial complex II and rat-heart pericardium. Nitric Oxide 20: 135–142, 2009.
244.
Peters AHMermoud JEO'Carroll DPagani MSchweizer DBrockdorff NJenuwein T. Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatinNat Genet3077-802002. 244. Peters AH, Mermoud JE, O'Carroll D, Pagani M, Schweizer D, Brockdorff N, and Jenuwein T. Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin. Nat Genet 30: 77–80, 2002.
245.
Phang JMDonald SPPandhare JLiu Y. The metabolism of proline, a stress substrate, modulates carcinogenic pathwaysAmino Acids35681-6902008. 245. Phang JM, Donald SP, Pandhare J, and Liu Y. The metabolism of proline, a stress substrate, modulates carcinogenic pathways. Amino Acids 35: 681–690, 2008.
246.
Picard VEpsztejn SSantambrogio PCabantchik ZIBeaumont C. Role of ferritin in the control of the labile iron pool in murine erythroleukemia cellsJ Biol Chem27315382-153861998. 246. Picard V, Epsztejn S, Santambrogio P, Cabantchik ZI, and Beaumont C. Role of ferritin in the control of the labile iron pool in murine erythroleukemia cells. J Biol Chem 273: 15382–15386, 1998.
247.
Pillai JBIsbatan AImai SGupta MP. Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activityJ Biol Chem28043121-431302005. 247. Pillai JB, Isbatan A, Imai S, and Gupta MP. Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity. J Biol Chem 280: 43121–43130, 2005.
248.
Piper PWHarris NLMacLean M. Preadaptation to efficient respiratory maintenance is essential both for maximal longevity and the retention of replicative potential in chronologically ageing yeastMech Ageing Dev127733-7402006. 248. Piper PW, Harris NL, and MacLean M. Preadaptation to efficient respiratory maintenance is essential both for maximal longevity and the retention of replicative potential in chronologically ageing yeast. Mech Ageing Dev 127: 733–740, 2006.
249.
Pourazar JMudway ISSamet JMHelleday RBlomberg AWilson SJFrew AJKelly FJSandstrom T. Diesel exhaust activates redox-sensitive transcription factors and kinases in human airwaysAm J Physiol Lung Cell Mol Physiol289L724-L7302005. 249. Pourazar J, Mudway IS, Samet JM, Helleday R, Blomberg A, Wilson SJ, Frew AJ, Kelly FJ, and Sandstrom T. Diesel exhaust activates redox-sensitive transcription factors and kinases in human airways. Am J Physiol Lung Cell Mol Physiol 289: L724–L730, 2005.
250.
Powell CSJackson RM. Mitochondrial complex I, aconitase, and succinate dehydrogenase during hypoxia-reoxygenation: modulation of enzyme activities by MnSODAm J Physiol Lung Cell Mol Physiol285L189-L1982003. 250. Powell CS and Jackson RM. Mitochondrial complex I, aconitase, and succinate dehydrogenase during hypoxia-reoxygenation: modulation of enzyme activities by MnSOD. Am J Physiol Lung Cell Mol Physiol 285: L189–L198, 2003.
251.
Quenet DEl Ramy RSchreiber VDantzer F. The role of poly(ADP-ribosyl)ation in epigenetic eventsInt J Biochem Cell Biol4160-652009. 251. Quenet D, El Ramy R, Schreiber V, and Dantzer F. The role of poly(ADP-ribosyl)ation in epigenetic events. Int J Biochem Cell Biol 41: 60–65, 2009.
252.
Radtke FHug MGeorgiev OMatsuo KSchaffner W. Differential sensitivity of zinc finger transcription factors MTF-1, Sp1 and Krox-20 to CpG methylation of their binding sitesBiol Chem Hoppe Seyler37747-561996. 252. Radtke F, Hug M, Georgiev O, Matsuo K, and Schaffner W. Differential sensitivity of zinc finger transcription factors MTF-1, Sp1 and Krox-20 to CpG methylation of their binding sites. Biol Chem Hoppe Seyler 377: 47–56, 1996.
253.
Ramasamy RTrueblood NSchaefer S. Metabolic effects of aldose reductase inhibition during low-flow ischemia and reperfusionAm J Physiol2751 Pt 2H195-H2031998. 253. Ramasamy R, Trueblood N, and Schaefer S. Metabolic effects of aldose reductase inhibition during low-flow ischemia and reperfusion. Am J Physiol 275(1 Pt 2): H195–H203, 1998.
254.
Rich PR. The molecular machinery of Keilin's respiratory chainBiochem Soc Trans31Pt 61095-11052003. 254. Rich PR. The molecular machinery of Keilin's respiratory chain. Biochem Soc Trans 31(Pt 6): 1095–1105, 2003.
255.
Rinn JLKertesz MWang JKSquazzo SLXu XBrugmann SAGoodnough LHHelms JAFarnham PJSegal E et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAsCell1291311-13232007. 255. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129: 1311–1323, 2007.
256.
Ristoff ELarsson A. Inborn errors in the metabolism of glutathioneOrphanet J Rare Dis2162007. 256. Ristoff E and Larsson A. Inborn errors in the metabolism of glutathione. Orphanet J Rare Dis 2: 16, 2007.
257.
Rivera AMaxwell SA. The p53-induced gene-6 (proline oxidase) mediates apoptosis through a calcineurin-dependent pathwayJ Biol Chem28029346-293542005. 257. Rivera A and Maxwell SA. The p53-induced gene-6 (proline oxidase) mediates apoptosis through a calcineurin-dependent pathway. J Biol Chem 280: 29346–29354, 2005.
258.
Roth SYDenu JMAllis CD. Histone acetyltransferasesAnnu Rev Biochem7081-1202001. 258. Roth SY, Denu JM, and Allis CD. Histone acetyltransferases. Annu Rev Biochem 70: 81–120, 2001.
259.
Rouleau MAubin RAPoirier GG. Poly(ADP-ribosyl)ated chromatin domains: access grantedJ Cell Sci117Pt 6815-8252004. 259. Rouleau M, Aubin RA, and Poirier GG. Poly(ADP-ribosyl)ated chromatin domains: access granted. J Cell Sci 117(Pt 6): 815–825, 2004.
260.
Rouleau MPatel AHendzel MJKaufmann SHPoirier GG. PARP inhibition: PARP1 and beyondNat Rev Cancer10293-3012010. 260. Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, and Poirier GG. PARP inhibition: PARP1 and beyond. Nat Rev Cancer 10: 293–301, 2010.
261.
Russell RR 3rdMommessin JITaegtmeyer H. Propionyl-L-carnitine-mediated improvement in contractile function of rat hearts oxidizing acetoacetateAm J Physiol2681 Pt 2H441-H4471995. 261. Russell RR 3rd, Mommessin JI, and Taegtmeyer H. Propionyl-L-carnitine-mediated improvement in contractile function of rat hearts oxidizing acetoacetate. Am J Physiol 268(1 Pt 2): H441–H447, 1995.
262.
Russell RR 3rdTaegtmeyer H. Pyruvate carboxylation prevents the decline in contractile function of rat hearts oxidizing acetoacetateAm J Physiol2616 Pt 2H1756-H17621991. 262. Russell RR 3rd and Taegtmeyer H. Pyruvate carboxylation prevents the decline in contractile function of rat hearts oxidizing acetoacetate. Am J Physiol 261(6 Pt 2): H1756–H1762, 1991.
263.
Rzem RVeiga-da-Cunha MNoel GGoffette SNassogne MCTabarki BScholler CMarquardt TVikkula MVan Schaftingen E. A gene encoding a putative FAD-dependent L-2-hydroxyglutarate dehydrogenase is mutated in L-2-hydroxyglutaric aciduriaProc Natl Acad Sci U S A10116849-168542004. 263. Rzem R, Veiga-da-Cunha M, Noel G, Goffette S, Nassogne MC, Tabarki B, Scholler C, Marquardt T, Vikkula M, and Van Schaftingen E. A gene encoding a putative FAD-dependent L-2-hydroxyglutarate dehydrogenase is mutated in L-2-hydroxyglutaric aciduria. Proc Natl Acad Sci U S A 101: 16849–16854, 2004.
264.
Rzem RVincent MFVan Schaftingen EVeiga-da-Cunha M. L-2-hydroxyglutaric aciduria, a defect of metabolite repairJ Inherit Metab Dis30681-6892007. 264. Rzem R, Vincent MF, Van Schaftingen E, and Veiga-da-Cunha M. L-2-hydroxyglutaric aciduria, a defect of metabolite repair. J Inherit Metab Dis 30: 681–689, 2007.
265.
Salahudeen AABruick RK. Maintaining Mammalian iron and oxygen homeostasis: sensors, regulation, and cross-talkAnn N Y Acad Sci117730-382009. 265. Salahudeen AA and Bruick RK. Maintaining Mammalian iron and oxygen homeostasis: sensors, regulation, and cross-talk. Ann N Y Acad Sci 1177: 30–38, 2009.
266.
Salminen AKaarniranta K. SIRT1 regulates the ribosomal DNA locus: epigenetic candles twinkle longevity in the Christmas treeBiochem Biophys Res Commun3786-92009. 266. Salminen A and Kaarniranta K. SIRT1 regulates the ribosomal DNA locus: epigenetic candles twinkle longevity in the Christmas tree. Biochem Biophys Res Commun 378: 6–9, 2009.
267.
Salnikow KAn WGMelillo GBlagosklonny MVCosta M. Nickel-induced transformation shifts the balance between HIF-1 and p53 transcription factorsCarcinogenesis201819-18231999. 267. Salnikow K, An WG, Melillo G, Blagosklonny MV, and Costa M. Nickel-induced transformation shifts the balance between HIF-1 and p53 transcription factors. Carcinogenesis 20: 1819–1823, 1999.
268.
Salnikow KBlagosklonny MVRyan HJohnson RCosta M. Carcinogenic nickel induces genes involved with hypoxic stressCancer Res6038-412000. 268. Salnikow K, Blagosklonny MV, Ryan H, Johnson R, and Costa M. Carcinogenic nickel induces genes involved with hypoxic stress. Cancer Res 60: 38–41, 2000.
269.
Sandmeier JJCelic IBoeke JDSmith JS. Telomeric and rDNA silencing in Saccharomyces cerevisiae are dependent on a nuclear NAD(+) salvage pathwayGenetics160877-8892002. 269. Sandmeier JJ, Celic I, Boeke JD and Smith JS. Telomeric and rDNA silencing in Saccharomyces cerevisiae are dependent on a nuclear NAD(+) salvage pathway. Genetics 160: 877–889, 2002.
270.
Santos-Rosa HSchneider RBannister AJSherriff JBernstein BEEmre NCSchreiber SLMellor JKouzarides T. Active genes are tri-methylated at K4 of histone H3Nature419407-4112002. 270. Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NC, Schreiber SL, Mellor J, and Kouzarides T. Active genes are tri-methylated at K4 of histone H3. Nature 419: 407–411, 2002.
271.
Santos-Rosa HSchneider RBernstein BEKarabetsou NMorillon AWeise CSchreiber SLMellor JKouzarides T. Methylation of histone H3 K4 mediates association of the Isw1p ATPase with chromatinMol Cell121325-13322003. 271. Santos-Rosa H, Schneider R, Bernstein BE, Karabetsou N, Morillon A, Weise C, Schreiber SL, Mellor J, and Kouzarides T. Methylation of histone H3 K4 mediates association of the Isw1p ATPase with chromatin. Mol Cell 12: 1325–1332, 2003.
272.
Sawant RRVaze ORockwell KTorchilin VP. Palmitoyl ascorbate-modified liposomes as nanoparticle platform for ascorbate-mediated cytotoxicity and paclitaxel co-deliveryEur J Pharm Biopharm75321-3262010. 272. Sawant RR, Vaze O, Rockwell K, and Torchilin VP. Palmitoyl ascorbate-modified liposomes as nanoparticle platform for ascorbate-mediated cytotoxicity and paclitaxel co-delivery. Eur J Pharm Biopharm 75: 321–326, 2010.
273.
Saxonov SBerg PBrutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promotersProc Natl Acad Sci U S A1031412-14172006. 273. Saxonov S, Berg P, and Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A 103: 1412–1417, 2006.
274.
Schaefer MLyko F. Solving the Dnmt2 enigmaChromosoma11935-402010. 274. Schaefer M and Lyko F. Solving the Dnmt2 enigma. Chromosoma 119: 35–40, 2010.
275.
Schneider RBannister AJMyers FAThorne AWCrane-Robinson CKouzarides T. Histone H3 lysine 4 methylation patterns in higher eukaryotic genesNat Cell Biol673-772004. 275. Schneider R, Bannister AJ, Myers FA, Thorne AW, Crane-Robinson C, and Kouzarides T. Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell Biol 6: 73–77, 2004.
276.
Selak MAArmour SMMacKenzie EDBoulahbel HWatson DGMansfield KDPan YSimon MCThompson CBGottlieb E. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylaseCancer Cell777-852005. 276. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, Pan Y, Simon MC, Thompson CB, and Gottlieb E. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7: 77–85, 2005.
277.
Selak MADuran RVGottlieb E. Redox stress is not essential for the pseudo-hypoxic phenotype of succinate dehydrogenase deficient cellsBiochim Biophys Acta1757567-5722006. 277. Selak MA, Duran RV, and Gottlieb E. Redox stress is not essential for the pseudo-hypoxic phenotype of succinate dehydrogenase deficient cells. Biochim Biophys Acta 1757: 567–572, 2006.
278.
Sharma PKumar JGarg GKumar APatowary AKarthikeyan GRamakrishnan LBrahmachari VSengupta S. Detection of altered global DNA methylation in coronary artery disease patientsDNA Cell Biol27357-3652008. 278. Sharma P, Kumar J, Garg G, Kumar A, Patowary A, Karthikeyan G, Ramakrishnan L, Brahmachari V, and Sengupta S. Detection of altered global DNA methylation in coronary artery disease patients. DNA Cell Biol 27: 357–365, 2008.
279.
Shi YLan FMatson CMulligan PWhetstine JRCole PACasero RA. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1Cell119941-9532004. 279. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, and Casero RA. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119: 941–953, 2004.
280.
Shore DSquire MNasmyth KA. Characterization of two genes required for the position-effect control of yeast mating-type genesEMBO J32817-28231984. 280. Shore D, Squire M, and Nasmyth KA. Characterization of two genes required for the position-effect control of yeast mating-type genes. EMBO J 3: 2817–2823, 1984.
281.
Siedlecki PZielenkiewicz P. Mammalian DNA methyltransferasesActa Biochim Pol53245-2562006. 281. Siedlecki P and Zielenkiewicz P. Mammalian DNA methyltransferases. Acta Biochim Pol 53: 245–256, 2006.
282.
Smith BCDenu JM. Chemical mechanisms of histone lysine and arginine modificationsBiochim Biophys Acta178945-572009. 282. Smith BC and Denu JM. Chemical mechanisms of histone lysine and arginine modifications. Biochim Biophys Acta 1789: 45–57, 2009.
283.
Smith BCHallows WCDenu JM. Mechanisms and molecular probes of sirtuinsChem Biol151002-10132008. 283. Smith BC, Hallows WC, and Denu JM. Mechanisms and molecular probes of sirtuins. Chem Biol 15: 1002–1013, 2008.
284.
Smith EHJanknecht RMaher LJ 3rd. Succinate inhibition of alpha-ketoglutarate-dependent enzymes in a yeast model of paragangliomaHum Mol Genet163136-31482007. 284. Smith EH, Janknecht R, and Maher LJ 3rd. Succinate inhibition of alpha-ketoglutarate-dependent enzymes in a yeast model of paraganglioma. Hum Mol Genet 16: 3136–3148, 2007.
285.
Smith JSBrachmann CBCelic IKenna MAMuhammad SStarai VJAvalos JLEscalante-Semerena JCGrubmeyer CWolberger C et al. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein familyProc Natl Acad Sci U S A976658-66632000. 285. Smith JS, Brachmann CB, Celic I, Kenna MA, Muhammad S, Starai VJ, Avalos JL, Escalante-Semerena JC, Grubmeyer C, Wolberger C, et al. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci U S A 97: 6658–6663, 2000.
286.
Somoza JRSkene RJKatz BAMol CHo JDJennings AJLuong CArvai ABuggy JJChi E et al. Structural snapshots of human HDAC8 provide insights into the class I histone deacetylasesStructure121325-13342004. 286. Somoza JR, Skene RJ, Katz BA, Mol C, Ho JD, Jennings AJ, Luong C, Arvai A, Buggy JJ, Chi E, et al. Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure 12: 1325–1334, 2004.
287.
Spannhoff AHauser ATHeinke RSippl WJung M. The emerging therapeutic potential of histone methyltransferase and demethylase inhibitorsChemMedChem41568-15822009. 287. Spannhoff A, Hauser AT, Heinke R, Sippl W, and Jung M. The emerging therapeutic potential of histone methyltransferase and demethylase inhibitors. ChemMedChem 4: 1568–1582, 2009.
288.
Strahl BDOhba RCook RGAllis CD. Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in TetrahymenaProc Natl Acad Sci U S A9614967-149721999. 288. Strahl BD, Ohba R, Cook RG, and Allis CD. Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc Natl Acad Sci U S A 96: 14967–14972, 1999.
289.
Struys EA. D-2-Hydroxyglutaric aciduria: unravelling the biochemical pathway and the genetic defectJ Inherit Metab Dis2921-292006. 289. Struys EA. D-2-Hydroxyglutaric aciduria: unravelling the biochemical pathway and the genetic defect. J Inherit Metab Dis 29: 21–29, 2006.
290.
Struys EAVerhoeven NMJansen EETen Brink HJGupta MBurlingame TGQuang LSMaher TRinaldo PSnead OC et al. Metabolism of gamma-hydroxybutyrate to d-2-hydroxyglutarate in mammals: further evidence for d-2-hydroxyglutarate transhydrogenaseMetabolism55353-3582006. 290. Struys EA, Verhoeven NM, Jansen EE, Ten Brink HJ, Gupta M, Burlingame TG, Quang LS, Maher T, Rinaldo P, Snead OC, et al. Metabolism of gamma-hydroxybutyrate to d-2-hydroxyglutarate in mammals: further evidence for d-2-hydroxyglutarate transhydrogenase. Metabolism 55: 353–358, 2006.
291.
Su WYXiong HFang JY. Natural antisense transcripts regulate gene expression in an epigenetic mannerBiochem Biophys Res Commun396177-1812010. 291. Su WY, Xiong H, and Fang JY. Natural antisense transcripts regulate gene expression in an epigenetic manner. Biochem Biophys Res Commun 396: 177–181, 2010.
292.
Sun HZhou XChen HLi QCosta M. Modulation of histone methylation and MLH1 gene silencing by hexavalent chromiumToxicol Appl Pharmacol237258-2662009. 292. Sun H, Zhou X, Chen H, Li Q, and Costa M. Modulation of histone methylation and MLH1 gene silencing by hexavalent chromium. Toxicol Appl Pharmacol 237: 258–266, 2009.
293.
Sunden SLRenduchintala MSPark EIMiklasz SDGarrow TA. Betaine-homocysteine methyltransferase expression in porcine and human tissues and chromosomal localization of the human geneArch Biochem Biophys345171-1741997. 293. Sunden SL, Renduchintala MS, Park EI, Miklasz SD, and Garrow TA. Betaine-homocysteine methyltransferase expression in porcine and human tissues and chromosomal localization of the human gene. Arch Biochem Biophys 345: 171–174, 1997.
294.
Suzuki MMBird A. DNA methylation landscapes: provocative insights from epigenomicsNat Rev Genet9465-762008. 294. Suzuki MM and Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9: 465–76, 2008.
295.
Szent-Györgyi AElectronic Biology and Cancer: A New Theory of CancerNew York, NYMarcel Dekker1976. 295. Szent-Györgyi A. Electronic Biology and Cancer: A New Theory of Cancer. New York, NY: Marcel Dekker, 1976.
296.
Tahiliani MKoh KPShen YPastor WABandukwala HBrudno YAgarwal SIyer LMLiu DRAravind L et al. Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by the MLL Fusion Partner TET1Science324930-9352009. 296. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, et al. Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by the MLL Fusion Partner TET1. Science 324: 930–935, 2009.
297.
Takeuchi TYamazaki YKatoh-Fukui YTsuchiya RKondo SMotoyama JHigashinakagawa T. Gene trap capture of a novel mouse gene, jumonji, required for neural tube formationGenes Dev91211-12221995. 297. Takeuchi T, Yamazaki Y, Katoh-Fukui Y, Tsuchiya R, Kondo S, Motoyama J, and Higashinakagawa T. Gene trap capture of a novel mouse gene, jumonji, required for neural tube formation. Genes Dev 9: 1211–1222, 1995.
298.
Tal TLSimmons SOSilbajoris RDailey LCho SHRamabhadran RLinak WReed WBromberg PASamet JM. Differential transcriptional regulation of IL-8 expression by human airway epithelial cells exposed to diesel exhaust particlesToxicol Appl Pharmacol24346-542010. 298. Tal TL, Simmons SO, Silbajoris R, Dailey L, Cho SH, Ramabhadran R, Linak W, Reed W, Bromberg PA, and Samet JM. Differential transcriptional regulation of IL-8 expression by human airway epithelial cells exposed to diesel exhaust particles. Toxicol Appl Pharmacol 243: 46–54, 2010.
299.
Tanner KGLandry JSternglanz RDenu JM. Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-riboseProc Natl Acad Sci U S A9714178-141822000. 299. Tanner KG, Landry J, Sternglanz R, and Denu JM. Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc Natl Acad Sci U S A 97: 14178–14182, 2000.
300.
Tanny JCDowd GJHuang JHilz HMoazed D. An enzymatic activity in the yeast Sir2 protein that is essential for gene silencingCell99735-7451999. 300. Tanny JC, Dowd GJ, Huang J, Hilz H, and Moazed D. An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell 99: 735–745, 1999.
301.
Theil ECGoss DJ. Living with iron (and oxygen): questions and answers about iron homeostasisChem Rev1094568-45792009. 301. Theil EC and Goss DJ. Living with iron (and oxygen): questions and answers about iron homeostasis. Chem Rev 109: 4568–4579, 2009.
302.
Thompson PRFast W. Histone citrullination by protein arginine deiminase: is arginine methylation a green light or a roadblock?ACS Chem Biol1433-4412006. 302. Thompson PR and Fast W. Histone citrullination by protein arginine deiminase: is arginine methylation a green light or a roadblock? ACS Chem Biol 1: 433–441, 2006.
303.
Tomasetti MStrafella EStaffolani SSantarelli LNeuzil JGuerrieri R. alpha-Tocopheryl succinate promotes selective cell death induced by vitamin K3 in combination with ascorbateBr J Cancer1021224-12342010. 303. Tomasetti M, Strafella E, Staffolani S, Santarelli L, Neuzil J, and Guerrieri R. alpha-Tocopheryl succinate promotes selective cell death induced by vitamin K3 in combination with ascorbate. Br J Cancer 102: 1224–1234, 2010.
304.
Tretter LAdam-Vizi V. Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stressPhilos Trans R Soc Lond B Biol Sci3602335-23452005. 304. Tretter L and Adam-Vizi V. Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stress. Philos Trans R Soc Lond B Biol Sci 360: 2335–2345, 2005.
305.
Trewick SCHenshaw TFHausinger RPLindahl TSedgwick B. Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damageNature419174-1782002. 305. Trewick SC, Henshaw TF, Hausinger RP, Lindahl T, and Sedgwick B. Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage. Nature 419: 174–178, 2002.
306.
Trewick SCMcLaughlin PJAllshire RC. Methylation: lost in hydroxylation?EMBO Rep6315-3202005. 306. Trewick SC, McLaughlin PJ, and Allshire RC. Methylation: lost in hydroxylation? EMBO Rep 6: 315–320, 2005.
307.
Tsukada YFang JErdjument-Bromage HWarren MEBorchers CHTempst PZhang Y. Histone demethylation by a family of JmjC domain-containing proteinsNature439811-8162006. 307. Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, and Zhang Y. Histone demethylation by a family of JmjC domain-containing proteins. Nature 439: 811–816, 2006.
308.
Tulin AChinenov YSpradling A. Regulation of chromatin structure and gene activity by poly(ADP-ribose) polymerasesCurr Top Dev Biol5655-832003. 308. Tulin A, Chinenov Y, and Spradling A. Regulation of chromatin structure and gene activity by poly(ADP-ribose) polymerases. Curr Top Dev Biol 56: 55–83, 2003.
309.
Tulin ANaumova NMMenon AKSpradling AC. Drosophila poly(ADP-ribose) glycohydrolase mediates chromatin structure and SIR2-dependent silencingGenetics172363-3712006. 309. Tulin A, Naumova NM, Menon AK, and Spradling AC. Drosophila poly(ADP-ribose) glycohydrolase mediates chromatin structure and SIR2-dependent silencing. Genetics 172: 363–371, 2006.
310.
Tulin ASpradling A. Chromatin loosening by poly(ADP)-ribose polymerase (PARP) at Drosophila puff lociScience299560-5622003. 310. Tulin A and Spradling A. Chromatin loosening by poly(ADP)-ribose polymerase (PARP) at Drosophila puff loci. Science 299: 560–562, 2003.
311.
Turunen MPAavik EYla-Herttuala S. Epigenetics and atherosclerosisBiochim Biophys Acta1790886-8912009. 311. Turunen MP, Aavik E, and Yla-Herttuala S. Epigenetics and atherosclerosis. Biochim Biophys Acta 1790: 886–891, 2009.
312.
Ueda KOmachi AKawaichi MHayaishi O. Natural occurrence of poly(ADP-ribosyl) histones in rat liverProc Natl Acad Sci U S A72205-2091975. 312. Ueda K, Omachi A, Kawaichi M, and Hayaishi O. Natural occurrence of poly(ADP-ribosyl) histones in rat liver. Proc Natl Acad Sci U S A 72: 205–209, 1975.
313.
Ueda RSuzuki TMino KTsumoto HNakagawa HHasegawa MSasaki RMizukami TMiyata N. Identification of cell-active lysine specific demethylase 1-selective inhibitorsJ Am Chem Soc13117536-175372009. 313. Ueda R, Suzuki T, Mino K, Tsumoto H, Nakagawa H, Hasegawa M, Sasaki R, Mizukami T, and Miyata N. Identification of cell-active lysine specific demethylase 1-selective inhibitors. J Am Chem Soc 131: 17536–17537, 2009.
314.
Van Schaftingen ERzem RVeiga-da-Cunha M. L: −2-hydroxyglutaric aciduria, a disorder of metabolite repairJ Inherit Metab Dis32135-1422009. 314. Van Schaftingen E, Rzem R, and Veiga-da-Cunha M. L: −2-hydroxyglutaric aciduria, a disorder of metabolite repair. J Inherit Metab Dis 32: 135–142, 2009.
315.
Vander Heiden MGCantley LCThompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferationScience3241029-10332009. 315. Vander Heiden MG, Cantley LC, and Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324: 1029–1033, 2009.
316.
Varambally SCao QMani RSShankar SWang XAteeq BLaxman BCao XJing XRamnarayanan K et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancerScience3221695-16992008. 316. Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, Laxman B, Cao X, Jing X, Ramnarayanan K, et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322: 1695–1699, 2008.
317.
Villagra ACheng FWang HWSuarez IGlozak MMaurin MNguyen DWright KLAtadja PWBhalla K et al. The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune toleranceNat Immunol1092-1002009. 317. Villagra A, Cheng F, Wang HW, Suarez I, Glozak M, Maurin M, Nguyen D, Wright KL, Atadja PW, Bhalla K, et al. The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol 10: 92–100, 2009.
318.
Vissers MCWilkie RP. Ascorbate deficiency results in impaired neutrophil apoptosis and clearance and is associated with up-regulation of hypoxia-inducible factor 1alphaJ Leukoc Biol811236-12442007. 318. Vissers MC and Wilkie RP. Ascorbate deficiency results in impaired neutrophil apoptosis and clearance and is associated with up-regulation of hypoxia-inducible factor 1alpha. J Leukoc Biol 81: 1236–1244, 2007.
319.
Waddington CHThe epigenetics of birdsCambridge,UKCambridge University Press1952. 319. Waddington CH. The epigenetics of birds. Cambridge, UK: Cambridge University Press, 1952.
320.
Wade PAPruss DWolffe AP. Histone acetylation: chromatin in actionTrends Biochem Sci22128-1321997. 320. Wade PA, Pruss D, and Wolffe AP. Histone acetylation: chromatin in action. Trends Biochem Sci 22: 128–132, 1997.
321.
Wamelink MMStruys EAJakobs C. The biochemistry, metabolism and inherited defects of the pentose phosphate pathway: a reviewJ Inherit Metab Dis31703-7172008. 321. Wamelink MM, Struys EA, and Jakobs C. The biochemistry, metabolism and inherited defects of the pentose phosphate pathway: a review. J Inherit Metab Dis 31: 703–717, 2008.
322.
Wang YWysocka JSayegh JLee YHPerlin JRLeonelli LSonbuchner LSMcDonald CHCook RGDou Y et al. Human PAD4 regulates histone arginine methylation levels via demethyliminationScience306279-2832004. 322. Wang Y, Wysocka J, Sayegh J, Lee YH, Perlin JR, Leonelli L, Sonbuchner LS, McDonald CH, Cook RG, Dou Y, et al. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306: 279–283, 2004.
323.
Warburg O. On the origin of cancer cellsScience123309-3141956. 323. Warburg O. On the origin of cancer cells. Science 123: 309–314, 1956.
324.
Warburg OPosener KNegelein E. On the metabolism of carcinoma cellsBiochemische Zeitschrift152309-3441924. 324. Warburg O, Posener K, and Negelein E. On the metabolism of carcinoma cells. Biochemische Zeitschrift 152: 309–344, 1924.
325.
This reference has been deleted. 325. This reference has been deleted.
326.
Wen YDPerissi VStaszewski LMYang WMKrones AGlass CKRosenfeld MGSeto E. The histone deacetylase-3 complex contains nuclear receptor corepressorsProc Natl Acad Sci U S A977202-72072000. 326. Wen YD, Perissi V, Staszewski LM, Yang WM, Krones A, Glass CK, Rosenfeld MG, and Seto E. The histone deacetylase-3 complex contains nuclear receptor corepressors. Proc Natl Acad Sci U S A 97: 7202–7207, 2000.
327.
Wiesen JLTomasi TB. Dicer is regulated by cellular stresses and interferonsMol Immunol461222-12282009. 327. Wiesen JL and Tomasi TB. Dicer is regulated by cellular stresses and interferons. Mol Immunol 46: 1222–1228, 2009.
328.
Witt ODeubzer HEMilde TOehme I. HDAC family: what are the cancer relevant targets?Cancer Lett2778-212009. 328. Witt O, Deubzer HE, Milde T, and Oehme I. HDAC family: what are the cancer relevant targets? Cancer Lett 277: 8–21, 2009.
329.
Wnek SMJensen TJSeverson PLFutscher BWGandolfi AJ. Monomethylarsonous acid produces irreversible events resulting in malignant transformation of a human bladder cell line following 12 weeks of low-level exposureToxicol Sci11644-572010. 329. Wnek SM, Jensen TJ, Severson PL, Futscher BW, and Gandolfi AJ. Monomethylarsonous acid produces irreversible events resulting in malignant transformation of a human bladder cell line following 12 weeks of low-level exposure. Toxicol Sci 116: 44–57, 2010.
330.
Wysocka JAllis CDCoonrod S. Histone arginine methylation and its dynamic regulationFront Biosci11344-3552006. 330. Wysocka J, Allis CD, and Coonrod S. Histone arginine methylation and its dynamic regulation. Front Biosci 11: 344–355, 2006.
331.
Yamakuchi MFerlito MLowenstein CJ. miR-34a repression of SIRT1 regulates apoptosisProc Natl Acad Sci U S A10513421-134262008. 331. Yamakuchi M, Ferlito M, and Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A 105: 13421–13426, 2008.
332.
Yan YKluz TZhang PChen HBCosta M. Analysis of specific lysine histone H3 and H4 acetylation and methylation status in clones of cells with a gene silenced by nickel exposureToxicol Appl Pharmacol190272-2772003. 332. Yan Y, Kluz T, Zhang P, Chen HB, and Costa M. Analysis of specific lysine histone H3 and H4 acetylation and methylation status in clones of cells with a gene silenced by nickel exposure. Toxicol Appl Pharmacol 190: 272–277, 2003.
333.
Yang SRChida ASBauter MRShafiq NSeweryniak KMaggirwar SBKilty IRahman I. Cigarette smoke induces proinflammatory cytokine release by activation of NF-kappaB and posttranslational modifications of histone deacetylase in macrophagesAm J Physiol Lung Cell Mol Physiol291L46-L572006. 333. Yang SR, Chida AS, Bauter MR, Shafiq N, Seweryniak K, Maggirwar SB, Kilty I, and Rahman I. Cigarette smoke induces proinflammatory cytokine release by activation of NF-kappaB and posttranslational modifications of histone deacetylase in macrophages. Am J Physiol Lung Cell Mol Physiol 291: L46–L57, 2006.
334.
Ye HRouault TA. Human iron-sulfur cluster assembly, cellular iron homeostasis, and diseaseBiochemistry494945-49562010. 334. Ye H and Rouault TA. Human iron-sulfur cluster assembly, cellular iron homeostasis, and disease. Biochemistry 49: 4945–4956, 2010.
335.
Yideng JJianzhong ZYing HJuan SJinge ZShenglan WXiaoqun HShuren W. Homocysteine-mediated expression of SAHH, DNMTs, MBD2, and DNA hypomethylation potential pathogenic mechanism in VSMCsDNA Cell Biol26603-6112007. 335. Yideng J, Jianzhong Z, Ying H, Juan S, Jinge Z, Shenglan W, Xiaoqun H, and Shuren W. Homocysteine-mediated expression of SAHH, DNMTs, MBD2, and DNA hypomethylation potential pathogenic mechanism in VSMCs. DNA Cell Biol 26: 603–611, 2007.
336.
Yideng JZhihong LJiantuan XJun CGuizhong LShuren W. Homocysteine-mediated PPARalpha,gamma DNA methylation and its potential pathogenic mechanism in monocytesDNA Cell Biol27143-1502008. 336. Yideng J, Zhihong L, Jiantuan X, Jun C, Guizhong L, and Shuren W. Homocysteine-mediated PPARalpha,gamma DNA methylation and its potential pathogenic mechanism in monocytes. DNA Cell Biol 27: 143–150, 2008.
337.
Yuan JPu MZhang ZLou Z. Histone H3-K56 acetylation is important for genomic stability in mammalsCell Cycle81747-17532009. 337. Yuan J, Pu M, Zhang Z, and Lou Z. Histone H3-K56 acetylation is important for genomic stability in mammals. Cell Cycle 8: 1747–1753, 2009.
338.
Zakhari S. Overview: how is alcohol metabolized by the body?Alcohol Res Health29245-2542006. 338. Zakhari S. Overview: how is alcohol metabolized by the body? Alcohol Res Health 29: 245–254, 2006.
339.
Zardo GCaiafa P. The unmethylated state of CpG islands in mouse fibroblasts depends on the poly(ADP-ribosyl)ation processJ Biol Chem27316517-165201998. 339. Zardo G and Caiafa P. The unmethylated state of CpG islands in mouse fibroblasts depends on the poly(ADP-ribosyl)ation process. J Biol Chem 273: 16517–16520, 1998.
340.
Zardo GMarenzi SPerilli MCaiafa P. Inhibition of poly(ADP-ribosyl)ation introduces an anomalous methylation pattern in transfected foreign DNAFASEB J131518-15221999. 340. Zardo G, Marenzi S, Perilli M, and Caiafa P. Inhibition of poly(ADP-ribosyl)ation introduces an anomalous methylation pattern in transfected foreign DNA. FASEB J 13: 1518–1522, 1999.
341.
Zardo GReale ADe Matteis GBuontempo SCaiafa P. A role for poly(ADP-ribosyl)ation in DNA methylationBiochem Cell Biol81197-2082003. 341. Zardo G, Reale A, De Matteis G, Buontempo S, and Caiafa P. A role for poly(ADP-ribosyl)ation in DNA methylation. Biochem Cell Biol 81: 197–208, 2003.
342.
Zardo GReale APassananti CPradhan SBuontempo SDe Matteis GAdams RLCaiafa P. Inhibition of poly(ADP-ribosyl)ation induces DNA hypermethylation: a possible molecular mechanismFASEB J161319-13212002. 342. Zardo G, Reale A, Passananti C, Pradhan S, Buontempo S, De Matteis G, Adams RL, and Caiafa P. Inhibition of poly(ADP-ribosyl)ation induces DNA hypermethylation: a possible molecular mechanism. FASEB J 16: 1319–1321, 2002.
343.
Zawia NHLahiri DKCardozo-Pelaez F. Epigenetics, oxidative stress, and Alzheimer diseaseFree Radic Biol Med461241-12492009. 343. Zawia NH, Lahiri DK, and Cardozo-Pelaez F. Epigenetics, oxidative stress, and Alzheimer disease. Free Radic Biol Med 46: 1241–1249, 2009.
344.
Zhang ASEnns CA. Molecular mechanisms of normal iron homeostasisHematol Am Soc Hematol Educ Program207-2142009. 344. Zhang AS and Enns CA. Molecular mechanisms of normal iron homeostasis. Hematol Am Soc Hematol Educ Program 207–214, 2009.
345.
Zhang J. Are poly(ADP-ribosyl)ation by PARP-1 and deacetylation by Sir2 linked?Bioessays25808-8142003. 345. Zhang J. Are poly(ADP-ribosyl)ation by PARP-1 and deacetylation by Sir2 linked? Bioessays 25: 808–814, 2003.
346.
Zhang QPiston DWGoodman RH. Regulation of corepressor function by nuclear NADHScience2951895-18972002. 346. Zhang Q, Piston DW, and Goodman RH. Regulation of corepressor function by nuclear NADH. Science 295: 1895–1897, 2002.
347.
Zhang TBerrocal JGFrizzell KMGamble MJDuMond MEKrishnakumar RYang TSauve AAKraus WL. Enzymes in the NAD+ salvage pathway regulate SIRT1 activity at target gene promotersJ Biol Chem28420408-204172009. 347. Zhang T, Berrocal JG, Frizzell KM, Gamble MJ, DuMond ME, Krishnakumar R, Yang T, Sauve AA, and Kraus WL. Enzymes in the NAD+ salvage pathway regulate SIRT1 activity at target gene promoters. J Biol Chem 284: 20408–20417, 2009.
348.
Zhang YMarcillat OGiulivi CErnster LDavies KJ. The oxidative inactivation of mitochondrial electron transport chain components and ATPaseJ Biol Chem26516330-163361990. 348. Zhang Y, Marcillat O, Giulivi C, Ernster L, and Davies KJ. The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J Biol Chem 265: 16330–16336, 1990.
349.
Zhang ZRen JHarlos KMcKinnon CHClifton IJSchofield CJ. Crystal structure of a clavaminate synthase-Fe(II)-2-oxoglutarate-substrate-NO complex: evidence for metal centered rearrangementsFEBS Lett5177-122002. 349. Zhang Z, Ren J, Harlos K, McKinnon CH, Clifton IJ, and Schofield CJ. Crystal structure of a clavaminate synthase-Fe(II)-2-oxoglutarate-substrate-NO complex: evidence for metal centered rearrangements. FEBS Lett 517: 7–12, 2002.
350.
Zhao SLin YXu WJiang WZha ZWang PYu WLi ZGong LPeng Y et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alphaScience324261-2652009. 350. Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P, Yu W, Li Z, Gong L, Peng Y, et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 324: 261–265, 2009.
351.
Zhou XLi QArita ASun HCosta M. Effects of nickel, chromate, and arsenite on histone 3 lysine methylationToxicol Appl Pharmacol23678-842009. 351. Zhou X, Li Q, Arita A, Sun H, and Costa M. Effects of nickel, chromate, and arsenite on histone 3 lysine methylation. Toxicol Appl Pharmacol 236: 78–84, 2009.
352.
Zhu JK. Active DNA demethylation mediated by DNA glycosylasesAnnu Rev Genet43143-1662009. 352. Zhu JK. Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet 43: 143–166, 2009.

Information & Authors

Information

Published In

cover image Antioxidants & Redox Signaling
Antioxidants & Redox Signaling
Volume 15Issue Number 2July 15, 2011
Pages: 551 - 589
PubMed: 20919933

History

Published in print: July 15, 2011
Published online: 20 June 2011
Published ahead of print: 5 February 2011
Published ahead of production: 4 October 2010
Accepted: 2 October 2010
Revision received: 1 October 2010
Received: 19 July 2010

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Anthony R. Cyr
Free Radical and Radiation Biology Program, Department of Radiation Oncology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa.
Frederick E. Domann
Free Radical and Radiation Biology Program, Department of Radiation Oncology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa.

Notes

Address correspondence to:Dr. Frederick E. DomannFree Radical and Radiation Biology ProgramDepartment of Radiation OncologyThe University of IowaB180 Medical LaboratoriesIowa City, IA 52242-1181E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top