<iframe src="//www.googletagmanager.com/ns.html?id=GTM-5TSRKG" height="0" width="0" style="display: none; visibility: hidden">
Review Article
No access
Published Online: 25 September 2012

Redox Proteomics in Selected Neurodegenerative Disorders: From Its Infancy to Future Applications

Publication: Antioxidants & Redox Signaling
Volume 17, Issue Number 11

Abstract

Several studies demonstrated that oxidative damage is a characteristic feature of many neurodegenerative diseases. The accumulation of oxidatively modified proteins may disrupt cellular functions by affecting protein expression, protein turnover, cell signaling, and induction of apoptosis and necrosis, suggesting that protein oxidation could have both physiological and pathological significance. For nearly two decades, our laboratory focused particular attention on studying oxidative damage of proteins and how their chemical modifications induced by reactive oxygen species/reactive nitrogen species correlate with pathology, biochemical alterations, and clinical presentations of Alzheimer's disease. This comprehensive article outlines basic knowledge of oxidative modification of proteins and lipids, followed by the principles of redox proteomics analysis, which also involve recent advances of mass spectrometry technology, and its application to selected age-related neurodegenerative diseases. Redox proteomics results obtained in different diseases and animal models thereof may provide new insights into the main mechanisms involved in the pathogenesis and progression of oxidative-stress-related neurodegenerative disorders. Redox proteomics can be considered a multifaceted approach that has the potential to provide insights into the molecular mechanisms of a disease, to find disease markers, as well as to identify potential targets for drug therapy. Considering the importance of a better understanding of the cause/effect of protein dysfunction in the pathogenesis and progression of neurodegenerative disorders, this article provides an overview of the intrinsic power of the redox proteomics approach together with the most significant results obtained by our laboratory and others during almost 10 years of research on neurodegenerative disorders since we initiated the field of redox proteomics. Antioxid. Redox Signal. 17, 1610–1655.

Abstract

I. Introduction
II. Protein (/Lipid) Oxidation and Protein Dysfunction
A. Protein carbonyls
B. Protein nitration
1. Peroxynitrite (ONOO)
2. Nitrogen dioxide (NO2)
C. HNE adduction to proteins
D. Importance of clearance and detoxification systems
1. The proteasome, parkin, ubiquitin carboxy-terminal hydrolase-L1, and HSPs
2. Superoxide dismutase
3. Catalase
4. Peroxiredoxins
5. Trx and Trx reductase
6. Glutathione reductase
7. Vitamins in neurodegeneration
8. Involvement of iron in neurodegeneration
E. Role of iron in neurodegeneration
1. Fe homeostasis in AD
2. Fe homeostasis in PD
3. Fe homeostasis in ALS
4. Fe homeostasis in HD
F. Some known consequences of protein oxidation
III. Overview of Redox Proteomics
A. Global, gel-based approaches
B. Targeted, gel-free approach
1. Enrichment of PCO modified proteins
2. Enrichment of HNE modified proteins
3. Enrichment of 3-NT modified proteins
IV. Application of Redox Proteomics to Selected Neurodegenerative Disorders
A. Alzheimer's disease
1. PCO in AD
2. Identification of carbonylated proteins in brain of subjects with AD
a. Sample: the brain
b. Energy dysfunction
c. Excitotoxicity
d. Proteosomal dysfunction
e. Neuritic abnormalities
f. APP regulation, tau hyperphosphorylation, and cell cycle regulation
g. Synaptic abnormalities and LTP
h. pH maintenance
i. Mitochondrial abnormalities
3. Carbonylated proteins in brain of subjects with amnestic MCI
4. EAD carbonylated proteins
5. PCAD vs. amnestic MCI protein carbonylation in brain
6. Protein-bound HNE in brain and progression of Alzheimer's disease
7. Protein-bound 3-NT in brain and progression of Alzheimer's disease
8. Nitrated brain proteins in MCI
9. Nitrated proteins in EAD
B. Parkinson disease
1. Redox proteomics in PD
C. Amyotrophic lateral sclerosis
1. Redox proteomics studies in ALS transgenic mice
D. Huntington disease
1. Redox proteomics-transgenic mouse model of HD
2. Proteomics of HD brain
E. Down syndrome
1. Redox proteomics in DS transgenic mice
V. Conclusions and Future Directions

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Abboud KBassila JCGhali-Ghoul RSabra R. Temporal changes in vascular reactivity in early diabetes mellitus in rats: role of changes in endothelial factors and in phosphodiesterase activityAm J Physiol Heart Circ Physiol297H836-H8452009. 1. Abboud K, Bassila JC, Ghali-Ghoul R, and Sabra R. Temporal changes in vascular reactivity in early diabetes mellitus in rats: role of changes in endothelial factors and in phosphodiesterase activity. Am J Physiol Heart Circ Physiol 297: H836–H845, 2009.
2.
Abe KPan LHWatanabe MKato TItoyama Y. Induction of nitrotyrosine-like immunoreactivity in the lower motor neuron of amyotrophic lateral sclerosisNeurosci Lett199152-1541995. 2. Abe K, Pan LH, Watanabe M, Kato T, and Itoyama Y. Induction of nitrotyrosine-like immunoreactivity in the lower motor neuron of amyotrophic lateral sclerosis. Neurosci Lett 199: 152–154, 1995.
3.
Abe KPan LHWatanabe MKonno HKato TItoyama Y. Upregulation of protein-tyrosine nitration in the anterior horn cells of amyotrophic lateral sclerosisNeurol Res19124-1281997. 3. Abe K, Pan LH, Watanabe M, Konno H, Kato T, and Itoyama Y. Upregulation of protein-tyrosine nitration in the anterior horn cells of amyotrophic lateral sclerosis. Neurol Res 19: 124–128, 1997.
4.
Abello NBarroso BKerstjens HAPostma DSBischoff R. Chemical labeling and enrichment of nitrotyrosine-containing peptidesTalanta801503-15122010. 4. Abello N, Barroso B, Kerstjens HA, Postma DS, and Bischoff R. Chemical labeling and enrichment of nitrotyrosine-containing peptides. Talanta 80: 1503–1512, 2010.
5.
Adibhatla RMHatcher JF. Lipid oxidation and peroxidation in CNS health and disease: from molecular mechanisms to therapeutic opportunitiesAntioxid Redox Signal12125-1692010. 5. Adibhatla RM and Hatcher JF. Lipid oxidation and peroxidation in CNS health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 12: 125–169, 2010.
6.
Aksenov MAksenova MButterfield DAMarkesbery WR. Oxidative modification of creatine kinase BB in Alzheimer's disease brainJ Neurochem742520-25272000. 6. Aksenov M, Aksenova M, Butterfield DA, and Markesbery WR. Oxidative modification of creatine kinase BB in Alzheimer's disease brain. J Neurochem 74: 2520–2527, 2000.
7.
Aksenov MYTucker HMNair PAksenova MVButterfield DAEstus SMarkesbery WR. The expression of key oxidative stress-handling genes in different brain regions in Alzheimer's diseaseJ Mol Neurosci11151-1641998. 7. Aksenov MY, Tucker HM, Nair P, Aksenova MV, Butterfield DA, Estus S, and Markesbery WR. The expression of key oxidative stress-handling genes in different brain regions in Alzheimer's disease. J Mol Neurosci 11: 151–164, 1998.
8.
Aksenova MVBurbaeva G. [BB creatine kinase isoenzyme activity in the blood serum of patients with senile dementia, Alzheimer's disease and schizophrenia]Zh Nevropatol Psikhiatr Im S S Korsakova89113-1161989. 8. Aksenova MV and Burbaeva G. [BB creatine kinase isoenzyme activity in the blood serum of patients with senile dementia, Alzheimer's disease and schizophrenia]. Zh Nevropatol Psikhiatr Im S S Korsakova 89: 113–116, 1989.
9.
Alam ZIJenner ADaniel SELees AJCairns NMarsden CDJenner PHalliwell B. Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigraJ Neurochem691196-12031997. 9. Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, Marsden CD, Jenner P, and Halliwell B. Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem 69: 1196–1203, 1997.
10.
Aluise CDRobinson RACai JPierce WMMarkesbery WRButterfield DA. Redox proteomics analysis of brains from subjects with amnestic mild cognitive impairment compared to brains from subjects with preclinical Alzheimer's disease: insights into memory loss in MCIJ Alzheimers Dis23257-2692011. 10. Aluise CD, Robinson RA, Cai J, Pierce WM, Markesbery WR, and Butterfield DA. Redox proteomics analysis of brains from subjects with amnestic mild cognitive impairment compared to brains from subjects with preclinical Alzheimer's disease: insights into memory loss in MCI. J Alzheimers Dis 23: 257–269, 2011.
11.
Alvarez BRadi R. Peroxynitrite reactivity with amino acids and proteinsAmino Acids25295-3112003. 11. Alvarez B and Radi R. Peroxynitrite reactivity with amino acids and proteins. Amino Acids 25: 295–311, 2003.
12.
Andersen JK. Iron dysregulation and Parkinson's diseaseJ Alzheimers Dis6S47-S522004. 12. Andersen JK. Iron dysregulation and Parkinson's disease. J Alzheimers Dis 6: S47–S52, 2004.
13.
Andersen PM. Genetic factors in the early diagnosis of ALSAmyotroph Lateral Scler Other Motor Neuron Disord1Suppl 1S31-S422000. 13. Andersen PM. Genetic factors in the early diagnosis of ALS. Amyotroph Lateral Scler Other Motor Neuron Disord 1 Suppl 1: S31–S42, 2000.
14.
Andreassen OADedeoglu AFerrante RJJenkins BGFerrante KLThomas MFriedlich ABrowne SESchilling GBorchelt DRHersch SMRoss CABeal MF. Creatine increase survival and delays motor symptoms in a transgenic animal model of Huntington's diseaseNeurobiol Dis8479-4912001. 14. Andreassen OA, Dedeoglu A, Ferrante RJ, Jenkins BG, Ferrante KL, Thomas M, Friedlich A, Browne SE, Schilling G, Borchelt DR, Hersch SM, Ross CA, and Beal MF. Creatine increase survival and delays motor symptoms in a transgenic animal model of Huntington's disease. Neurobiol Dis 8: 479–491, 2001.
15.
Andrus PKFleck TJGurney MEHall ED. Protein oxidative damage in a transgenic mouse model of familial amyotrophic lateral sclerosisJ Neurochem712041-20481998. 15. Andrus PK, Fleck TJ, Gurney ME, and Hall ED. Protein oxidative damage in a transgenic mouse model of familial amyotrophic lateral sclerosis. J Neurochem 71: 2041–2048, 1998.
16.
Anilkumar NParsons MMonk RNg TAdams JC. Interaction of fascin and protein kinase C alpha: a novel intersection in cell adhesion and motilityEMBO J225390-54022003. 16. Anilkumar N, Parsons M, Monk R, Ng T, and Adams JC. Interaction of fascin and protein kinase C alpha: a novel intersection in cell adhesion and motility. EMBO J 22: 5390–5402, 2003.
17.
Ansari MAJoshi GHuang QOpii WOAbdul HMSultana RButterfield DA. In vivo administration of D609 leads to protection of subsequently isolated gerbil brain mitochondria subjected to in vitro oxidative stress induced by amyloid beta-peptide and other oxidative stressors: relevance to Alzheimer's disease and other oxidative stress-related neurodegenerative disordersFree Radic Biol Med411694-17032006. 17. Ansari MA, Joshi G, Huang Q, Opii WO, Abdul HM, Sultana R, and Butterfield DA. In vivo administration of D609 leads to protection of subsequently isolated gerbil brain mitochondria subjected to in vitro oxidative stress induced by amyloid beta-peptide and other oxidative stressors: relevance to Alzheimer's disease and other oxidative stress-related neurodegenerative disorders. Free Radic Biol Med 41: 1694–1703, 2006.
18.
Ansari MAScheff SW. Oxidative stress in the progression of Alzheimer disease in the frontal cortexJ Neuropathol Exp Neurol69155-1672010. 18. Ansari MA and Scheff SW. Oxidative stress in the progression of Alzheimer disease in the frontal cortex. J Neuropathol Exp Neurol 69: 155–167, 2010.
19.
Arbuzova SHutchin TCuckle H. Mitochondrial dysfunction and Down's syndromeBioessays24681-6842002. 19. Arbuzova S, Hutchin T, and Cuckle H. Mitochondrial dysfunction and Down's syndrome. Bioessays 24: 681–684, 2002.
20.
Arendt T. Synaptic plasticity and cell cycle activation in neurons are alternative effector pathways: the “Dr. Jekyll and Mr. Hyde concept” of Alzheimer's disease or the yin and yang of neuroplasticityProg Neurobiol7183-2482003. 20. Arendt T. Synaptic plasticity and cell cycle activation in neurons are alternative effector pathways: the “Dr. Jekyll and Mr. Hyde concept” of Alzheimer's disease or the yin and yang of neuroplasticity. Prog Neurobiol 71: 83–248, 2003.
21.
Arima KOgawa MSunohara NNishio TShimomura YHirai SEto K. Immunohistochemical and ultrastructural characterization of ubiquitinated eosinophilic fibrillary neuronal inclusions in sporadic amyotrophic lateral sclerosisActa Neuropathol9675-851998. 21. Arima K, Ogawa M, Sunohara N, Nishio T, Shimomura Y, Hirai S, and Eto K. Immunohistochemical and ultrastructural characterization of ubiquitinated eosinophilic fibrillary neuronal inclusions in sporadic amyotrophic lateral sclerosis. Acta Neuropathol 96: 75–85, 1998.
22.
Aulak KSKoeck TCrabb JWStuehr DJ. Proteomic method for identification of tyrosine-nitrated proteinsMethods Mol Biol279151-1652004. 22. Aulak KS, Koeck T, Crabb JW, and Stuehr DJ. Proteomic method for identification of tyrosine-nitrated proteins. Methods Mol Biol 279: 151–165, 2004.
23.
Bader Lange MLCenini GPiroddi MAbdul HMSultana RGalli FMemo MButterfield DA. Loss of phospholipid asymmetry and elevated brain apoptotic protein levels in subjects with amnestic mild cognitive impairment and Alzheimer diseaseNeurobiol Dis29456-4642008. 23. Bader Lange ML, Cenini G, Piroddi M, Abdul HM, Sultana R, Galli F, Memo M, and Butterfield DA. Loss of phospholipid asymmetry and elevated brain apoptotic protein levels in subjects with amnestic mild cognitive impairment and Alzheimer disease. Neurobiol Dis 29: 456–464, 2008.
24.
Bader Lange MLSt. Clair DMarkesbery WRStudzinski CMMurphy MPButterfield DA. Age-related loss of phospholipid asymmetry in APP(NLh)/APP(NLh) x PS-1(P264L)/PS-1(P264L) human double mutant knock-in mice: relevance to Alzheimer diseaseNeurobiol Dis38104-1152010. 24. Bader Lange ML, St. Clair D, Markesbery WR, Studzinski CM, Murphy MP, and Butterfield DA. Age-related loss of phospholipid asymmetry in APP(NLh)/APP(NLh) x PS-1(P264L)/PS-1(P264L) human double mutant knock-in mice: relevance to Alzheimer disease. Neurobiol Dis 38: 104–115, 2010.
25.
Baillet AChanteperdrix VTrocme CCasez PGarrel CBesson G. The role of oxidative stress in amyotrophic lateral sclerosis and Parkinson's diseaseNeurochem Res351530-15372010. 25. Baillet A, Chanteperdrix V, Trocme C, Casez P, Garrel C, and Besson G. The role of oxidative stress in amyotrophic lateral sclerosis and Parkinson's disease. Neurochem Res 35: 1530–1537, 2010.
26.
Balcz BKirchner LCairns NFountoulakis MLubec G. Increased brain protein levels of carbonyl reductase and alcohol dehydrogenase in Down syndrome and Alzheimer's diseaseJ Neural Transm Suppl61193-2012001. 26. Balcz B, Kirchner L, Cairns N, Fountoulakis M, and Lubec G. Increased brain protein levels of carbonyl reductase and alcohol dehydrogenase in Down syndrome and Alzheimer's disease. J Neural Transm Suppl (61): 193–201, 2001.
27.
Baldeiras ISantana IProenca MTGarrucho MHPascoal RRodrigues ADuro DOliveira CR. Peripheral oxidative damage in mild cognitive impairment and mild Alzheimer's diseaseJ Alzheimers Dis15117-1282008. 27. Baldeiras I, Santana I, Proenca MT, Garrucho MH, Pascoal R, Rodrigues A, Duro D, and Oliveira CR. Peripheral oxidative damage in mild cognitive impairment and mild Alzheimer's disease. J Alzheimers Dis 15: 117–128, 2008.
28.
Baloyannis SJCosta VMauroudis IPsaroulis DManolides SLManolides LS. Dendritic and spinal pathology in the acoustic cortex in Alzheimer's disease: morphological and morphometric estimation by Golgi technique and electron microscopyActa Otolaryngol127351-3542007. 28. Baloyannis SJ, Costa V, Mauroudis I, Psaroulis D, Manolides SL, and Manolides LS. Dendritic and spinal pathology in the acoustic cortex in Alzheimer's disease: morphological and morphometric estimation by Golgi technique and electron microscopy. Acta Otolaryngol 127: 351–354, 2007.
29.
Barber SCShaw PJ. Oxidative stress in ALS: key role in motor neuron injury and therapeutic targetFree Radic Biol Med48629-6412010. 29. Barber SC and Shaw PJ. Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic Biol Med 48: 629–641, 2010.
30.
Bartels TChoi JGSelkoe DJ. Alpha-Synuclein occurs physiologically as a helically folded tetramer that resists aggregationNature477107-1102011. 30. Bartels T, Choi JG, and Selkoe DJ. Alpha-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477: 107–110, 2011.
31.
Basso MGiraudo SCorpillo DBergamasco BLopiano LFasano M. Proteome analysis of human substantia nigra in Parkinson's diseaseProteomics43943-39522004. 31. Basso M, Giraudo S, Corpillo D, Bergamasco B, Lopiano L, and Fasano M. Proteome analysis of human substantia nigra in Parkinson's disease. Proteomics 4: 3943–3952, 2004.
32.
Basso MSamengo GNardo GMassignan TD'Alessandro GTartari SCantoni LMarino MCheroni CDe Biasi SGiordana MTStrong MJEstevez AGSalmona MBendotti CBonetto V. Characterization of detergent-insoluble proteins in ALS indicates a causal link between nitrative stress and aggregation in pathogenesisPLoS One4e81302009. 32. Basso M, Samengo G, Nardo G, Massignan T, D'Alessandro G, Tartari S, Cantoni L, Marino M, Cheroni C, De Biasi S, Giordana MT, Strong MJ, Estevez AG, Salmona M, Bendotti C, and Bonetto V. Characterization of detergent-insoluble proteins in ALS indicates a causal link between nitrative stress and aggregation in pathogenesis. PLoS One 4: e8130, 2009.
33.
Battaini FPascale ALucchi LPasinetti GMGovoni S. Protein kinase C anchoring deficit in postmortem brains of Alzheimer's disease patientsExp Neurol159559-5641999. 33. Battaini F, Pascale A, Lucchi L, Pasinetti GM, and Govoni S. Protein kinase C anchoring deficit in postmortem brains of Alzheimer's disease patients. Exp Neurol 159: 559–564, 1999.
34.
Baty JWHampton MBWinterbourn CC. Detection of oxidant sensitive thiol proteins by fluorescence labeling and two-dimensional electrophoresisProteomics21261-12662002. 34. Baty JW, Hampton MB, and Winterbourn CC. Detection of oxidant sensitive thiol proteins by fluorescence labeling and two-dimensional electrophoresis. Proteomics 2: 1261–1266, 2002.
35.
Bayir HKagan VEClark RSJanesko-Feldman KRafikov RHuang ZZhang XVagni VBilliar TRKochanek PM. Neuronal NOS-mediated nitration and inactivation of manganese superoxide dismutase in brain after experimental and human brain injuryJ Neurochem101168-1812007. 35. Bayir H, Kagan VE, Clark RS, Janesko-Feldman K, Rafikov R, Huang Z, Zhang X, Vagni V, Billiar TR, and Kochanek PM. Neuronal NOS-mediated nitration and inactivation of manganese superoxide dismutase in brain after experimental and human brain injury. J Neurochem 101: 168–181, 2007.
36.
Beal MFFerrante RJ. Experimental therapeutics in transgenic mouse models of Huntington's diseaseNat Rev Neurosci5373-3842004. 36. Beal MF and Ferrante RJ. Experimental therapeutics in transgenic mouse models of Huntington's disease. Nat Rev Neurosci 5: 373–384, 2004.
37.
Beasley AAnderson CMcArthur JSacktor NNath ACotter JR. Characterization of nitrotyrosine-modified proteins in cerebrospinal fluidClin Proteomics629-412010. 37. Beasley A, Anderson C, McArthur J, Sacktor N, Nath A, and Cotter JR. Characterization of nitrotyrosine-modified proteins in cerebrospinal fluid. Clin Proteomics 6: 29–41, 2010.
38.
Beckman JSChen JCrow JPYe YZ. Reactions of nitric oxide, superoxide and peroxynitrite with superoxide dismutase in neurodegenerationProg Brain Res103371-3801994. 38. Beckman JS, Chen J, Crow JP, and Ye YZ. Reactions of nitric oxide, superoxide and peroxynitrite with superoxide dismutase in neurodegeneration. Prog Brain Res 103: 371–380, 1994.
39.
Berg DYoudim MB. Role of iron in neurodegenerative disordersTop Magn Reson Imaging175-172006. 39. Berg D and Youdim MB. Role of iron in neurodegenerative disorders. Top Magn Reson Imaging 17: 5–17, 2006.
40.
Berlett BSStadtman ER. Protein oxidation in aging, disease, and oxidative stressJ Biol Chem27220313-203161997. 40. Berlett BS and Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272: 20313–20316, 1997.
41.
Bigl MBruckner MKArendt TBigl VEschrich K. Activities of key glycolytic enzymes in the brains of patients with Alzheimer's diseaseJ Neural Trans106499-5111999. 41. Bigl M, Bruckner MK, Arendt T, Bigl V, and Eschrich K. Activities of key glycolytic enzymes in the brains of patients with Alzheimer's disease. J Neural Trans 106: 499–511, 1999.
42.
Bogdanov MBAndreassen OADedeoglu AFerrante RJBeal MF. Increased oxidative damage to DNA in a transgenic mouse model of Huntington's diseaseJ Neurochem791246-12492001. 42. Bogdanov MB, Andreassen OA, Dedeoglu A, Ferrante RJ, and Beal MF. Increased oxidative damage to DNA in a transgenic mouse model of Huntington's disease. J Neurochem 79: 1246–1249, 2001.
43.
Bogdanovic NZilmer MZilmer KRehema AKarelson E. The Swedish APP670/671 Alzheimer's disease mutation: the first evidence for strikingly increased oxidative injury in the temporal inferior cortexDement Geriatr Cogn Disord12364-3702001. 43. Bogdanovic N, Zilmer M, Zilmer K, Rehema A, and Karelson E. The Swedish APP670/671 Alzheimer's disease mutation: the first evidence for strikingly increased oxidative injury in the temporal inferior cortex. Dement Geriatr Cogn Disord 12: 364–370, 2001.
44.
Bommer UABorovjagin AVGreagg MAJeffrey IWRussell PLaing KGLee MClemens MJ. The mRNA of the translationally controlled tumor protein P23/TCTP is a highly structured RNA, which activates the dsRNA-dependent protein kinase PKRRNA8478-4962002. 44. Bommer UA, Borovjagin AV, Greagg MA, Jeffrey IW, Russell P, Laing KG, Lee M, and Clemens MJ. The mRNA of the translationally controlled tumor protein P23/TCTP is a highly structured RNA, which activates the dsRNA-dependent protein kinase PKR. RNA 8: 478–496, 2002.
45.
Bonilla EEstevez JSuarez HMorales LMChacin de Bonilla LVillalobos RDavila JO. Serum ferritin deficiency in Huntington's disease patientsNeurosci Lett12922-241991. 45. Bonilla E, Estevez J, Suarez H, Morales LM, Chacin de Bonilla L, Villalobos R, and Davila JO. Serum ferritin deficiency in Huntington's disease patients. Neurosci Lett 129: 22–24, 1991.
46.
Bonini NMGiasson BI. Snaring the function of alpha-synucleinCell123359-3612005. 46. Bonini NM and Giasson BI. Snaring the function of alpha-synuclein. Cell 123: 359–361, 2005.
47.
Bosco DAMorfini GKarabacak NMSong YGros-Louis FPasinelli PGoolsby HFontaine BALemay NMcKenna-Yasek DFrosch MPAgar JNJulien JPBrady STBrown RH Jr. Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALSNat Neurosci131396-14032010. 47. Bosco DA, Morfini G, Karabacak NM, Song Y, Gros-Louis F, Pasinelli P, Goolsby H, Fontaine BA, Lemay N, McKenna-Yasek D, Frosch MP, Agar JN, Julien JP, Brady ST, and Brown RH, Jr. Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nat Neurosci 13: 1396–1403, 2010.
48.
Bosetti FBrizzi FBarogi SMancuso MSiciliano GTendi EAMurri LRapoport SISolaini G. Cytochrome c oxidase and mitochondrial F1F0-ATPase (ATP synthase) activities in platelets and brain from patients with Alzheimer's diseaseNeurobiol Aging23371-3762002. 48. Bosetti F, Brizzi F, Barogi S, Mancuso M, Siciliano G, Tendi EA, Murri L, Rapoport SI, and Solaini G. Cytochrome c oxidase and mitochondrial F1F0-ATPase (ATP synthase) activities in platelets and brain from patients with Alzheimer's disease. Neurobiol Aging 23: 371–376, 2002.
49.
Bowling ACSchulz JBBrown RH Jr.Beal MF. Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosisJ Neurochem612322-23251993. 49. Bowling AC, Schulz JB, Brown RH, Jr., and Beal MF. Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J Neurochem 61: 2322–2325, 1993.
50.
Boyd-Kimball DCastegna ASultana RPoon HFPetroze RLynn BCKlein JBButterfield DA. Proteomic identification of proteins oxidized by Abeta(1–42) in synaptosomes: implications for Alzheimer's diseaseBrain Res1044206-2152005. 50. Boyd-Kimball D, Castegna A, Sultana R, Poon HF, Petroze R, Lynn BC, Klein JB, and Butterfield DA. Proteomic identification of proteins oxidized by Abeta(1–42) in synaptosomes: implications for Alzheimer's disease. Brain Res 1044: 206–215, 2005.
51.
Bradley MAMarkesbery WRLovell MA. Increased levels of 4-hydroxynonenal and acrolein in the brain in preclinical Alzheimer diseaseFree Radic Biol Med481570-15762010. 51. Bradley MA, Markesbery WR, and Lovell MA. Increased levels of 4-hydroxynonenal and acrolein in the brain in preclinical Alzheimer disease. Free Radic Biol Med 48: 1570–1576, 2010.
52.
Browne SE. Mitochondria and Huntington's disease pathogenesis: insight from genetic and chemical modelsAnn N Y Acad Sci1147358-3822008. 52. Browne SE. Mitochondria and Huntington's disease pathogenesis: insight from genetic and chemical models. Ann N Y Acad Sci 1147: 358–382, 2008.
53.
Browne SEBeal MF. Oxidative damage in Huntington's disease pathogenesisAntioxid Redox Signal82061-20732006. 53. Browne SE and Beal MF. Oxidative damage in Huntington's disease pathogenesis. Antioxid Redox Signal 8: 2061–2073, 2006.
54.
Browne SEBowling ACBaik MJGurney MBrown RH Jr.Beal MF. Metabolic dysfunction in familial, but not sporadic, amyotrophic lateral sclerosisJ Neurochem71281-2871998. 54. Browne SE, Bowling AC, Baik MJ, Gurney M, Brown RH, Jr., and Beal MF. Metabolic dysfunction in familial, but not sporadic, amyotrophic lateral sclerosis. J Neurochem 71: 281–287, 1998.
55.
Browne SEBowling ACMacGarvey UBaik MJBerger SCMuqit MMBird EDBeal MF. Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal gangliaAnn Neurol41646-6531997. 55. Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MM, Bird ED, and Beal MF. Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia. Ann Neurol 41: 646–653, 1997.
56.
Browne SEFerrante RJBeal MF. Oxidative stress in Huntington's diseaseBrain Pathol9147-1631999. 56. Browne SE, Ferrante RJ, and Beal MF. Oxidative stress in Huntington's disease. Brain Pathol 9: 147–163, 1999.
57.
Bruening WRoy JGiasson BFiglewicz DAMushynski WEDurham HD. Up-regulation of protein chaperones preserves viability of cells expressing toxic Cu/Zn-superoxide dismutase mutants associated with amyotrophic lateral sclerosisJ Neurochem72693-6991999. 57. Bruening W, Roy J, Giasson B, Figlewicz DA, Mushynski WE, and Durham HD. Up-regulation of protein chaperones preserves viability of cells expressing toxic Cu/Zn-superoxide dismutase mutants associated with amyotrophic lateral sclerosis. J Neurochem 72: 693–699, 1999.
58.
Bubber PHaroutunian VFisch GBlass JPGibson GE. Mitochondrial abnormalities in Alzheimer brain: mechanistic implicationsAnn Neurol57695-7032005. 58. Bubber P, Haroutunian V, Fisch G, Blass JP, and Gibson GE. Mitochondrial abnormalities in Alzheimer brain: mechanistic implications. Ann Neurol 57: 695–703, 2005.
59.
Buee LBussiere TBuee-Scherrer VDelacourte AHof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disordersBrain Res Brain Res Rev3395-1302000. 59. Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, and Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33: 95–130, 2000.
60.
Burkhard PRSanchez JCLandis THochstrasser DF. CSF detection of the 14-3-3 protein in unselected patients with dementiaNeurology561528-15332001. 60. Burkhard PR, Sanchez JC, Landis T, and Hochstrasser DF. CSF detection of the 14-3-3 protein in unselected patients with dementia. Neurology 56: 1528–1533, 2001.
61.
Busciglio JPelsman AWong CPigino GYuan MMori HYankner BA. Altered metabolism of the amyloid beta precursor protein is associated with mitochondrial dysfunction in Down's syndromeNeuron33677-6882002. 61. Busciglio J, Pelsman A, Wong C, Pigino G, Yuan M, Mori H, and Yankner BA. Altered metabolism of the amyloid beta precursor protein is associated with mitochondrial dysfunction in Down's syndrome. Neuron 33: 677–688, 2002.
62.
Butterfield DCastegna APocernich CDrake JScapagnini GCalabrese V. Nutritional approaches to combat oxidative stress in Alzheimer's diseaseJ Nutr Biochem134442002. 62. Butterfield D, Castegna A, Pocernich C, Drake J, Scapagnini G, and Calabrese V. Nutritional approaches to combat oxidative stress in Alzheimer's disease. J Nutr Biochem 13: 444, 2002.
63.
Butterfield DA. beta-Amyloid-associated free radical oxidative stress and neurotoxicity: implications for Alzheimer's diseaseChem Res Toxicol10495-5061997. 63. Butterfield DA. beta-Amyloid-associated free radical oxidative stress and neurotoxicity: implications for Alzheimer's disease. Chem Res Toxicol 10: 495–506, 1997.
64.
Butterfield DAGnjec APoon HFCastegna APierce WMKlein JBMartins RN. Redox proteomics identification of oxidatively modified brain proteins in inherited Alzheimer's disease: An initial assessmentJ Alzheimers Dis10391-3972006. 64. Butterfield DA, Gnjec A, Poon HF, Castegna A, Pierce WM, Klein JB, and Martins RN. Redox proteomics identification of oxidatively modified brain proteins in inherited Alzheimer's disease: An initial assessment. J Alzheimers Dis 10: 391–397, 2006.
65.
Butterfield DAAbdul HMOpii WNewman SFJoshi GAnsari MASultana R. Pin1 in Alzheimer's diseaseJ Neurochem981697-17062006. 65. Butterfield DA, Abdul HM, Opii W, Newman SF, Joshi G, Ansari MA, and Sultana R. Pin1 in Alzheimer's disease. J Neurochem 98: 1697–1706, 2006.
66.
Butterfield DABader Lange MLSultana R. Involvements of the lipid peroxidation product, HNE, in the pathogenesis and progression of Alzheimer's diseaseBiochim Biophys Acta1801924-9292010. 66. Butterfield DA, Bader Lange ML, and Sultana R. Involvements of the lipid peroxidation product, HNE, in the pathogenesis and progression of Alzheimer's disease. Biochim Biophys Acta 1801: 924–929, 2010.
67.
Butterfield DABoyd-Kimball D. The critical role of methionine 35 in Alzheimer's amyloid beta-peptide (1–42)-induced oxidative stress and neurotoxicityBiochim Biophys Acta1703149-1562005. 67. Butterfield DA and Boyd-Kimball D. The critical role of methionine 35 in Alzheimer's amyloid beta-peptide (1–42)-induced oxidative stress and neurotoxicity. Biochim Biophys Acta 1703: 149–156, 2005.
68.
Butterfield DACastegna A. Proteomics for the identification of specifically oxidized proteins in brain: technology and application to the study of neurodegenerative disordersAmino Acids25419-4252003. 68. Butterfield DA and Castegna A. Proteomics for the identification of specifically oxidized proteins in brain: technology and application to the study of neurodegenerative disorders. Amino Acids 25: 419–425, 2003.
69.
Butterfield DADrake JPocernich CCastegna A. Evidence of oxidative damage in Alzheimer's disease brain: central role for amyloid beta-peptideTrends Mol Med7548-5542001. 69. Butterfield DA, Drake J, Pocernich C, and Castegna A. Evidence of oxidative damage in Alzheimer's disease brain: central role for amyloid beta-peptide. Trends Mol Med 7: 548–554, 2001.
70.
Butterfield DAGalvan VLange MBTang HSowell RASpilman PFombonne JGorostiza OZhang JSultana RBredesen DE. In vivo oxidative stress in brain of Alzheimer disease transgenic mice: requirement for methionine 35 in amyloid beta-peptide of APPFree Radic Biol Med48136-1442010. 70. Butterfield DA, Galvan V, Lange MB, Tang H, Sowell RA, Spilman P, Fombonne J, Gorostiza O, Zhang J, Sultana R, and Bredesen DE. In vivo oxidative stress in brain of Alzheimer disease transgenic mice: requirement for methionine 35 in amyloid beta-peptide of APP. Free Radic Biol Med 48: 136–144, 2010.
71.
Butterfield DAHardas SSLange ML. Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer's disease: many pathways to neurodegenerationJ Alzheimers Dis20369-3932010. 71. Butterfield DA, Hardas SS, and Lange ML. Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer's disease: many pathways to neurodegeneration. J Alzheimers Dis 20: 369–393, 2010.
72.
Butterfield DAHensley KCole PSubramaniam RAksenov MAksenova MBummer PMHaley BECarney JM. Oxidatively induced structural alteration of glutamine synthetase assessed by analysis of spin label incorporation kinetics: relevance to Alzheimer's diseaseJ Neurochem682451-24571997. 72. Butterfield DA, Hensley K, Cole P, Subramaniam R, Aksenov M, Aksenova M, Bummer PM, Haley BE, and Carney JM. Oxidatively induced structural alteration of glutamine synthetase assessed by analysis of spin label incorporation kinetics: relevance to Alzheimer's disease. J Neurochem 68: 2451–2457, 1997.
73.
Butterfield DALange ML. Multifunctional roles of enolase in Alzheimer's disease brain: beyond altered glucose metabolismJ Neurochem111915-9332009. 73. Butterfield DA and Lange ML. Multifunctional roles of enolase in Alzheimer's disease brain: beyond altered glucose metabolism. J Neurochem 111: 915–933, 2009.
74.
Butterfield DALauderback CM. Lipid peroxidation and protein oxidation in Alzheimer's disease brain: potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stressFree Radic Biol Med321050-10602002. 74. Butterfield DA and Lauderback CM. Lipid peroxidation and protein oxidation in Alzheimer's disease brain: potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radic Biol Med 32: 1050–1060, 2002.
75.
Butterfield DAPerluigi MSultana R. Oxidative stress in Alzheimer's disease brain: new insights from redox proteomicsEur J Pharmacol54539-502006. 75. Butterfield DA, Perluigi M, and Sultana R. Oxidative stress in Alzheimer's disease brain: new insights from redox proteomics. Eur J Pharmacol 545: 39–50, 2006.
76.
Butterfield DAPoon HFSt. Clair DKeller JNPierce WMKlein JBMarkesbery WR. Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: insights into the development of Alzheimer's diseaseNeurobiol Dis22223-2322006. 76. Butterfield DA, Poon HF, St. Clair D, Keller JN, Pierce WM, Klein JB, and Markesbery WR. Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: insights into the development of Alzheimer's disease. Neurobiol Dis 22: 223–232, 2006.
77.
Butterfield DAReed TNewman SFSultana R. Roles of amyloid beta-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer's disease and mild cognitive impairmentFree Radic Biol Med43658-6772007. 77. Butterfield DA, Reed T, Newman SF, and Sultana R. Roles of amyloid beta-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer's disease and mild cognitive impairment. Free Radic Biol Med 43: 658–677, 2007.
78.
Butterfield DAReed TPerluigi MDe Marco CCoccia RCini CSultana R. Elevated protein-bound levels of the lipid peroxidation product, 4-hydroxy-2-nonenal, in brain from persons with mild cognitive impairmentNeurosci Lett397170-1732006. 78. Butterfield DA, Reed T, Perluigi M, De Marco C, Coccia R, Cini C, and Sultana R. Elevated protein-bound levels of the lipid peroxidation product, 4-hydroxy-2-nonenal, in brain from persons with mild cognitive impairment. Neurosci Lett 397: 170–173, 2006.
79.
Butterfield DAStadtman ER. Protein oxidation processes in aging brainAdv Cell Aging Gerontol2161-1911997. 79. Butterfield DA and Stadtman ER. Protein oxidation processes in aging brain. Adv Cell Aging Gerontol 2: 161–191, 1997.
80.
Butterfield DASultana R. Redox proteomics identification of oxidatively modified brain proteins in Alzheimer's disease and mild cognitive impairment: insights into the progression of this dementing disorderJ Alzheimers Dis1261-722007. 80. Butterfield DA and Sultana R. Redox proteomics identification of oxidatively modified brain proteins in Alzheimer's disease and mild cognitive impairment: insights into the progression of this dementing disorder. J Alzheimers Dis 12: 61–72, 2007.
81.
Calabrese V. Highlight Commentary on Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice—a model of familial amyotrophic lateral sclerosisFree Radic Biol Med43160-1622007. 81. Calabrese V. Highlight Commentary on Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice—a model of familial amyotrophic lateral sclerosis. Free Radic Biol Med 43: 160–162, 2007.
82.
Calabrese VMancuso CCalvani MRizzarelli EButterfield DAStella AM. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicityNat Rev Neurosci8766-7752007. 82. Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, and Stella AM. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8: 766–775, 2007.
83.
Calabrese VScapagnini GColombrita CRavagna APennisi GGiuffrida Stella AMGalli FButterfield DA. Redox regulation of heat shock protein expression in aging and neurodegenerative disorders associated with oxidative stress: a nutritional approachAmino Acids25437-4442003. 83. Calabrese V, Scapagnini G, Colombrita C, Ravagna A, Pennisi G, Giuffrida Stella AM, Galli F, and Butterfield DA. Redox regulation of heat shock protein expression in aging and neurodegenerative disorders associated with oxidative stress: a nutritional approach. Amino Acids 25: 437–444, 2003.
84.
Calabrese VScapagnini GRavagna AColombrita CSpadaro FButterfield DAGiuffrida Stella AM. Increased expression of heat shock proteins in rat brain during aging: relationship with mitochondrial function and glutathione redox stateMech Ageing Dev125325-3352004. 84. Calabrese V, Scapagnini G, Ravagna A, Colombrita C, Spadaro F, Butterfield DA, and Giuffrida Stella AM. Increased expression of heat shock proteins in rat brain during aging: relationship with mitochondrial function and glutathione redox state. Mech Ageing Dev 125: 325–335, 2004.
85.
Canet-Aviles RMWilson MAMiller DWAhmad RMcLendon CBandyopadhyay SBaptista MJRinge DPetsko GACookson MR. The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localizationProc Natl Acad Sci U S A1019103-91082004. 85. Canet-Aviles RM, Wilson MA, Miller DW, Ahmad R, McLendon C, Bandyopadhyay S, Baptista MJ, Ringe D, Petsko GA, and Cookson MR. The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci U S A 101: 9103–9108, 2004.
86.
Caperna TJShannon AEBlomberg le AGarrett WMRamsay TG. Identification of protein carbonyls in serum of the fetal and neonatal pigComp Biochem Physiol B Biochem Mol Biol156189-1962010. 86. Caperna TJ, Shannon AE, Blomberg le A, Garrett WM, and Ramsay TG. Identification of protein carbonyls in serum of the fetal and neonatal pig. Comp Biochem Physiol B Biochem Mol Biol 156: 189–196, 2010.
87.
Casado AEncarnacion Lopez-Fernandez MConcepcion Casado Mde La Torre R. Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementiasNeurochem Res33450-4582008. 87. Casado A, Encarnacion Lopez-Fernandez M, Concepcion Casado M, and de La Torre R. Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias. Neurochem Res 33: 450–458, 2008.
88.
Casagrande SBonetto VFratelli MGianazza EEberini IMassignan TSalmona MChang GHolmgren AGhezzi P. Glutathionylation of human thioredoxin: a possible crosstalk between the glutathione and thioredoxin systemsProc Natl Acad Sci U S A999745-97492002. 88. Casagrande S, Bonetto V, Fratelli M, Gianazza E, Eberini I, Massignan T, Salmona M, Chang G, Holmgren A, and Ghezzi P. Glutathionylation of human thioredoxin: a possible crosstalk between the glutathione and thioredoxin systems. Proc Natl Acad Sci U S A 99: 9745–9749, 2002.
89.
Casoni FBasso MMassignan TGianazza ECheroni CSalmona MBendotti CBonetto V. Protein nitration in a mouse model of familial amyotrophic lateral sclerosis: possible multifunctional role in the pathogenesisJ Biol Chem28016295-163042005. 89. Casoni F, Basso M, Massignan T, Gianazza E, Cheroni C, Salmona M, Bendotti C, and Bonetto V. Protein nitration in a mouse model of familial amyotrophic lateral sclerosis: possible multifunctional role in the pathogenesis. J Biol Chem 280: 16295–16304, 2005.
90.
Cassina AMHodara RSouza JMThomson LCastro LIschiropoulos HFreeman BARadi R. Cytochrome c nitration by peroxynitriteJ Biol Chem27521409-214152000. 90. Cassina AM, Hodara R, Souza JM, Thomson L, Castro L, Ischiropoulos H, Freeman BA, and Radi R. Cytochrome c nitration by peroxynitrite. J Biol Chem 275: 21409–21415, 2000.
91.
Castegna AAksenov MAksenova MThongboonkerd VKlein JBPierce WMBooze RMarkesbery WRButterfield DA. Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1Free Radic Biol Med33562-5712002. 91. Castegna A, Aksenov M, Aksenova M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, and Butterfield DA. Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med 33: 562–571, 2002.
92.
Castegna AAksenov MThongboonkerd VKlein JBPierce WMBooze RMarkesbery WRButterfield DA. Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part II: dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71J Neurochem821524-15322002. 92. Castegna A, Aksenov M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, and Butterfield DA. Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part II: dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71. J Neurochem 82: 1524–1532, 2002.
93.
Castegna AThongboonkerd VKlein JBLynn BMarkesbery WRButterfield DA. Proteomic identification of nitrated proteins in Alzheimer's disease brainJ Neurochem851394-14012003. 93. Castegna A, Thongboonkerd V, Klein JB, Lynn B, Markesbery WR, and Butterfield DA. Proteomic identification of nitrated proteins in Alzheimer's disease brain. J Neurochem 85: 1394–1401, 2003.
94.
Caudle WMPan SShi MQuinn THoekstra JBeyer RPMontine TJZhang J. Proteomic identification of proteins in the human brain: towards a more comprehensive understanding of neurodegenerative diseaseProteomics Clin Appl21484-14972008. 94. Caudle WM, Pan S, Shi M, Quinn T, Hoekstra J, Beyer RP, Montine TJ, and Zhang J. Proteomic identification of proteins in the human brain: towards a more comprehensive understanding of neurodegenerative disease. Proteomics Clin Appl 2: 1484–1497, 2008.
95.
Cenini GDowling ALSBeckett TBarone EMancuso CMurphy MPLevine IIIHSchmitt FAButterfield DAHead E. Association between frontal cortex oxidative damage and beta-amyloid neuropathology as a function of age in Down syndromeBiochem Biophys Acta1822130-1382011. 95. Cenini G, Dowling ALS, Beckett T, Barone E, Mancuso C, Murphy MP, Levine III H, Schmitt FA, Butterfield DA, and Head E. Association between frontal cortex oxidative damage and beta-amyloid neuropathology as a function of age in Down syndrome. Biochem Biophys Acta 1822: 130–138, 2011.
96.
Charkoudian LKFranz KJ. Fe(III)-coordination properties of neuromelanin components: 5,6-dihydroxyindole and 5,6-dihydroxyindole-2-carboxylic acidInorg Chem453657-36642006. 96. Charkoudian LK and Franz KJ. Fe(III)-coordination properties of neuromelanin components: 5,6-dihydroxyindole and 5,6-dihydroxyindole-2-carboxylic acid. Inorg Chem 45: 3657–3664, 2006.
97.
Chavez JChung WGMiranda CLSinghal MStevens JFMaier CS. Site-specific protein adducts of 4-hydroxy-2(E)-nonenal in human THP-1 monocytic cells: protein carbonylation is diminished by ascorbic acidChem Res Toxicol2337-472010. 97. Chavez J, Chung WG, Miranda CL, Singhal M, Stevens JF, and Maier CS. Site-specific protein adducts of 4-hydroxy-2(E)-nonenal in human THP-1 monocytic cells: protein carbonylation is diminished by ascorbic acid. Chem Res Toxicol 23: 37–47, 2010.
98.
Chavez JWu JHan BChung WGMaier CS. New role for an old probe: affinity labeling of oxylipid protein conjugates by N'-aminooxymethylcarbonylhydrazino d-biotinAnal Chem786847-68542006. 98. Chavez J, Wu J, Han B, Chung WG, and Maier CS. New role for an old probe: affinity labeling of oxylipid protein conjugates by N'-aminooxymethylcarbonylhydrazino d-biotin. Anal Chem 78: 6847–6854, 2006.
99.
Chen QSurmeier DJReiner A. NMDA and non-NMDA receptor-mediated excitotoxicity are potentiated in cultured striatal neurons by prior chronic depolarizationExp Neurol159283-2961999. 99. Chen Q, Surmeier DJ, and Reiner A. NMDA and non-NMDA receptor-mediated excitotoxicity are potentiated in cultured striatal neurons by prior chronic depolarization. Exp Neurol 159: 283–296, 1999.
100.
Chen ZHSaito YYoshida YSekine ANoguchi NNiki E. 4-Hydroxynonenal induces adaptive response and enhances PC12 cell tolerance primarily through induction of thioredoxin reductase 1 via activation of Nrf2J Biol Chem28041921-419272005. 100. Chen ZH, Saito Y, Yoshida Y, Sekine A, Noguchi N, and Niki E. 4-Hydroxynonenal induces adaptive response and enhances PC12 cell tolerance primarily through induction of thioredoxin reductase 1 via activation of Nrf2. J Biol Chem 280: 41921–41927, 2005.
101.
Chiappetta GCorbo CPalmese AGalli FPiroddi MMarino GAmoresano A. Quantitative identification of protein nitration sitesProteomics91524-15372009. 101. Chiappetta G, Corbo C, Palmese A, Galli F, Piroddi M, Marino G, and Amoresano A. Quantitative identification of protein nitration sites. Proteomics 9: 1524–1537, 2009.
102.
Choi DEJeong JYLim BJChung SChang YKLee SJNa KRKim SYShin YTLee KW. Pretreatment of sildenafil attenuates ischemia-reperfusion renal injury in ratsAm J Physiol Renal Physiol297F362-F3702009. 102. Choi DE, Jeong JY, Lim BJ, Chung S, Chang YK, Lee SJ, Na KR, Kim SY, Shin YT, and Lee KW. Pretreatment of sildenafil attenuates ischemia-reperfusion renal injury in rats. Am J Physiol Renal Physiol 297: F362–F370, 2009.
103.
Choi JLevey AIWeintraub STRees HDGearing MChin LSLi L. Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson's and Alzheimer's diseasesJ Biol Chem27913256-132642004. 103. Choi J, Levey AI, Weintraub ST, Rees HD, Gearing M, Chin LS, and Li L. Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson's and Alzheimer's diseases. J Biol Chem 279: 13256–13264, 2004.
104.
Cimini AMoreno SD'Amelio MCristiano LD'Angelo BFalone SBenedetti ECarrara PFanelli FCecconi FAmicarelli FCeru MP. Early biochemical and morphological modifications in the brain of a transgenic mouse model of Alzheimer's disease: a role for peroxisomesJ Alzheimers Dis18935-9522009. 104. Cimini A, Moreno S, D'Amelio M, Cristiano L, D'Angelo B, Falone S, Benedetti E, Carrara P, Fanelli F, Cecconi F, Amicarelli F, and Ceru MP. Early biochemical and morphological modifications in the brain of a transgenic mouse model of Alzheimer's disease: a role for peroxisomes. J Alzheimers Dis 18: 935–952, 2009.
105.
Clementi MEPezzotti MOrsini FSampaolese BMezzogori DGrassi CGiardina BMisiti F. Alzheimer's amyloid beta-peptide (1–42) induces cell death in human neuroblastoma via bax/bcl-2 ratio increase: an intriguing role for methionine 35Biochem Biophys Res Commun342206-2132006. 105. Clementi ME, Pezzotti M, Orsini F, Sampaolese B, Mezzogori D, Grassi C, Giardina B, and Misiti F. Alzheimer's amyloid beta-peptide (1–42) induces cell death in human neuroblastoma via bax/bcl-2 ratio increase: an intriguing role for methionine 35. Biochem Biophys Res Commun 342: 206–213, 2006.
106.
Cleveland DWRothstein JD. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALSNat Rev Neurosci2806-8192001. 106. Cleveland DW and Rothstein JD. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci 2: 806–819, 2001.
107.
Coleman PDFlood DG. Neuron numbers and dendritic extent in normal aging and Alzheimer's diseaseNeurobiol Aging8521-5451987. 107. Coleman PD and Flood DG. Neuron numbers and dendritic extent in normal aging and Alzheimer's disease. Neurobiol Aging 8: 521–545, 1987.
108.
Connor JRSnyder BSBeard JLFine REMufson EJ. Regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer's diseaseJ Neurosci Res31327-3351992. 108. Connor JR, Snyder BS, Beard JL, Fine RE, and Mufson EJ. Regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer's disease. J Neurosci Res 31: 327–335, 1992.
109.
Crichton RRPierre JL. Old iron, young copper: from Mars to VenusBiometals1499-1122001. 109. Crichton RR and Pierre JL. Old iron, young copper: from Mars to Venus. Biometals 14: 99–112, 2001.
110.
Cruthirds DLNovak LAkhi KMSanders PWThompson JAMacMillan-Crow LA. Mitochondrial targets of oxidative stress during renal ischemia/reperfusionArch Biochem Biophys41227-332003. 110. Cruthirds DL, Novak L, Akhi KM, Sanders PW, Thompson JA, and MacMillan-Crow LA. Mitochondrial targets of oxidative stress during renal ischemia/reperfusion. Arch Biochem Biophys 412: 27–33, 2003.
111.
Curti DMalaspina AFacchetti GCamana CMazzini LTosca PZerbi FCeroni M. Amyotrophic lateral sclerosis: oxidative energy metabolism and calcium homeostasis in peripheral blood lymphocytesNeurology471060-10641996. 111. Curti D, Malaspina A, Facchetti G, Camana C, Mazzini L, Tosca P, Zerbi F, and Ceroni M. Amyotrophic lateral sclerosis: oxidative energy metabolism and calcium homeostasis in peripheral blood lymphocytes. Neurology 47: 1060–1064, 1996.
112.
D'Alessandro ARinalducci SZolla L. Redox proteomics and drug developmentJ Proteomics742575-25952011. 112. D'Alessandro A, Rinalducci S, and Zolla L. Redox proteomics and drug development. J Proteomics 74: 2575–2595, 2011.
113.
Dalle-Donne I. Familial amyotrophic lateral sclerosis (FALS): Emerging hints from redox proteomics. Highlight commentary on: “Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice—a model of familial amyotrophic lateral sclerosis”Free Radic Biol Med43157-1592007. 113. Dalle-Donne I. Familial amyotrophic lateral sclerosis (FALS): Emerging hints from redox proteomics. Highlight commentary on: “Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice—a model of familial amyotrophic lateral sclerosis”. Free Radic Biol Med 43: 157–159, 2007.
114.
Dalle-Donne IGiustarini DColombo RRossi RMilzani A. Protein carbonylation in human diseasesTrends Mol Med9169-1762003. 114. Dalle-Donne I, Giustarini D, Colombo R, Rossi R, and Milzani A. Protein carbonylation in human diseases. Trends Mol Med 9: 169–176, 2003.
115.
Dalle-Donne IScaloni AButterfield DARedox Proteomics: From Protein Modifications to Cellular Dysfunction and DiseasesHoboken, NJJohn Wiley and Sons2006. 115. Dalle-Donne I, Scaloni A, and Butterfield DA. Redox Proteomics: From Protein Modifications to Cellular Dysfunction and Diseases. Hoboken, NJ: John Wiley and Sons, 2006.
116.
Daly NLHoffmann ROtvos L Jr.Craik DJ. Role of phosphorylation in the conformation of tau peptides implicated in Alzheimer's diseaseBiochemistry399039-90462000. 116. Daly NL, Hoffmann R, Otvos L, Jr., and Craik DJ. Role of phosphorylation in the conformation of tau peptides implicated in Alzheimer's disease. Biochemistry 39: 9039–9046, 2000.
117.
David SShoemaker MHaley BE. Abnormal properties of creatine kinase in Alzheimer's disease brain: correlation of reduced enzyme activity and active site photolabeling with aberrant cytosol-membrane partitioningBrain Res Mol Brain Res54276-2871998. 117. David S, Shoemaker M, and Haley BE. Abnormal properties of creatine kinase in Alzheimer's disease brain: correlation of reduced enzyme activity and active site photolabeling with aberrant cytosol-membrane partitioning. Brain Res Mol Brain Res 54: 276–287, 1998.
118.
Davies KJShringarpure R. Preferential degradation of oxidized proteins by the 20S proteasome may be inhibited in aging and in inflammatory neuromuscular diseasesNeurology66S93-S962006. 118. Davies KJ and Shringarpure R. Preferential degradation of oxidized proteins by the 20S proteasome may be inhibited in aging and in inflammatory neuromuscular diseases. Neurology 66: S93–S96, 2006.
119.
Davies PMoualla DBrown DR. Alpha-synuclein is a cellular ferrireductasePLoS One6e158142011. 119. Davies P, Moualla D, and Brown DR. Alpha-synuclein is a cellular ferrireductase. PLoS One 6: e15814, 2011.
120.
De Iuliis AGrigoletto JRecchia AGiusti PArslan P. A proteomic approach in the study of an animal model of Parkinson's diseaseClin Chim Acta357202-2092005. 120. De Iuliis A, Grigoletto J, Recchia A, Giusti P, and Arslan P. A proteomic approach in the study of an animal model of Parkinson's disease. Clin Chim Acta 357: 202–209, 2005.
121.
Demicheli VQuijano CAlvarez BRadi R. Inactivation and nitration of human superoxide dismutase (SOD) by fluxes of nitric oxide and superoxideFree Radic Biol Med421359-13682007. 121. Demicheli V, Quijano C, Alvarez B, and Radi R. Inactivation and nitration of human superoxide dismutase (SOD) by fluxes of nitric oxide and superoxide. Free Radic Biol Med 42: 1359–1368, 2007.
122.
Dexter DTJenner PSchapira AHMarsden CD. Alterations in levels of iron, ferritin, and other trace metals in neurodegenerative diseases affecting the basal ganglia. The Royal Kings and Queens Parkinson's Disease Research GroupAnn Neurol32SupplS94-S1001992. 122. Dexter DT, Jenner P, Schapira AH, and Marsden CD. Alterations in levels of iron, ferritin, and other trace metals in neurodegenerative diseases affecting the basal ganglia. The Royal Kings and Queens Parkinson's Disease Research Group. Ann Neurol 32 Suppl: S94–S100, 1992.
123.
Di Domenico FSultana RTiu GFScheff NNPerluigi MCini CButterfield DA. Protein levels of heat shock proteins 27, 32, 60, 70, 90 and thioredoxin-1 in amnestic mild cognitive impairment: an investigation on the role of cellular stress response in the progression of Alzheimer diseaseBrain Res133372-812010. 123. Di Domenico F, Sultana R, Tiu GF, Scheff NN, Perluigi M, Cini C, and Butterfield DA. Protein levels of heat shock proteins 27, 32, 60, 70, 90 and thioredoxin-1 in amnestic mild cognitive impairment: an investigation on the role of cellular stress response in the progression of Alzheimer disease. Brain Res 1333: 72–81, 2010.
124.
Di Stasi AMMallozzi CMacchia GPetrucci TCMinetti M. Peroxynitrite induces tryosine nitration and modulates tyrosine phosphorylation of synaptic proteinsJ Neurochem73727-7351999. 124. Di Stasi AM, Mallozzi C, Macchia G, Petrucci TC, and Minetti M. Peroxynitrite induces tryosine nitration and modulates tyrosine phosphorylation of synaptic proteins. J Neurochem 73: 727–735, 1999.
125.
Diamandis EPChristopoulos TK. The biotin-(strept)avidin system: principles and applications in biotechnologyClin Chem37625-6361991. 125. Diamandis EP and Christopoulos TK. The biotin-(strept)avidin system: principles and applications in biotechnology. Clin Chem 37: 625–636, 1991.
126.
DiFiglia MSapp EChase KODavies SWBates GPVonsattel JPAronin N. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brainScience2771990-19931997. 126. DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, and Aronin N. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277: 1990–1993, 1997.
127.
Ding BChen KMLing HWSun FLi XWan TChai WMZhang HZhan YGuan YJ. Correlation of iron in the hippocampus with MMSE in patients with Alzheimer's diseaseJ Magn Reson Imaging29793-7982009. 127. Ding B, Chen KM, Ling HW, Sun F, Li X, Wan T, Chai WM, Zhang H, Zhan Y, and Guan YJ. Correlation of iron in the hippocampus with MMSE in patients with Alzheimer's disease. J Magn Reson Imaging 29: 793–798, 2009.
128.
Ding QMarkesbery WRCecarini VKeller JN. Decreased RNA, and increased RNA oxidation, in ribosomes from early Alzheimer's diseaseNeurochem Res31705-7102006. 128. Ding Q, Markesbery WR, Cecarini V, and Keller JN. Decreased RNA, and increased RNA oxidation, in ribosomes from early Alzheimer's disease. Neurochem Res 31: 705–710, 2006.
129.
Doorn JAMaser EBlum AClaffey DJPetersen DR. Human carbonyl reductase catalyzes reduction of 4-oxonon-2-enalBiochemistry4313106-131142004. 129. Doorn JA, Maser E, Blum A, Claffey DJ, and Petersen DR. Human carbonyl reductase catalyzes reduction of 4-oxonon-2-enal. Biochemistry 43: 13106–13114, 2004.
130.
Doorn JAPetersen DR. Covalent adduction of nucleophilic amino acids by 4-hydroxynonenal and 4-oxononenalChem Biol Interact143–14493-1002003. 130. Doorn JA and Petersen DR. Covalent adduction of nucleophilic amino acids by 4-hydroxynonenal and 4-oxononenal. Chem Biol Interact 143–144: 93–100, 2003.
131.
Drake JLink CDButterfield DA. Oxidative stress precedes fibrillar deposition of Alzheimer's disease amyloid beta-peptide (1–42) in a transgenic Caenorhabditis elegans modelNeurobiol Aging24415-4202003. 131. Drake J, Link CD, and Butterfield DA. Oxidative stress precedes fibrillar deposition of Alzheimer's disease amyloid beta-peptide (1–42) in a transgenic Caenorhabditis elegans model. Neurobiol Aging 24: 415–420, 2003.
132.
Duan ZLamendola DEYusuf RZPenson RTPreffer FISeiden MV. Overexpression of human phosphoglycerate kinase 1 (PGK1) induces a multidrug resistance phenotypeAnticancer Res221933-19412002. 132. Duan Z, Lamendola DE, Yusuf RZ, Penson RT, Preffer FI, and Seiden MV. Overexpression of human phosphoglycerate kinase 1 (PGK1) induces a multidrug resistance phenotype. Anticancer Res 22: 1933–1941, 2002.
133.
Duce JATsatsanis ACater MAJames SARobb EWikhe KLeong SLPerez KJohanssen TGreenough MACho HHGalatis DMoir RDMasters CLMcLean CTanzi RECappai RBarnham KJCiccotosto GDRogers JTBush AI. Iron-export ferroxidase activity of beta-amyloid precursor protein is inhibited by zinc in Alzheimer's diseaseCell142857-8672010. 133. Duce JA, Tsatsanis A, Cater MA, James SA, Robb E, Wikhe K, Leong SL, Perez K, Johanssen T, Greenough MA, Cho HH, Galatis D, Moir RD, Masters CL, McLean C, Tanzi RE, Cappai R, Barnham KJ, Ciccotosto GD, Rogers JT, and Bush AI. Iron-export ferroxidase activity of beta-amyloid precursor protein is inhibited by zinc in Alzheimer's disease. Cell 142: 857–867, 2010.
134.
Dumont MWille EStack CCalingasan NYBeal MFLin MT. Reduction of oxidative stress, amyloid deposition, and memory deficit by manganese superoxide dismutase overexpression in a transgenic mouse model of Alzheimer's diseaseFASEB J232459-24662009. 134. Dumont M, Wille E, Stack C, Calingasan NY, Beal MF, and Lin MT. Reduction of oxidative stress, amyloid deposition, and memory deficit by manganese superoxide dismutase overexpression in a transgenic mouse model of Alzheimer's disease. FASEB J 23: 2459–2466, 2009.
135.
Duyckaerts CDelatour BPotier MC. Classification and basic pathology of Alzheimer diseaseActa Neuropathol1185-362009. 135. Duyckaerts C, Delatour B, and Potier MC. Classification and basic pathology of Alzheimer disease. Acta Neuropathol 118: 5–36, 2009.
136.
Eismann THuber NShin TKuboki SGalloway EWyder MEdwards MJGreis KDShertzer HGFisher ABLentsch AB. Peroxiredoxin-6 protects against mitochondrial dysfunction and liver injury during ischemia-reperfusion in miceAm J Physiol Gastrointest Liver Physiol296G266-G2742009. 136. Eismann T, Huber N, Shin T, Kuboki S, Galloway E, Wyder M, Edwards MJ, Greis KD, Shertzer HG, Fisher AB, and Lentsch AB. Peroxiredoxin-6 protects against mitochondrial dysfunction and liver injury during ischemia-reperfusion in mice. Am J Physiol Gastrointest Liver Physiol 296: G266–G274, 2009.
137.
El Tannir El Tayara NDelatour BLe Cudennec CGuegan MVolk ADhenain M. Age-related evolution of amyloid burden, iron load, and MR relaxation times in a transgenic mouse model of Alzheimer's diseaseNeurobiol Dis22199-2082006. 137. El Tannir El Tayara N, Delatour B, Le Cudennec C, Guegan M, Volk A, and Dhenain M. Age-related evolution of amyloid burden, iron load, and MR relaxation times in a transgenic mouse model of Alzheimer's disease. Neurobiol Dis 22: 199–208, 2006.
138.
Eliuk SMRenfrow MBShonsey EMBarnes SKim H. Active site modifications of the brain isoform of creatine kinase by 4-hydroxy-2-nonenal correlate with reduced enzyme activity: mapping of modified sites by Fourier transform-ion cyclotron resonance mass spectrometryChem Res Toxicol201260-12682007. 138. Eliuk SM, Renfrow MB, Shonsey EM, Barnes S, and Kim H. Active site modifications of the brain isoform of creatine kinase by 4-hydroxy-2-nonenal correlate with reduced enzyme activity: mapping of modified sites by Fourier transform-ion cyclotron resonance mass spectrometry. Chem Res Toxicol 20: 1260–1268, 2007.
139.
Esterbauer HSchaur RJZollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydesFree Radic Biol Med1181-1281991. 139. Esterbauer H, Schaur RJ, and Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11: 81–128, 1991.
140.
Estevez AG. Good science shows the way. Highlight Commentary on “Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice—a model of familial amyotrophic lateral sclerosis”Free Radic Biol Med43163-1642007. 140. Estevez AG. Good science shows the way. Highlight Commentary on “Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice—a model of familial amyotrophic lateral sclerosis”. Free Radic Biol Med 43: 163–164, 2007.
141.
Fagni LBockaert J. Effects of nitric oxide on glutamate-gated channels and other ionic channelsJ Chem Neuroanat10231-2401996. 141. Fagni L and Bockaert J. Effects of nitric oxide on glutamate-gated channels and other ionic channels. J Chem Neuroanat 10: 231–240, 1996.
142.
Fan QYang XCCao XBWang SYYang SLLiu XLGao F. Glutathione reverses peroxynitrite-mediated deleterious effects of nitroglycerin on ischemic rat heartsJ Cardiovasc Pharmacol47405-4122006. 142. Fan Q, Yang XC, Cao XB, Wang SY, Yang SL, Liu XL, and Gao F. Glutathione reverses peroxynitrite-mediated deleterious effects of nitroglycerin on ischemic rat hearts. J Cardiovasc Pharmacol 47: 405–412, 2006.
143.
Faucheux BAMartin MEBeaumont CHunot SHauw JJAgid YHirsch EC. Lack of up-regulation of ferritin is associated with sustained iron regulatory protein-1 binding activity in the substantia nigra of patients with Parkinson's diseaseJ Neurochem83320-3302002. 143. Faucheux BA, Martin ME, Beaumont C, Hunot S, Hauw JJ, Agid Y, and Hirsch EC. Lack of up-regulation of ferritin is associated with sustained iron regulatory protein-1 binding activity in the substantia nigra of patients with Parkinson's disease. J Neurochem 83: 320–330, 2002.
144.
Ferrante RJBrowne SEShinobu LABowling ACBaik MJMacGarvey UKowall NWBrown RH Jr.Beal MF. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosisJ Neurochem692064-20741997. 144. Ferrante RJ, Browne SE, Shinobu LA, Bowling AC, Baik MJ, MacGarvey U, Kowall NW, Brown RH, Jr., and Beal MF. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem 69: 2064–2074, 1997.
145.
Ferrante RJShinobu LASchulz JBMatthews RTThomas CEKowall NWGurney MEBeal MF. Increased 3-nitrotyrosine and oxidative damage in mice with a human copper/zinc superoxide dismutase mutationAnn Neurol42326-3341997. 145. Ferrante RJ, Shinobu LA, Schulz JB, Matthews RT, Thomas CE, Kowall NW, Gurney ME, and Beal MF. Increased 3-nitrotyrosine and oxidative damage in mice with a human copper/zinc superoxide dismutase mutation. Ann Neurol 42: 326–334, 1997.
146.
Ferrer I. Differential expression of phosphorylated translation initiation factor 2 alpha in Alzheimer's disease and Creutzfeldt-Jakob's diseaseNeuropathol Appl Neurobiol28441-4512002. 146. Ferrer I. Differential expression of phosphorylated translation initiation factor 2 alpha in Alzheimer's disease and Creutzfeldt-Jakob's disease. Neuropathol Appl Neurobiol 28: 441–451, 2002.
147.
Ferrer IGomez-Isla TPuig BFreixes MRibe EDalfo EAvila J. Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer's disease and tauopathiesCurr Alzheimer Res23-182005. 147. Ferrer I, Gomez-Isla T, Puig B, Freixes M, Ribe E, Dalfo E, and Avila J. Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer's disease and tauopathies. Curr Alzheimer Res 2: 3–18, 2005.
148.
Ferrer IMartinez ABlanco RDalfo ECarmona M. Neuropathology of sporadic Parkinson disease before the appearance of parkinsonism: preclinical Parkinson diseaseJ Neural Transm118821-8392011. 148. Ferrer I, Martinez A, Blanco R, Dalfo E, and Carmona M. Neuropathology of sporadic Parkinson disease before the appearance of parkinsonism: preclinical Parkinson disease. J Neural Transm 118: 821–839, 2011.
149.
Filipovic MRStanic DRaicevic SSpasic MNiketic V. Consequences of MnSOD interactions with nitric oxide: nitric oxide dismutation and the generation of peroxynitrite and hydrogen peroxideFree Radic Res4162-722007. 149. Filipovic MR, Stanic D, Raicevic S, Spasic M, and Niketic V. Consequences of MnSOD interactions with nitric oxide: nitric oxide dismutation and the generation of peroxynitrite and hydrogen peroxide. Free Radic Res 41: 62–72, 2007.
150.
Fishman-Jacob TReznichenko LYoudim MBMandel SA. A sporadic Parkinson disease model via silencing of the ubiquitin-proteasome/E3 ligase component SKP1AJ Biol Chem28432835-328452009. 150. Fishman-Jacob T, Reznichenko L, Youdim MB, and Mandel SA. A sporadic Parkinson disease model via silencing of the ubiquitin-proteasome/E3 ligase component SKP1A. J Biol Chem 284: 32835–32845, 2009.
151.
Fitzmaurice PSShaw ICKleiner HEMiller RTMonks TJLau SSMitchell JDLynch PG. Evidence for DNA damage in amyotrophic lateral sclerosisMuscle Nerve19797-7981996. 151. Fitzmaurice PS, Shaw IC, Kleiner HE, Miller RT, Monks TJ, Lau SS, Mitchell JD, and Lynch PG. Evidence for DNA damage in amyotrophic lateral sclerosis. Muscle Nerve 19: 797–798, 1996.
152.
Flint DHTuminello JFEmptage MH. The inactivation of Fe-S cluster containing hydro-lyases by superoxideJ Biol Chem26822369-223761993. 152. Flint DH, Tuminello JF, and Emptage MH. The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J Biol Chem 268: 22369–22376, 1993.
153.
Floor EWetzel MG. Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assayJ Neurochem70268-2751998. 153. Floor E and Wetzel MG. Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J Neurochem 70: 268–275, 1998.
154.
Forrest GLGonzalez B. Carbonyl reductaseChem Biol Interact12921-402000. 154. Forrest GL and Gonzalez B. Carbonyl reductase. Chem Biol Interact 129: 21–40, 2000.
155.
Foy CJPassmore APVahidassr MDYoung ISLawson JT. Plasma chain-breaking antioxidants in Alzheimer's disease, vascular dementia and Parkinson's diseaseQJM9239-451999. 155. Foy CJ, Passmore AP, Vahidassr MD, Young IS, and Lawson JT. Plasma chain-breaking antioxidants in Alzheimer's disease, vascular dementia and Parkinson's disease. QJM 92: 39–45, 1999.
156.
Francis PTPalmer AMSnape MWilcock GK. The cholinergic hypothesis of Alzheimer's disease: a review of progressJ Neurol Neurosurg Psychiatry66137-1471999. 156. Francis PT, Palmer AM, Snape M, and Wilcock GK. The cholinergic hypothesis of Alzheimer's disease: a review of progress. J Neurol Neurosurg Psychiatry 66: 137–147, 1999.
157.
Fratelli MDemol HPuype MCasagrande SEberini ISalmona MBonetto VMengozzi MDuffieux FMiclet EBachi AVandekerckhove JGianazza EGhezzi P. Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytesProc Natl Acad Sci U S A993505-35102002. 157. Fratelli M, Demol H, Puype M, Casagrande S, Eberini I, Salmona M, Bonetto V, Mengozzi M, Duffieux F, Miclet E, Bachi A, Vandekerckhove J, Gianazza E, and Ghezzi P. Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes. Proc Natl Acad Sci U S A 99: 3505–3510, 2002.
158.
Frautschy SABaird ACole GM. Effects of injected Alzheimer beta-amyloid cores in rat brainProc Natl Acad Sci U S A888362-83661991. 158. Frautschy SA, Baird A, and Cole GM. Effects of injected Alzheimer beta-amyloid cores in rat brain. Proc Natl Acad Sci U S A 88: 8362–8366, 1991.
159.
Fucci LOliver CNCoon MJStadtman ER. Inactivation of key metabolic enzymes by mixed-function oxidation reactions: possible implication in protein turnover and ageingProc Natl Acad Sci U S A801521-15251983. 159. Fucci L, Oliver CN, Coon MJ, and Stadtman ER. Inactivation of key metabolic enzymes by mixed-function oxidation reactions: possible implication in protein turnover and ageing. Proc Natl Acad Sci U S A 80: 1521–1525, 1983.
160.
Fukuyama HOgawa MYamauchi HYamaguchi SKimura JYonekura YKonishi J. Altered cerebral energy metabolism in Alzheimer's disease: a PET studyJ Nucl Med351-61994. 160. Fukuyama H, Ogawa M, Yamauchi H, Yamaguchi S, Kimura J, Yonekura Y, and Konishi J. Altered cerebral energy metabolism in Alzheimer's disease: a PET study. J Nucl Med 35: 1–6, 1994.
161.
Gabbita SPAksenov MYLovell MAMarkesbery WR. Decrease in peptide methionine sulfoxide reductase in Alzheimer's disease brainJ Neurochem731660-16661999. 161. Gabbita SP, Aksenov MY, Lovell MA, and Markesbery WR. Decrease in peptide methionine sulfoxide reductase in Alzheimer's disease brain. J Neurochem 73: 1660–1666, 1999.
162.
Gadoni EOlivero AMiglietta ABocca CGabriel L. Cytoskeletal modifications induced by 4-hydroxynonenalCytotechnology11Suppl 1S62-S641993. 162. Gadoni E, Olivero A, Miglietta A, Bocca C, and Gabriel L. Cytoskeletal modifications induced by 4-hydroxynonenal. Cytotechnology 11 Suppl 1: S62–S64, 1993.
163.
Ganea E. Chaperone-like activity of alpha-crystallin and other small heat shock proteinsCurr Protein Pept Sci2205-2252001. 163. Ganea E. Chaperone-like activity of alpha-crystallin and other small heat shock proteins. Curr Protein Pept Sci 2: 205–225, 2001.
164.
Gardner PRNguyen DDWhite CW. Aconitase is a sensitive and critical target of oxygen poisoning in cultured mammalian cells and in rat lungsProc Natl Acad Sci U S A9112248-122521994. 164. Gardner PR, Nguyen DD, and White CW. Aconitase is a sensitive and critical target of oxygen poisoning in cultured mammalian cells and in rat lungs. Proc Natl Acad Sci U S A 91: 12248–12252, 1994.
165.
Geddes JWPang ZWiley DH. Hippocampal damage and cytoskeletal disruption resulting from impaired energy metabolism. Implications for Alzheimer diseaseMol Chem Neuropathol2865-741996. 165. Geddes JW, Pang Z, and Wiley DH. Hippocampal damage and cytoskeletal disruption resulting from impaired energy metabolism. Implications for Alzheimer disease. Mol Chem Neuropathol 28: 65–74, 1996.
166.
George AJHolsinger RMMcLean CATan SSScott HSCardamone TCappai RMasters CLLi QX. Decreased phosphatidylethanolamine binding protein expression correlates with Abeta accumulation in the Tg2576 mouse model of Alzheimer's diseaseNeurobiol Aging27614-6232006. 166. George AJ, Holsinger RM, McLean CA, Tan SS, Scott HS, Cardamone T, Cappai R, Masters CL, and Li QX. Decreased phosphatidylethanolamine binding protein expression correlates with Abeta accumulation in the Tg2576 mouse model of Alzheimer's disease. Neurobiol Aging 27: 614–623, 2006.
167.
Giambattistelli FBucossi SSalustri CPanetta VMariani SSiotto MVentriglia MVernieri FDell'acqua MLCassetta ERossini PMSquitti R. Effects of hemochromatosis and transferrin gene mutations on iron dyshomeostasis, liver dysfunction and on the risk of Alzheimer's diseaseNeurobiol Aging in press2011. 167. Giambattistelli F, Bucossi S, Salustri C, Panetta V, Mariani S, Siotto M, Ventriglia M, Vernieri F, Dell'acqua ML, Cassetta E, Rossini PM, and Squitti R. Effects of hemochromatosis and transferrin gene mutations on iron dyshomeostasis, liver dysfunction and on the risk of Alzheimer's disease. Neurobiol Aging in press, 2011.
168.
Giasson BIIschiropoulos HLee VMTrojanowski JQ. The relationship between oxidative/nitrative stress and pathological inclusions in Alzheimer's and Parkinson's diseasesFree Radic Biol Med321264-12752002. 168. Giasson BI, Ischiropoulos H, Lee VM, and Trojanowski JQ. The relationship between oxidative/nitrative stress and pathological inclusions in Alzheimer's and Parkinson's diseases. Free Radic Biol Med 32: 1264–1275, 2002.
169.
Giovannini MGCerbai FBellucci AMelani CGrossi CBartolozzi CNosi DCasamenti F. Differential activation of mitogen-activated protein kinase signalling pathways in the hippocampus of CRND8 transgenic mouse, a model of Alzheimer's diseaseNeuroscience153618-6332008. 169. Giovannini MG, Cerbai F, Bellucci A, Melani C, Grossi C, Bartolozzi C, Nosi D, and Casamenti F. Differential activation of mitogen-activated protein kinase signalling pathways in the hippocampus of CRND8 transgenic mouse, a model of Alzheimer's disease. Neuroscience 153: 618–633, 2008.
170.
Glabe CG. Common mechanisms of amyloid oligomer pathogenesis in degenerative diseaseNeurobiol Aging27570-5752006. 170. Glabe CG. Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging 27: 570–575, 2006.
171.
Gokulrangan GZaidi AMichaelis MLSchoneich C. Proteomic analysis of protein nitration in rat cerebellum: effect of biological agingJ Neurochem1001494-15042007. 171. Gokulrangan G, Zaidi A, Michaelis ML, and Schoneich C. Proteomic analysis of protein nitration in rat cerebellum: effect of biological aging. J Neurochem 100: 1494–1504, 2007.
172.
Golej JHoeger HRadner WUnfried GLubec G. Oral administration of methylglyoxal leads to kidney collagen accumulation in the mouseLife Sci63801-8071998. 172. Golej J, Hoeger H, Radner W, Unfried G, and Lubec G. Oral administration of methylglyoxal leads to kidney collagen accumulation in the mouse. Life Sci 63: 801–807, 1998.
173.
Gomez AFerrer I. Increased oxidation of certain glycolysis and energy metabolism enzymes in the frontal cortex in Lewy body diseasesJ Neurosci Res871002-10132009. 173. Gomez A and Ferrer I. Increased oxidation of certain glycolysis and energy metabolism enzymes in the frontal cortex in Lewy body diseases. J Neurosci Res 87: 1002–1013, 2009.
174.
Goshima YNakamura FStrittmatter PStrittmatter SM. Collapsin-induced growth cone collapse mediated by an intracellular protein related to Unc-33Nature376509-5141995. 174. Goshima Y, Nakamura F, Strittmatter P, and Strittmatter SM. Collapsin-induced growth cone collapse mediated by an intracellular protein related to Unc-33. Nature 376: 509–514, 1995.
175.
Gotz MEKunig GRiederer PYoudim MB. Oxidative stress: free radical production in neural degenerationPharmacol Ther6337-1221994. 175. Gotz ME, Kunig G, Riederer P, and Youdim MB. Oxidative stress: free radical production in neural degeneration. Pharmacol Ther 63: 37–122, 1994.
176.
Grundke-Iqbal IIqbal KQuinlan MTung YCZaidi MSWisniewski HM. Microtubule-associated protein tau. A component of Alzheimer paired helical filamentsJ Biol Chem2616084-60891986. 176. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, and Wisniewski HM. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261: 6084–6089, 1986.
177.
Gulesserian TSeidl RHardmeier RCairns NLubec G. Superoxide dismutase SOD1, encoded on chromosome 21, but not SOD2 is overexpressed in brains of patients with Down syndromeJ Investig Med4941-462001. 177. Gulesserian T, Seidl R, Hardmeier R, Cairns N, and Lubec G. Superoxide dismutase SOD1, encoded on chromosome 21, but not SOD2 is overexpressed in brains of patients with Down syndrome. J Investig Med 49: 41–46, 2001.
178.
Gurney ME. The use of transgenic mouse models of amyotrophic lateral sclerosis in preclinical drug studiesJ Neurol Sci152Suppl 1S67-S731997. 178. Gurney ME. The use of transgenic mouse models of amyotrophic lateral sclerosis in preclinical drug studies. J Neurol Sci 152 Suppl 1: S67–S73, 1997.
179.
Hague SMKlaffke SBandmann O. Neurodegenerative disorders: Parkinson's disease and Huntington's diseaseJ Neurol Neurosurg Psychiatry761058-10632005. 179. Hague SM, Klaffke S, and Bandmann O. Neurodegenerative disorders: Parkinson's disease and Huntington's disease. J Neurol Neurosurg Psychiatry 76: 1058–1063, 2005.
180.
Halliwell B. Oxidative stress and neurodegeneration: where are we now?J Neurochem971634-16582006. 180. Halliwell B. Oxidative stress and neurodegeneration: where are we now? J Neurochem 97: 1634–1658, 2006.
181.
Halliwell B. Proteasomal dysfunction: a common feature of neurodegenerative diseases? Implications for the environmental origins of neurodegenerationAntioxid Redox Signal82007-20192006. 181. Halliwell B. Proteasomal dysfunction: a common feature of neurodegenerative diseases? Implications for the environmental origins of neurodegeneration. Antioxid Redox Signal 8: 2007–2019, 2006.
182.
Hand CKRouleau GA. Familial amyotrophic lateral sclerosisMuscle Nerve25135-1592002. 182. Hand CK and Rouleau GA. Familial amyotrophic lateral sclerosis. Muscle Nerve 25: 135–159, 2002.
183.
Hara MRSnyder SH. Nitric oxide-GAPDH-Siah: a novel cell death cascadeCell Mol Neurobiol26527-5382006. 183. Hara MR and Snyder SH. Nitric oxide-GAPDH-Siah: a novel cell death cascade. Cell Mol Neurobiol 26: 527–538, 2006.
184.
Hauptmann SKeil UScherping IBonert AEckert AMuller WE. Mitochondrial dysfunction in sporadic and genetic Alzheimer's diseaseExp Gerontol41668-6732006. 184. Hauptmann S, Keil U, Scherping I, Bonert A, Eckert A, and Muller WE. Mitochondrial dysfunction in sporadic and genetic Alzheimer's disease. Exp Gerontol 41: 668–673, 2006.
185.
Hayes JPTipton KF. Interactions of the neurotoxin 6-hydroxydopamine with glyceraldehyde-3-phosphate dehydrogenaseToxicol Lett128197-2062002. 185. Hayes JP and Tipton KF. Interactions of the neurotoxin 6-hydroxydopamine with glyceraldehyde-3-phosphate dehydrogenase. Toxicol Lett 128: 197–206, 2002.
186.
Healy DGAbou-Sleiman PMWood NW. Genetic causes of Parkinson's disease: UCHL-1Cell Tissue Res318189-1942004. 186. Healy DG, Abou-Sleiman PM, and Wood NW. Genetic causes of Parkinson's disease: UCHL-1. Cell Tissue Res 318: 189–194, 2004.
187.
Hellberg KGrimsrud PAKruse ACBanaszak LJOhlendorf DHBernlohr DA. X-ray crystallographic analysis of adipocyte fatty acid binding protein (aP2) modified with 4-hydroxy-2-nonenalProt Sci191480-14892010. 187. Hellberg K, Grimsrud PA, Kruse AC, Banaszak LJ, Ohlendorf DH, and Bernlohr DA. X-ray crystallographic analysis of adipocyte fatty acid binding protein (aP2) modified with 4-hydroxy-2-nonenal. Prot Sci 19: 1480–1489, 2010.
188.
Helman MGivol D. Isolation of nitrotyrosine-containing peptides by using an insoluble-antibody columnBiochem J125971-9741971. 188. Helman M and Givol D. Isolation of nitrotyrosine-containing peptides by using an insoluble-antibody column. Biochem J 125: 971–974, 1971.
189.
Hensley KFedynyshyn JFerrell SFloyd RAGordon BGrammas PHamdheydari LMhatre MMou SPye QNStewart CWest MWest SWilliamson KS. Message and protein-level elevation of tumor necrosis factor alpha (TNF alpha) and TNF alpha-modulating cytokines in spinal cords of the G93A-SOD1 mouse model for amyotrophic lateral sclerosisNeurobiol Dis1474-802003. 189. Hensley K, Fedynyshyn J, Ferrell S, Floyd RA, Gordon B, Grammas P, Hamdheydari L, Mhatre M, Mou S, Pye QN, Stewart C, West M, West S, and Williamson KS. Message and protein-level elevation of tumor necrosis factor alpha (TNF alpha) and TNF alpha-modulating cytokines in spinal cords of the G93A-SOD1 mouse model for amyotrophic lateral sclerosis. Neurobiol Dis 14: 74–80, 2003.
190.
Hensley KHall NSubramaniam RCole PHarris MAksenov MAksenova MGabbita SPWu JFCarney JM et al. Brain regional correspondence between Alzheimer's disease histopathology and biomarkers of protein oxidationJ Neurochem652146-21561995. 190. Hensley K, Hall N, Subramaniam R, Cole P, Harris M, Aksenov M, Aksenova M, Gabbita SP, Wu JF, Carney JM, et al. Brain regional correspondence between Alzheimer's disease histopathology and biomarkers of protein oxidation. J Neurochem 65: 2146–2156, 1995.
191.
Hilditch-Maguire PTrettel FPassani LAAuerbach APersichetti FMacDonald ME. Huntingtin: an iron-regulated protein essential for normal nuclear and perinuclear organellesHum Mol Genet92789-27972000. 191. Hilditch-Maguire P, Trettel F, Passani LA, Auerbach A, Persichetti F, and MacDonald ME. Huntingtin: an iron-regulated protein essential for normal nuclear and perinuclear organelles. Hum Mol Genet 9: 2789–2797, 2000.
192.
Hillmer ASPutcha PLevin JHogen THyman BTKretzschmar HMcLean PJGiese A. Converse modulation of toxic alpha-synuclein oligomers in living cells by N'-benzylidene-benzohydrazide derivates and ferric ironBiochem Biophys Res Commun391461-4662010. 192. Hillmer AS, Putcha P, Levin J, Hogen T, Hyman BT, Kretzschmar H, McLean PJ, and Giese A. Converse modulation of toxic alpha-synuclein oligomers in living cells by N'-benzylidene-benzohydrazide derivates and ferric iron. Biochem Biophys Res Commun 391: 461–466, 2010.
193.
Hink UOelze MKolb PBachschmid MZou MHDaiber AMollnau HAugust MBaldus STsilimingas NWalter UUllrich VMunzel T. Role for peroxynitrite in the inhibition of prostacyclin synthase in nitrate toleranceJ Am Coll Cardiol421826-18342003. 193. Hink U, Oelze M, Kolb P, Bachschmid M, Zou MH, Daiber A, Mollnau H, August M, Baldus S, Tsilimingas N, Walter U, Ullrich V, and Munzel T. Role for peroxynitrite in the inhibition of prostacyclin synthase in nitrate tolerance. J Am Coll Cardiol 42: 1826–1834, 2003.
194.
Hirai KAliev GNunomura AFujioka HRussell RLAtwood CSJohnson ABKress YVinters HVTabaton MShimohama SCash ADSiedlak SLHarris PLJones PKPetersen RBPerry GSmith MA. Mitochondrial abnormalities in Alzheimer's diseaseJ Neurosci213017-30232001. 194. Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, Johnson AB, Kress Y, Vinters HV, Tabaton M, Shimohama S, Cash AD, Siedlak SL, Harris PL, Jones PK, Petersen RB, Perry G, and Smith MA. Mitochondrial abnormalities in Alzheimer's disease. J Neurosci 21: 3017–3023, 2001.
195.
Hirano MQuinzii CMMitsumoto HHays APKirk Roberts JRichard PRowland LP. Senataxin mutations and amyotrophic lateral sclerosisAmyotroph Lateral Scler12223-2272010. 195. Hirano M, Quinzii CM, Mitsumoto H, Hays AP, Kirk Roberts J, Richard P, and Rowland LP. Senataxin mutations and amyotrophic lateral sclerosis. Amyotroph Lateral Scler 12: 223–227, 2010.
196.
Holzer MGartner UStobe AHartig WGruschka HBruckner MKArendt T. Inverse association of Pin1 and tau accumulation in Alzheimer's disease hippocampusActa Neuropathol104471-4812002. 196. Holzer M, Gartner U, Stobe A, Hartig W, Gruschka H, Bruckner MK, and Arendt T. Inverse association of Pin1 and tau accumulation in Alzheimer's disease hippocampus. Acta Neuropathol 104: 471–481, 2002.
197.
Hoyer S. Brain glucose and energy metabolism abnormalities in sporadic Alzheimer disease. Causes and consequences: an updateExp Gerontol351363-13722000. 197. Hoyer S. Brain glucose and energy metabolism abnormalities in sporadic Alzheimer disease. Causes and consequences: an update. Exp Gerontol 35: 1363–1372, 2000.
198.
Hoyer S. Glucose metabolism and insulin receptor signal transduction in Alzheimer diseaseEur J Pharmacol490115-1252004. 198. Hoyer S. Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur J Pharmacol 490: 115–125, 2004.
199.
Hsu JLChen SHLi DTShi FK. Enhanced a1 fragmentation for dimethylated proteins and its applications for N-terminal identification and comparative protein quantitationJ Proteome Res62376-23832007. 199. Hsu JL, Chen SH, Li DT, and Shi FK. Enhanced a1 fragmentation for dimethylated proteins and its applications for N-terminal identification and comparative protein quantitation. J Proteome Res 6: 2376–2383, 2007.
200.
Huang LLShang FNowell TR Jr.Taylor A. Degradation of differentially oxidized alpha-crystallins in bovine lens epithelial cellsExp Eye Res6145-541995. 200. Huang LL, Shang F, Nowell TR, Jr., and Taylor A. Degradation of differentially oxidized alpha-crystallins in bovine lens epithelial cells. Exp Eye Res 61: 45–54, 1995.
201.
Hyson HCKieburtz KShoulson IMcDermott MRavina Bde Blieck EACudkowicz MEFerrante RJComo PFrank SZimmerman CFerrante KNewhall KJennings DKelsey TWalker FHunt VDaigneault SGoldstein MWeber JWatts ABeal MFBrowne SEMetakis LJ. Safety and tolerability of high-dosage coenzyme Q10 in Huntington's disease and healthy subjectsMov Disord251924-19282010. 201. Hyson HC, Kieburtz K, Shoulson I, McDermott M, Ravina B, de Blieck EA, Cudkowicz ME, Ferrante RJ, Como P, Frank S, Zimmerman C, Ferrante K, Newhall K, Jennings D, Kelsey T, Walker F, Hunt V, Daigneault S, Goldstein M, Weber J, Watts A, Beal MF, Browne SE, and Metakis LJ. Safety and tolerability of high-dosage coenzyme Q10 in Huntington's disease and healthy subjects. Mov Disord 25: 1924–1928, 2010.
202.
Iacono DO'Brien RResnick SMZonderman ABPletnikova ORudow GAn YWest MJCrain BTroncoso JC. Neuronal hypertrophy in asymptomatic Alzheimer diseaseJ Neuropathol Exp Neurol67578-5892008. 202. Iacono D, O'Brien R, Resnick SM, Zonderman AB, Pletnikova O, Rudow G, An Y, West MJ, Crain B, and Troncoso JC. Neuronal hypertrophy in asymptomatic Alzheimer disease. J Neuropathol Exp Neurol 67: 578–589, 2008.
203.
Iannello RCCrack PJde Haan JBKola I. Oxidative stress and neural dysfunction in Down syndromeJ Neural Transm Suppl57257-2671999. 203. Iannello RC, Crack PJ, de Haan JB, and Kola I. Oxidative stress and neural dysfunction in Down syndrome. J Neural Transm Suppl 57: 257–267, 1999.
204.
Ignarro LJ. Nitric oxide. A novel signal transduction mechanism for transcellular communicationHypertension16477-4831990. 204. Ignarro LJ. Nitric oxide. A novel signal transduction mechanism for transcellular communication. Hypertension 16: 477–483, 1990.
205.
Ihara YNobukuni KTakata HHayabara T. Oxidative stress and metal content in blood and cerebrospinal fluid of amyotrophic lateral sclerosis patients with and without a Cu, Zn-superoxide dismutase mutationNeurol Res27105-1082005. 205. Ihara Y, Nobukuni K, Takata H, and Hayabara T. Oxidative stress and metal content in blood and cerebrospinal fluid of amyotrophic lateral sclerosis patients with and without a Cu, Zn-superoxide dismutase mutation. Neurol Res 27: 105–108, 2005.
206.
Ince PGShaw PJCandy JMMantle DTandon LEhmann WDMarkesbery WR. Iron, selenium and glutathione peroxidase activity are elevated in sporadic motor neuron diseaseNeurosci Lett18287-901994. 206. Ince PG, Shaw PJ, Candy JM, Mantle D, Tandon L, Ehmann WD, and Markesbery WR. Iron, selenium and glutathione peroxidase activity are elevated in sporadic motor neuron disease. Neurosci Lett 182: 87–90, 1994.
207.
Ishihara KAmano KTakaki EEbrahim ASShimohata AShibazaki NInoue ITakaki MUeda YSago HEpstein CJYamakawa K. Increased lipid peroxidation in Down's syndrome mouse modelsJ Neurochem1101965-19762009. 207. Ishihara K, Amano K, Takaki E, Ebrahim AS, Shimohata A, Shibazaki N, Inoue I, Takaki M, Ueda Y, Sago H, Epstein CJ, and Yamakawa K. Increased lipid peroxidation in Down's syndrome mouse models. J Neurochem 110: 1965–1976, 2009.
208.
Jang BGYun SMAhn KSong JHJo SAKim YYKim DKPark MHHan CKoh YH. Plasma carbonic anhydrase II protein is elevated in Alzheimer's diseaseJ Alzheimers Dis JAD21939-9452010. 208. Jang BG, Yun SM, Ahn K, Song JH, Jo SA, Kim YY, Kim DK, Park MH, Han C, and Koh YH. Plasma carbonic anhydrase II protein is elevated in Alzheimer's disease. J Alzheimers Dis JAD 21: 939–945, 2010.
209.
Jenner P. Oxidative stress in Parkinson's diseaseAnn Neurol53Suppl 3S26-S362003discussion S36–S38. 209. Jenner P. Oxidative stress in Parkinson's disease. Ann Neurol 53 Suppl 3: S26–S36, 2003; discussion S36–S38.
210.
Jeong SYRathore KISchulz KPonka PArosio PDavid S. Dysregulation of iron homeostasis in the CNS contributes to disease progression in a mouse model of amyotrophic lateral sclerosisJ Neurosci29610-6192009. 210. Jeong SY, Rathore KI, Schulz K, Ponka P, Arosio P, and David S. Dysregulation of iron homeostasis in the CNS contributes to disease progression in a mouse model of amyotrophic lateral sclerosis. J Neurosci 29: 610–619, 2009.
211.
Jiang HLuan ZWang JXie J. Neuroprotective effects of iron chelator Desferal on dopaminergic neurons in the substantia nigra of rats with iron-overloadNeurochem Int49605-6092006. 211. Jiang H, Luan Z, Wang J, and Xie J. Neuroprotective effects of iron chelator Desferal on dopaminergic neurons in the substantia nigra of rats with iron-overload. Neurochem Int 49: 605–609, 2006.
212.
Joguchi AOtsuka IMinagawa SSuzuki TFujii MAyusawa D. Overexpression of VDUP1 mRNA sensitizes HeLa cells to paraquatBiochem Biophys Res Commun293293-2972002. 212. Joguchi A, Otsuka I, Minagawa S, Suzuki T, Fujii M, and Ayusawa D. Overexpression of VDUP1 mRNA sensitizes HeLa cells to paraquat. Biochem Biophys Res Commun 293: 293–297, 2002.
213.
Jouvenceau ADutar PBillard JM. Alteration of NMDA receptor-mediated synaptic responses in CA1 area of the aged rat hippocampus: contribution of GABAergic and cholinergic deficitsHippocampus8627-6371998. 213. Jouvenceau A, Dutar P, and Billard JM. Alteration of NMDA receptor-mediated synaptic responses in CA1 area of the aged rat hippocampus: contribution of GABAergic and cholinergic deficits. Hippocampus 8: 627–637, 1998.
214.
Jovanovic SVClements DMacLeod K. Biomarkers of oxidative stress are significantly elevated in Down syndromeFree Radic Biol Med251044-10481998. 214. Jovanovic SV, Clements D, and MacLeod K. Biomarkers of oxidative stress are significantly elevated in Down syndrome. Free Radic Biol Med 25: 1044–1048, 1998.
215.
Kahle PJNeumann MOzmen LMuller VOdoy SOkamoto NJacobsen HIwatsubo TTrojanowski JQTakahashi HWakabayashi KBogdanovic NRiederer PKretzschmar HAHaass C. Selective insolubility of alpha-synuclein in human Lewy body diseases is recapitulated in a transgenic mouse modelAm J Pathol1592215-22252001. 215. Kahle PJ, Neumann M, Ozmen L, Muller V, Odoy S, Okamoto N, Jacobsen H, Iwatsubo T, Trojanowski JQ, Takahashi H, Wakabayashi K, Bogdanovic N, Riederer P, Kretzschmar HA, and Haass C. Selective insolubility of alpha-synuclein in human Lewy body diseases is recapitulated in a transgenic mouse model. Am J Pathol 159: 2215–2225, 2001.
216.
Kamat CDGadal SMhatre MWilliamson KSPye QNHensley K. Antioxidants in central nervous system diseases: preclinical promise and translational challengesJ Alzheimers Dis15473-4932008. 216. Kamat CD, Gadal S, Mhatre M, Williamson KS, Pye QN, and Hensley K. Antioxidants in central nervous system diseases: preclinical promise and translational challenges. J Alzheimers Dis 15: 473–493, 2008.
217.
Kanski JAlterman MASchoneich C. Proteomic identification of age-dependent protein nitration in rat skeletal muscleFree Radic Biol Med351229-12392003. 217. Kanski J, Alterman MA, and Schoneich C. Proteomic identification of age-dependent protein nitration in rat skeletal muscle. Free Radic Biol Med 35: 1229–1239, 2003.
218.
Kanski JHong SJSchoneich C. Proteomic analysis of protein nitration in aging skeletal muscle and identification of nitrotyrosine-containing sequences in vivo by nanoelectrospray ionization tandem mass spectrometryJ Biol Chem28024261-242662005. 218. Kanski J, Hong SJ, and Schoneich C. Proteomic analysis of protein nitration in aging skeletal muscle and identification of nitrotyrosine-containing sequences in vivo by nanoelectrospray ionization tandem mass spectrometry. J Biol Chem 280: 24261–24266, 2005.
219.
Kapogiannis DMattson MP. Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer's diseaseLancet Neurol10187-1982011. 219. Kapogiannis D and Mattson MP. Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer's disease. Lancet Neurol 10: 187–198, 2011.
220.
Kato SHayashi HNakashima KNanba EKato MHirano ANakano IAsayama KOhama E. Pathological characterization of astrocytic hyaline inclusions in familial amyotrophic lateral sclerosisAm J Pathol151611-6201997. 220. Kato S, Hayashi H, Nakashima K, Nanba E, Kato M, Hirano A, Nakano I, Asayama K, and Ohama E. Pathological characterization of astrocytic hyaline inclusions in familial amyotrophic lateral sclerosis. Am J Pathol 151: 611–620, 1997.
221.
Keller JNHanni KBMarkesbery WR. Impaired proteasome function in Alzheimer's diseaseJ Neurochem75436-4392000. 221. Keller JN, Hanni KB, and Markesbery WR. Impaired proteasome function in Alzheimer's disease. J Neurochem 75: 436–439, 2000.
222.
Keller JNSchmitt FAScheff SWDing QChen QButterfield DAMarkesbery WR. Evidence of increased oxidative damage in subjects with mild cognitive impairmentNeurology641152-11562005. 222. Keller JN, Schmitt FA, Scheff SW, Ding Q, Chen Q, Butterfield DA, and Markesbery WR. Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology 64: 1152–1156, 2005.
223.
Kida KNishio TNagai KMatsuda HNakagawa H. Gluconeogenesis in the kidney in vivo in fed rats. Circadian change and substrate specificityJ Biochem (Tokyo)91755-7601982. 223. Kida K, Nishio T, Nagai K, Matsuda H, and Nakagawa H. Gluconeogenesis in the kidney in vivo in fed rats. Circadian change and substrate specificity. J Biochem (Tokyo) 91: 755–760, 1982.
224.
Kienzl EJellinger KStachelberger HLinert W. Iron as catalyst for oxidative stress in the pathogenesis of Parkinson's disease?Life Sci651973-19761999. 224. Kienzl E, Jellinger K, Stachelberger H, and Linert W. Iron as catalyst for oxidative stress in the pathogenesis of Parkinson's disease? Life Sci 65: 1973–1976, 1999.
225.
Kieran DKalmar BDick JRRiddoch-Contreras JBurnstock GGreensmith L. Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS miceNat Med10402-4052004. 225. Kieran D, Kalmar B, Dick JR, Riddoch-Contreras J, Burnstock G, and Greensmith L. Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nat Med 10: 402–405, 2004.
226.
Kim MJung YLee KKim C. Identification of the calcium binding sites in translationally controlled tumor proteinArch Pharm Res23633-6362000. 226. Kim M, Jung Y, Lee K, and Kim C. Identification of the calcium binding sites in translationally controlled tumor protein. Arch Pharm Res 23: 633–636, 2000.
227.
Kim SHFountoulakis MCairns NLubec G. Protein levels of human peroxiredoxin subtypes in brains of patients with Alzheimer's disease and Down syndromeJ Neural Transm Suppl61223-2352001. 227. Kim SH, Fountoulakis M, Cairns N, and Lubec G. Protein levels of human peroxiredoxin subtypes in brains of patients with Alzheimer's disease and Down syndrome. J Neural Transm Suppl (61): 223–235, 2001.
228.
Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammalsHumangenetik26231-2431975. 228. Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26: 231–243, 1975.
229.
Knyushko TVSharov VSWilliams TDSchoneich CBigelow DJ. 3-Nitrotyrosine modification of SERCA2a in the aging heart: a distinct signature of the cellular redox environmentBiochemistry4413071-130812005. 229. Knyushko TV, Sharov VS, Williams TD, Schoneich C, and Bigelow DJ. 3-Nitrotyrosine modification of SERCA2a in the aging heart: a distinct signature of the cellular redox environment. Biochemistry 44: 13071–13081, 2005.
230.
Koeppen AH. The history of iron in the brainJ Neurol Sci134Suppl 191995. 230. Koeppen AH. The history of iron in the brain. J Neurol Sci 134 Suppl: 1–9, 1995.
231.
Kondrikov DElms SFulton DSu Y. eNOS-beta-actin interaction contributes to increased peroxynitrite formation during hyperoxia in pulmonary artery endothelial cells and mouse lungsJ Biol Chem28535479-354872010. 231. Kondrikov D, Elms S, Fulton D, and Su Y. eNOS-beta-actin interaction contributes to increased peroxynitrite formation during hyperoxia in pulmonary artery endothelial cells and mouse lungs. J Biol Chem 285: 35479–35487, 2010.
232.
Korenberg JRBradley CDisteche CM. Down syndrome: molecular mapping of the congenital heart disease and duodenal stenosisAm J Hum Genet50294-3021992. 232. Korenberg JR, Bradley C, and Disteche CM. Down syndrome: molecular mapping of the congenital heart disease and duodenal stenosis. Am J Hum Genet 50: 294–302, 1992.
233.
Korolainen MAGoldsteins GAlafuzoff IKoistinaho JPirttila T. Proteomic analysis of protein oxidation in Alzheimer's disease brainElectrophoresis233428-34332002. 233. Korolainen MA, Goldsteins G, Alafuzoff I, Koistinaho J, and Pirttila T. Proteomic analysis of protein oxidation in Alzheimer's disease brain. Electrophoresis 23: 3428–3433, 2002.
234.
Korolainen MAGoldsteins GNyman TAAlafuzoff IKoistinaho JPirttila T. Oxidative modification of proteins in the frontal cortex of Alzheimer's disease brainNeurobiol Aging2742-532006. 234. Korolainen MA, Goldsteins G, Nyman TA, Alafuzoff I, Koistinaho J, and Pirttila T. Oxidative modification of proteins in the frontal cortex of Alzheimer's disease brain. Neurobiol Aging 27: 42–53, 2006.
235.
LaFontaine MAMattson MPButterfield DA. Oxidative stress in synaptosomal proteins from mutant presenilin-1 knock-in mice: implications for familial Alzheimer's diseaseNeurochem Res27417-4212002. 235. LaFontaine MA, Mattson MP, and Butterfield DA. Oxidative stress in synaptosomal proteins from mutant presenilin-1 knock-in mice: implications for familial Alzheimer's disease. Neurochem Res 27: 417–421, 2002.
236.
Lamprecht RLeDoux J. Structural plasticity and memoryNat Rev Neurosci545-542004. 236. Lamprecht R and LeDoux J. Structural plasticity and memory. Nat Rev Neurosci 5: 45–54, 2004.
237.
Landino LMSkreslet TEAlston JA. Cysteine oxidation of tau and microtubule-associated protein-2 by peroxynitrite: modulation of microtubule assembly kinetics by the thioredoxin reductase systemJ Biol Chem27935101-351052004. 237. Landino LM, Skreslet TE, and Alston JA. Cysteine oxidation of tau and microtubule-associated protein-2 by peroxynitrite: modulation of microtubule assembly kinetics by the thioredoxin reductase system. J Biol Chem 279: 35101–35105, 2004.
238.
Lauderback CMHackett JMHuang FFKeller JNSzweda LIMarkesbery WRButterfield DA. The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer's disease brain: the role of Abeta1-42J Neurochem78413-4162001. 238. Lauderback CM, Hackett JM, Huang FF, Keller JN, Szweda LI, Markesbery WR, and Butterfield DA. The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer's disease brain: the role of Abeta1-42. J Neurochem 78: 413–416, 2001.
239.
Layfield RFergusson JAitken ALowe JLandon MMayer RJ. Neurofibrillary tangles of Alzheimer's disease brains contain 14-3-3 proteinsNeurosci Lett20957-601996. 239. Layfield R, Fergusson J, Aitken A, Lowe J, Landon M, and Mayer RJ. Neurofibrillary tangles of Alzheimer's disease brains contain 14-3-3 proteins. Neurosci Lett 209: 57–60, 1996.
240.
Ledesma MDDa Silva JSCrassaerts KDelacourte ADe Strooper BDotti CG. Brain plasmin enhances APP alpha-cleavage and Abeta degradation and is reduced in Alzheimer's disease brainsEMBO Rep1530-5352000. 240. Ledesma MD, Da Silva JS, Crassaerts K, Delacourte A, De Strooper B, and Dotti CG. Brain plasmin enhances APP alpha-cleavage and Abeta degradation and is reduced in Alzheimer's disease brains. EMBO Rep 1: 530–535, 2000.
241.
Lee SYoung NLWhetstone PACheal SMBenner WHLebrilla CBMeares CF. Method to site-specifically identify and quantitate carbonyl end products of protein oxidation using oxidation-dependent element coded affinity tags (O-ECAT) and nanoliquid chromatography Fourier transform mass spectrometryJ Prot Res5539-5472006. 241. Lee S, Young NL, Whetstone PA, Cheal SM, Benner WH, Lebrilla CB, and Meares CF. Method to site-specifically identify and quantitate carbonyl end products of protein oxidation using oxidation-dependent element coded affinity tags (O-ECAT) and nanoliquid chromatography Fourier transform mass spectrometry. J Prot Res 5: 539–547, 2006.
242.
Lee SHTakahashi RGoto TOe T. Mass spectrometric characterization of modifications to angiotensin II by lipid peroxidation products, 4-oxo-2(E)-nonenal and 4-hydroxy-2(E)-nonenalChem Res Toxicol231771-17852010. 242. Lee SH, Takahashi R, Goto T, and Oe T. Mass spectrometric characterization of modifications to angiotensin II by lipid peroxidation products, 4-oxo-2(E)-nonenal and 4-hydroxy-2(E)-nonenal. Chem Res Toxicol 23: 1771–1785, 2010.
243.
Leigh PNWhitwell HGarofalo OBuller JSwash MMartin JEGallo JMWeller ROAnderton BH. Ubiquitin-immunoreactive intraneuronal inclusions in amyotrophic lateral sclerosis. Morphology, distribution, and specificityBrain114Pt 2775-7881991. 243. Leigh PN, Whitwell H, Garofalo O, Buller J, Swash M, Martin JE, Gallo JM, Weller RO, and Anderton BH. Ubiquitin-immunoreactive intraneuronal inclusions in amyotrophic lateral sclerosis. Morphology, distribution, and specificity. Brain 114 (Pt 2): 775–788, 1991.
244.
Lemieux NMalfoy BForrest GL. Human carbonyl reductase (CBR) localized to band 21q22.1 by high-resolution fluorescence in situ hybridization displays gene dosage effects in trisomy 21 cellsGenomics15169-1721993. 244. Lemieux N, Malfoy B, and Forrest GL. Human carbonyl reductase (CBR) localized to band 21q22.1 by high-resolution fluorescence in situ hybridization displays gene dosage effects in trisomy 21 cells. Genomics 15: 169–172, 1993.
245.
Lesage SJanin SLohmann ELeutenegger ALLeclere LViallet FPollak PDurif FThobois SLayet VVidailhet MAgid YDurr ABrice ABonnet AMBorg MBroussolle EDamier PDestee AMartinez MPenet CRasco OTison FTranchan CVerin M. LRRK2 exon 41 mutations in sporadic Parkinson disease in EuropeansArch Neurol64425-4302007. 245. Lesage S, Janin S, Lohmann E, Leutenegger AL, Leclere L, Viallet F, Pollak P, Durif F, Thobois S, Layet V, Vidailhet M, Agid Y, Durr A, Brice A, Bonnet AM, Borg M, Broussolle E, Damier P, Destee A, Martinez M, Penet C, Rasco O, Tison F, Tranchan C, and Verin M. LRRK2 exon 41 mutations in sporadic Parkinson disease in Europeans. Arch Neurol 64: 425–430, 2007.
246.
Leveugle BSpik GPerl DPBouras CFillit HMHof PR. The iron-binding protein lactotransferrin is present in pathologic lesions in a variety of neurodegenerative disorders: a comparative immunohistochemical analysisBrain Res65020-311994. 246. Leveugle B, Spik G, Perl DP, Bouras C, Fillit HM, and Hof PR. The iron-binding protein lactotransferrin is present in pathologic lesions in a variety of neurodegenerative disorders: a comparative immunohistochemical analysis. Brain Res 650: 20–31, 1994.
247.
Levine RLWehr NWilliams JAStadtman ERShacter E. Determination of carbonyl groups in oxidized proteinsMethods Mol Biol9915-242000. 247. Levine RL, Wehr N, Williams JA, Stadtman ER, and Shacter E. Determination of carbonyl groups in oxidized proteins. Methods Mol Biol 99: 15–24, 2000.
248.
Li YFWang YChannon KMSchultz HDZucker IHPatel KP. Manipulation of neuronal nitric oxide synthase within the paraventricular nucleus using adenovirus and antisense technologyMethods Mol Med11259-792005. 248. Li YF, Wang Y, Channon KM, Schultz HD, Zucker IH, and Patel KP. Manipulation of neuronal nitric oxide synthase within the paraventricular nucleus using adenovirus and antisense technology. Methods Mol Med 112: 59–79, 2005.
249.
Lillig CHHolmgren A. Thioredoxin and related molecules—from biology to health and diseaseAntioxid Redox Signal925-472007. 249. Lillig CH and Holmgren A. Thioredoxin and related molecules—from biology to health and disease. Antioxid Redox Signal 9: 25–47, 2007.
250.
Lin TKHughes GMuratovska ABlaikie FHBrookes PSDarley-Usmar VSmith RAMurphy MP. Specific modification of mitochondrial protein thiols in response to oxidative stress: a proteomics approachJ Biol Chem27717048-170562002. 250. Lin TK, Hughes G, Muratovska A, Blaikie FH, Brookes PS, Darley-Usmar V, Smith RA, and Murphy MP. Specific modification of mitochondrial protein thiols in response to oxidative stress: a proteomics approach. J Biol Chem 277: 17048–17056, 2002.
251.
Liochev SIFridovich I. Copper- and zinc-containing superoxide dismutase can act as a superoxide reductase and a superoxide oxidaseJ Biol Chem27538482-384852000. 251. Liochev SI and Fridovich I. Copper- and zinc-containing superoxide dismutase can act as a superoxide reductase and a superoxide oxidase. J Biol Chem 275: 38482–38485, 2000.
252.
Liou YCRyo AHuang HKLu PJBronson RFujimori FUchida THunter TLu KP. Loss of Pin1 function in the mouse causes phenotypes resembling cyclin D1-null phenotypesProc Natl Acad Sci U S A991335-13402002. 252. Liou YC, Ryo A, Huang HK, Lu PJ, Bronson R, Fujimori F, Uchida T, Hunter T, and Lu KP. Loss of Pin1 function in the mouse causes phenotypes resembling cyclin D1-null phenotypes. Proc Natl Acad Sci U S A 99: 1335–1340, 2002.
253.
Liu DWen JLiu JLi L. The roles of free radicals in amyotrophic lateral sclerosis: reactive oxygen species and elevated oxidation of protein, DNA, and membrane phospholipidsFASEB J132318-23281999. 253. Liu D, Wen J, Liu J, and Li L. The roles of free radicals in amyotrophic lateral sclerosis: reactive oxygen species and elevated oxidation of protein, DNA, and membrane phospholipids. FASEB J 13: 2318–2328, 1999.
254.
Liu RAlthaus JSEllerbrock BRBecker DAGurney ME. Enhanced oxygen radical production in a transgenic mouse model of familial amyotrophic lateral sclerosisAnn Neurol44763-7701998. 254. Liu R, Althaus JS, Ellerbrock BR, Becker DA, and Gurney ME. Enhanced oxygen radical production in a transgenic mouse model of familial amyotrophic lateral sclerosis. Ann Neurol 44: 763–770, 1998.
255.
Lott ITHead EDoran EBusciglio J. Beta-amyloid, oxidative stress and down syndromeCurr Alzheimer Res3521-5282006. 255. Lott IT, Head E, Doran E, and Busciglio J. Beta-amyloid, oxidative stress and down syndrome. Curr Alzheimer Res 3: 521–528, 2006.
256.
Lourette NSmallwood HWu SRobinson EWSquier TCSmith RDPasa-Tolic L. A top-down LC-FTICR MS-based strategy for characterizing oxidized calmodulin in activated macrophagesJ Am Soc Mass Spectrom21930-9392010. 256. Lourette N, Smallwood H, Wu S, Robinson EW, Squier TC, Smith RD, and Pasa-Tolic L. A top-down LC-FTICR MS-based strategy for characterizing oxidized calmodulin in activated macrophages. J Am Soc Mass Spectrom 21: 930–939, 2010.
257.
Lovell MAXie CGabbita SPMarkesbery WR. Decreased thioredoxin and increased thioredoxin reductase levels in Alzheimer's disease brainFree Radic Biol Med28418-4272000. 257. Lovell MA, Xie C, Gabbita SP, and Markesbery WR. Decreased thioredoxin and increased thioredoxin reductase levels in Alzheimer's disease brain. Free Radic Biol Med 28: 418–427, 2000.
258.
Lovell MAXiong SMarkesbery WRLynn BC. Quantitative proteomic analysis of mitochondria from primary neuron cultures treated with amyloid beta peptideNeurochem Res30113-1222005. 258. Lovell MA, Xiong S, Markesbery WR, and Lynn BC. Quantitative proteomic analysis of mitochondria from primary neuron cultures treated with amyloid beta peptide. Neurochem Res 30: 113–122, 2005.
259.
Lu BMotoyama ARuse CVenable JYates JR 3rd. Improving protein identification sensitivity by combining MS and MS/MS information for shotgun proteomics using LTQ-Orbitrap high mass accuracy dataAnal Chem802018-20252008. 259. Lu B, Motoyama A, Ruse C, Venable J, and Yates JR, 3rd. Improving protein identification sensitivity by combining MS and MS/MS information for shotgun proteomics using LTQ-Orbitrap high mass accuracy data. Anal Chem 80: 2018–2025, 2008.
260.
Lubec GNonaka MKrapfenbauer KGratzer MCairns NFountoulakis M. Expression of the dihydropyrimidinase related protein 2 (DRP-2) in Down syndrome and Alzheimer's disease brain is downregulated at the mRNA and dysregulated at the protein levelJ Neural Transm Suppl57161-1771999. 260. Lubec G, Nonaka M, Krapfenbauer K, Gratzer M, Cairns N, and Fountoulakis M. Expression of the dihydropyrimidinase related protein 2 (DRP-2) in Down syndrome and Alzheimer's disease brain is downregulated at the mRNA and dysregulated at the protein level. J Neural Transm Suppl 57: 161–177, 1999.
261.
MacMillan-Crow LACrow JPKerby JDBeckman JSThompson JA. Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allograftsProc Natl Acad Sci U S A9311853-118581996. 261. MacMillan-Crow LA, Crow JP, Kerby JD, Beckman JS, and Thompson JA. Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc Natl Acad Sci U S A 93: 11853–11858, 1996.
262.
Macmillan-Crow LACruthirds DL. Invited review: manganese superoxide dismutase in diseaseFree Radic Res34325-3362001. 262. Macmillan-Crow LA and Cruthirds DL. Invited review: manganese superoxide dismutase in disease. Free Radic Res 34: 325–336, 2001.
263.
Madian AGRegnier FE. Proteomic identification of carbonylated proteins and their oxidation sitesJ Proteome Res93766-37802010. 263. Madian AG and Regnier FE. Proteomic identification of carbonylated proteins and their oxidation sites. J Proteome Res 9: 3766–3780, 2010.
264.
Magrane JSmith RCWalsh KQuerfurth HW. Heat shock protein 70 participates in the neuroprotective response to intracellularly expressed beta-amyloid in neuronsJ Neurosci241700-17062004. 264. Magrane J, Smith RC, Walsh K, and Querfurth HW. Heat shock protein 70 participates in the neuroprotective response to intracellularly expressed beta-amyloid in neurons. J Neurosci 24: 1700–1706, 2004.
265.
Mandel SAFishman-Jacob TYoudim MB. Modeling sporadic Parkinson's disease by silencing the ubiquitin E3 ligase component, SKP1AParkinsonism Relat Disord15Suppl 3S148-S1512009. 265. Mandel SA, Fishman-Jacob T, and Youdim MB. Modeling sporadic Parkinson's disease by silencing the ubiquitin E3 ligase component, SKP1A. Parkinsonism Relat Disord 15 Suppl 3: S148–S151, 2009.
266.
Masliah EAlford MDeTeresa RMallory MHansen L. Deficient glutamate transport is associated with neurodegeneration in Alzheimer's diseaseAnn Neurol40759-7661996. 266. Masliah E, Alford M, DeTeresa R, Mallory M, and Hansen L. Deficient glutamate transport is associated with neurodegeneration in Alzheimer's disease. Ann Neurol 40: 759–766, 1996.
267.
Masliah EMallory MHansen LDeTeresa RAlford MTerry R. Synaptic and neuritic alterations during the progression of Alzheimer's diseaseNeurosci Lett17467-721994. 267. Masliah E, Mallory M, Hansen L, DeTeresa R, Alford M, and Terry R. Synaptic and neuritic alterations during the progression of Alzheimer's disease. Neurosci Lett 174: 67–72, 1994.
268.
Matsuura IChiang KNLai CYHe DWang GRamkumar RUchida TRyo ALu KLiu F. Pin1 promotes transforming growth factor-beta-induced migration and invasionJ Biol Chem2851754-17642010. 268. Matsuura I, Chiang KN, Lai CY, He D, Wang G, Ramkumar R, Uchida T, Ryo A, Lu K, and Liu F. Pin1 promotes transforming growth factor-beta-induced migration and invasion. J Biol Chem 285: 1754–1764, 2010.
269.
Mattson MPPedersen WADuan WCulmsee CCamandola S. Cellular and molecular mechanisms underlying perturbed energy metabolism and neuronal degeneration in Alzheimer's and Parkinson's diseasesAnn N Y Acad Sci893154-1751999. 269. Mattson MP, Pedersen WA, Duan W, Culmsee C, and Camandola S. Cellular and molecular mechanisms underlying perturbed energy metabolism and neuronal degeneration in Alzheimer's and Parkinson's diseases. Ann N Y Acad Sci 893: 154–175, 1999.
270.
Meier-Ruge WBertoni-Freddari CIwangoff P. Changes in brain glucose metabolism as a key to the pathogenesis of Alzheimer's diseaseGerontology40246-2521994. 270. Meier-Ruge W, Bertoni-Freddari C, and Iwangoff P. Changes in brain glucose metabolism as a key to the pathogenesis of Alzheimer's disease. Gerontology 40: 246–252, 1994.
271.
Meier-Ruge WIwangoff PReichlmeier K. Neurochemical enzyme changes in Alzheimer's and Pick's diseaseArch Gerontol Geriatr3161-1651984. 271. Meier-Ruge W, Iwangoff P, and Reichlmeier K. Neurochemical enzyme changes in Alzheimer's and Pick's disease. Arch Gerontol Geriatr 3: 161–165, 1984.
272.
Messier CGagnon M. Glucose regulation and cognitive functions: relation to Alzheimer's disease and diabetesBehav Brain Res751-111996. 272. Messier C and Gagnon M. Glucose regulation and cognitive functions: relation to Alzheimer's disease and diabetes. Behav Brain Res 75: 1–11, 1996.
273.
Mihm MJSchanbacher BLWallace BLWallace LJUretsky NJBauer JA. Free 3-nitrotyrosine causes striatal neurodegeneration in vivoJ Neurosci21RC1492001. 273. Mihm MJ, Schanbacher BL, Wallace BL, Wallace LJ, Uretsky NJ, and Bauer JA. Free 3-nitrotyrosine causes striatal neurodegeneration in vivo. J Neurosci 21: RC149, 2001.
274.
Mirzaei HBaena BBarbas CRegnier F. Identification of oxidized proteins in rat plasma using avidin chromatography and tandem mass spectrometryProteomics81516-15272008. 274. Mirzaei H, Baena B, Barbas C, and Regnier F. Identification of oxidized proteins in rat plasma using avidin chromatography and tandem mass spectrometry. Proteomics 8: 1516–1527, 2008.
275.
Mirzaei HRegnier F. Affinity chromatographic selection of carbonylated proteins followed by identification of oxidation sites using tandem mass spectrometryAnal Chem772386-23922005. 275. Mirzaei H and Regnier F. Affinity chromatographic selection of carbonylated proteins followed by identification of oxidation sites using tandem mass spectrometry. Anal Chem 77: 2386–2392, 2005.
276.
Mirzaei HRegnier F. Identification and quantification of protein carbonylation using light and heavy isotope labeled Girard's P reagentJ Chromatogr A1134122-1332006. 276. Mirzaei H and Regnier F. Identification and quantification of protein carbonylation using light and heavy isotope labeled Girard's P reagent. J Chromatogr A 1134: 122–133, 2006.
277.
Molina JAde Bustos FJimenez-Jimenez FJBenito-Leon JGasalla TOrti-Pareja MVela LBermejo FMartin MACampos YArenas J. Respiratory chain enzyme activities in isolated mitochondria of lymphocytes from patients with Alzheimer's diseaseNeurology48636-6381997. 277. Molina JA, de Bustos F, Jimenez-Jimenez FJ, Benito-Leon J, Gasalla T, Orti-Pareja M, Vela L, Bermejo F, Martin MA, Campos Y, and Arenas J. Respiratory chain enzyme activities in isolated mitochondria of lymphocytes from patients with Alzheimer's disease. Neurology 48: 636–638, 1997.
278.
Montine TJQuinn JFMontine KSKaye JABreitner JC. Quantitative in vivo biomarkers of oxidative damage and their application to the diagnosis and management of Alzheimer's diseaseJ Alzheimers Dis8359-3672005. 278. Montine TJ, Quinn JF, Montine KS, Kaye JA, and Breitner JC. Quantitative in vivo biomarkers of oxidative damage and their application to the diagnosis and management of Alzheimer's disease. J Alzheimers Dis 8: 359–367, 2005.
279.
Morel PTallineau CPontcharraud RPiriou AHuguet F. Effects of 4-hydroxynonenal, a lipid peroxidation product, on dopamine transport and Na+/K+ ATPase in rat striatal synaptosomesNeurochem Int33531-5401998. 279. Morel P, Tallineau C, Pontcharraud R, Piriou A, and Huguet F. Effects of 4-hydroxynonenal, a lipid peroxidation product, on dopamine transport and Na+/K+ ATPase in rat striatal synaptosomes. Neurochem Int 33: 531–540, 1998.
280.
Mouser PEHead EHa KHRohn TT. Caspase-mediated cleavage of glial fibrillary acidic protein within degenerating astrocytes of the Alzheimer's disease brainAm J Pathol168936-9462006. 280. Mouser PE, Head E, Ha KH, and Rohn TT. Caspase-mediated cleavage of glial fibrillary acidic protein within degenerating astrocytes of the Alzheimer's disease brain. Am J Pathol 168: 936–946, 2006.
281.
Muller WEEckert AKurz CEckert GPLeuner K. Mitochondrial dysfunction: common final pathway in brain aging and Alzheimer's disease—therapeutic aspectsMol Neurobiol41159-1712010. 281. Muller WE, Eckert A, Kurz C, Eckert GP, and Leuner K. Mitochondrial dysfunction: common final pathway in brain aging and Alzheimer's disease—therapeutic aspects. Mol Neurobiol 41: 159–171, 2010.
282.
Nagy ZEsiri MMCato AMSmith AD. Cell cycle markers in the hippocampus in Alzheimer's diseaseActa Neuropathol946-151997. 282. Nagy Z, Esiri MM, Cato AM, and Smith AD. Cell cycle markers in the hippocampus in Alzheimer's disease. Acta Neuropathol 94: 6–15, 1997.
283.
Nakamura AGoto S. Analysis of protein carbonyls with 2,4-dinitrophenyl hydrazine and its antibodies by immunoblot in two-dimensional gel electrophoresisJ Biochem119768-7741996. 283. Nakamura A and Goto S. Analysis of protein carbonyls with 2,4-dinitrophenyl hydrazine and its antibodies by immunoblot in two-dimensional gel electrophoresis. J Biochem 119: 768–774, 1996.
284.
Neely MDBoutte AMilatovic DMontine TJ. Mechanisms of 4-hydroxynonenal-induced neuronal microtubule dysfunctionBrain Res103790-982005. 284. Neely MD, Boutte A, Milatovic D, and Montine TJ. Mechanisms of 4-hydroxynonenal-induced neuronal microtubule dysfunction. Brain Res 1037: 90–98, 2005.
285.
Niatsetskaya ZBasso MSpeer REMcConoughey SJCoppola GMa TCRatan RR. HIF prolyl hydroxylase inhibitors prevent neuronal death induced by mitochondrial toxins: therapeutic implications for Huntington's disease and Alzheimer's diseaseAntioxid Redox Signal12435-4432010. 285. Niatsetskaya Z, Basso M, Speer RE, McConoughey SJ, Coppola G, Ma TC, and Ratan RR. HIF prolyl hydroxylase inhibitors prevent neuronal death induced by mitochondrial toxins: therapeutic implications for Huntington's disease and Alzheimer's disease. Antioxid Redox Signal 12: 435–443, 2010.
286.
Nikov GBhat VWishnok JSTannenbaum SR. Analysis of nitrated proteins by nitrotyrosine-specific affinity probes and mass spectrometryAnal Biochem320214-2222003. 286. Nikov G, Bhat V, Wishnok JS, and Tannenbaum SR. Analysis of nitrated proteins by nitrotyrosine-specific affinity probes and mass spectrometry. Anal Biochem 320: 214–222, 2003.
287.
Nishiyama AMatsui MIwata SHirota KMasutani HNakamura HTakagi YSono HGon YYodoi J. Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expressionJ Biol Chem27421645-216501999. 287. Nishiyama A, Matsui M, Iwata S, Hirota K, Masutani H, Nakamura H, Takagi Y, Sono H, Gon Y, and Yodoi J. Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J Biol Chem 274: 21645–21650, 1999.
288.
Nunomura APerry GPappolla MAFriedland RPHirai KChiba SSmith MA. Neuronal oxidative stress precedes amyloid-beta deposition in Down syndromeJ Neuropathol Exp Neurol591011-10172000. 288. Nunomura A, Perry G, Pappolla MA, Friedland RP, Hirai K, Chiba S, and Smith MA. Neuronal oxidative stress precedes amyloid-beta deposition in Down syndrome. J Neuropathol Exp Neurol 59: 1011–1017, 2000.
289.
O'Farrell PH. High resolution two-dimensional electrophoresis of proteinsJ Biol Chem2504007-40211975. 289. O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250: 4007–4021, 1975.
290.
Odetti PAngelini GDapino DZaccheo DGaribaldi SDagna-Bricarelli FPiombo GPerry GSmith MTraverso NTabaton M. Early glycoxidation damage in brains from Down's syndromeBiochem Biophys Res Commun243849-8511998. 290. Odetti P, Angelini G, Dapino D, Zaccheo D, Garibaldi S, Dagna-Bricarelli F, Piombo G, Perry G, Smith M, Traverso N, and Tabaton M. Early glycoxidation damage in brains from Down's syndrome. Biochem Biophys Res Commun 243: 849–851, 1998.
291.
Ojika KTsugu YMitake SOtsuka YKatada E. NMDA receptor activation enhances the release of a cholinergic differentiation peptide (HCNP) from hippocampal neurons in vitroBrain Res Dev Brain Res106173-1801998. 291. Ojika K, Tsugu Y, Mitake S, Otsuka Y, and Katada E. NMDA receptor activation enhances the release of a cholinergic differentiation peptide (HCNP) from hippocampal neurons in vitro. Brain Res Dev Brain Res 106: 173–180, 1998.
292.
Oka SMasutani HLiu WHorita HWang DKizaka-Kondoh SYodoi J. Thioredoxin-binding protein-2-like inducible membrane protein is a novel vitamin D3 and peroxisome proliferator-activated receptor (PPAR)gamma ligand target protein that regulates PPARgamma signalingEndocrinology147733-7432006. 292. Oka S, Masutani H, Liu W, Horita H, Wang D, Kizaka-Kondoh S, and Yodoi J. Thioredoxin-binding protein-2-like inducible membrane protein is a novel vitamin D3 and peroxisome proliferator-activated receptor (PPAR)gamma ligand target protein that regulates PPARgamma signaling. Endocrinology 147: 733–743, 2006.
293.
Op den Velde WStam FC. Some cerebral proteins and enzyme systems in Alzheimer's presenile and senile dementiaJ Am Geriatr Soc2412-161976. 293. Op den Velde W and Stam FC. Some cerebral proteins and enzyme systems in Alzheimer's presenile and senile dementia. J Am Geriatr Soc 24: 12–16, 1976.
294.
Orrenius SBurgess DHHampton MBZhivotovsky B. Mitochondria as the focus of apoptosis researchCell Death Differ4427-4281997. 294. Orrenius S, Burgess DH, Hampton MB, and Zhivotovsky B. Mitochondria as the focus of apoptosis research. Cell Death Differ 4: 427–428, 1997.
295.
Ostrerova-Golts NPetrucelli LHardy JLee JMFarer MWolozin B. The A53T alpha-synuclein mutation increases iron-dependent aggregation and toxicityJ Neurosci206048-60542000. 295. Ostrerova-Golts N, Petrucelli L, Hardy J, Lee JM, Farer M, and Wolozin B. The A53T alpha-synuclein mutation increases iron-dependent aggregation and toxicity. J Neurosci 20: 6048–6054, 2000.
296.
Ou JFontana JTOu ZJones DWAckerman AWOldham KTYu JSessa WCPritchard KA Jr. Heat shock protein 90 and tyrosine kinase regulate eNOS NO* generation but not NO* bioactivityAm J Physiol Heart Circ Physiol286H561-H5692004. 296. Ou J, Fontana JT, Ou Z, Jones DW, Ackerman AW, Oldham KT, Yu J, Sessa WC, and Pritchard KA, Jr. Heat shock protein 90 and tyrosine kinase regulate eNOS NO* generation but not NO* bioactivity. Am J Physiol Heart Circ Physiol 286: H561–H569, 2004.
297.
Owen JBSultana RAluise CDErickson MAPrice TOBu GBanks WAButterfield DA. Oxidative modification to LDL receptor-related protein 1 in hippocampus from subjects with Alzheimer disease: implications for Abeta accumulation in AD brainFree Radic Biol Med491798-18032010. 297. Owen JB, Sultana R, Aluise CD, Erickson MA, Price TO, Bu G, Banks WA, and Butterfield DA. Oxidative modification to LDL receptor-related protein 1 in hippocampus from subjects with Alzheimer disease: implications for Abeta accumulation in AD brain. Free Radic Biol Med 49: 1798–1803, 2010.
298.
Palacino JJSagi DGoldberg MSKrauss SMotz CWacker MKlose JShen J. Mitochondrial dysfunction and oxidative damage in parkin-deficient miceJ Biol Chem27918614-186222004. 298. Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C, Wacker M, Klose J, and Shen J. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 279: 18614–18622, 2004.
299.
Panov AVGutekunst CALeavitt BRHayden MRBurke JRStrittmatter WJGreenamyre JT. Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutaminesNat Neurosci5731-7362002. 299. Panov AV, Gutekunst CA, Leavitt BR, Hayden MR, Burke JR, Strittmatter WJ, and Greenamyre JT. Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines. Nat Neurosci 5: 731–736, 2002.
300.
Pei JJBraak HAn WLWinblad BCowburn RFIqbal KGrundke-Iqbal I. Up-regulation of mitogen-activated protein kinases ERK1/2 and MEK1/2 is associated with the progression of neurofibrillary degeneration in Alzheimer's diseaseBrain Res Mol Brain Res10945-552002. 300. Pei JJ, Braak H, An WL, Winblad B, Cowburn RF, Iqbal K, and Grundke-Iqbal I. Up-regulation of mitogen-activated protein kinases ERK1/2 and MEK1/2 is associated with the progression of neurofibrillary degeneration in Alzheimer's disease. Brain Res Mol Brain Res 109: 45–55, 2002.
301.
Perluigi Mdi Domenico FFiorini ACocciolo AGiorgi AFoppoli CButterfield DAGiorlandino MGiorlandino CSchinina MECoccia R. Oxidative stress occurs early in Down syndrome pregnancy: a redox proteomics analysis of amniotic fluidProt Clin Appl5167-1782011. 301. Perluigi M, di Domenico F, Fiorini A, Cocciolo A, Giorgi A, Foppoli C, Butterfield DA, Giorlandino M, Giorlandino C, Schinina ME, and Coccia R. Oxidative stress occurs early in Down syndrome pregnancy: a redox proteomics analysis of amniotic fluid. Prot Clin Appl 5: 167–178, 2011.
302.
Perluigi MFai Poon HHensley KPierce WMKlein JBCalabrese VDe Marco CButterfield DA. Proteomic analysis of 4-hydroxy-2-nonenal-modified proteins in G93A-SOD1 transgenic mice—a model of familial amyotrophic lateral sclerosisFree Radic Biol Med38960-9682005. 302. Perluigi M, Fai Poon H, Hensley K, Pierce WM, Klein JB, Calabrese V, De Marco C, and Butterfield DA. Proteomic analysis of 4-hydroxy-2-nonenal-modified proteins in G93A-SOD1 transgenic mice—a model of familial amyotrophic lateral sclerosis. Free Radic Biol Med 38: 960–968, 2005.
303.
Perluigi MPoon HFMaragos WPierce WMKlein JBCalabrese VCini CDe Marco CButterfield DA. Proteomic analysis of protein expression and oxidative modification in r6/2 transgenic mice: a model of Huntington diseaseMol Cell Proteomics41849-18612005. 303. Perluigi M, Poon HF, Maragos W, Pierce WM, Klein JB, Calabrese V, Cini C, De Marco C, and Butterfield DA. Proteomic analysis of protein expression and oxidative modification in r6/2 transgenic mice: a model of Huntington disease. Mol Cell Proteomics 4: 1849–1861, 2005.
304.
Perluigi MSultana RCenini GDi Domenico FMemo MPierce WMCoccia RButterfield DA. Redox proteomics identification of HNE-modified brain proteins in Alzheimer's disease: role of lipid peroxidation in Alzheimer's disease pathogenesisProteomics Clin Appl3682-6932009. 304. Perluigi M, Sultana R, Cenini G, Di Domenico F, Memo M, Pierce WM, Coccia R, and Butterfield DA. Redox proteomics identification of HNE-modified brain proteins in Alzheimer's disease: role of lipid peroxidation in Alzheimer's disease pathogenesis. Proteomics Clin Appl 3: 682–693, 2009.
305.
Perumal ASTordzro WKKatz MJackson-Lewis VCooper TBFahn SCadet JL. Regional effects of 6-hydroxydopamine (6-OHDA) on free radical scavengers in rat brainBrain Res504139-1411989. 305. Perumal AS, Tordzro WK, Katz M, Jackson-Lewis V, Cooper TB, Fahn S, and Cadet JL. Regional effects of 6-hydroxydopamine (6-OHDA) on free radical scavengers in rat brain. Brain Res 504: 139–141, 1989.
306.
Pestova TVHellen CU. The structure and function of initiation factors in eukaryotic protein synthesisCell Mol Life Sci57651-6742000. 306. Pestova TV and Hellen CU. The structure and function of initiation factors in eukaryotic protein synthesis. Cell Mol Life Sci 57: 651–674, 2000.
307.
Petersen AHansson OPuschban ZSapp ERomero NCastilho RFSulzer DRice MDiFiglia MPrzedborski SBrundin P. Mice transgenic for exon 1 of the Huntington's disease gene display reduced striatal sensitivity to neurotoxicity induced by dopamine and 6-hydroxydopamineEur J Neurosci141425-14352001. 307. Petersen A, Hansson O, Puschban Z, Sapp E, Romero N, Castilho RF, Sulzer D, Rice M, DiFiglia M, Przedborski S, and Brundin P. Mice transgenic for exon 1 of the Huntington's disease gene display reduced striatal sensitivity to neurotoxicity induced by dopamine and 6-hydroxydopamine. Eur J Neurosci 14: 1425–1435, 2001.
308.
Petronis A. Alzheimer's disease and down syndrome: from meiosis to dementiaExp Neurol158403-4131999. 308. Petronis A. Alzheimer's disease and down syndrome: from meiosis to dementia. Exp Neurol 158: 403–413, 1999.
309.
Pettegrew JWPanchalingam KKlunk WEMcClure RJMuenz LR. Alterations of cerebral metabolism in probable Alzheimer's disease: a preliminary studyNeurobiol Aging15117-1321994. 309. Pettegrew JW, Panchalingam K, Klunk WE, McClure RJ, and Muenz LR. Alterations of cerebral metabolism in probable Alzheimer's disease: a preliminary study. Neurobiol Aging 15: 117–132, 1994.
310.
Picklo MJMontine TJAmarnath VNeely MD. Carbonyl toxicology and Alzheimer's diseaseToxicol Appl Pharmacol184187-1972002. 310. Picklo MJ, Montine TJ, Amarnath V, and Neely MD. Carbonyl toxicology and Alzheimer's disease. Toxicol Appl Pharmacol 184: 187–197, 2002.
311.
Planel EMiyasaka TLauney TChui DHTanemura KSato SMurayama OIshiguro KTatebayashi YTakashima A. Alterations in glucose metabolism induce hypothermia leading to tau hyperphosphorylation through differential inhibition of kinase and phosphatase activities: implications for Alzheimer's diseaseJ Neurosci242401-24112004. 311. Planel E, Miyasaka T, Launey T, Chui DH, Tanemura K, Sato S, Murayama O, Ishiguro K, Tatebayashi Y, and Takashima A. Alterations in glucose metabolism induce hypothermia leading to tau hyperphosphorylation through differential inhibition of kinase and phosphatase activities: implications for Alzheimer's disease. J Neurosci 24: 2401–2411, 2004.
312.
Pocernich CBLange MLSultana RButterfield DA. Nutritional approaches to modulate oxidative stress in Alzheimer's diseaseCurr Alzheimer Res8452-4692011. 312. Pocernich CB, Lange ML, Sultana R, and Butterfield DA. Nutritional approaches to modulate oxidative stress in Alzheimer's disease. Curr Alzheimer Res 8: 452–469, 2011.
313.
Poon HFFrasier MShreve NCalabrese VWolozin BButterfield DA. Mitochondrial associated metabolic proteins are selectively oxidized in A30P alpha-synuclein transgenic mice—a model of familial Parkinson's diseaseNeurobiol Dis18492-4982005. 313. Poon HF, Frasier M, Shreve N, Calabrese V, Wolozin B, and Butterfield DA. Mitochondrial associated metabolic proteins are selectively oxidized in A30P alpha-synuclein transgenic mice—a model of familial Parkinson's disease. Neurobiol Dis 18: 492–498, 2005.
314.
Poon HFHensley KThongboonkerd VMerchant MLLynn BCPierce WMKlein JBCalabrese VButterfield DA. Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice—a model of familial amyotrophic lateral sclerosisFree Radic Biol Med39453-4622005. 314. Poon HF, Hensley K, Thongboonkerd V, Merchant ML, Lynn BC, Pierce WM, Klein JB, Calabrese V, and Butterfield DA. Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice—a model of familial amyotrophic lateral sclerosis. Free Radic Biol Med 39: 453–462, 2005.
315.
Rakhit RCunningham PFurtos-Matei ADahan SQi XFCrow JPCashman NRKondejewski LHChakrabartty A. Oxidation-induced misfolding and aggregation of superoxide dismutase and its implications for amyotrophic lateral sclerosisJ Biol Chem27747551-475562002. 315. Rakhit R, Cunningham P, Furtos-Matei A, Dahan S, Qi XF, Crow JP, Cashman NR, Kondejewski LH, and Chakrabartty A. Oxidation-induced misfolding and aggregation of superoxide dismutase and its implications for amyotrophic lateral sclerosis. J Biol Chem 277: 47551–47556, 2002.
316.
Ramakrishnan PDickson DWDavies P. Pin1 colocalization with phosphorylated tau in Alzheimer's disease and other tauopathiesNeurobiol Dis14251-2642003. 316. Ramakrishnan P, Dickson DW, and Davies P. Pin1 colocalization with phosphorylated tau in Alzheimer's disease and other tauopathies. Neurobiol Dis 14: 251–264, 2003.
317.
Rapoport SI. In vivo PET imaging and postmortem studies suggest potentially reversible and irreversible stages of brain metabolic failure in Alzheimer's diseaseEur Arch Psychiatry Clin Neurosci249Suppl 346-551999. 317. Rapoport SI. In vivo PET imaging and postmortem studies suggest potentially reversible and irreversible stages of brain metabolic failure in Alzheimer's disease. Eur Arch Psychiatry Clin Neurosci 249 Suppl 3: 46–55, 1999.
318.
Rauniyar NProkai L. Detection and identification of 4-hydroxy-2-nonenal Schiff-base adducts along with products of Michael addition using data-dependent neutral loss-driven MS3 acquisition: method evaluation through an in vitro study on cytochrome c oxidase modificationsProteomics95188-51932009. 318. Rauniyar N and Prokai L. Detection and identification of 4-hydroxy-2-nonenal Schiff-base adducts along with products of Michael addition using data-dependent neutral loss-driven MS3 acquisition: method evaluation through an in vitro study on cytochrome c oxidase modifications. Proteomics 9: 5188–5193, 2009.
319.
Reaume AGElliott JLHoffman EKKowall NWFerrante RJSiwek DFWilcox HMFlood DGBeal MFBrown RH Jr.Scott RWSnider WD. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injuryNat Genet1343-471996. 319. Reaume AG, Elliott JL, Hoffman EK, Kowall NW, Ferrante RJ, Siwek DF, Wilcox HM, Flood DG, Beal MF, Brown RH, Jr., Scott RW, and Snider WD. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 13: 43–47, 1996.
320.
Reed TPerluigi MSultana RPierce WMKlein JBTurner DMCoccia RMarkesbery WRButterfield DA. Redox proteomic identification of 4-hydroxy-2-nonenal-modified brain proteins in amnestic mild cognitive impairment: insight into the role of lipid peroxidation in the progression and pathogenesis of Alzheimer's diseaseNeurobiol Dis30107-1202008. 320. Reed T, Perluigi M, Sultana R, Pierce WM, Klein JB, Turner DM, Coccia R, Markesbery WR, and Butterfield DA. Redox proteomic identification of 4-hydroxy-2-nonenal-modified brain proteins in amnestic mild cognitive impairment: insight into the role of lipid peroxidation in the progression and pathogenesis of Alzheimer's disease. Neurobiol Dis 30: 107–120, 2008.
321.
Reed TTPierce WM Jr.Turner DMMarkesbery WRButterfield DA. Proteomic identification of nitrated brain proteins in early Alzheimer's disease inferior parietal lobuleJ Cell Mol Med132019-20292009. 321. Reed TT, Pierce WM, Jr., Turner DM, Markesbery WR, and Butterfield DA. Proteomic identification of nitrated brain proteins in early Alzheimer's disease inferior parietal lobule. J Cell Mol Med 13: 2019–2029, 2009.
322.
Reed TTPierce WMMarkesbery WRButterfield DA. Proteomic identification of HNE-bound proteins in early Alzheimer disease: insights into the role of lipid peroxidation in the progression of ADBrain Res127466-762009. 322. Reed TT, Pierce WM, Markesbery WR, and Butterfield DA. Proteomic identification of HNE-bound proteins in early Alzheimer disease: insights into the role of lipid peroxidation in the progression of AD. Brain Res 1274: 66–76, 2009.
323.
Reiner MBloch WAddicks K. Functional interaction of caveolin-1 and eNOS in myocardial capillary endothelium revealed by immunoelectron microscopyJ Histochem Cytochem491605-16102001. 323. Reiner M, Bloch W, and Addicks K. Functional interaction of caveolin-1 and eNOS in myocardial capillary endothelium revealed by immunoelectron microscopy. J Histochem Cytochem 49: 1605–1610, 2001.
324.
Rhee SGChae HZKim K. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signalingFree Radic Biol Med381543-15522005. 324. Rhee SG, Chae HZ, and Kim K. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med 38: 1543–1552, 2005.
325.
Riederer PSofic ERausch WDSchmidt BReynolds GPJellinger KYoudim MB. Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brainsJ Neurochem52515-5201989. 325. Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, and Youdim MB. Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52: 515–520, 1989.
326.
Riviere SBirlouez-Aragon INourhashemi FVellas B. Low plasma vitamin C in Alzheimer patients despite an adequate dietInt J Geriatr Psychiatry13749-7541998. 326. Riviere S, Birlouez-Aragon I, Nourhashemi F, and Vellas B. Low plasma vitamin C in Alzheimer patients despite an adequate diet. Int J Geriatr Psychiatry 13: 749–754, 1998.
327.
Roe MRMcGowan TFThompson LVGriffin TJ. Targeted 18O-labeling for improved proteomic analysis of carbonylated peptides by mass spectrometryJ Am Soc Mass Spectrom211190-12032010. 327. Roe MR, McGowan TF, Thompson LV, and Griffin TJ. Targeted 18O-labeling for improved proteomic analysis of carbonylated peptides by mass spectrometry. J Am Soc Mass Spectrom 21: 1190–1203, 2010.
328.
Rossor MNIversen LLJohnson AJMountjoy CQRoth M. Cholinergic deficit in frontal cerebral cortex in Alzheimer's disease is age dependentLancet214221981. 328. Rossor MN, Iversen LL, Johnson AJ, Mountjoy CQ, and Roth M. Cholinergic deficit in frontal cerebral cortex in Alzheimer's disease is age dependent. Lancet 2: 1422, 1981.
329.
Saigoh KWang YLSuh JGYamanishi TSakai YKiyosawa HHarada TIchihara NWakana SKikuchi TWada K. Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad miceNat Genet2347-511999. 329. Saigoh K, Wang YL, Suh JG, Yamanishi T, Sakai Y, Kiyosawa H, Harada T, Ichihara N, Wakana S, Kikuchi T, and Wada K. Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat Genet 23: 47–51, 1999.
330.
Sajdel-Sulkowska EMMarotta CA. Alzheimer's disease brain: alterations in RNA levels and in a ribonuclease-inhibitor complexScience225947-9491984. 330. Sajdel-Sulkowska EM and Marotta CA. Alzheimer's disease brain: alterations in RNA levels and in a ribonuclease-inhibitor complex. Science 225: 947–949, 1984.
331.
Salmon MDedessus Le Moutier JWenders FChiarizia SEliaers FRemacle JRoyer VPascal TToussaint O. Role of the PLA2-independent peroxiredoxin VI activity in the survival of immortalized fibroblasts exposed to cytotoxic oxidative stressFEBS Lett55726-322004. 331. Salmon M, Dedessus Le Moutier J, Wenders F, Chiarizia S, Eliaers F, Remacle J, Royer V, Pascal T, and Toussaint O. Role of the PLA2-independent peroxiredoxin VI activity in the survival of immortalized fibroblasts exposed to cytotoxic oxidative stress. FEBS Lett 557: 26–32, 2004.
332.
Sayre LMZelasko DAHarris PLPerry GSalomon RGSmith MA. 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer's diseaseJ Neurochem682092-20971997. 332. Sayre LM, Zelasko DA, Harris PL, Perry G, Salomon RG, and Smith MA. 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer's disease. J Neurochem 68: 2092–2097, 1997.
333.
Schapira AH. Mitochondrial involvement in Parkinson's disease, Huntington's disease, hereditary spastic paraplegia and Friedreich's ataxiaBiochim Biophys Acta1410159-1701999. 333. Schapira AH. Mitochondrial involvement in Parkinson's disease, Huntington's disease, hereditary spastic paraplegia and Friedreich's ataxia. Biochim Biophys Acta 1410: 159–170, 1999.
334.
Scheff SWPrice DA. Synaptic pathology in Alzheimer's disease: a review of ultrastructural studiesNeurobiol Aging241029-10462003. 334. Scheff SW and Price DA. Synaptic pathology in Alzheimer's disease: a review of ultrastructural studies. Neurobiol Aging 24: 1029–1046, 2003.
335.
Scheff SWPrice DA. Alzheimer's disease-related alterations in synaptic density: neocortex and hippocampusJ Alzheimers Dis9101-1152006. 335. Scheff SW and Price DA. Alzheimer's disease-related alterations in synaptic density: neocortex and hippocampus. J Alzheimers Dis 9: 101–115, 2006.
336.
Schilling GBecher MWSharp AHJinnah HADuan KKotzuk JASlunt HHRatovitski TCooper JKJenkins NACopeland NGPrice DLRoss CABorchelt DR. Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtinHum Mol Genet8397-4071999. 336. Schilling G, Becher MW, Sharp AH, Jinnah HA, Duan K, Kotzuk JA, Slunt HH, Ratovitski T, Cooper JK, Jenkins NA, Copeland NG, Price DL, Ross CA, and Borchelt DR. Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum Mol Genet 8: 397–407, 1999.
337.
Schneider CPorter NABrash AR. Autoxidative transformation of chiral omega6 hydroxy linoleic and arachidonic acids to chiral 4-hydroxy-2E-nonenalChem Res Toxicol17937-9412004. 337. Schneider C, Porter NA, and Brash AR. Autoxidative transformation of chiral omega6 hydroxy linoleic and arachidonic acids to chiral 4-hydroxy-2E-nonenal. Chem Res Toxicol 17: 937–941, 2004.
338.
Schulze PCYoshioka JTakahashi THe ZKing GLLee RT. Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting proteinJ Biol Chem27930369-303742004. 338. Schulze PC, Yoshioka J, Takahashi T, He Z, King GL, and Lee RT. Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein. J Biol Chem 279: 30369–30374, 2004.
339.
Schutkowski MBernhardt AZhou XZShen MReimer URahfeld JULu KPFischer G. Role of phosphorylation in determining the backbone dynamics of the serine/threonine-proline motif and Pin1 substrate recognitionBiochemistry375566-55751998. 339. Schutkowski M, Bernhardt A, Zhou XZ, Shen M, Reimer U, Rahfeld JU, Lu KP, and Fischer G. Role of phosphorylation in determining the backbone dynamics of the serine/threonine-proline motif and Pin1 substrate recognition. Biochemistry 37: 5566–5575, 1998.
340.
Selkoe DJ. Alzheimer's disease: genes, proteins, and therapyPhysiol Rev81741-7662001. 340. Selkoe DJ. Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 81: 741–766, 2001.
341.
Sergeant NWattez AGalvan-valencia MGhestem ADavid JPLemoine JSautiere PEDachary JMazat JPMichalski JCVelours JMena-Lopez RDelacourte A. Association of ATP synthase alpha-chain with neurofibrillary degeneration in Alzheimer's diseaseNeurosci117293-3032003. 341. Sergeant N, Wattez A, Galvan-valencia M, Ghestem A, David JP, Lemoine J, Sautiere PE, Dachary J, Mazat JP, Michalski JC, Velours J, Mena-Lopez R, and Delacourte A. Association of ATP synthase alpha-chain with neurofibrillary degeneration in Alzheimer's disease. Neurosci 117: 293–303, 2003.
342.
Shaw PJInce PGFalkous GMantle D. Oxidative damage to protein in sporadic motor neuron disease spinal cordAnn Neurol38691-6951995. 342. Shaw PJ, Ince PG, Falkous G, and Mantle D. Oxidative damage to protein in sporadic motor neuron disease spinal cord. Ann Neurol 38: 691–695, 1995.
343.
Sherer TBBetarbet RGreenamyre JT. Environment, mitochondria, and Parkinson's diseaseNeuroscientist8192-1972002. 343. Sherer TB, Betarbet R, and Greenamyre JT. Environment, mitochondria, and Parkinson's disease. Neuroscientist 8: 192–197, 2002.
344.
Shibata NNagai RUchida KHoriuchi SYamada SHirano AKawaguchi MYamamoto TSasaki SKobayashi M. Morphological evidence for lipid peroxidation and protein glycoxidation in spinal cords from sporadic amyotrophic lateral sclerosis patientsBrain Res91797-1042001. 344. Shibata N, Nagai R, Uchida K, Horiuchi S, Yamada S, Hirano A, Kawaguchi M, Yamamoto T, Sasaki S, and Kobayashi M. Morphological evidence for lipid peroxidation and protein glycoxidation in spinal cords from sporadic amyotrophic lateral sclerosis patients. Brain Res 917: 97–104, 2001.
345.
Shinder GALacourse MCMinotti SDurham HD. Mutant Cu/Zn-superoxide dismutase proteins have altered solubility and interact with heat shock/stress proteins in models of amyotrophic lateral sclerosisJ Biol Chem27612791-127962001. 345. Shinder GA, Lacourse MC, Minotti S, and Durham HD. Mutant Cu/Zn-superoxide dismutase proteins have altered solubility and interact with heat shock/stress proteins in models of amyotrophic lateral sclerosis. J Biol Chem 276: 12791–12796, 2001.
346.
Shults CWOakes DKieburtz KBeal MFHaas RPlumb SJuncos JLNutt JShoulson ICarter JKompoliti KPerlmutter JSReich SStern MWatts RLKurlan RMolho EHarrison MLew M. Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional declineArch Neurol591541-15502002. 346. Shults CW, Oakes D, Kieburtz K, Beal MF, Haas R, Plumb S, Juncos JL, Nutt J, Shoulson I, Carter J, Kompoliti K, Perlmutter JS, Reich S, Stern M, Watts RL, Kurlan R, Molho E, Harrison M, and Lew M. Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol 59: 1541–1550, 2002.
347.
Siciliano GPiazza SCarlesi CDel Corona AFranzini MPompella AMalvaldi GMancuso MPaolicchi AMurri L. Antioxidant capacity and protein oxidation in cerebrospinal fluid of amyotrophic lateral sclerosisJ Neurol254575-5802007. 347. Siciliano G, Piazza S, Carlesi C, Del Corona A, Franzini M, Pompella A, Malvaldi G, Mancuso M, Paolicchi A, and Murri L. Antioxidant capacity and protein oxidation in cerebrospinal fluid of amyotrophic lateral sclerosis. J Neurol 254: 575–580, 2007.
348.
Siems WGHapner SJvan Kuijk FJ. 4-hydroxynonenal inhibits Na(+)-K(+)-ATPaseFree Radic Biol Med20215-2231996. 348. Siems WG, Hapner SJ, and van Kuijk FJ. 4-hydroxynonenal inhibits Na(+)-K(+)-ATPase. Free Radic Biol Med 20: 215–223, 1996.
349.
Simmons DACasale MAlcon BPham NNarayan NLynch G. Ferritin accumulation in dystrophic microglia is an early event in the development of Huntington's diseaseGlia551074-10842007. 349. Simmons DA, Casale M, Alcon B, Pham N, Narayan N, and Lynch G. Ferritin accumulation in dystrophic microglia is an early event in the development of Huntington's disease. Glia 55: 1074–1084, 2007.
350.
Singh AKGupta SJiang Y. Oxidative stress and protein oxidation in the brain of water drinking and alcohol drinking rats administered the HIV envelope protein, gp120J Neurochem1041478-14932008. 350. Singh AK, Gupta S, and Jiang Y. Oxidative stress and protein oxidation in the brain of water drinking and alcohol drinking rats administered the HIV envelope protein, gp120. J Neurochem 104: 1478–1493, 2008.
351.
Sly WSHewett-Emmett DWhyte MPYu YSTashian RE. Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcificationProc Natl Acad Sci U S A802752-27561983. 351. Sly WS, Hewett-Emmett D, Whyte MP, Yu YS, and Tashian RE. Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci U S A 80: 2752–2756, 1983.
352.
Smith CDCarney JMStarkereed PEOliver CNStadtman ERFloyd RAMarkesbery WR. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer-diseaseProc Natl Acad Sci U S A8810540-105431991. 352. Smith CD, Carney JM, Starkereed PE, Oliver CN, Stadtman ER, Floyd RA, and Markesbery WR. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer-disease. Proc Natl Acad Sci U S A 88: 10540–10543, 1991.
353.
Smith MASayre LMAnderson VEHarris PLBeal MFKowall NPerry G. Cytochemical demonstration of oxidative damage in Alzheimer disease by immunochemical enhancement of the carbonyl reaction with 2,4-dinitrophenylhydrazineJ Histochem Cytochem46731-7351998. 353. Smith MA, Sayre LM, Anderson VE, Harris PL, Beal MF, Kowall N, and Perry G. Cytochemical demonstration of oxidative damage in Alzheimer disease by immunochemical enhancement of the carbonyl reaction with 2,4-dinitrophenylhydrazine. J Histochem Cytochem 46: 731–735, 1998.
354.
Smith PJTappel ALChow CK. Glutathione peroxidase activity as a function of dietary selenomethionineNature247392-3931974. 354. Smith PJ, Tappel AL, and Chow CK. Glutathione peroxidase activity as a function of dietary selenomethionine. Nature 247: 392–393, 1974.
355.
Smith RGHenry YKMattson MPAppel SH. Presence of 4-hydroxynonenal in cerebrospinal fluid of patients with sporadic amyotrophic lateral sclerosisAnn Neurol44696-6991998. 355. Smith RG, Henry YK, Mattson MP, and Appel SH. Presence of 4-hydroxynonenal in cerebrospinal fluid of patients with sporadic amyotrophic lateral sclerosis. Ann Neurol 44: 696–699, 1998.
356.
Snell RGMacMillan JCCheadle JPFenton ILazarou LPDavies PMacDonald MEGusella JFHarper PSShaw DJ. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's diseaseNat Genet4393-3971993. 356. Snell RG, MacMillan JC, Cheadle JP, Fenton I, Lazarou LP, Davies P, MacDonald ME, Gusella JF, Harper PS, and Shaw DJ. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease. Nat Genet 4: 393–397, 1993.
357.
Sorolla MAReverter-Branchat GTamarit JFerrer IRos JCabiscol E. Proteomic and oxidative stress analysis in human brain samples of Huntington diseaseFree Radic Biol Med45667-6782008. 357. Sorolla MA, Reverter-Branchat G, Tamarit J, Ferrer I, Ros J, and Cabiscol E. Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radic Biol Med 45: 667–678, 2008.
358.
Sousa LPSilva BMBrasil BSNogueira SVFerreira PCKroon EGKato KBonjardim CA. Plasminogen/plasmin regulates alpha-enolase expression through the MEK/ERK pathwayBiochem Biophys Res Commun3371065-10712005. 358. Sousa LP, Silva BM, Brasil BS, Nogueira SV, Ferreira PC, Kroon EG, Kato K, and Bonjardim CA. Plasminogen/plasmin regulates alpha-enolase expression through the MEK/ERK pathway. Biochem Biophys Res Commun 337: 1065–1071, 2005.
359.
Sperandio SPoksay KSSchilling BCrippen DGibson BWBredesen DE. Identification of new modulators and protein alterations in non-apoptotic programmed cell deathJ Cell Biochem1111401-14122010. 359. Sperandio S, Poksay KS, Schilling B, Crippen D, Gibson BW, and Bredesen DE. Identification of new modulators and protein alterations in non-apoptotic programmed cell death. J Cell Biochem 111: 1401–1412, 2010.
360.
Stadtman ERLevine RL. Free radical-mediated oxidation of free amino acids and amino acid residues in proteinsAmino Acids25207-2182003. 360. Stadtman ER and Levine RL. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25: 207–218, 2003.
361.
Subramaniam RRoediger FJordan BMattson MPKeller JNWaeg GButterfield DA. The lipid peroxidation product, 4-hydroxy-2-trans-nonenal, alters the conformation of cortical synaptosomal membrane proteinsJ Neurochem691161-11691997. 361. Subramaniam R, Roediger F, Jordan B, Mattson MP, Keller JN, Waeg G, and Butterfield DA. The lipid peroxidation product, 4-hydroxy-2-trans-nonenal, alters the conformation of cortical synaptosomal membrane proteins. J Neurochem 69: 1161–1169, 1997.
362.
Sultana RBoyd-Kimball DCai JPierce WMKlein JBMerchant MButterfield DA. Proteomics analysis of the Alzheimer's disease hippocampal proteomeJ Alzheimers Dis11153-1642007. 362. Sultana R, Boyd-Kimball D, Cai J, Pierce WM, Klein JB, Merchant M, and Butterfield DA. Proteomics analysis of the Alzheimer's disease hippocampal proteome. J Alzheimers Dis 11: 153–164, 2007.
363.
Sultana RBoyd-Kimball DPoon HFCai JPierce WMKlein JBMerchant MMarkesbery WRButterfield DA. Redox proteomics identification of oxidized proteins in Alzheimer's disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in ADNeurobiol Aging271564-15762006. 363. Sultana R, Boyd-Kimball D, Poon HF, Cai J, Pierce WM, Klein JB, Merchant M, Markesbery WR, and Butterfield DA. Redox proteomics identification of oxidized proteins in Alzheimer's disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in AD. Neurobiol Aging 27: 1564–1576, 2006.
364.
Sultana RButterfield DA. Oxidatively modified GST and MRP1 in Alzheimer's disease brain: implications for accumulation of reactive lipid peroxidation productsNeurochem Res292215-22202004. 364. Sultana R and Butterfield DA. Oxidatively modified GST and MRP1 in Alzheimer's disease brain: implications for accumulation of reactive lipid peroxidation products. Neurochem Res 29: 2215–2220, 2004.
365.
Sultana RButterfield DA. Oxidatively modified, mitochondria-relevant brain proteins in subjects with Alzheimer disease and mild cognitive impairmentJ Bioenerg Biomembr41441-4462009. 365. Sultana R and Butterfield DA. Oxidatively modified, mitochondria-relevant brain proteins in subjects with Alzheimer disease and mild cognitive impairment. J Bioenerg Biomembr 41: 441–446, 2009.
366.
Sultana RButterfield DA. Identification of the oxidative stress proteome in the brainFree Radic Biol Med50487-4942011. 366. Sultana R and Butterfield DA. Identification of the oxidative stress proteome in the brain. Free Radic Biol Med 50: 487–494, 2011.
367.
Sultana RMecocci PMangialasche FCecchetti RBaglioni MButterfield DA. Increased protein and lipid oxidative damage in mitochondria isolated from lymphocytes from patients with Alzheimer's disease: insights into the role of oxidative stress in Alzheimer's disease and initial investigations into a potential biomarker for this dementing disorderJ Alzheimers Dis2477-842011. 367. Sultana R, Mecocci P, Mangialasche F, Cecchetti R, Baglioni M, and Butterfield DA. Increased protein and lipid oxidative damage in mitochondria isolated from lymphocytes from patients with Alzheimer's disease: insights into the role of oxidative stress in Alzheimer's disease and initial investigations into a potential biomarker for this dementing disorder. J Alzheimers Dis 24: 77–84, 2011.
368.
Sultana RPerluigi MButterfield DA. Protein oxidation and lipid peroxidation in brain of subjects with Alzheimer's disease: insights into mechanism of neurodegeneration from redox proteomicsAntioxid Redox Signal82021-20372006. 368. Sultana R, Perluigi M, and Butterfield DA. Protein oxidation and lipid peroxidation in brain of subjects with Alzheimer's disease: insights into mechanism of neurodegeneration from redox proteomics. Antioxid Redox Signal 8: 2021–2037, 2006.
369.
Sultana RPerluigi MButterfield DA. Oxidatively modified proteins in Alzheimer's disease (AD), mild cognitive impairment and animal models of AD: role of Abeta in pathogenesisActa Neuropathol118131-1502009. 369. Sultana R, Perluigi M, and Butterfield DA. Oxidatively modified proteins in Alzheimer's disease (AD), mild cognitive impairment and animal models of AD: role of Abeta in pathogenesis. Acta Neuropathol 118: 131–150, 2009.
370.
Sultana RPerluigi MNewman SFPierce WMCini CCoccia RButterfield DA. Redox proteomic analysis of carbonylated brain proteins in mild cognitive impairment and early Alzheimer's diseaseAntioxid Redox Signal12327-3362010. 370. Sultana R, Perluigi M, Newman SF, Pierce WM, Cini C, Coccia R, and Butterfield DA. Redox proteomic analysis of carbonylated brain proteins in mild cognitive impairment and early Alzheimer's disease. Antioxid Redox Signal 12: 327–336, 2010.
371.
Sultana RPoon HFCai JPierce WMMerchant MKlein JBMarkesbery WRButterfield DA. Identification of nitrated proteins in Alzheimer's disease brain using a redox proteomics approachNeurobiol Dis2276-872006. 371. Sultana R, Poon HF, Cai J, Pierce WM, Merchant M, Klein JB, Markesbery WR, and Butterfield DA. Identification of nitrated proteins in Alzheimer's disease brain using a redox proteomics approach. Neurobiol Dis 22: 76–87, 2006.
372.
Sultana RReed TPerluigi MCoccia RPierce WMButterfield DA. Proteomic identification of nitrated brain proteins in amnestic mild cognitive impairment: a regional studyJ Cell Mol Med11839-8512007. 372. Sultana R, Reed T, Perluigi M, Coccia R, Pierce WM, and Butterfield DA. Proteomic identification of nitrated brain proteins in amnestic mild cognitive impairment: a regional study. J Cell Mol Med 11: 839–851, 2007.
373.
Surmeli NBLitterman NKMiller AFGroves JT. Peroxynitrite mediates active site tyrosine nitration in manganese superoxide dismutase. Evidence of a role for the carbonate radical anionJ Am Chem Soc13217174-171852010. 373. Surmeli NB, Litterman NK, Miller AF, and Groves JT. Peroxynitrite mediates active site tyrosine nitration in manganese superoxide dismutase. Evidence of a role for the carbonate radical anion. J Am Chem Soc 132: 17174–17185, 2010.
374.
Suzuki YJCarini MButterfield DA. Protein carbonylationAntioxid Redox Signal12323-3252010. 374. Suzuki YJ, Carini M, and Butterfield DA. Protein carbonylation. Antioxid Redox Signal 12: 323–325, 2010.
375.
Szabo C. Multiple pathways of peroxynitrite cytotoxicityToxicol Lett140–141105-1122003. 375. Szabo C. Multiple pathways of peroxynitrite cytotoxicity. Toxicol Lett 140–141: 105–112, 2003.
376.
Tamarit JCabiscol ERos J. Identification of the major oxidatively damaged proteins in Escherichia coli cells exposed to oxidative stressJ Biol Chem2733027-30321998. 376. Tamarit J, Cabiscol E, and Ros J. Identification of the major oxidatively damaged proteins in Escherichia coli cells exposed to oxidative stress. J Biol Chem 273: 3027–3032, 1998.
377.
Temple AYen TYGronert S. Identification of specific protein carbonylation sites in model oxidations of human serum albuminJ Am Soc Mass Spectrom171172-11802006. 377. Temple A, Yen TY, and Gronert S. Identification of specific protein carbonylation sites in model oxidations of human serum albumin. J Am Soc Mass Spectrom 17: 1172–1180, 2006.
378.
Thaw PBaxter NJHounslow AMPrice CWaltho JPCraven CJ. Structure of TCTP reveals unexpected relationship with guanine nucleotide-free chaperonesNat Struct Biol8701-7042001. 378. Thaw P, Baxter NJ, Hounslow AM, Price C, Waltho JP, and Craven CJ. Structure of TCTP reveals unexpected relationship with guanine nucleotide-free chaperones. Nat Struct Biol 8: 701–704, 2001.
379.
Thompson JEHopkins MTTaylor CWang TW. Regulation of senescence by eukaryotic translation initiation factor 5A: implications for plant growth and developmentTrends Plant Sci9174-1792004. 379. Thompson JE, Hopkins MT, Taylor C, and Wang TW. Regulation of senescence by eukaryotic translation initiation factor 5A: implications for plant growth and development. Trends Plant Sci 9: 174–179, 2004.
380.
Thompson KJShoham SConnor JR. Iron and neurodegenerative disordersBrain Res Bull55155-1642001. 380. Thompson KJ, Shoham S, and Connor JR. Iron and neurodegenerative disorders. Brain Res Bull 55: 155–164, 2001.
381.
Trettel FRigamonti DHilditch-Maguire PWheeler VCSharp AHPersichetti FCattaneo EMacDonald ME. Dominant phenotypes produced by the HD mutation in STHdh(Q111) striatal cellsHum Mol Genet92799-28092000. 381. Trettel F, Rigamonti D, Hilditch-Maguire P, Wheeler VC, Sharp AH, Persichetti F, Cattaneo E, and MacDonald ME. Dominant phenotypes produced by the HD mutation in STHdh(Q111) striatal cells. Hum Mol Genet 9: 2799–2809, 2000.
382.
Trujillo MFolkes LBartesaghi SKalyanaraman BWardman PRadi R. Peroxynitrite-derived carbonate and nitrogen dioxide radicals readily react with lipoic and dihydrolipoic acidFree Radic Biol Med39279-2882005. 382. Trujillo M, Folkes L, Bartesaghi S, Kalyanaraman B, Wardman P, and Radi R. Peroxynitrite-derived carbonate and nitrogen dioxide radicals readily react with lipoic and dihydrolipoic acid. Free Radic Biol Med 39: 279–288, 2005.
383.
Tsujimoto KHKawai TMatsumoto H. Oxidized protein quantitation method using isotope-substituted labeling reagent and mass spectrometrypp 2007-JP55617 2007111193, 2020070320. 383. Tsujimoto KH, Kawai T, Matsumoto H. Oxidized protein quantitation method using isotope-substituted labeling reagent and mass spectrometry. pp 2007-JP55617 2007111193, 2020070320.
384.
Uchida KStadtman ER. Covalent attachment of 4-hydroxynonenal to glyceraldehyde-3-phosphate dehydrogenase. A possible involvement of intra- and intermolecular cross-linking reactionJ Biol Chem2686388-63931993. 384. Uchida K and Stadtman ER. Covalent attachment of 4-hydroxynonenal to glyceraldehyde-3-phosphate dehydrogenase. A possible involvement of intra- and intermolecular cross-linking reaction. J Biol Chem 268: 6388–6393, 1993.
385.
Valencia CAJu WLiu R. Matrin 3 is a Ca2+/calmodulin-binding protein cleaved by caspasesBiochem Biophys Res Commun361281-2862007. 385. Valencia CA, Ju W, and Liu R. Matrin 3 is a Ca2+/calmodulin-binding protein cleaved by caspases. Biochem Biophys Res Commun 361: 281–286, 2007.
386.
Valente EMSalvi SIalongo TMarongiu RElia AECaputo VRomito LAlbanese ADallapiccola BBentivoglio AR. PINK1 mutations are associated with sporadic early-onset parkinsonismAnn Neurol56336-3412004. 386. Valente EM, Salvi S, Ialongo T, Marongiu R, Elia AE, Caputo V, Romito L, Albanese A, Dallapiccola B, and Bentivoglio AR. PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol 56: 336–341, 2004.
387.
Valentine JS. Do oxidatively modified proteins cause ALS?Free Radic Biol Med331314-13202002. 387. Valentine JS. Do oxidatively modified proteins cause ALS? Free Radic Biol Med 33: 1314–1320, 2002.
388.
Van Laar VSDukes AACascio MHastings TG. Proteomic analysis of rat brain mitochondria following exposure to dopamine quinone: implications for Parkinson diseaseNeurobiol Dis29477-4892008. 388. Van Laar VS, Dukes AA, Cascio M, and Hastings TG. Proteomic analysis of rat brain mitochondria following exposure to dopamine quinone: implications for Parkinson disease. Neurobiol Dis 29: 477–489, 2008.
389.
Vana LKanaan NMHakala KWeintraub STBinder LI. Peroxynitrite-induced nitrative and oxidative modifications alter tau filament formationBiochemistry501203-12122011. 389. Vana L, Kanaan NM, Hakala K, Weintraub ST, and Binder LI. Peroxynitrite-induced nitrative and oxidative modifications alter tau filament formation. Biochemistry 50: 1203–1212, 2011.
390.
Vayssiere JLCordeau-Lossouarn LLarcher JCBasseville MGros FCroizat B. Participation of the mitochondrial genome in the differentiation of neuroblastoma cellsIn Vitro Cell Dev Biol28A763-7721992. 390. Vayssiere JL, Cordeau-Lossouarn L, Larcher JC, Basseville M, Gros F, and Croizat B. Participation of the mitochondrial genome in the differentiation of neuroblastoma cells. In Vitro Cell Dev Biol 28A: 763–772, 1992.
391.
Vexler ZSWong AFrancisco CManabat CChristen STauber MFerriero DMGregory G. Fructose-1,6-bisphosphate preserves intracellular glutathione and protects cortical neurons against oxidative stressBrain Res96090-982003. 391. Vexler ZS, Wong A, Francisco C, Manabat C, Christen S, Tauber M, Ferriero DM, and Gregory G. Fructose-1,6-bisphosphate preserves intracellular glutathione and protects cortical neurons against oxidative stress. Brain Res 960: 90–98, 2003.
392.
Vila ATallman KAJacobs ATLiebler DCPorter NAMarnett LJ. Identification of protein targets of 4-hydroxynonenal using click chemistry for ex vivo biotinylation of azido and alkynyl derivativesChem Res Toxicol21432-4442008. 392. Vila A, Tallman KA, Jacobs AT, Liebler DC, Porter NA, and Marnett LJ. Identification of protein targets of 4-hydroxynonenal using click chemistry for ex vivo biotinylation of azido and alkynyl derivatives. Chem Res Toxicol 21: 432–444, 2008.
393.
Viner RIFerrington DAWilliams TDBigelow DJSchoneich C. Protein modification during biological aging: selective tyrosine nitration of the SERCA2a isoform of the sarcoplasmic reticulum Ca2+-ATPase in skeletal muscleBiochem J340Pt 3657-6691999. 393. Viner RI, Ferrington DA, Williams TD, Bigelow DJ, and Schoneich C. Protein modification during biological aging: selective tyrosine nitration of the SERCA2a isoform of the sarcoplasmic reticulum Ca2+-ATPase in skeletal muscle. Biochem J 340 (Pt 3): 657–669, 1999.
394.
Wallimann THemmer W. Creatine kinase in non-muscle tissues and cellsMol Cell Biochem133–134193-2201994. 394. Wallimann T and Hemmer W. Creatine kinase in non-muscle tissues and cells. Mol Cell Biochem 133–134: 193–220, 1994.
395.
Wang JXu GGonzales VCoonfield MFromholt DCopeland NGJenkins NABorchelt DR. Fibrillar inclusions and motor neuron degeneration in transgenic mice expressing superoxide dismutase 1 with a disrupted copper-binding siteNeurobiol Dis10128-1382002. 395. Wang J, Xu G, Gonzales V, Coonfield M, Fromholt D, Copeland NG, Jenkins NA, and Borchelt DR. Fibrillar inclusions and motor neuron degeneration in transgenic mice expressing superoxide dismutase 1 with a disrupted copper-binding site. Neurobiol Dis 10: 128–138, 2002.
396.
Wang XMoualla DWright JABrown DR. Copper binding regulates intracellular alpha-synuclein localisation, aggregation and toxicityJ Neurochem113704-7142010. 396. Wang X, Moualla D, Wright JA, and Brown DR. Copper binding regulates intracellular alpha-synuclein localisation, aggregation and toxicity. J Neurochem 113: 704–714, 2010.
397.
Wang XSLee SSimmons ZBoyer PScott KLiu WConnor J. Increased incidence of the Hfe mutation in amyotrophic lateral sclerosis and related cellular consequencesJ Neurol Sci22727-332004. 397. Wang XS, Lee S, Simmons Z, Boyer P, Scott K, Liu W, and Connor J. Increased incidence of the Hfe mutation in amyotrophic lateral sclerosis and related cellular consequences. J Neurol Sci 227: 27–33, 2004.
398.
Watanabe MDykes-Hoberg MCulotta VCPrice DLWong PCRothstein JD. Histological evidence of protein aggregation in mutant SOD1 transgenic mice and in amyotrophic lateral sclerosis neural tissuesNeurobiol Dis8933-9412001. 398. Watanabe M, Dykes-Hoberg M, Culotta VC, Price DL, Wong PC, and Rothstein JD. Histological evidence of protein aggregation in mutant SOD1 transgenic mice and in amyotrophic lateral sclerosis neural tissues. Neurobiol Dis 8: 933–941, 2001.
399.
Weitzdoerfer RFountoulakis MLubec G. Aberrant expression of dihydropyrimidinase related proteins-2,-3 and 4 in fetal Down syndrome brainJ Neural Transm Suppl6195-1072001. 399. Weitzdoerfer R, Fountoulakis M, and Lubec G. Aberrant expression of dihydropyrimidinase related proteins-2,-3 and 4 in fetal Down syndrome brain. J Neural Transm Suppl 61:95–107, 2001.
400.
Winklhofer KF. The parkin protein as a therapeutic target in Parkinson's diseaseExpert Opin Ther Targets111543-15522007. 400. Winklhofer KF. The parkin protein as a therapeutic target in Parkinson's disease. Expert Opin Ther Targets 11: 1543–1552, 2007.
401.
Winterbourn CCBuss IH. Protein carbonyl measurement by enzyme-linked immunosorbent assayMethods Enzymol300106-1111999. 401. Winterbourn CC and Buss IH. Protein carbonyl measurement by enzyme-linked immunosorbent assay. Methods Enzymol 300: 106–111, 1999.
402.
Yamakura FMatsumoto TFujimura TTaka HMurayama KImai TUchida K. Modification of a single tryptophan residue in human Cu,Zn-superoxide dismutase by peroxynitrite in the presence of bicarbonateBiochim Biophys Acta154838-462001. 402. Yamakura F, Matsumoto T, Fujimura T, Taka H, Murayama K, Imai T, and Uchida K. Modification of a single tryptophan residue in human Cu,Zn-superoxide dismutase by peroxynitrite in the presence of bicarbonate. Biochim Biophys Acta 1548: 38–46, 2001.
403.
Yamashiro SYamakita YOno SMatsumura F. Fascin, an actin-bundling protein, induces membrane protrusions and increases cell motility of epithelial cellsMol Biol Cell9993-10061998. 403. Yamashiro S, Yamakita Y, Ono S, and Matsumura F. Fascin, an actin-bundling protein, induces membrane protrusions and increases cell motility of epithelial cells. Mol Biol Cell 9: 993–1006, 1998.
404.
Yang LCalingasan NYWille EJCormier KSmith KFerrante RJBeal MF. Combination therapy with coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson's and Huntington's diseasesJ Neurochem1091427-14392009. 404. Yang L, Calingasan NY, Wille EJ, Cormier K, Smith K, Ferrante RJ, and Beal MF. Combination therapy with coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson's and Huntington's diseases. J Neurochem 109: 1427–1439, 2009.
405.
Yarian CSRebrin ISohal RS. Aconitase and ATP synthase are targets of malondialdehyde modification and undergo an age-related decrease in activity in mouse heart mitochondriaBiochem Biophys Res Commun330151-1562005. 405. Yarian CS, Rebrin I, and Sohal RS. Aconitase and ATP synthase are targets of malondialdehyde modification and undergo an age-related decrease in activity in mouse heart mitochondria. Biochem Biophys Res Commun 330: 151–156, 2005.
406.
Yoo BSRegnier FE. Proteomic analysis of carbonylated proteins in two-dimensional gel electrophoresis using avidin-fluorescein affinity stainingElectrophoresis251334-13412004. 406. Yoo BS and Regnier FE. Proteomic analysis of carbonylated proteins in two-dimensional gel electrophoresis using avidin-fluorescein affinity staining. Electrophoresis 25: 1334–1341, 2004.
407.
Yoritaka AHattori NUchida KTanaka MStadtman ERMizuno Y. Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson diseaseProc Natl Acad Sci U S A932696-27011996. 407. Yoritaka A, Hattori N, Uchida K, Tanaka M, Stadtman ER, and Mizuno Y. Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl Acad Sci U S A 93: 2696–2701, 1996.
408.
Yoshida HWatanabe AIhara Y. Collapsin response mediator protein-2 is associated with neurofibrillary tangles in Alzheimer's diseaseJ Biol Chem2739761-97681998. 408. Yoshida H, Watanabe A, and Ihara Y. Collapsin response mediator protein-2 is associated with neurofibrillary tangles in Alzheimer's disease. J Biol Chem 273: 9761–9768, 1998.
409.
Zeitlin SLiu JPChapman DLPapaioannou VEEfstratiadis A. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologueNat Genet11155-1631995. 409. Zeitlin S, Liu JP, Chapman DL, Papaioannou VE, and Efstratiadis A. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue. Nat Genet 11: 155–163, 1995.
410.
Zhang SMHernan MAChen HSpiegelman DWillett WCAscherio A. Intakes of vitamins E and C, carotenoids, vitamin supplements, and PD riskNeurology591161-11692002. 410. Zhang SM, Hernan MA, Chen H, Spiegelman D, Willett WC, and Ascherio A. Intakes of vitamins E and C, carotenoids, vitamin supplements, and PD risk. Neurology 59: 1161–1169, 2002.
411.
Zhou JYu QChng WJ. TXNIP (VDUP-1, TBP-2): a major redox regulator commonly suppressed in cancer by epigenetic mechanismsInt J Biochem Cell Biol431668-16732011. 411. Zhou J, Yu Q, and Chng WJ. TXNIP (VDUP-1, TBP-2): a major redox regulator commonly suppressed in cancer by epigenetic mechanisms. Int J Biochem Cell Biol 43: 1668–1673, 2011.
412.
Zhou XZKops OWerner ALu PJShen MStoller GKullertz GStark MFischer GLu KP. Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteinsMol Cell6873-8832000. 412. Zhou XZ, Kops O, Werner A, Lu PJ, Shen M, Stoller G, Kullertz G, Stark M, Fischer G, and Lu KP. Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol Cell 6: 873–883, 2000.

Information & Authors

Information

Published In

cover image Antioxidants & Redox Signaling
Antioxidants & Redox Signaling
Volume 17Issue Number 11December 1, 2012
Pages: 1610 - 1655
PubMed: 22115501

History

Published in print: December 1, 2012
Published online: 25 September 2012
Published ahead of print: 18 January 2012
Published ahead of production: 24 November 2011
Accepted: 23 November 2011
Revision received: 21 November 2011
Received: 13 June 2011

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

D. Allan Butterfield
Department of Chemistry, Center of Membrane Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky.
Marzia Perluigi
Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
Tanea Reed
Department of Chemistry, Eastern Kentucky University of Kentucky, Richmond, Kentucky.
Tasneem Muharib
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania.
Christopher P. Hughes
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania.
Renã A.S. Robinson
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania.
Rukhsana Sultana
Department of Chemistry, Center of Membrane Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky.

Notes

Reviewing Editors: Michalis Aivaliotis, Valentino Bonetto, Howard Gendelman, Pietro Ghezzi, Mahin Maines, Jan Ottervald, Junji Yodoi, and Moussa Youdim
Address correspondence to:Prof. D. Allan ButterfieldDepartment of ChemistryCenter of Membrane SciencesSanders-Brown Center on AgingUniversity of KentuckyLexington, KY 40506E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top