<iframe src="//www.googletagmanager.com/ns.html?id=GTM-5TSRKG" height="0" width="0" style="display: none; visibility: hidden">
Review Article
No access
Published Online: 2 August 2012

The Chemical Biology of S-Nitrosothiols

Publication: Antioxidants & Redox Signaling
Volume 17, Issue Number 7

Abstract

Significance: S-nitrosothiol formation and protein S-nitrosation is an important nitric oxide (NO)-dependent signaling paradigm that is relevant to almost all aspects of cell biology, from proliferation, to homeostasis, to programmed cell death. However, the mechanisms by which S-nitrosothiols are formed are still largely unknown, and there are gaps of understanding between the known chemical biology of S-nitrosothiols and their reported functions. Recent Advances: This review attempts to describe the biological chemistry of S-nitrosation and to point out where the challenges lie in matching the known chemical biology of these compounds with their reported functions. The review will detail new discoveries concerning the mechanisms of the formation of S-nitrosothiols in biological systems. Critical Issues: Although S-nitrosothiols may be formed with some degree of specificity on particular protein thiols, through un-catalyzed chemistry, and mechanisms for their degradation and redistribution are present, these processes are not sufficient to explain the vast array of specific and targeted responses of NO that have been attributed to S-nitrosation. Elements of catalysis have been discovered in the formation, distribution, and metabolism of S-nitrosothiols, but it is less clear whether these represent a specific network for targeted NO-dependent signaling. Future Directions: Much recent work has uncovered new targets for S-nitrosation through either targeted or proteome-wide approaches There is a need to understand which of these modifications represent concerted and targeted signaling processes and which is an inevitable consequence of living with NO. There is still much to be learned about how NO transduces signals in cells and the role played by protein S-nitrosation. Antioxid. Redox Signal. 17, 969–980.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Arnelle DRStamler JS. NO+, NO, and NO- donation by S-nitrosothiols: implications for regulation of physiological functions by S-nitrosylation and acceleration of disulfide formationArch Biochem Biophys318279-2851995. 1. Arnelle DR and Stamler JS. NO+, NO, and NO- donation by S-nitrosothiols: implications for regulation of physiological functions by S-nitrosylation and acceleration of disulfide formation. Arch Biochem Biophys 318: 279–285, 1995.
2.
Ascenzi PColasanti MPersichini TMuolo MPolticelli FVenturini GBordo DBolognesi M. Re-evaluation of amino acid sequence and structural consensus rules for cysteine-nitric oxide reactivityBiol Chem381623-6272000. 2. Ascenzi P, Colasanti M, Persichini T, Muolo M, Polticelli F, Venturini G, Bordo D, and Bolognesi M. Re-evaluation of amino acid sequence and structural consensus rules for cysteine-nitric oxide reactivity. Biol Chem 381: 623–627, 2000.
3.
Basu SKeszler AAzarova NANwanze NPerlegas AShiva SBroniowska KAHogg NKim-Shapiro DB. A novel role for cytochrome c: efficient catalysis of S-nitrosothiol formationFree Radic Biol Med48255-2632010. 3. Basu S, Keszler A, Azarova NA, Nwanze N, Perlegas A, Shiva S, Broniowska KA, Hogg N, and Kim-Shapiro DB. A novel role for cytochrome c: efficient catalysis of S-nitrosothiol formation. Free Radic Biol Med 48: 255–263, 2010.
4.
Bateman RLRauh DTavshanjian BShokat KM. Human carbonyl reductase 1 is an S-nitrosoglutathione reductaseJ Biol ChemM8071252002008. 4. Bateman RL, Rauh D, Tavshanjian B, and Shokat KM. Human carbonyl reductase 1 is an S-nitrosoglutathione reductase. J Biol Chem M807125200, 2008.
5.
Bayliss NSWatts DW. The spectra and equilibria of nitrosonium ion, nitroacidium ion, and nitrous acid in solutions of sulphuric, hydrochloric, and phosporic acidsAust J Chem9319-3321956. 5. Bayliss, NS and Watts DW. The spectra and equilibria of nitrosonium ion, nitroacidium ion, and nitrous acid in solutions of sulphuric, hydrochloric, and phosporic acids. Aust J Chem 9: 319–332, 1956.
6.
Benhar MForrester MTHess DTStamler JS. Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxinsScience3201050-10542008. 6. Benhar M, Forrester MT, Hess DT, and Stamler JS. Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science 320: 1050–1054, 2008.
7.
Boese MMordvintcev PVanin AFBusse RMülsch A. S-Nitrosation of serum albumin by dinitrosyl-iron complexJ Biol Chem27029244-292491995. 7. Boese M, Mordvintcev P, Vanin AF, Busse R, and Mülsch A. S-Nitrosation of serum albumin by dinitrosyl-iron complex. J Biol Chem 270: 29244–29249, 1995.
8.
Bosworth CAToledo JCZmijewski JWLi QLancaster JR. Dinitrosyliron complexes and the mechanism(s) of cellular protein nitrosothiol formation from nitric oxideProc Natl Acad Sci U S A1064671-46762009. 8. Bosworth CA, Toledo JC, Zmijewski JW, Li Q, and Lancaster JR. Dinitrosyliron complexes and the mechanism(s) of cellular protein nitrosothiol formation from nitric oxide. Proc Natl Acad Sci U S A 106: 4671–4676, 2009.
9.
Broniowska KAHogg N. Differential mechanisms of inhibition of Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by S-nitrosothiols and NO in cellular and cell-free conditionsAm J Physiol Heart Circ Physiol299H1212-H12192010. 9. Broniowska KA and Hogg N. Differential mechanisms of inhibition of Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by S-nitrosothiols and NO in cellular and cell-free conditions. Am J Physiol Heart Circ Physiol 299: H1212–H1219, 2010.
10.
Broniowska KAKeszler ABasu SKim-Shapiro DBHogg N. Cytochrome c-mediated formation of S-nitrosothiol in cellsBiochem J442191-1972012. 10. Broniowska KA, Keszler A, Basu S, Kim-Shapiro DB, and Hogg N. Cytochrome c-mediated formation of S-nitrosothiol in cells. Biochem J 442: 191–197, 2012.
11.
Broniowska KAZhang YHogg N. Requirement of transmembrane transport for S-nitrosocysteine-dependent modification of intracellular thiolsJ Biol Chem28133835-338412006. 11. Broniowska KA, Zhang Y, and Hogg N. Requirement of transmembrane transport for S-nitrosocysteine-dependent modification of intracellular thiols. J Biol Chem 281: 33835–33841, 2006.
12.
Bryan NSRassaf TMaloney RERodriguez CMSaijo FRodriguez JRFeelisch M. Cellular targets and mechanisms of nitros(yl)ation: an insight into their nature and kinetics in vivoProc Natl Acad Sci U S A1014308-43132004. 12. Bryan NS, Rassaf T, Maloney RE, Rodriguez CM, Saijo F, Rodriguez JR, and Feelisch M. Cellular targets and mechanisms of nitros(yl)ation: an insight into their nature and kinetics in vivo. Proc Natl Acad Sci U S A 101: 4308–4313, 2004.
13.
Bryan NSRassaf TRodriguez JFeelisch M. Bound NO in human red blood cells: fact or artifact?Nitric Oxide10221-2282004. 13. Bryan NS, Rassaf T, Rodriguez J, and Feelisch M. Bound NO in human red blood cells: fact or artifact? Nitric Oxide 10: 221–228, 2004.
14.
Bulaj GKortemme TGoldenberg DP. Ionization-Reactivity Relationships for Cysteine Thiols in PolypeptidesBiochemistry378965-89721998. 14. Bulaj G, Kortemme T, and Goldenberg DP. Ionization-Reactivity Relationships for Cysteine Thiols in Polypeptides. Biochemistry 37: 8965–8972, 1998.
15.
Burner UObinger C. Transient-state and steady-state kinetics of the oxidation of aliphatic and aromatic thiols by horseradish peroxidaseFEBS Lett411269-2741997. 15. Burner U and Obinger C. Transient-state and steady-state kinetics of the oxidation of aliphatic and aromatic thiols by horseradish peroxidase. FEBS Lett 411: 269–274, 1997.
16.
Chan NLKavanaugh JSRogers PHArnone A. Crystallographic analysis of the interaction of nitric oxide with quaternary-T human hemoglobinBiochemistry43118-1322004. 16. Chan NL, Kavanaugh JS, Rogers PH, and Arnone A. Crystallographic analysis of the interaction of nitric oxide with quaternary-T human hemoglobin. Biochemistry 43: 118–132, 2004.
17.
Czapski GGoldstein S. The role of the reactions of. NO with superoxide and oxygen in biological systems: a kinetic approachFree Radic Biol Med19785-7941995. 17. Czapski G and Goldstein S. The role of the reactions of. NO with superoxide and oxygen in biological systems: a kinetic approach. Free Radic Biol Med 19: 785–794, 1995.
18.
Dahm CCMoore KMurphy MP. Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite: implications for the interaction of nitric oxide with mitochondriaJ Biol Chem28110056-100652006. 18. Dahm CC, Moore K, and Murphy MP. Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite: implications for the interaction of nitric oxide with mitochondria. J Biol Chem 281: 10056–10065, 2006.
19.
Dasgupta TPAquart DV. Transfer of nitric oxide from nitrovasodilators to free thiols—evidence of two distinct stagesBiochem Biophys Res Commun335730-7332005. 19. Dasgupta TP and Aquart DV. Transfer of nitric oxide from nitrovasodilators to free thiols—evidence of two distinct stages. Biochem Biophys Res Commun 335: 730–733, 2005.
20.
Doulias PTGreene JLGreco TMTenopoulou MSeeholzer SHDunbrack RLIschiropoulos H. Structural profiling of endogenous S-nitrosocysteine residues reveals unique features that accommodate diverse mechanisms for protein S-nitrosylationProc Natl Acad Sci U S A10716958-169632010. 20. Doulias PT, Greene JL, Greco TM, Tenopoulou M, Seeholzer SH, Dunbrack RL, and Ischiropoulos H. Structural profiling of endogenous S-nitrosocysteine residues reveals unique features that accommodate diverse mechanisms for protein S-nitrosylation. Proc Natl Acad Sci U S A 107: 16958–16963, 2010.
21.
Dyson ABryan NSFernandez BOGarcia-Saura MFSaijo FMongardon NRodriguez JSinger MFeelisch M. An integrated approach to assessing nitroso-redox balance in systemic inflammationFree Radic Biol Med511137-11452011. 21. Dyson A, Bryan NS, Fernandez BO, Garcia-Saura MF, Saijo F, Mongardon N, Rodriguez J, Singer M, and Feelisch M. An integrated approach to assessing nitroso-redox balance in systemic inflammation. Free Radic Biol Med 51: 1137–1145, 2011.
22.
Dyson HJJeng MFTennant LLSlaby ILindell MCui DSKuprin SHolmgren A. Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57ΓÇáBiochemistry362622-26361997. 22. Dyson HJ, Jeng MF, Tennant LL, Slaby I, Lindell M, Cui DS, Kuprin S, and Holmgren A. Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57ΓÇá. Biochemistry 36: 2622–2636, 1997.
23.
Fang MJaffrey SRSawa AYe KLuo XSnyder SH. Dexras1: a G protein specifically coupled to neuronal nitric oxide synthase via CAPONNeuron28183-1932000. 23. Fang M, Jaffrey SR, Sawa A, Ye K, Luo X, and Snyder SH. Dexras1: a G protein specifically coupled to neuronal nitric oxide synthase via CAPON. Neuron 28: 183–193, 2000.
24.
Feelisch MRassaf TMnaimneh SSingh NBryan NSJourd'heuil DKelm M. Concomitant S-, N-, and heme-nitros(yl)ation in biological tissues and fluids: implications for the fate of NO in vivoFASEB J161775-17852002. 24. Feelisch M, Rassaf T, Mnaimneh S, Singh N, Bryan NS, Jourd'heuil D, and Kelm M. Concomitant S-, N-, and heme-nitros(yl)ation in biological tissues and fluids: implications for the fate of NO in vivo. FASEB J 16: 1775–1785, 2002.
25.
Feelisch MFernandez BOBryan NSGarcia-Saura MFBauer SWhitlock DRFord PCJanero DRRodriguez JAshrafian H. Tissue processing of nitrite in hypoxia: an intricate interplay of nitric oxide-generating and -scavenging systemsJ Biol Chem28333927-339342008. 25. Feelisch M, Fernandez BO, Bryan NS, Garcia-Saura MF, Bauer S, Whitlock DR, Ford PC, Janero DR, Rodriguez J, and Ashrafian H. Tissue processing of nitrite in hypoxia: an intricate interplay of nitric oxide-generating and -scavenging systems. J Biol Chem 283: 33927–33934, 2008.
26.
Fernhoff NBDerbyshire ERMarletta MA. A nitric oxide/cysteine interaction mediates the activation of soluble guanylate cyclaseProc Natl Acad Sci U S A10621602-216072009. 26. Fernhoff NB, Derbyshire ER, and Marletta MA. A nitric oxide/cysteine interaction mediates the activation of soluble guanylate cyclase. Proc Natl Acad Sci U S A 106: 21602–21607, 2009.
27.
Forman HJTorres MFukuto J. Redox signalingMol Cell Biochem234–23549-622002. 27. Forman HJ, Torres M, and Fukuto J. Redox signaling. Mol Cell Biochem 234–235: 49–62, 2002.
28.
Forrester MTFoster MWBenhar MStamler JS. Detection of protein S-nitrosylation with the biotin-switch techniqueFree Radic Biol Med46119-1262009. 28. Forrester MT, Foster MW, Benhar M, and Stamler JS. Detection of protein S-nitrosylation with the biotin-switch technique. Free Radic Biol Med 46: 119–126, 2009.
29.
Furchgott RFCherry PDZawadzki JVJothianandan D. Endothelial cells as mediators of vasodilation of arteriesJ Cardiovasc Pharmacol6Suppl 2S336-S3431984. 29. Furchgott RF, Cherry PD, Zawadzki JV, and Jothianandan D. Endothelial cells as mediators of vasodilation of arteries. J Cardiovasc Pharmacol. 6 Suppl 2: S336–S343, 1984.
30.
Furter RFurter-Graves EMWallimann T. Creatine kinase: the reactive cysteine is required for synergism but is nonessential for catalysisBiochemistry327022-70291993. 30. Furter R, Furter-Graves EM, and Wallimann T. Creatine kinase: the reactive cysteine is required for synergism but is nonessential for catalysis. Biochemistry 32: 7022–7029, 1993.
31.
Gaston BReilly JDrazen JMFackler JRamdev PArnelle DMullins MESugarbaker DJChee CSingel DJLoscalzo JStamler JS. Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airwaysProc Natl Acad Sci U S A9010957-109611993. 31. Gaston B, Reilly J, Drazen JM, Fackler J, Ramdev P, Arnelle D, Mullins ME, Sugarbaker DJ, Chee C, Singel DJ, Loscalzo J, and Stamler JS. Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways. Proc Natl Acad Sci U S A 90: 10957–10961, 1993.
32.
Gilbert HF. Molecular and cellular aspects of thiol-disulfide exchangeAdv Enzymol Relat Areas Mol Biol6369-1721990. 32. Gilbert HF. Molecular and cellular aspects of thiol-disulfide exchange. Adv Enzymol Relat Areas Mol Biol 63: 69–172, 1990.
33.
Gladwin MTWang XHogg N. Methodological vexation about thiol oxidation versus S-nitrosation—A commentary on “An ascorbate-dependent artifact that interferes with the interpretation of the biotin-switch assay”Free Radic Biol Med41557-5612006. 33. Gladwin MT, Wang X, and Hogg N. Methodological vexation about thiol oxidation versus S-nitrosation—A commentary on “An ascorbate-dependent artifact that interferes with the interpretation of the biotin-switch assay”. Free Radic Biol Med 41: 557–561, 2006.
34.
Glover REKoshkin VDunford HBMason RP. The reaction rates of NO with horseradish peroxidase compounds I and IINitric Oxide3439-4441999. 34. Glover RE, Koshkin V, Dunford HB, and Mason RP. The reaction rates of NO with horseradish peroxidase compounds I and II. Nitric Oxide 3: 439–444, 1999.
35.
Goldstein SCzapski G. Kinetics of nitric oxide autoxidation in aqueous solution in the absence and presence of various reductants. The nature of the oxidizing intermediatesJ Am Chem Soc11712078-120841995. 35. Goldstein S and Czapski G. Kinetics of nitric oxide autoxidation in aqueous solution in the absence and presence of various reductants. The nature of the oxidizing intermediates. J Am Chem Soc 117: 12078–12084, 1995.
36.
Goldstein SCzapski G. Mechanism of the nitrosation of thiols and amines by oxygenated NO solutions: the nature of the nitrosating intermediatesJ Am Chem Soc1183419-34251996. 36. Goldstein S and Czapski G. Mechanism of the nitrosation of thiols and amines by oxygenated NO solutions: the nature of the nitrosating intermediates. J Am Chem Soc 118: 3419–3425, 1996.
37.
Gow AJBuerk DGIschiropoulos H. A novel reaction mechanism for the formation of S-nitrosothiol in vivoJ Biol Chem2722841-28451997. 37. Gow AJ, Buerk DG, and Ischiropoulos H. A novel reaction mechanism for the formation of S-nitrosothiol in vivo. J Biol Chem 272: 2841–2845, 1997.
38.
Gow AJLuchsinger BPPawloski JRSingel DJStamler JS. The oxyhemoglobin reaction of nitric oxideProc Natl Acad Sci U S A969027-90321999. 38. Gow AJ, Luchsinger BP, Pawloski JR, Singel DJ, and Stamler JS. The oxyhemoglobin reaction of nitric oxide. Proc Natl Acad Sci U S A 96: 9027–9032, 1999.
39.
Greco TMHodara RParastatidis IHeijnen HFGDennehy MKLiebler DCIschiropoulos H. Identification of S-nitrosylation motifs by site-specific mapping of the S-nitrosocysteine proteome in human vascular smooth muscle cellsProc Natl Acad Sci U S A1037420-74252006. 39. Greco TM, Hodara R, Parastatidis I, Heijnen HFG, Dennehy MK, Liebler DC, and Ischiropoulos H. Identification of S-nitrosylation motifs by site-specific mapping of the S-nitrosocysteine proteome in human vascular smooth muscle cells. Proc Natl Acad Sci U S A 103: 7420–7425, 2006.
40.
Han THHyduke DRVaughn MWFukuto JMLiao JC. Nitric oxide reaction with red blood cells and hemoglobin under heterogeneous conditionsProc Natl Acad Sci U S A997763-77682002. 40. Han TH, Hyduke DR, Vaughn MW, Fukuto JM, and Liao JC. Nitric oxide reaction with red blood cells and hemoglobin under heterogeneous conditions. Proc Natl Acad Sci U S A 99: 7763–7768, 2002.
41.
Hansen SKCancilla MTShiau TPKung JChen TErlanson DA. Allosteric Inhibition of PTP1B Activity by Selective Modification of a Non-Active Site Cysteine ResidueΓÇáBiochemistry447704-77122005. 41. Hansen SK, Cancilla MT, Shiau TP, Kung J, Chen T, and Erlanson DA. Allosteric Inhibition of PTP1B Activity by Selective Modification of a Non-Active Site Cysteine ResidueΓÇá. Biochemistry 44: 7704–7712, 2005.
42.
Hao GDerakhshan BShi LCampagne FGross SS. SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixturesProc Natl Acad Sci U S A1031012-10172006. 42. Hao G, Derakhshan B, Shi L, Campagne F, and Gross SS. SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures. Proc Natl Acad Sci U S A 103: 1012–1017, 2006.
43.
Hess DTMatsumoto AKim SOMarshall HEStamler JS. Protein S-nitrosylation: purview and parametersNat Rev Mol Cell Biol6150-1662005. 43. Hess DT, Matsumoto A, Kim SO, Marshall HE, and Stamler JS. Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6: 150–166, 2005.
44.
Hogg N. The kinetics of S-Transnitrosation—a reversible second-order reactionAnal Biochem272257-2621999. 44. Hogg N. The kinetics of S-Transnitrosation—a reversible second-order reaction. Anal Biochem 272: 257–262, 1999.
45.
Hogg NSingh RJKalyanaraman B. The role of glutathione in the transport and catabolism of nitric oxideFEBS Lett382223-2281996. 45. Hogg N, Singh RJ, and Kalyanaraman B. The role of glutathione in the transport and catabolism of nitric oxide. FEBS Lett 382: 223–228, 1996.
46.
Huang BChen C. Detection of protein S-nitrosation using irreversible biotinylation procedures (IBP)Free Radic Biol Med49447-4562010. 46. Huang B and Chen C. Detection of protein S-nitrosation using irreversible biotinylation procedures (IBP). Free Radic Biol Med 49: 447–456, 2010.
47.
Huang KTAzarov IBasu SHuang JKim-Shapiro DB. Lack of allosterically controlled intramolecular transfer of nitric oxide from the heme to cysteine in the beta subunit of hemoglobinBlood1072602-26042006. 47. Huang KT, Azarov I, Basu S, Huang J, and Kim-Shapiro DB. Lack of allosterically controlled intramolecular transfer of nitric oxide from the heme to cysteine in the beta subunit of hemoglobin. Blood 107: 2602–2604, 2006.
48.
Ignarro LJEdwards JCGruetter DYBarry BKGruetter CA. Possible involvement of S-nitrosothiols in the activation of guanylate cyclase by nitroso compoundsFEBS Lett110275-2781980. 48. Ignarro LJ, Edwards JC, Gruetter DY, Barry BK, and Gruetter CA. Possible involvement of S-nitrosothiols in the activation of guanylate cyclase by nitroso compounds. FEBS Lett 110: 275–278, 1980.
49.
Inoue KAkaike TMiyamoto YOkamoto TSawa TOtagiri MSuzuki SYoshimura TMaeda H. Nitrosothiol formation catalyzed by ceruloplasmin. Implication for cytoprotective mechanism in vivoJ Biol Chem27427069-270751999. 49. Inoue K, Akaike T, Miyamoto Y, Okamoto T, Sawa T, Otagiri M, Suzuki S, Yoshimura T, and Maeda H. Nitrosothiol formation catalyzed by ceruloplasmin. Implication for cytoprotective mechanism in vivo. J Biol Chem 274: 27069–27075, 1999.
50.
Iwakiri YSatoh AChatterjee SToomre DKChalouni CMFulton DGroszmann RJShah VHSessa WC. Nitric oxide synthase generates nitric oxide locally to regulate compartmentalized protein S-nitrosylation and protein traffickingProc Natl Acad Sci U S A10319777-197822006. 50. Iwakiri Y, Satoh A, Chatterjee S, Toomre DK, Chalouni CM, Fulton D, Groszmann RJ, Shah VH, and Sessa WC. Nitric oxide synthase generates nitric oxide locally to regulate compartmentalized protein S-nitrosylation and protein trafficking. Proc Natl Acad Sci U S A 103: 19777–19782, 2006.
51.
Jaffrey SRErdjument-Bromage HFerris CDTempst PSnyder SH. Protein S-nitrosylation: a physiological signal for neuronal nitric oxideNat Cell Biol3193-1972001. 51. Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, and Snyder SH. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 3: 193–197, 2001.
52.
Janero DRBryan NSSaijo FDhawan VSchwalb DJWarren MCFeelisch M. Differential nitros(yl)ation of blood and tissue constituents during glyceryl trinitrate biotransformation in vivoProc Natl Acad Sci U S A10116958-169632004. 52. Janero DR, Bryan NS, Saijo F, Dhawan V, Schwalb DJ, Warren MC, and Feelisch M. Differential nitros(yl)ation of blood and tissue constituents during glyceryl trinitrate biotransformation in vivo. Proc Natl Acad Sci U S A 101: 16958–16963, 2004.
53.
Jensen DEBelka GKDu Bois GC. S-Nitrosoglutathione is a substrate for rat alcohol dehydrogenase class III isoenzymeBiochem J331659-6681998. 53. Jensen DE, Belka GK, and Du Bois GC. S-Nitrosoglutathione is a substrate for rat alcohol dehydrogenase class III isoenzyme. Biochem J 331: 659–668, 1998.
54.
Jia LBonaventura CBonaventura JStamler JS. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular controlNature380221-2261996. 54. Jia L, Bonaventura C, Bonaventura J, and Stamler JS. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 380: 221–226, 1996.
55.
Joshi MSFerguson TB Jr.Han THHyduke DRLiao JCRassaf TBryan NFeelisch MLancaster JR Jr. Nitric oxide is consumed, rather than conserved, by reaction with oxyhemoglobin under physiological conditionsProc Natl Acad Sci U S A9910341-103462002. 55. Joshi MS, Ferguson TB Jr., Han TH, Hyduke DR, Liao JC, Rassaf T, Bryan N, Feelisch M, and Lancaster JR Jr. Nitric oxide is consumed, rather than conserved, by reaction with oxyhemoglobin under physiological conditions. Proc Natl Acad Sci U S A 99: 10341–10346, 2002.
56.
Jourd'heuil DJourd'heuil FLFeelisch M. Oxidation and nitrosation of thiols at low micromolar exposure to nitric oxide. Evidence for a free radical mechanismJ Biol Chem27815720-157262003. 56. Jourd'heuil, D, Jourd'heuil FL, and Feelisch M. Oxidation and nitrosation of thiols at low micromolar exposure to nitric oxide. Evidence for a free radical mechanism. J Biol Chem 278: 15720–15726, 2003.
57.
Jourd'heuil DGray LGrisham MB. S-Nitrosothiol Formation in Blood of Lipopolysaccharide-Treated RatsBiochem Biophys Res Commun27322-262000. 57. Jourd'heuil, D, Gray L, and Grisham MB. S-Nitrosothiol Formation in Blood of Lipopolysaccharide-Treated Rats. Biochem Biophys Res Commun 273: 22–26, 2000.
58.
Keszler AZhang YHogg N. The reaction between nitric oxide, glutathione and oxygen in the presence and absence of protein: how are S-nitrosothiols formed?Free Radic Biol Med4855-642009. 58. Keszler A, Zhang Y, and Hogg N. The reaction between nitric oxide, glutathione and oxygen in the presence and absence of protein: how are S-nitrosothiols formed? Free Radic Biol Med 48: 55–64, 2009.
59.
Kilbourn RGJoly GCashon BDeAngelo JBonaventura J. Cell-free hemoglobin reverses the endotoxin-mediated hyporesponsivity of rat aortic rings to [alpha].-adrenergic agentsBiochem Biophys Res Commun199155-1621994. 59. Kilbourn RG, Joly G, Cashon B, DeAngelo J, and Bonaventura J. Cell-free hemoglobin reverses the endotoxin-mediated hyporesponsivity of rat aortic rings to [alpha].-adrenergic agents. Biochem Biophys Res Commun 199: 155–162, 1994.
60.
Kim SFHuri DASnyder SH. Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2Science3101966-19702005. 60. Kim SF, Huri DA, and Snyder SH. Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2. Science 310: 1966–1970, 2005.
61.
Kobayashi MYamamoto M. Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulationAntioxid Redox Signal7385-3942005. 61. Kobayashi M and Yamamoto M. Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid Redox Signal 7: 385–394, 2005.
62.
Lakshmi VMNauseef WMZenser TV. Myeloperoxidase potentiates nitric oxide-mediated nitrosationJ Biol Chem2801746-17532005. 62. Lakshmi VM, Nauseef WM, and Zenser TV. Myeloperoxidase potentiates nitric oxide-mediated nitrosation. J Biol Chem 280: 1746–1753, 2005.
63.
Lancaster JR Jr.Hibbs JB Jr. EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophagesProc Natl Acad Sci U S A871223-12271990. 63. Lancaster JR Jr. and Hibbs JB Jr. EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages. Proc Natl Acad Sci U S A 87: 1223–1227, 1990.
64.
Lancaster JR Jr. Protein cysteine thiol nitrosation: maker or marker of reactive nitrogen species-induced nonerythroid cellular signaling?Nitric Oxide1968-722008. 64. Lancaster JR Jr. Protein cysteine thiol nitrosation: maker or marker of reactive nitrogen species-induced nonerythroid cellular signaling? Nitric Oxide 19: 68–72, 2008.
65.
Li SWhorton AR. Identification of Stereoselective Transporters for S-Nitroso-L-cysteine: role of LAT1 and LAT2 in biological activity of S-nitrosothiolsJ Biol Chem28020102-201102005. 65. Li S and Whorton AR. Identification of Stereoselective Transporters for S-Nitroso-L-cysteine: role of LAT1 and LAT2 in biological activity of S-nitrosothiols. J Biol Chem 280: 20102–20110, 2005.
66.
Liao JCHein TWVaughn MWHuang K-TKuo L. Intravascular flow decreases erythrocyte consumption of nitric oxideProc Natl Acad Sci U S A968757-87611999. 66. Liao JC, Hein TW, Vaughn MW, Huang K-T, and Kuo L. Intravascular flow decreases erythrocyte consumption of nitric oxide. Proc Natl Acad Sci U S A 96: 8757–8761, 1999.
67.
Liu LHausladen AZeng MQue LHeitman JStamler JS. A metabolic enzyme for S-nitrosothiol conserved from bacteria to humansNature410490-4942001. 67. Liu L, Hausladen A, Zeng M, Que L, Heitman J, and Stamler JS. A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410: 490–494, 2001.
68.
McMahon TJStone AEBonaventura JSingel DJStamler JS. Functional coupling of oxygen binding and vasoactivity in S-nitrosohemoglobinJ Biol Chem27516738-167452000. 68. McMahon TJ, Stone AE, Bonaventura J, Singel DJ, and Stamler JS. Functional coupling of oxygen binding and vasoactivity in S-nitrosohemoglobin. J Biol Chem 275: 16738–16745, 2000.
69.
Meyer DJKramer HKetterer B. Human glutathione transferase catalysis of the formation of S-nitrosoglutathione from organic nitrites plus glutathioneFEBS Lett351427-4281994. 69. Meyer DJ, Kramer H, and Ketterer B. Human glutathione transferase catalysis of the formation of S-nitrosoglutathione from organic nitrites plus glutathione. FEBS Lett 351: 427–428, 1994.
70.
Meyer DJKramer HOzer NColes BKetterer B. Kinetics and equilibria of S-nitrosothiol-thiol exchange between glutathione, cysteine, penicillamines and serum albuminFEBS Lett345177-1801994. 70. Meyer DJ, Kramer H, Ozer N, Coles B, and Ketterer B. Kinetics and equilibria of S-nitrosothiol-thiol exchange between glutathione, cysteine, penicillamines and serum albumin. FEBS Lett 345: 177–180, 1994.
71.
Mitchell DAMarletta MA. Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteineNat Chem Biol1154-1582005. 71. Mitchell DA and Marletta MA. Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteine. Nat Chem Biol 1: 154–158, 2005.
72.
Moller MNLi QVitturi DARobinson JMLancaster JRDenicola A. Membrane “lens” effect: focusing the formation of reactive nitrogen oxides from the NO/O2 reactionChem Res Toxicol20709-7142007. 72. Moller MN, Li Q, Vitturi DA, Robinson JM, Lancaster JR, and Denicola A. Membrane “lens” effect: focusing the formation of reactive nitrogen oxides from the NO/O2 reaction. Chem Res Toxicol 20: 709–714, 2007.
73.
Nagasaka YFernandez BOGarcia-Saura MFPetersen BIchinose FBloch KDFeelisch MZapol WM. Brief periods of nitric oxide inhalation protect against myocardial ischemia-reperfusion injuryAnesthesiology109675-6822008. 73. Nagasaka Y, Fernandez BO, Garcia-Saura MF, Petersen B, Ichinose F, Bloch KD, Feelisch M, and Zapol WM. Brief periods of nitric oxide inhalation protect against myocardial ischemia-reperfusion injury. Anesthesiology 109: 675–682, 2008.
74.
Nedospasov ARafikov RBeda NNudler E. An autocatalytic mechanism of protein nitrosylationProc Natl Acad Sci U S A9713543-135482000. 74. Nedospasov A, Rafikov R, Beda N, and Nudler E. An autocatalytic mechanism of protein nitrosylation. Proc Natl Acad Sci U S A 97: 13543–13548, 2000.
75.
Oae SShinhama K. Organic thionitrites and related substancesOrg Prep Proc Int15165-1981983. 75. Oae S and Shinhama K. Organic thionitrites and related substances. Org Prep Proc Int 15: 165–198, 1983.
76.
Pacher PBeckman JSLiaudet L. Nitric Oxide and Peroxynitrite in Health and DiseasePhysiol Rev87315-4242007. 76. Pacher P, Beckman JS, and Liaudet L. Nitric Oxide and Peroxynitrite in Health and Disease. Physiol Rev 87: 315–424, 2007.
77.
Patel RPHogg NSpencer NYKalyanaraman BMatalon SDarley-Usmar VM. Biochemical characterization of human S-nitrosohemoglobin: effects on oxygen binding and and transnitrosationJ Biol Chem27415487-154921999. 77. Patel RP, Hogg N, Spencer NY, Kalyanaraman B, Matalon S, and Darley-Usmar VM. Biochemical characterization of human S-nitrosohemoglobin: effects on oxygen binding and and transnitrosation. J Biol Chem 274: 15487–15492, 1999.
78.
Pryor WAChurch DFGovindan CKCrank G. Oxidation of thiols by nitric oxide and nitrogen dioxide: synthetic utility and toxicological implicationsJ Org Chem47159-1611982. 78. Pryor WA, Church DF, Govindan CK, and Crank G. Oxidation of thiols by nitric oxide and nitrogen dioxide: synthetic utility and toxicological implications. J Org Chem 47: 159–161, 1982.
79.
Rafikova ORafikov RNudler E. Catalysis of S-nitrosothiols formation by serum albumin: the mechanism and implication in vascular controlProc Natl Acad Sci U S A995913-59182002. 79. Rafikova O, Rafikov R, and Nudler E. Catalysis of S-nitrosothiols formation by serum albumin: the mechanism and implication in vascular control. Proc Natl Acad Sci U S A 99: 5913–5918, 2002.
80.
Raju KDoulias PTTenopoulou MGreene JLIschiropoulos H. Strategies and tools to explore protein S-nitrosylationBiochim Biophys Acta1820684-6882012. 80. Raju K, Doulias PT, Tenopoulou M, Greene JL, and Ischiropoulos H. Strategies and tools to explore protein S-nitrosylation. Biochim Biophys Acta 1820: 684–688, 2012.
81.
Reiter CDWang XTanos-Santos JEHogg NCannon RO IIISchechter AGladwin MT. Cell-free hemoglobin limits nitric oxide bioavalability in sickle-cell diseaseNat Med81383-13892002. 81. Reiter CD, Wang X, Tanos-Santos JE, Hogg N, Cannon RO III, Schechter A, and Gladwin MT. Cell-free hemoglobin limits nitric oxide bioavalability in sickle-cell disease. Nat Med 8: 1383–1389, 2002.
82.
Riego JABroniowska KAKettenhofen NJHogg N. Activation and inhibition of soluble gunylyl cyclase by S-nitrosocysteine: involvement of amino acid transport system LFree Radic Biol Med47269-2742009. 82. Riego JA, Broniowska KA, Kettenhofen NJ, and Hogg N. Activation and inhibition of soluble gunylyl cyclase by S-nitrosocysteine: involvement of amino acid transport system L. Free Radic Biol Med 47: 269–274, 2009.
83.
Rossi RLusini LGiannerini FGiustarini DLungarella GDi Simplicio P. A method to study kinetics of transnitrosation with nitrosoglutathione: reactions with hemoglobin and other thiolsAnal Biochem254215-2201997. 83. Rossi R, Lusini L, Giannerini F, Giustarini D, Lungarella G, and Di Simplicio P. A method to study kinetics of transnitrosation with nitrosoglutathione: reactions with hemoglobin and other thiols. Anal Biochem 254: 215–220, 1997.
84.
Salavej PSpalteholz HArnhold J. Modification of amino acid residues in human serum albumin by myeloperoxidaseFree Radic Biol Med40516-5252006. 84. Salavej P, Spalteholz H, and Arnhold J. Modification of amino acid residues in human serum albumin by myeloperoxidase. Free Radic Biol Med 40: 516–525, 2006.
85.
Scharfstein JSKeaney JFJSlivka AWelch GNVita JAStamler JSLoscalzo J. In vivo transfer of nitric oxide between a plasma protein-bound reservoir and low molecular weight thiolsJ Clin Invest941432-14391994. 85. Scharfstein JS, Keaney JFJ, Slivka A, Welch GN, Vita JA, Stamler JS, and Loscalzo J. In vivo transfer of nitric oxide between a plasma protein-bound reservoir and low molecular weight thiols. J Clin Invest 94: 1432–1439, 1994.
86.
Shiva SSack MNGreer JJDuranski MRingwood LABurwell LWang XMacarthur PHShoja ARaghavachari NCalvert JWBrookes PSLefer DJGladwin MT. Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transferJ Exp Med2042089-21022007. 86. Shiva S, Sack MN, Greer JJ, Duranski M, Ringwood LA, Burwell L, Wang X, Macarthur PH, Shoja A, Raghavachari N, Calvert JW, Brookes PS, Lefer DJ, and Gladwin MT. Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J Exp Med 204: 2089–2102, 2007.
87.
Shiva SWang XRingwood LAXu XYuditskaya SAnnavajjhala VMiyajima HHogg NHarris ZLGladwin MT. Ceruloplasmin is a NO oxidase and nitrite synthase that determines endocrine NO homeostasisNat Chem Biol2486-4932006. 87. Shiva S, Wang X, Ringwood LA, Xu X, Yuditskaya S, Annavajjhala V, Miyajima H, Hogg N, Harris ZL, and Gladwin MT. Ceruloplasmin is a NO oxidase and nitrite synthase that determines endocrine NO homeostasis. Nat Chem Biol 2: 486–493, 2006.
88.
Sliskovic IRaturi AMutus B. Characterization of the S-denitrosation activity of protein disulfide isomeraseJ Biol Chem2808733-87412005. 88. Sliskovic I, Raturi A, and Mutus B. Characterization of the S-denitrosation activity of protein disulfide isomerase. J Biol Chem 280: 8733–8741, 2005.
89.
Stamler JSJaraki OOsborne JSimon DIKeaney JVita JSingel DValeri CRLoscalzo J. Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albuminProc Natl Acad Sci U S A897674-76771992. 89. Stamler JS, Jaraki O, Osborne J, Simon DI, Keaney J, Vita J, Singel D, Valeri CR, and Loscalzo J. Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc Natl Acad Sci U S A 89: 7674–7677, 1992.
90.
Stamler JSToone EJLipton SASucher NJ. (S)NO signals: translocation, regulation, and a consensus motifNeuron18691-6961997. 90. Stamler JS, Toone EJ, Lipton SA, and Sucher NJ. (S)NO signals: translocation, regulation, and a consensus motif. Neuron 18: 691–696, 1997.
91.
Stubauer GGiuffre ASarti P. Mechanism of S-Nitrosothiol Formation and Degradation Mediated by Copper IonsJ Biol Chem27428128-281331999. 91. Stubauer G, Giuffre A, and Sarti P. Mechanism of S-Nitrosothiol Formation and Degradation Mediated by Copper Ions. J Biol Chem 274: 28128–28133, 1999.
92.
Sun JMorgan MShen RFSteenbergen CMurphy E. Preconditioning results in S-nitrosylation of proteins involved in regulation of mitochondrial energetics and calcium transportCirc Res1011155-11632007. 92. Sun J, Morgan M, Shen RF, Steenbergen C, and Murphy E. Preconditioning results in S-nitrosylation of proteins involved in regulation of mitochondrial energetics and calcium transport. Circ Res 101: 1155–1163, 2007.
93.
van der Vliet AEiserich JPHalliwell BCross CE. Formation of reactive nitrogen species during peroxidase-catalyzed oxidation of nitrite. A potential additional mechanism of nitric oxide-dependent toxicityJ Biol Chem2727617-76251997. 93. van der Vliet A, Eiserich JP, Halliwell B, and Cross CE. Formation of reactive nitrogen species during peroxidase-catalyzed oxidation of nitrite. A potential additional mechanism of nitric oxide-dependent toxicity. J Biol Chem 272: 7617–7625, 1997.
94.
Vanin AF. On the stability of the dinitrosyl-iron-cysteine complex, a candidate for the endothelium-derived relaxation factorBiochemistry (Mosc)60225-2301995. 94. Vanin AF. On the stability of the dinitrosyl-iron-cysteine complex, a candidate for the endothelium-derived relaxation factor. Biochemistry (Mosc) 60: 225–230, 1995.
95.
Vanin AF. Dinitrosyl iron complexes and S-nitrosothiols are two possible forms for stabilization and transport of nitric oxide in biological systemsBiochemistry (Mosc)63782-7931998. 95. Vanin AF. Dinitrosyl iron complexes and S-nitrosothiols are two possible forms for stabilization and transport of nitric oxide in biological systems. Biochemistry (Mosc) 63: 782–793, 1998.
96.
Vanin AFMalenkova IVSerezhenkov VA. Iron catalyzes both decomposition and synthesis of S-nitrosothiols: optical and electron paramagnetic resonance studiesNitric Oxide1191-2031997. 96. Vanin AF, Malenkova IV, and Serezhenkov VA. Iron catalyzes both decomposition and synthesis of S-nitrosothiols: optical and electron paramagnetic resonance studies. Nitric Oxide 1: 191–203, 1997.
97.
Wang XBryan NSMacArthur PHRodriguez JGladwin MTFeelisch M. Measurement of nitric oxide levels in the red cell: validation of tri-iodide-based chemiluminescence with acid-sulfanilamide pretreatmentJ Biol Chem28126994-270022006. 97. Wang X, Bryan NS, MacArthur PH, Rodriguez J, Gladwin MT, and Feelisch M. Measurement of nitric oxide levels in the red cell: validation of tri-iodide-based chemiluminescence with acid-sulfanilamide pretreatment. J Biol Chem 281: 26994–27002, 2006.
98.
Wink DABeckman JSFord PC. Kinetics of nitric oxide reaction in liquid and gas phaseMethods in Nitric Oxide ResearchFeelisch MStamler JSNew YorkJohn Wiley & Sons Ltd.199629-37. 98. Wink DA, Beckman JS, and Ford PC. Kinetics of nitric oxide reaction in liquid and gas phase. In: Methods in Nitric Oxide Research, edited by Feelisch M, Stamler JS. New York: John Wiley & Sons Ltd., 1996, pp. 29–37.
99.
Wink DANims RWDarbyshire JFChristodoulou DHanbauer ICox GWLaval FLaval JCook JAKrishna MC. Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reactionChem Res Toxicol7519-5251994. 99. Wink DA, Nims RW, Darbyshire JF, Christodoulou D, Hanbauer I, Cox GW, Laval F, Laval J, Cook JA, and Krishna MC. Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reaction. Chem Res Toxicol 7: 519–525, 1994.
100.
Wolzt MMacAllister RJDavis DFeelisch MMoncada SVallance PHobbs AJ. Biochemical characterization of S-nitrosohemoglobin: mechanisms underlying synthesis, NO release and biological activityJ Biol Chem27428983-289901999. 100. Wolzt M, MacAllister RJ, Davis D, Feelisch M, Moncada S, Vallance P, and Hobbs AJ. Biochemical characterization of S-nitrosohemoglobin: mechanisms underlying synthesis, NO release and biological activity. J Biol Chem 274: 28983–28990, 1999.
101.
Xu XCho MSpencer NYPatel NHuang ZShields HKing SBGladwin MTHogg NKim-Shapiro DB. Measurements of nitric oxide on the heme iron and β-93 thiol of heman hemoglobin during cycles of oxygenation and deoxygenationProc Natl Acad Sci U S A10011303-113082003. 101. Xu X, Cho M, Spencer NY, Patel N, Huang Z, Shields H, King SB, Gladwin MT, Hogg N, and Kim-Shapiro DB. Measurements of nitric oxide on the heme iron and β-93 thiol of heman hemoglobin during cycles of oxygenation and deoxygenation. Proc Natl Acad Sci U S A 100: 11303–11308, 2003.
102.
Zhang HAndrekopoulos CXu YJoseph JHogg NFeix JKalyanaraman B. Decreased S-Nitrosation of peptide thiols in the membrane interiorFree Radic Biol Med47962-9682009. 102. Zhang H, Andrekopoulos C, Xu Y, Joseph J, Hogg N, Feix J, and Kalyanaraman B. Decreased S-Nitrosation of peptide thiols in the membrane interior. Free Radic Biol Med 47: 962–968, 2009.
103.
Zhang HXu YJoseph JKalyanaraman B. Intramolecular electron transfer between tyrosyl radical and cysteine residue inhibits tyrosine nitration and induces thiyl radical formation in model peptides treated with myeloperoxidase, H2O2, and NO2-: EPR spin trapping studiesJ Biol Chem28040684-406982005. 103. Zhang H, Xu Y, Joseph J, and Kalyanaraman B. Intramolecular electron transfer between tyrosyl radical and cysteine residue inhibits tyrosine nitration and induces thiyl radical formation in model peptides treated with myeloperoxidase, H2O2, and NO2-: EPR spin trapping studies. J Biol Chem 280: 40684–40698, 2005.
104.
Zhang YHogg N. Mixing artifacts from bolus addition of nitric oxide to oxymyoglobin: implications for S-nitrosohtiol formationFree Radic Biol Med321212-12192002. 104. Zhang Y and Hogg N. Mixing artifacts from bolus addition of nitric oxide to oxymyoglobin: implications for S-nitrosohtiol formation. Free Radic Biol Med 32: 1212–1219, 2002.
105.
Zhang YHogg N. The Formation and Stability of S-Nitrosothiols in RAW 264.7 CellsAm J Physiol Lung Cell Mol Physiol287L467-L4742004. 105. Zhang Y and Hogg N. The Formation and Stability of S-Nitrosothiols in RAW 264.7 Cells. Am J Physiol Lung Cell Mol Physiol 287: L467–L474, 2004.
106.
Zhang YHogg N. The mechanism of transmembrane S-nitrosothiol transportProc Natl Acad Sci U S A1017891-78962004. 106. Zhang Y and Hogg N. The mechanism of transmembrane S-nitrosothiol transport. Proc Natl Acad Sci U S A 101: 7891–7896, 2004.
107.
Zhang YKeszler ABroniowska KAHogg N. Characterization and application of the biotin-switch assay for the identification of S-nitrosated proteinsFree Radic Biol Med38874-8812005. 107. Zhang Y, Keszler A, Broniowska KA, and Hogg N. Characterization and application of the biotin-switch assay for the identification of S-nitrosated proteins. Free Radic Biol Med 38: 874–881, 2005.
108.
Zhao YLHouk KN. Thionitroxides, RSNHO: the structure of the SNO moiety in “S-Nitrosohemoglobin”, a possible NO reservoir and transporterJ Am Chem Soc1281422-14232006. 108. Zhao YL and Houk KN. Thionitroxides, RSNHO: the structure of the SNO moiety in “S-Nitrosohemoglobin”, a possible NO reservoir and transporter. J Am Chem Soc 128: 1422–1423, 2006.

Information & Authors

Information

Published In

cover image Antioxidants & Redox Signaling
Antioxidants & Redox Signaling
Volume 17Issue Number 7October 1, 2012
Pages: 969 - 980
PubMed: 22468855

History

Published in print: October 1, 2012
Published online: 2 August 2012
Published ahead of print: 7 June 2012
Published ahead of production: 2 April 2012
Accepted: 2 April 2012
Received: 30 March 2012

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Katarzyna A. Broniowska
Department of Biophysics and Redox Biology Program, Medical College of Wisconsin, Milwaukee, Wisconsin.
Neil Hogg
Department of Biophysics and Redox Biology Program, Medical College of Wisconsin, Milwaukee, Wisconsin.

Notes

Address correspondence to:Dr. Neil HoggDepartment of Biophysics and Redox Biology ProgramMedical College of Wisconsin8701 Watertown Plank RoadMilwaukee, WI 53226E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top