<iframe src="//www.googletagmanager.com/ns.html?id=GTM-5TSRKG" height="0" width="0" style="display: none; visibility: hidden">
Review Article
No access
Published Online: 17 October 2012

Mitochondrial Thiols in the Regulation of Cell Death Pathways

Publication: Antioxidants & Redox Signaling
Volume 17, Issue Number 12

Abstract

Significance: Regulation of mitochondrial H2O2 homeostasis and its involvement in the regulation of redox-sensitive signaling and transcriptional pathways is the consequence of the concerted activities of the mitochondrial energy- and redox systems. Recent Advances: The energy component of this mitochondrial energy-redox axis entails the formation of reducing equivalents and their flow through the respiratory chain with the consequent electron leak to generate \( $${ \rm O}_2^{ \cdot - }$$ \) and H2O2. The mitochondrial redox component entails the thiol-based antioxidant system, largely accounted for by glutathione- and thioredoxin-based systems that support the activities of glutathione peroxidases, peroxiredoxins, and methionine sulfoxide reductase. The ultimate reductant for these systems is NADPH: mitochondrial sources of NADPH are the nicotinamide nucleotide transhydrogenase, isocitrate dehydrogenase-2, and malic enzyme. NADPH also supports the glutaredoxin activity that regulates the extent of S-glutathionylation of mitochondrial proteins in response to altered redox status. Critical Issues: The integrated network of these mitochondrial thiols constitute a regulatory device involved in the maintenance of steady-state levels of H2O2, mitochondrial and cellular redox and metabolic homeostasis, as well as the modulation of cytosolic redox-sensitive signaling; disturbances of this regulatory device affects transcription, growth, and ultimately influences cell survival/death. Future Directions: The modulation of key mitochondrial thiol proteins, which participate in redox signaling, maintenance of the bioenergetic machinery, oxidative stress responses, and cell death programming, provides a pivotal direction in developing new therapies towards the prevention and treatment of several diseases. Antioxid. Redox Signal. 17, 1714–1727.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Abbas KBreton JPlanson AGBouton CBignon JSeguin CRiquier SToledano MBDrapier JC. Nitric oxide activates an Nrf2/sulfiredoxin antioxidant pathway in macrophagesFree Radic Biol Med51107-1142011. 1. Abbas K, Breton J, Planson AG, Bouton C, Bignon J, Seguin C, Riquier S, Toledano MB, and Drapier JC. Nitric oxide activates an Nrf2/sulfiredoxin antioxidant pathway in macrophages. Free Radic Biol Med 51: 107–114, 2011.
2.
Andersen JK. Oxidative stress in neurodegeneration: Cause or consequence?Nat Med10S18-252004. 2. Andersen JK. Oxidative stress in neurodegeneration: Cause or consequence? Nat Med 10: S18–25, 2004.
3.
Anderson MFNilsson MSims NR. Glutathione monoethylester prevents mitochondrial glutathione depletion during focal cerebral ischemiaNeurochem Int44153-1592004. 3. Anderson MF, Nilsson M, and Sims NR. Glutathione monoethylester prevents mitochondrial glutathione depletion during focal cerebral ischemia. Neurochem Int 44: 153–159, 2004.
4.
Anderson MFSims NR. The effects of focal ischemia and reperfusion on the glutathione content of mitochondria from rat brain subregions. JNeurochem81541-5492002. 4. Anderson MF and Sims NR. The effects of focal ischemia and reperfusion on the glutathione content of mitochondria from rat brain subregions. J. Neurochem 81: 541–549, 2002.
5.
Antunes FCadenas E. Estimation of H2O2 gradients across biomembranesFEBS Lett475121-1262000. 5. Antunes F and Cadenas E. Estimation of H2O2 gradients across biomembranes. FEBS Lett 475: 121–126, 2000.
6.
Antunes FCadenas E. Cellular titration of apoptosis with steady state concentrations of H2O2: Submicromolar levels of H2O2 induce apoptosis through Fenton chemistry independent of the cellular thiol stateFree Radic Biol Med301008-10182001. 6. Antunes F and Cadenas E. Cellular titration of apoptosis with steady state concentrations of H2O2: Submicromolar levels of H2O2 induce apoptosis through Fenton chemistry independent of the cellular thiol state. Free Radic Biol Med 30: 1008–1018, 2001.
7.
Araki MNanri HEjima KMurasato YFujiwara TNakashima YIkeda M. Antioxidant function of the mitochondrial protein SP-22 in the cardiovascular systemJ Biol Chem2742271-22781999. 7. Araki M, Nanri H, Ejima K, Murasato Y, Fujiwara T, Nakashima Y, and Ikeda M. Antioxidant function of the mitochondrial protein SP-22 in the cardiovascular system. J Biol Chem 274: 2271–2278, 1999.
8.
Aslund FBeckwith J. Bridge over troubled waters: sensing stress by disulfide bond formationCell96751-31999. 8. Aslund F and Beckwith J. Bridge over troubled waters: sensing stress by disulfide bond formation. Cell 96: 751–3, 1999.
9.
Bae SHSung SHCho EJLee SKLee HEWoo HAYu DYKil ISRhee SG. Concerted action of sulfiredoxin and peroxiredoxin I protects against alcohol-induced oxidative injury in mouse liverHepatology53945-9532011. 9. Bae SH, Sung SH, Cho EJ, Lee SK, Lee HE, Woo HA, Yu DY, Kil IS, and Rhee SG. Concerted action of sulfiredoxin and peroxiredoxin I protects against alcohol-induced oxidative injury in mouse liver. Hepatology 53: 945–953, 2011.
10.
Bae SHWoo HASung SHLee HELee SKKil ISRhee SG. Induction of sulfiredoxin via an Nrf2-dependent pathway and hyperoxidation of peroxiredoxin III in the lungs of mice exposed to hyperoxiaAntioxid Redox Signal11937-9482009. 10. Bae SH, Woo HA, Sung SH, Lee HE, Lee SK, Kil IS, and Rhee SG. Induction of sulfiredoxin via an Nrf2-dependent pathway and hyperoxidation of peroxiredoxin III in the lungs of mice exposed to hyperoxia. Antioxid Redox Signal 11: 937–948, 2009.
11.
Banmeyer IMarchand CClippe AKnoops B. Human mitochondrial peroxiredoxin 5 protects from mitochondrial DNA damages induced by hydrogen peroxideFEBS Lett5792327-23332005. 11. Banmeyer I, Marchand C, Clippe A, and Knoops B. Human mitochondrial peroxiredoxin 5 protects from mitochondrial DNA damages induced by hydrogen peroxide. FEBS Lett 579: 2327–2333, 2005.
12.
Banmeyer IMarchand CVerhaeghe CVucic BRees JFKnoops B. Overexpression of human peroxiredoxin 5 in subcellular compartments of Chinese hamster ovary cells: Effects on cytotoxicity and DNA damage caused by peroxidesFree Radic Biol Med3665-0772004. 12. Banmeyer I, Marchand C, Verhaeghe C, Vucic B, Rees JF, and Knoops B. Overexpression of human peroxiredoxin 5 in subcellular compartments of Chinese hamster ovary cells: Effects on cytotoxicity and DNA damage caused by peroxides. Free Radic Biol Med 36: 65–077, 2004.
13.
Barnham KJMasters CLBush AI. Neurodegenerative diseases and oxidative stressNat Rev Drug Discov3205-2142004. 13. Barnham KJ, Masters CL, and Bush AI. Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3: 205–214, 2004.
14.
Beal MF. Aging, energy, and oxidative stress in neurodegenerative diseasesAnn Neurol38357-3661995. 14. Beal MF. Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 38: 357–366, 1995.
15.
Beer SMTaylor ERBrown SEDahm CCCosta NJRunswick MJMurphy MP. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: Implications for mitochondrial redox regulation and antioxidant defenseJ Biol Chem27947939-479512004. 15. Beer SM, Taylor ER, Brown SE, Dahm CC, Costa NJ, Runswick MJ, and Murphy MP. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: Implications for mitochondrial redox regulation and antioxidant defense. J Biol Chem 279: 47939–47951, 2004.
16.
Boyd-Kimball DSultana RAbdul HMButterfield DA. Gamma-glutamylcysteine ethyl ester-induced up-regulation of glutathione protects neurons against Abeta(1–42)-mediated oxidative stress and neurotoxicity: Implications for Alzheimer's diseaseJ Neurosci Res79700-7062005. 16. Boyd-Kimball D, Sultana R, Abdul HM, and Butterfield DA. Gamma-glutamylcysteine ethyl ester-induced up-regulation of glutathione protects neurons against Abeta(1–42)-mediated oxidative stress and neurotoxicity: Implications for Alzheimer's disease. J Neurosci Res 79: 700–706, 2005.
17.
Bruguera MBertran ABombi JARodes J. Giant mitochondria in hepatocytes: A diagnostic hint for alcoholic liver diseaseGastroenterology731383-13871977. 17. Bruguera M, Bertran A, Bombi JA, and Rodes J. Giant mitochondria in hepatocytes: A diagnostic hint for alcoholic liver disease. Gastroenterology 73: 1383–1387, 1977.
18.
Chae HZKim HJKang SWRhee SG. Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxinDiabetes Res Clin Pract45101-1121999. 18. Chae HZ, Kim HJ, Kang SW, and Rhee SG. Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin. Diabetes Res Clin Pract 45: 101–112, 1999.
19.
Chang TSCho CSPark SYu SKang SWRhee SG. Peroxiredoxin III, a mitochondrion-specific peroxidase, regulates apoptotic signaling by mitochondriaJ Biol Chem27941975-419842004. 19. Chang TS, Cho CS, Park S, Yu S, Kang SW, and Rhee SG. Peroxiredoxin III, a mitochondrion-specific peroxidase, regulates apoptotic signaling by mitochondria. J Biol Chem 279: 41975–41984, 2004.
20.
Chang TSJeong WWoo HALee SMPark SRhee SG. Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteineJ Biol Chem27950994-510012004. 20. Chang TS, Jeong W, Woo HA, Lee SM, Park S, and Rhee SG. Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J Biol Chem 279: 50994–51001, 2004.
21.
Chen LNa RGu MSalmon ABLiu YLiang HQi WVan Remmen HRichardson ARan Q. Reduction of mitochondrial H2O2 by overexpressing peroxiredoxin 3 improves glucose tolerance in miceAging Cell7866-8782008. 21. Chen L, Na R, Gu M, Salmon AB, Liu Y, Liang H, Qi W, Van Remmen H, Richardson A, and Ran Q. Reduction of mitochondrial H2O2 by overexpressing peroxiredoxin 3 improves glucose tolerance in mice. Aging Cell 7: 866–878, 2008.
22.
Chen YCai JJones DP. Mitochondrial thioredoxin in regulation of oxidant-induced cell deathFEBS Lett5806596-66022006. 22. Chen Y, Cai J, and Jones DP. Mitochondrial thioredoxin in regulation of oxidant-induced cell death. FEBS Lett 580: 6596–6602, 2006.
23.
Chen YCai JMurphy TJJones DP. Overexpressed human mitochondrial thioredoxin confers resistance to oxidant-induced apoptosis in human osteosarcoma cellsJ Biol Chem27733242-332482002. 23. Chen Y, Cai J, Murphy TJ, and Jones DP. Overexpressed human mitochondrial thioredoxin confers resistance to oxidant-induced apoptosis in human osteosarcoma cells. J Biol Chem 277: 33242–33248, 2002.
24.
Chen YRChen CLPfeiffer DRZweier JL. Mitochondrial complex II in the post-ischemic heart: Oxidative injury and the role of protein S-glutathionylationJ Biol Chem28232640-326542007. 24. Chen YR, Chen CL, Pfeiffer DR, and Zweier JL. Mitochondrial complex II in the post-ischemic heart: Oxidative injury and the role of protein S-glutathionylation. J Biol Chem 282: 32640–32654, 2007.
25.
Chen ZLash LH. Evidence for mitochondrial uptake of glutathione by dicarboxylate and 2-oxoglutarate carriersJ Pharmacol Exp Ther285608-6181998. 25. Chen Z and Lash LH. Evidence for mitochondrial uptake of glutathione by dicarboxylate and 2-oxoglutarate carriers. J Pharmacol Exp Ther 285: 608–618, 1998.
26.
Chen ZPutt DALash LH. Enrichment and functional reconstitution of glutathione transport activity from rabbit kidney mitochondria: Further evidence for the role of the dicarboxylate and 2-oxoglutarate carriers in mitochondrial glutathione transportArch Biochem Biophys373193-2022000. 26. Chen Z, Putt DA, and Lash LH. Enrichment and functional reconstitution of glutathione transport activity from rabbit kidney mitochondria: Further evidence for the role of the dicarboxylate and 2-oxoglutarate carriers in mitochondrial glutathione transport. Arch Biochem Biophys 373: 193–202, 2000.
27.
Chinta SJAndersen JK. Reversible inhibition of mitochondrial complex I activity following chronic dopaminergic glutathione depletion in vitro: Implications for Parkinson's diseaseFree Radic Biol Med411442-14482006. 27. Chinta SJ and Andersen JK. Reversible inhibition of mitochondrial complex I activity following chronic dopaminergic glutathione depletion in vitro: Implications for Parkinson's disease. Free Radic Biol Med 41: 1442–1448, 2006.
28.
Chiribau CBCheng LCucoranu ICYu YSClempus RESorescu D. FOXO3A regulates peroxiredoxin III expression in human cardiac fibroblastsJ Biol Chem2838211-82172008. 28. Chiribau CB, Cheng L, Cucoranu IC, Yu YS, Clempus RE, and Sorescu D. FOXO3A regulates peroxiredoxin III expression in human cardiac fibroblasts. J Biol Chem 283: 8211–8217, 2008.
29.
Choi JHKim TNKim SBaek SHKim JHLee SRKim JR. Overexpression of mitochondrial thioredoxin reductase and peroxiredoxin III in hepatocellular carcinomasAnticancer Res223331-33352002. 29. Choi JH, Kim TN, Kim S, Baek SH, Kim JH, Lee SR, and Kim JR. Overexpression of mitochondrial thioredoxin reductase and peroxiredoxin III in hepatocellular carcinomas. Anticancer Res 22: 3331–3335, 2002.
30.
Chrestensen CAStarke DWMieyal JJ. Acute cadmium exposure inactivates thioltransferase (glutaredoxin), inhibits intracellular reduction of protein-glutathionyl-mixed disulfides, and initiates apoptosisJ Biol Chem27526556-265652000. 30. Chrestensen CA, Starke DW, and Mieyal JJ. Acute cadmium exposure inactivates thioltransferase (glutaredoxin), inhibits intracellular reduction of protein-glutathionyl-mixed disulfides, and initiates apoptosis. J Biol Chem 275: 26556–26565, 2000.
31.
Chung YMYoo YDPark JKKim YTKim HJ. Increased expression of peroxiredoxin II confers resistance to cisplatinAnticancer Res211129-11332001. 31. Chung YM, Yoo YD, Park JK, Kim YT, and Kim HJ. Increased expression of peroxiredoxin II confers resistance to cisplatin. Anticancer Res 21: 1129–1133, 2001.
32.
Colell AGarcia-Ruiz CMiranda MArdite EMari MMorales ACorrales FKaplowitz NFernandez-Checa JC. Selective glutathione depletion of mitochondria by ethanol sensitizes hepatocytes to tumor necrosis factorGastroenterology1151541-15511998. 32. Colell A, Garcia-Ruiz C, Miranda M, Ardite E, Mari M, Morales A, Corrales F, Kaplowitz N, and Fernandez-Checa JC. Selective glutathione depletion of mitochondria by ethanol sensitizes hepatocytes to tumor necrosis factor. Gastroenterology 115: 1541–1551, 1998.
33.
Coll OColell AGarcia-Ruiz CKaplowitz NFernandez-Checa JC. Sensitivity of the 2-oxoglutarate carrier to alcohol intake contributes to mitochondrial glutathione depletionHepatology38692-7022003. 33. Coll O, Colell A, Garcia-Ruiz C, Kaplowitz N, and Fernandez-Checa JC. Sensitivity of the 2-oxoglutarate carrier to alcohol intake contributes to mitochondrial glutathione depletion. Hepatology 38: 692–702, 2003.
34.
Costa NJDahm CCHurrell FTaylor ERMurphy MP. Interactions of mitochondrial thiols with nitric oxideAntioxid Redox Signal5291-3052003. 34. Costa NJ, Dahm CC, Hurrell F, Taylor ER, and Murphy MP. Interactions of mitochondrial thiols with nitric oxide. Antioxid Redox Signal 5: 291–305, 2003.
35.
Cox AGPearson AGPullar JMJonsson TJLowther WTWinterbourn CCHampton MB. Mitochondrial peroxiredoxin 3 is more resilient to hyperoxidation than cytoplasmic peroxiredoxinsBiochem J42151-582009. 35. Cox AG, Pearson AG, Pullar JM, Jonsson TJ, Lowther WT, Winterbourn CC, and Hampton MB. Mitochondrial peroxiredoxin 3 is more resilient to hyperoxidation than cytoplasmic peroxiredoxins. Biochem J 421: 51–58, 2009.
36.
Cox AGPeskin AVPaton LNWinterbourn CCHampton MB. Redox potential and peroxide reactivity of human peroxiredoxin 3Biochemistry486495-65012009. 36. Cox AG, Peskin AV, Paton LN, Winterbourn CC, and Hampton MB. Redox potential and peroxide reactivity of human peroxiredoxin 3. Biochemistry 48: 6495–6501, 2009.
37.
Cox AGPullar JMHughes GLedgerwood ECHampton MB. Oxidation of mitochondrial peroxiredoxin 3 during the initiation of receptor-mediated apoptosisFree Radic Biol Med441001-10092008. 37. Cox AG, Pullar JM, Hughes G, Ledgerwood EC, and Hampton MB. Oxidation of mitochondrial peroxiredoxin 3 during the initiation of receptor-mediated apoptosis. Free Radic Biol Med 44: 1001–1009, 2008.
38.
Cox AGWinterbourn CCHampton MB. Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signallingBiochem J425313-3252010. 38. Cox AG, Winterbourn CC, and Hampton MB. Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem J 425: 313–325, 2010.
39.
Cunningham CCBailey SM. Ethanol consumption and liver mitochondria functionNeurosignals10271-2822001. 39. Cunningham CC and Bailey SM. Ethanol consumption and liver mitochondria function. Neurosignals 10: 271–282, 2001.
40.
Dalle-Donne IColombo GGagliano NColombo RGiustarini DRossi RMilzani A. S-glutathiolation in life and death decisions of the cellFree Radic Res.453-152011. 40. Dalle-Donne I, Colombo G, Gagliano N, Colombo R, Giustarini D, Rossi R, and Milzani A. S-glutathiolation in life and death decisions of the cell. Free Radic Res. 45: 3–15, 2011.
41.
Dalle-Donne IMilzani AGagliano NColombo RGiustarini DRossi R. Molecular mechanisms and potential clinical significance of S-glutathionylation. AntioxidRedox Signal10445-4732008. 41. Dalle-Donne I, Milzani A, Gagliano N, Colombo R, Giustarini D, and Rossi R. Molecular mechanisms and potential clinical significance of S-glutathionylation. Antioxid. Redox Signal 10: 445–473, 2008.
42.
Damdimopoulos AEMiranda-Vizuete APelto-Huikko MGustafsson JASpyrou G. Human mitochondrial thioredoxin. Involvement in mitochondrial membrane potential and cell deathJ Biol Chem27733249-332572002. 42. Damdimopoulos AE, Miranda-Vizuete A, Pelto-Huikko M, Gustafsson JA, and Spyrou G. Human mitochondrial thioredoxin. Involvement in mitochondrial membrane potential and cell death. J Biol Chem 277: 33249–33257, 2002.
43.
de la Asuncion JMillan APla RBruseghini LEsteras APallardo FSastre JVina J. Mitochondrial glutathione oxidation correlates with age-associated oxidative damage to mitochondrial DNAFASEB J10333-3381996. 43. de la Asuncion J, Millan A, Pla R, Bruseghini L, Esteras A, Pallardo F, Sastre J, and Vina J. Mitochondrial glutathione oxidation correlates with age-associated oxidative damage to mitochondrial DNA. FASEB J 10: 333–338, 1996.
44.
De Simoni SGoemaere JKnoops B. Silencing of peroxiredoxin 3 and peroxiredoxin 5 reveals the role of mitochondrial peroxiredoxins in the protection of human neuroblastoma SH-SY5Y cells toward MPP+Neurosci Lett433219-2242008. 44. De Simoni S, Goemaere J, and Knoops B. Silencing of peroxiredoxin 3 and peroxiredoxin 5 reveals the role of mitochondrial peroxiredoxins in the protection of human neuroblastoma SH-SY5Y cells toward MPP+. Neurosci Lett 433: 219–224, 2008.
45.
Deneke SMFanburg BL. Regulation of cellular glutathioneAm J Physiol.257L163-L1731989. 45. Deneke SM and Fanburg BL. Regulation of cellular glutathione. Am J Physiol. 257: L163–L173, 1989.
46.
Dubuisson MVander Stricht DClippe AEtienne FNauser TKissner RKoppenol WHRees JFKnoops B. Human peroxiredoxin 5 is a peroxynitrite reductaseFEBS Lett571161-1652004. 46. Dubuisson M, Vander Stricht D, Clippe A, Etienne F, Nauser T, Kissner R, Koppenol WH, Rees JF, and Knoops B. Human peroxiredoxin 5 is a peroxynitrite reductase. FEBS Lett 571: 161–165, 2004.
47.
Ehrhart JGluck MMieyal JZeevalk GD. Functional glutaredoxin (thioltransferase) activity in rat brain and liver mitochondriaParkinsonism Relat Disord8395-4002002. 47. Ehrhart J, Gluck M, Mieyal J, and Zeevalk GD. Functional glutaredoxin (thioltransferase) activity in rat brain and liver mitochondria. Parkinsonism Relat Disord 8: 395–400, 2002.
48.
Enoksson MFernandes APPrast SLillig CHHolmgren AOrrenius S. Overexpression of glutaredoxin 2 attenuates apoptosis by preventing cytochrome c releaseBiochem Biophys Res Commun327774-7792005. 48. Enoksson M, Fernandes AP, Prast S, Lillig CH, Holmgren A, and Orrenius S. Overexpression of glutaredoxin 2 attenuates apoptosis by preventing cytochrome c release. Biochem Biophys Res Commun 327: 774–779, 2005.
49.
Fernandes RSCotter TG. Apoptosis or necrosis: Intracellular levels of glutathione influence mode of cell deathBiochem Pharmacol48675-6811994. 49. Fernandes RS and Cotter TG. Apoptosis or necrosis: Intracellular levels of glutathione influence mode of cell death. Biochem Pharmacol 48: 675–681, 1994.
50.
Fernandez-Checa JCGarcia-Ruiz COokhtens MKaplowitz N. Impaired uptake of glutathione by hepatic mitochondria from chronic ethanol-fed rats. Tracer kinetic studies in vitro and in vivo and susceptibility to oxidant stressJ Clin Invest87397-4051991. 50. Fernandez-Checa JC, Garcia-Ruiz C, Ookhtens M, and Kaplowitz N. Impaired uptake of glutathione by hepatic mitochondria from chronic ethanol-fed rats. Tracer kinetic studies in vitro and in vivo and susceptibility to oxidant stress. J Clin Invest 87: 397–405, 1991.
51.
Garcia JHan DSancheti HYap LPKaplowitz NCadenas E. Regulation of mitochondrial glutathione redox status and protein glutathionylation by respiratory substratesJ Biol Chem28539646-396542010. 51. Garcia J, Han D, Sancheti H, Yap LP, Kaplowitz N, and Cadenas E. Regulation of mitochondrial glutathione redox status and protein glutathionylation by respiratory substrates. J Biol Chem 285: 39646–39654, 2010.
52.
Gladyshev VNLiu ANovoselov SVKrysan KSun QAKryukov VMKryukov GVLou MF. Identification and characterization of a new mammalian glutaredoxin (thioltransferase), Grx2J Biol Chem27630374-303802001. 52. Gladyshev VN, Liu A, Novoselov SV, Krysan K, Sun QA, Kryukov VM, Kryukov GV, and Lou MF. Identification and characterization of a new mammalian glutaredoxin (thioltransferase), Grx2. J Biol Chem 276: 30374–30380, 2001.
53.
Glauser DABrun TGauthier BRSchlegel W. Transcriptional response of pancreatic beta cells to metabolic stimulation: Large scale identification of immediate-early and secondary response genesBMC Mol Biol8542007. 53. Glauser DA, Brun T, Gauthier BR, and Schlegel W. Transcriptional response of pancreatic beta cells to metabolic stimulation: Large scale identification of immediate-early and secondary response genes. BMC Mol Biol 8: 54, 2007.
54.
Griffith OWMeister A. Origin and turnover of mitochondrial glutathioneProc Natl Acad Sci USA824668-46721985. 54. Griffith OW and Meister A. Origin and turnover of mitochondrial glutathione. Proc Natl Acad Sci USA 82: 4668–4672, 1985.
55.
Gu MOwen ADToffa SECooper JMDexter DTJenner PMarsden CDSchapira AH. Mitochondrial function, GSH and iron in neurodegeneration and Lewy body diseasesJ Neurol Sci15824-291998. 55. Gu M, Owen AD, Toffa SE, Cooper JM, Dexter DT, Jenner P, Marsden CD, and Schapira AH. Mitochondrial function, GSH and iron in neurodegeneration and Lewy body diseases. J Neurol Sci 158: 24–29, 1998.
56.
This reference has been deleted. 56. This reference has been deleted.
57.
Han DCanali RGarcia JAguilera RGallaher TKCadenas E. Sites and mechanisms of aconitase inactivation by peroxynitrite: Modulation by citrate and glutathioneBiochemistry4411986-119962005. 57. Han D, Canali R, Garcia J, Aguilera R, Gallaher TK, and Cadenas E. Sites and mechanisms of aconitase inactivation by peroxynitrite: Modulation by citrate and glutathione. Biochemistry 44: 11986–11996, 2005.
58.
Hansen JMGo YMJones DP. Nuclear and mitochondrial compartmentation of oxidative stress and redox signalingAnnu Rev Pharmacol Toxicol46215-2342006. 58. Hansen JM, Go YM, and Jones DP. Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annu Rev Pharmacol Toxicol 46: 215–234, 2006.
59.
Hansen JMZhang HJones DP. Mitochondrial thioredoxin-2 has a key role in determining tumor necrosis factor-alpha-induced reactive oxygen species generation, NF-kappaB activation, and apoptosisToxicol Sci91643-6502006. 59. Hansen JM, Zhang H, and Jones DP. Mitochondrial thioredoxin-2 has a key role in determining tumor necrosis factor-alpha-induced reactive oxygen species generation, NF-kappaB activation, and apoptosis. Toxicol Sci 91: 643–650, 2006.
60.
Hattori FMurayama NNoshita TOikawa S. Mitochondrial peroxiredoxin-3 protects hippocampal neurons from excitotoxic injury in vivoJ Neurochem86860-8682003. 60. Hattori F, Murayama N, Noshita T, and Oikawa S. Mitochondrial peroxiredoxin-3 protects hippocampal neurons from excitotoxic injury in vivo. J Neurochem 86: 860–868, 2003.
61.
He MCai JGo YMJohnson JMMartin WDHansen JMJones DP. Identification of thioredoxin-2 as a regulator of the mitochondrial permeability transitionToxicol Sci10544-502008. 61. He M, Cai J, Go YM, Johnson JM, Martin WD, Hansen JM, Jones DP. Identification of thioredoxin-2 as a regulator of the mitochondrial permeability transition. Toxicol Sci 105: 44–50, 2008.
62.
Hill BGDarley-Usmar VM. S-nitrosation and thiol switching in the mitochondrion: A new paradigm for cardioprotection in ischaemic preconditioningBiochem J412e11-132008. 62. Hill BG and Darley-Usmar VM. S-nitrosation and thiol switching in the mitochondrion: A new paradigm for cardioprotection in ischaemic preconditioning. Biochem J 412: e11–13, 2008.
63.
Hill BGHigdon ANDranka BPDarley-Usmar VM. Regulation of vascular smooth muscle cell bioenergetic function by protein glutathiolationBiochim Biophys Acta.1797285-2952010. 63. Hill BG, Higdon AN, Dranka BP, and Darley-Usmar VM. Regulation of vascular smooth muscle cell bioenergetic function by protein glutathiolation. Biochim Biophys Acta. 1797: 285–295, 2010.
64.
Hoek JBRydström J. Physiological roles of nicotinamide nucleotide transhydrogenaseBiochem J2541-101988 64. Hoek JB and Rydström J. Physiological roles of nicotinamide nucleotide transhydrogenase. Biochem J 254: 1–10, 1988
65.
Hofmann BHecht HJFlohe L. PeroxiredoxinsBiol Chem383347-3642002. 65. Hofmann B, Hecht HJ, and Flohe L. Peroxiredoxins. Biol Chem 383: 347–364, 2002.
66.
Holmgren A. Thioredoxin and glutaredoxin systemsJ Biol Chem26413963-139661989. 66. Holmgren A. Thioredoxin and glutaredoxin systems. J Biol Chem 264: 13963–13966, 1989.
67.
Holmgren AAslund F. GlutaredoxinMethods Enzymol252283-2921995. 67. Holmgren A and Aslund F. Glutaredoxin. Methods Enzymol 252: 283–292, 1995.
68.
Holmgren AJohansson CBerndt CLonn MEHudemann CLillig CH. Thiol redox control via thioredoxin and glutaredoxin systemsBiochem Soc Trans331375-13772005. 68. Holmgren A, Johansson C, Berndt C, Lonn ME, Hudemann C, and Lillig CH. Thiol redox control via thioredoxin and glutaredoxin systems. Biochem Soc Trans 33: 1375–1377, 2005.
69.
Huang JPhilbert MA. Cellular responses of cultured cerebellar astrocytes to ethacrynic acid-induced perturbation of subcellular glutathione homeostasisBrain Res711184-1921996. 69. Huang J and Philbert MA. Cellular responses of cultured cerebellar astrocytes to ethacrynic acid-induced perturbation of subcellular glutathione homeostasis. Brain Res 711: 184–192, 1996.
70.
Hurd TRCosta NJDahm CCBeer SMBrown SEFilipovska AMurphy MP. Glutathionylation of mitochondrial proteinsAntioxid Redox Signal7999-10102005. 70. Hurd TR, Costa NJ, Dahm CC, Beer SM, Brown SE, Filipovska A, and Murphy MP. Glutathionylation of mitochondrial proteins. Antioxid Redox Signal 7: 999–1010, 2005.
71.
Hwang CSinskey ALodish H. Oxidized redox state of glutathione in the endoplasmic reticulumScience2571496-15021992. 71. Hwang C, Sinskey A, and Lodish H. Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257: 1496–1502, 1992.
72.
Imberti RNieminen ALHerman BLemasters JJ. Mitochondrial and glycolytic dysfunction in lethal injury to hepatocytes by t-butylhydroperoxide: Protection by fructose, cyclosporin A and trifluoperazineJ Pharmacol Exp Ther265392-4001993. 72. Imberti R, Nieminen AL, Herman B, and Lemasters JJ. Mitochondrial and glycolytic dysfunction in lethal injury to hepatocytes by t-butylhydroperoxide: Protection by fructose, cyclosporin A and trifluoperazine. J Pharmacol Exp Ther 265: 392–400, 1993.
73.
Immenschuh SBaumgart-Vogt E. Peroxiredoxins, oxidative stress, and cell proliferationAntioxid Redox Signal7768-7772005. 73. Immenschuh S and Baumgart-Vogt E. Peroxiredoxins, oxidative stress, and cell proliferation. Antioxid Redox Signal 7: 768–777, 2005.
74.
Jeong WPark SJChang TSLee DYRhee SG. Molecular mechanism of the reduction of cysteine sulfinic acid of peroxiredoxin to cysteine by mammalian sulfiredoxinJ Biol Chem28114400-144072006. 74. Jeong W, Park SJ, Chang TS, Lee DY, and Rhee SG. Molecular mechanism of the reduction of cysteine sulfinic acid of peroxiredoxin to cysteine by mammalian sulfiredoxin. J Biol Chem 281: 14400–14407, 2006.
75.
Jia ZZhu HMisra BLi YMisra H. Dopamine as a potent inducer of cellular glutathione and NAD(P)H:quinone oxidoreductase 1 in PC12 neuronal cells: A potential adaptive mechanism for dopaminergic neuroprotectionNeurochem Res.332197-22052008. 75. Jia Z, Zhu H, Misra B, Li Y, and Misra H. Dopamine as a potent inducer of cellular glutathione and NAD(P)H:quinone oxidoreductase 1 in PC12 neuronal cells: A potential adaptive mechanism for dopaminergic neuroprotection. Neurochem Res. 33: 2197–2205, 2008.
76.
Jia ZZhu HMisra HPLi Y. Potent induction of total cellular GSH and NQO1 as well as mitochondrial GSH by 3H-1,2-dithiole-3-thione in SH-SY5Y neuroblastoma cells and primary human neurons: Protection against neurocytotoxicity elicited by dopamine, 6-hydroxydopamine, 4-hydroxy-2-nonenal, or hydrogen peroxideBrain Res1197159-1692008. 76. Jia Z, Zhu H, Misra HP, and Li Y. Potent induction of total cellular GSH and NQO1 as well as mitochondrial GSH by 3H-1,2-dithiole-3-thione in SH-SY5Y neuroblastoma cells and primary human neurons: Protection against neurocytotoxicity elicited by dopamine, 6-hydroxydopamine, 4-hydroxy-2-nonenal, or hydrogen peroxide. Brain Res 1197: 159–169, 2008.
77.
Jocelyn PC. Some properties of mitochondrial glutathioneBiochim Biophys Acta396427-4361975. 77. Jocelyn PC. Some properties of mitochondrial glutathione. Biochim Biophys Acta 396: 427–436, 1975.
78.
Jocelyn PCDickson J. Glutathione and the mitochondrial reduction of hydroperoxidesBiochim Biophys Acta5901-121980. 78. Jocelyn PC and Dickson J. Glutathione and the mitochondrial reduction of hydroperoxides. Biochim Biophys Acta 590: 1–12, 1980.
79.
Johansson CLillig CHHolmgren A. Human mitochondrial glutaredoxin reduces S-glutathionylated proteins with high affinity accepting electrons from either glutathione or thioredoxin reductaseJ Biol Chem2797537-75432004. 79. Johansson C, Lillig CH, and Holmgren A. Human mitochondrial glutaredoxin reduces S-glutathionylated proteins with high affinity accepting electrons from either glutathione or thioredoxin reductase. J Biol Chem 279: 7537–7543, 2004.
80.
Jones DP. Redox potential of GSH/GSSG couple: Assay and biological significanceMethods EnzymolHelmut SLester PAcademic Press200293-112. 80. Jones DP. Redox potential of GSH/GSSG couple: Assay and biological significance. In: Methods Enzymol. Helmut S, Lester P, eds. Academic Press; 2002. pp. 93–112.
81.
Jones DP. Disruption of mitochondrial redox circuitry in oxidative stressChem Biol Interact16338-532006. 81. Jones DP. Disruption of mitochondrial redox circuitry in oxidative stress. Chem Biol Interact 163: 38–53, 2006.
82.
Jones DP. Redox sensing: Orthogonal control in cell cycle and apoptosis signallingJ Intern Med268432-4482010. 82. Jones DP. Redox sensing: Orthogonal control in cell cycle and apoptosis signalling. J Intern Med 268: 432–448, 2010.
83.
Jonsson TJMurray MSJohnson LCPoole LBLowther WT. Structural basis for the retroreduction of inactivated peroxiredoxins by human sulfiredoxinBiochemistry448634-86422005. 83. Jonsson TJ, Murray MS, Johnson LC, Poole LB, and Lowther WT. Structural basis for the retroreduction of inactivated peroxiredoxins by human sulfiredoxin. Biochemistry 44: 8634–8642, 2005.
84.
Kagan VETyurin VAJiang JTyurina YYRitov VBAmoscato AAOsipov ANBelikova NAKapralov AAKini VVlasova IIZhao QZou MDi PSvistunenko DAKurnikov IVBorisenko GG. Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factorsNat Chem Biol1223-2322005. 84. Kagan VE, Tyurin VA, Jiang J, Tyurina YY, Ritov VB, Amoscato AA, Osipov AN, Belikova NA, Kapralov AA, Kini V, Vlasova II, Zhao Q, Zou M, Di P, Svistunenko DA, Kurnikov IV, and Borisenko GG. Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat Chem Biol 1: 223–232, 2005.
85.
Kaneto HKawamori DMatsuoka TAKajimoto YYamasaki Y. Oxidative stress and pancreatic beta-cell dysfunctionAm J Ther12529-5332005. 85. Kaneto H, Kawamori D, Matsuoka TA, Kajimoto Y, and Yamasaki Y. Oxidative stress and pancreatic beta-cell dysfunction. Am J Ther 12: 529–533, 2005.
86.
Kanwar MChan PSKern TSKowluru RA. Oxidative damage in the retinal mitochondria of diabetic mice: Possible protection by superoxide dismutaseInvest Ophthalmol Vis Sci483805-38112007. 86. Kanwar M, Chan PS, Kern TS, and Kowluru RA. Oxidative damage in the retinal mitochondria of diabetic mice: Possible protection by superoxide dismutase. Invest Ophthalmol Vis Sci 48: 3805–3811, 2007.
87.
Kemp MGo YMJones DP. Nonequilibrium thermodynamics of thiol/disulfide redox systems: A perspective on redox systems biologyFree Radic Biol Med44921-9372008. 87. Kemp M, Go YM, and Jones DP. Nonequilibrium thermodynamics of thiol/disulfide redox systems: A perspective on redox systems biology. Free Radic Biol Med 44: 921–937, 2008.
88.
Kenchappa RSRavindranath V. Glutaredoxin is essential for maintenance of brain mitochondrial complex I: Studies with MPTPFASEB J17717-7192003. 88. Kenchappa RS and Ravindranath V. Glutaredoxin is essential for maintenance of brain mitochondrial complex I: Studies with MPTP. FASEB J 17: 717–719, 2003.
89.
Kerr JFRWinterford CMHarmon BV. Apoptosis. Its significance in cancer and cancer therapyCancer732013-20261994. 89. Kerr JFR, Winterford CM, and Harmon BV. Apoptosis. Its significance in cancer and cancer therapy. Cancer 73: 2013–2026, 1994.
90.
Kil ISPark JW. Regulation of mitochondrial NADP+-dependent isocitrate dehydrogenase activity by glutathionylationJ Biol Chem28010846-108542005. 90. Kil IS and Park JW. Regulation of mitochondrial NADP+-dependent isocitrate dehydrogenase activity by glutathionylation. J Biol Chem 280: 10846–10854, 2005.
91.
Kim SHFountoulakis MCairns NLubec G. Protein levels of human peroxiredoxin subtypes in brains of patients with Alzheimer's disease and Down syndromeJ Neural Transm Suppl61223-2352001. 91. Kim SH, Fountoulakis M, Cairns N, and Lubec G. Protein levels of human peroxiredoxin subtypes in brains of patients with Alzheimer's disease and Down syndrome. J Neural Transm Suppl 61: 223–235, 2001.
92.
Klatt PLamas S. Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stressEur J Biochem2674928-49442000. 92. Klatt P and Lamas S. Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Eur J Biochem 267: 4928–4944, 2000.
93.
Krahenbuhl STalos CLauterburg BHReichen J. Reduced antioxidative capacity in liver mitochondria from bile duct ligated ratsHepatology22607-6121995. 93. Krahenbuhl S, Talos C, Lauterburg BH, and Reichen J. Reduced antioxidative capacity in liver mitochondria from bile duct ligated rats. Hepatology 22: 607–612, 1995.
94.
Krapfenbauer KEngidawork ECairns NFountoulakis MLubec G. Aberrant expression of peroxiredoxin subtypes in neurodegenerative disordersBrain Res967152-1602003. 94. Krapfenbauer K, Engidawork E, Cairns N, Fountoulakis M, and Lubec G. Aberrant expression of peroxiredoxin subtypes in neurodegenerative disorders. Brain Res 967: 152–160, 2003.
95.
Kroemer GDallaporta BResche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosisAnnu Rev Physiol.60619-6421998. 95. Kroemer G, Dallaporta B, and Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol. 60: 619–642, 1998.
96.
Kropotov AGogvadze VShupliakov OTomilin NSerikov VBTomilin NVZhivotovsky B. Peroxiredoxin V is essential for protection against apoptosis in human lung carcinoma cellsExp Cell Res3122806-28152006. 96. Kropotov A, Gogvadze V, Shupliakov O, Tomilin N, Serikov VB, Tomilin NV, and Zhivotovsky B. Peroxiredoxin V is essential for protection against apoptosis in human lung carcinoma cells. Exp Cell Res 312: 2806–2815, 2006.
97.
Lash LH. Mitochondrial glutathione transport: Physiological, pathological and toxicological implicationsChem Biol Interact.16354-672006. 97. Lash LH. Mitochondrial glutathione transport: Physiological, pathological and toxicological implications. Chem Biol Interact. 163: 54–67, 2006.
98.
Lee DWKaur DChinta SJRajagopalan SAndersen JK. A disruption in iron-sulfur center biogenesis via inhibition of mitochondrial dithiol glutaredoxin 2 may contribute to mitochondrial and cellular iron dysregulation in mammalian glutathione-depleted dopaminergic cells: Implications for Parkinson's diseaseAntioxid Redox Signal112083-20942009. 98. Lee DW, Kaur D, Chinta SJ, Rajagopalan S, and Andersen JK. A disruption in iron-sulfur center biogenesis via inhibition of mitochondrial dithiol glutaredoxin 2 may contribute to mitochondrial and cellular iron dysregulation in mammalian glutathione-depleted dopaminergic cells: Implications for Parkinson's disease. Antioxid Redox Signal 11: 2083–2094, 2009.
99.
Lehninger ALVercesi ABababunmi EA. Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotidesProc Natl Acad Sci USA751690-16941978. 99. Lehninger AL, Vercesi A, and Bababunmi EA. Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides. Proc Natl Acad Sci USA 75: 1690–1694, 1978.
100.
Leist MSingle BCastoldi AFKuhnle SNicotera P. Intracellular adenosine triphosphate (ATP) concentration: A switch in the decision between apoptosis and necrosisJ Exp Med.1851481-14861997. 100. Leist M, Single B, Castoldi AF, Kuhnle S, and Nicotera P. Intracellular adenosine triphosphate (ATP) concentration: A switch in the decision between apoptosis and necrosis. J Exp Med. 185: 1481–1486, 1997.
101.
Li LShoji WTakano HNishimura NAoki YTakahashi RGoto SKaifu TTakai TObinata M. Increased susceptibility of MER5 (peroxiredoxin III) knockout mice to LPS-induced oxidative stressBiochem Biophys Res Commun355715-7212007. 101. Li L, Shoji W, Takano H, Nishimura N, Aoki Y, Takahashi R, Goto S, Kaifu T, Takai T, and Obinata M. Increased susceptibility of MER5 (peroxiredoxin III) knockout mice to LPS-induced oxidative stress. Biochem Biophys Res Commun 355: 715–721, 2007.
102.
Lillig CHHolmgren A. Thioredoxin and related molecules—From biology to health and diseaseAntioxid Redox Signal925-472007. 102. Lillig CH and Holmgren A. Thioredoxin and related molecules—From biology to health and disease. Antioxid Redox Signal 9: 25–47, 2007.
103.
Lillig CHLonn MEEnoksson MFernandes APHolmgren A. Short interfering RNA-mediated silencing of glutaredoxin 2 increases the sensitivity of HeLa cells toward doxorubicin and phenylarsine oxideProc Natl Acad Sci USA10113227-132322004. 103. Lillig CH, Lonn ME, Enoksson M, Fernandes AP, and Holmgren A. Short interfering RNA-mediated silencing of glutaredoxin 2 increases the sensitivity of HeLa cells toward doxorubicin and phenylarsine oxide. Proc Natl Acad Sci USA 101: 13227–13232, 2004.
104.
Liu XKim CNYang JJemmerson RWang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome cCell86147-1571996. 104. Liu X, Kim CN, Yang J, Jemmerson R, and Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86: 147–157, 1996.
105.
Lluis JMColell AGarcia-Ruiz CKaplowitz NFernandez-Checa JC. Acetaldehyde impairs mitochondrial glutathione transport in HepG2 cells through endoplasmic reticulum stressGastroenterology124708-7242003. 105. Lluis JM, Colell A, Garcia-Ruiz C, Kaplowitz N, and Fernandez-Checa JC. Acetaldehyde impairs mitochondrial glutathione transport in HepG2 cells through endoplasmic reticulum stress. Gastroenterology 124: 708–724, 2003.
106.
Lötscher HRWinterhalter KHCarafoli ERichter C. Hydroperoxide-induced loss of pyridine nucleotides and release of calcium from rat liver mitochondriaJ Biol Chem2559325-93301980. 106. Lötscher HR, Winterhalter KH, Carafoli E, and Richter C. Hydroperoxide-induced loss of pyridine nucleotides and release of calcium from rat liver mitochondria. J Biol Chem 255: 9325–9330, 1980.
107.
Lowell BBShulman GI. Mitochondrial dysfunction and type 2 diabetesScience307384-3872005. 107. Lowell BB and Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science 307: 384–387, 2005.
108.
Maher P. Redox control of neural function: Background, mechanisms, and significanceAntioxid Redox Signal81941-19702006. 108. Maher P. Redox control of neural function: Background, mechanisms, and significance. Antioxid Redox Signal 8: 1941–1970, 2006.
109.
Mari MCaballero FColell AMorales ACaballeria JFernandez AEnrich CFernandez-Checa JCGarcia-Ruiz C. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitisCell Metab4185-1982006. 109. Mari M, Caballero F, Colell A, Morales A, Caballeria J, Fernandez A, Enrich C, Fernandez-Checa JC, and Garcia-Ruiz C. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab 4: 185–198, 2006.
110.
Marí MMorales AColell AGarcía-Ruiz CFernández-Checa JC. Mitochondrial glutathione, a key survival antioxidantAntioxid Redox Signal112685-27002009. 110. Marí M, Morales A, Colell A, García-Ruiz C, and Fernández-Checa JC. Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 11: 2685–2700, 2009.
111.
Masini ACeccarelli DTrenti TGallesi DMuscatello U. Mitochondrial inner membrane permeability changes induced by octadecadienoic acid hydroperoxide. Role of mitochondrial GSH poolBiochim Biophys Acta110184-891992. 111. Masini A, Ceccarelli D, Trenti T, Gallesi D, and Muscatello U. Mitochondrial inner membrane permeability changes induced by octadecadienoic acid hydroperoxide. Role of mitochondrial GSH pool. Biochim Biophys Acta 1101: 84–89, 1992.
112.
Mattson MPMagnus T. Ageing and neuronal vulnerabilityNat Rev Neurosci7278-2942006. 112. Mattson MP and Magnus T. Ageing and neuronal vulnerability. Nat Rev Neurosci 7: 278–294, 2006.
113.
McKernan TBWoods EBLash LH. Uptake of glutathione by renal cortical mitochondriaArch Biochem Biophys288653-6631991. 113. McKernan TB, Woods EB, and Lash LH. Uptake of glutathione by renal cortical mitochondria. Arch Biochem Biophys 288: 653–663, 1991.
114.
Mehendale HRoth RGandolfi AKlaunig JLemasters JCurtis L. Novel mechanisms in chemically induced hepatotoxicityFASEB J81285-12951994. 114. Mehendale H, Roth R, Gandolfi A, Klaunig J, Lemasters J, and Curtis L. Novel mechanisms in chemically induced hepatotoxicity. FASEB J 8: 1285–1295, 1994.
115.
Meredith MJReed DJ. Depletion in vitro of mitochondrial glutathione in rat hepatocytes and enhancement of lipid peroxidation by adriamycin and 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). BiochemPharmacol.321383-13881983. 115. Meredith MJ and Reed DJ. Depletion in vitro of mitochondrial glutathione in rat hepatocytes and enhancement of lipid peroxidation by adriamycin and 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). Biochem. Pharmacol. 32: 1383–1388, 1983.
116.
Allen EMGMieyal JJ. Protein-thiol oxidation and cell death: Regulatory role of glutaredoxinsAntioxid Redox Signal171748-17632012. 116. Allen EMG and Mieyal JJ. Protein-thiol oxidation and cell death: Regulatory role of glutaredoxins. Antioxid Redox Signal 17: 1748–1763, 2012.
117.
Miller EWDickinson BCChang CJ. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signalingProc Natl Acad Sci USA10715681-156862010. 117. Miller EW, Dickinson BC, and Chang CJ. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc Natl Acad Sci USA 107: 15681–15686., 2010.
118.
Miranda-Vizuete ADamdimopoulos AESpyrou G. The mitochondrial thioredoxin systemAntioxid Redox Signal2801-8102000. 118. Miranda-Vizuete A, Damdimopoulos AE, and Spyrou G. The mitochondrial thioredoxin system. Antioxid Redox Signal 2: 801–810, 2000.
119.
Moran LKGutteridge JMQuinlan GJ. Thiols in cellular redox signalling and controlCurr Med Chem8763-7722001. 119. Moran LK, Gutteridge JM, and Quinlan GJ. Thiols in cellular redox signalling and control. Curr Med Chem 8: 763–772, 2001.
120.
Mukhopadhyay SSLeung KSHicks MJHastings PJYoussoufian HPlon SE. Defective mitochondrial peroxiredoxin-3 results in sensitivity to oxidative stress in Fanconi anemiaJ Cell Biol175225-2352006. 120. Mukhopadhyay SS, Leung KS, Hicks MJ, Hastings PJ, Youssoufian H, and Plon SE. Defective mitochondrial peroxiredoxin-3 results in sensitivity to oxidative stress in Fanconi anemia. J Cell Biol 175: 225–235, 2006.
121.
Muyderman HNilsson MSims NR. Highly selective and prolonged depletion of mitochondrial glutathione in astrocytes markedly increases sensitivity to peroxynitriteJ Neurosci248019-80282004. 121. Muyderman H, Nilsson M, and Sims NR. Highly selective and prolonged depletion of mitochondrial glutathione in astrocytes markedly increases sensitivity to peroxynitrite. J Neurosci 24: 8019–8028, 2004.
122.
Muyderman HWadey ALNilsson MSims NR. Mitochondrial glutathione protects against cell death induced by oxidative and nitrative stress in astrocytesJ Neurochem1021369-13822007. 122. Muyderman H, Wadey AL, Nilsson M, and Sims NR. Mitochondrial glutathione protects against cell death induced by oxidative and nitrative stress in astrocytes. J Neurochem 102: 1369–1382, 2007.
123.
Nagy NMalik GTosaki AHo YSMaulik NDas DK. Overexpression of glutaredoxin-2 reduces myocardial cell death by preventing both apoptosis and necrosisJ Mol Cell Cardiol44252-602008. 123. Nagy N, Malik G, Tosaki A, Ho YS, Maulik N, and Das DK. Overexpression of glutaredoxin-2 reduces myocardial cell death by preventing both apoptosis and necrosis. J Mol Cell Cardiol 44: 252–60, 2008.
124.
Nalvarte IDamdimopoulos AESpyrou G. Human mitochondrial thioredoxin reductase reduces cytochrome c and confers resistance to complex III inhibitionFree Radic Biol Med361270-12782004. 124. Nalvarte I, Damdimopoulos AE, and Spyrou G. Human mitochondrial thioredoxin reductase reduces cytochrome c and confers resistance to complex III inhibition. Free Radic Biol Med 36: 1270–1278, 2004.
125.
Naoi MMaruyama WYi HYamaoka YShamoto-Nagai MAkao YGerlach MTanaka MRiederer P. Neuromelanin selectively induces apoptosis in dopaminergic SH-SY5Y cells by deglutathionylation in mitochondria: Involvement of the protein and melanin componentJ Neurochem1052489-25002008. 125. Naoi M, Maruyama W, Yi H, Yamaoka Y, Shamoto-Nagai M, Akao Y, Gerlach M, Tanaka M, and Riederer P. Neuromelanin selectively induces apoptosis in dopaminergic SH-SY5Y cells by deglutathionylation in mitochondria: Involvement of the protein and melanin component. J Neurochem 105: 2489–2500, 2008.
126.
Navarro ABoveris A. The mitochondrial energy transduction system and the aging processAm J Physiol Cell Physiol292C670-6862007. 126. Navarro A and Boveris A. The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 292: C670–686, 2007.
127.
Navarro ABoveris A. Mitochondrial nitric oxide synthase, mitochondrial brain dysfunction in aging, and mitochondria-targeted antioxidantsAdv Drug Deliv Rev601534-15442008. 127. Navarro A and Boveris A. Mitochondrial nitric oxide synthase, mitochondrial brain dysfunction in aging, and mitochondria-targeted antioxidants. Adv Drug Deliv Rev 60: 1534–1544, 2008.
128.
Noctor GArisi A-CMJouanin LKunert KJRennenberg HFoyer CH. Glutathione: Biosynthesis, metabolism and relationship to stress tolerance explored in transformed plantsJ Exp Bot49623-6471998. 128. Noctor G, Arisi A-CM, Jouanin L, Kunert KJ, Rennenberg H, and Foyer CH. Glutathione: Biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49: 623–647, 1998.
129.
Noh DYAhn SJLee RAKim SWPark IAChae HZ. Overexpression of peroxiredoxin in human breast cancerAnticancer Res212085-20902001. 129. Noh DY, Ahn SJ, Lee RA, Kim SW, Park IA, and Chae HZ. Overexpression of peroxiredoxin in human breast cancer. Anticancer Res 21: 2085–2090, 2001.
130.
Noh YHBaek JYJeong WRhee SGChang TS. Sulfiredoxin translocation into mitochondria plays a crucial role in reducing hyperoxidized peroxiredoxin IIIJ Biol Chem2848470-84772009. 130. Noh YH, Baek JY, Jeong W, Rhee SG, and Chang TS. Sulfiredoxin translocation into mitochondria plays a crucial role in reducing hyperoxidized peroxiredoxin III. J Biol Chem 284: 8470–8477, 2009.
131.
Nonn LBerggren MPowis G. Increased expression of mitochondrial peroxiredoxin-3 (thioredoxin peroxidase-2) protects cancer cells against hypoxia and drug-induced hydrogen peroxide-dependent apoptosisMol Cancer Res1682-6892003. 131. Nonn L, Berggren M, and Powis G. Increased expression of mitochondrial peroxiredoxin-3 (thioredoxin peroxidase-2) protects cancer cells against hypoxia and drug-induced hydrogen peroxide-dependent apoptosis. Mol Cancer Res 1: 682–689, 2003.
132.
Nonn LWilliams RRErickson RPPowis G. The absence of mitochondrial thioredoxin 2 causes massive apoptosis, exencephaly, and early embryonic lethality in homozygous miceMol Cell Biol23916-9222003. 132. Nonn L, Williams RR, Erickson RP, and Powis G. The absence of mitochondrial thioredoxin 2 causes massive apoptosis, exencephaly, and early embryonic lethality in homozygous mice. Mol Cell Biol 23: 916–922, 2003.
133.
Nulton-Persson ACStarke DWMieyal JJSzweda LI. Reversible inactivation of alpha-ketoglutarate dehydrogenase in response to alterations in the mitochondrial glutathione statusBiochemistry424235-42422003. 133. Nulton-Persson AC, Starke DW, Mieyal JJ, and Szweda LI. Reversible inactivation of alpha-ketoglutarate dehydrogenase in response to alterations in the mitochondrial glutathione status. Biochemistry 42: 4235–4242, 2003.
134.
Olmos YValle IBorniquel STierrez ASoria ELamas SMonsalve M. Mutual dependence of Foxo3a and PGC-1alpha in the induction of oxidative stress genesJ Biol Chem28414476-144842009. 134. Olmos Y, Valle I, Borniquel S, Tierrez A, Soria E, Lamas S, and Monsalve M. Mutual dependence of Foxo3a and PGC-1alpha in the induction of oxidative stress genes. J Biol Chem 284: 14476–14484, 2009.
135.
Ott MRobertson JDGogvadze VZhivotovsky BOrrenius S. Cytochrome c release from mitochondria proceeds by a two-step processProc Natl Acad Sci USA991259-12632002. 135. Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, and Orrenius S. Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci USA 99: 1259–1263, 2002.
136.
Pacher PBeckman JSLiaudet L. Nitric oxide and peroxynitrite in health and diseasePhysiol Rev87315-4242007. 136. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87: 315–424, 2007.
137.
Pai HVStarke DWLesnefsky EJHoppel CLMieyal JJ. What is the functional significance of the unique location of glutaredoxin 1 (GRx1) in the intermembrane space of mitochondria?Antioxid Redox Signal92027-20332007. 137. Pai HV, Starke DW, Lesnefsky EJ, Hoppel CL, and Mieyal JJ. What is the functional significance of the unique location of glutaredoxin 1 (GRx1) in the intermembrane space of mitochondria? Antioxid Redox Signal 9: 2027–2033, 2007.
138.
Papadia SSoriano FXLeveille FMartel MADakin KAHansen HHKaindl ASifringer MFowler JStefovska VMcKenzie GCraigon MCorriveau RGhazal PHorsburgh KYankner BAWyllie DJIkonomidou CHardingham GE. Synaptic NMDA receptor activity boosts intrinsic antioxidant defensesNat Neurosci11476-4872008. 138. Papadia S, Soriano FX, Leveille F, Martel MA, Dakin KA, Hansen HH, Kaindl A, Sifringer M, Fowler J, Stefovska V, McKenzie G, Craigon M, Corriveau R, Ghazal P, Horsburgh K, Yankner BA, Wyllie DJ, Ikonomidou C, and Hardingham GE. Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat Neurosci 11: 476–487, 2008.
139.
Peng YYang PHGuo YNg SSLiu JFung PCTay DGe JHe MLKung HFLin MC. Catalase and peroxiredoxin 5 protect Xenopus embryos against alcohol-induced ocular anomaliesInvest Ophthalmol Vis Sci4523-292004. 139. Peng Y, Yang PH, Guo Y, Ng SS, Liu J, Fung PC, Tay D, Ge J, He ML, Kung HF, and Lin MC. Catalase and peroxiredoxin 5 protect Xenopus embryos against alcohol-induced ocular anomalies. Invest Ophthalmol Vis Sci 45: 23–29, 2004.
140.
Perez VILew CMCortez LAWebb CRRodriguez MLiu YQi WLi YChaudhuri AVan Remmen HRichardson AIkeno Y. Thioredoxin 2 haploinsufficiency in mice results in impaired mitochondrial function and increased oxidative stressFree Radic Biol Med44882-8922008. 140. Perez VI, Lew CM, Cortez LA, Webb CR, Rodriguez M, Liu Y, Qi W, Li Y, Chaudhuri A, Van Remmen H, Richardson A, and Ikeno Y. Thioredoxin 2 haploinsufficiency in mice results in impaired mitochondrial function and increased oxidative stress. Free Radic Biol Med 44: 882–892, 2008.
141.
Planson AGPalais GAbbas KGerard MCouvelard LDelaunay ABaulande SDrapier JCToledano MB. Sulfiredoxin protects mice from lipopolysaccharide-induced endotoxic shockAntioxid Redox Signal142071-20802011. 141. Planson AG, Palais G, Abbas K, Gerard M, Couvelard L, Delaunay A, Baulande S, Drapier JC, and Toledano MB. Sulfiredoxin protects mice from lipopolysaccharide-induced endotoxic shock. Antioxid Redox Signal 14: 2071–2080, 2011.
142.
Poderoso JJ. The formation of peroxynitrite in the applied physiology of mitochondrial nitric oxideArch Biochem Biophys484214-2202009. 142. Poderoso JJ. The formation of peroxynitrite in the applied physiology of mitochondrial nitric oxide. Arch Biochem Biophys 484: 214–220, 2009.
143.
Powis GMontfort WR. Properties and biological activities of thioredoxinsAnnu Rev Biophys Biomol Struct30421-4552001. 143. Powis G, Montfort WR. Properties and biological activities of thioredoxins. Annu Rev Biophys Biomol Struct 30: 421–455, 2001.
144.
Precht TAPhelps RALinseman DAButts BDLe SSLaessig TABouchard RJHeidenreich KA. The permeability transition pore triggers Bax translocation to mitochondria during neuronal apoptosisCell Death Differ12255-2652005. 144. Precht TA, Phelps RA, Linseman DA, Butts BD, Le SS, Laessig TA, Bouchard RJ, Heidenreich KA. The permeability transition pore triggers Bax translocation to mitochondria during neuronal apoptosis. Cell Death Differ 12: 255–265, 2005.
145.
Queiroga CSAlmeida ASMartel CBrenner CAlves PMVieira HL. Glutathionylation of adenine nucleotide translocase induced by carbon monoxide prevents mitochondrial membrane permeabilization and apoptosisJ Biol Chem28517077-170882010. 145. Queiroga CS, Almeida AS, Martel C, Brenner C, Alves PM, and Vieira HL. Glutathionylation of adenine nucleotide translocase induced by carbon monoxide prevents mitochondrial membrane permeabilization and apoptosis. J Biol Chem 285: 17077–17088, 2010.
146.
Radyuk SNMichalak KKlichko VIBenes JRebrin ISohal RSOrr WC. Peroxiredoxin 5 confers protection against oxidative stress and apoptosis and also promotes longevity in DrosophilaBiochem J419437-4452009. 146. Radyuk SN, Michalak K, Klichko VI, Benes J, Rebrin I, Sohal RS, and Orr WC. Peroxiredoxin 5 confers protection against oxidative stress and apoptosis and also promotes longevity in Drosophila. Biochem J 419: 437–445, 2009.
147.
Reed DJ. Glutathione: Toxicological implicationsAnnu Rev Pharmacol Toxicol.30603-6311990. 147. Reed DJ. Glutathione: Toxicological implications. Annu Rev Pharmacol Toxicol. 30: 603–631, 1990.
148.
Rhee SGChae HZKim K. Peroxiredoxins: A historical overview and speculative preview of novel mechanisms and emerging concepts in cell signalingFree Radic Biol Med381543-15522005. 148. Rhee SG, Chae HZ, and Kim K. Peroxiredoxins: A historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med 38: 1543–1552, 2005.
149.
Rhee SGJeong WChang TSWoo HA. Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: Its discovery, mechanism of action, and biological significanceKidney Int Suppl106S3-82007. 149. Rhee SG, Jeong W, Chang TS, and Woo HA. Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: Its discovery, mechanism of action, and biological significance. Kidney Int Suppl 106: S3–8, 2007.
150.
Rhee SGWoo HA. Multiple functions of peroxiredoxins: Peroxidases, sensors and regulators of the intracellular messenger HO, and protein chaperonesAntioxid Redox Signal15781-7942011. 150. Rhee SG and Woo HA. Multiple functions of peroxiredoxins: Peroxidases, sensors and regulators of the intracellular messenger HO, and protein chaperones. Antioxid Redox Signal 15: 781–794, 2011.
151.
Richter CSchweizer MCossarizza AFranceschi C. Control of apoptosis by the cellular ATP levelFEBS Lett378107-1101996. 151. Richter C, Schweizer M, Cossarizza A, and Franceschi C. Control of apoptosis by the cellular ATP level. FEBS Lett 378: 107–110, 1996.
152.
Rohrbach SGruenler STeschner MHoltz J. The thioredoxin system in aging muscle: Key role of mitochondrial thioredoxin reductase in the protective effects of caloric restriction?Am J Physiol Regul Integr Comp Physiol291R927-9352006. 152. Rohrbach S, Gruenler S, Teschner M, and Holtz J. The thioredoxin system in aging muscle: Key role of mitochondrial thioredoxin reductase in the protective effects of caloric restriction? Am J Physiol Regul Integr Comp Physiol 291: R927–935, 2006.
153.
Roussel XBoukhenouna SRahuel-Clermont SBranlant G. The rate-limiting step of sulfiredoxin is associated with the transfer of the gamma-phosphate of ATP to the sulfinic acid of overoxidized typical 2-Cys peroxiredoxinsFEBS Lett585574-5782011. 153. Roussel X, Boukhenouna S, Rahuel-Clermont S, and Branlant G. The rate-limiting step of sulfiredoxin is associated with the transfer of the gamma-phosphate of ATP to the sulfinic acid of overoxidized typical 2-Cys peroxiredoxins. FEBS Lett 585: 574–578, 2011.
154.
Rydstrom J. Mitochondrial NADPH, transhydrogenase, and diseaseBiochim Biophys Acta1757721-7262006. 154. Rydstrom J. Mitochondrial NADPH, transhydrogenase, and disease. Biochim Biophys Acta 1757: 721–726., 2006.
155.
Saeed UDurgadoss LValli RKJoshi DCJoshi PGRavindranath V. Knockdown of cytosolic glutaredoxin 1 leads to loss of mitochondrial membrane potential: Implication in neurodegenerative diseasesPLoS One3e24592008. 155. Saeed U, Durgadoss L, Valli RK, Joshi DC, Joshi PG, and Ravindranath V. Knockdown of cytosolic glutaredoxin 1 leads to loss of mitochondrial membrane potential: Implication in neurodegenerative diseases. PLoS One 3: e2459, 2008.
156.
Saxena GChen JShalev A. Intracellular shuttling and mitochondrial function of thioredoxin-interacting proteinJ Biol Chem2853997-40052010. 156. Saxena G, Chen J, and Shalev A. Intracellular shuttling and mitochondrial function of thioredoxin-interacting protein. J Biol Chem 285: 3997–4005, 2010.
157.
Seo MSKang SWKim KBaines ICLee THRhee SG. Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediateJ Biol Chem27520346-203542000. 157. Seo MS, Kang SW, Kim K, Baines IC, Lee TH, and Rhee SG. Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. J Biol Chem 275: 20346–20354, 2000.
158.
Shan XJones DPHashmi MAnders MW. Selective depletion of mitochondrial glutathione concentrations by (R,S)-3-hydroxy-4-pentenoate potentiates oxidative cell deathChem Res Toxicol.675-811993. 158. Shan X, Jones DP, Hashmi M, and Anders MW. Selective depletion of mitochondrial glutathione concentrations by (R,S)-3-hydroxy-4-pentenoate potentiates oxidative cell death. Chem Res Toxicol. 6: 75–81, 1993.
159.
Sheeran FLRydstrom JShakhparonov MIPestov NBPepe S. Diminished NADPH transhydrogenase activity and mitochondrial redox regulation in human failing myocardiumBiochim Biophys Acta17971138-11482010. 159. Sheeran FL, Rydstrom J, Shakhparonov MI, Pestov NB, and Pepe S. Diminished NADPH transhydrogenase activity and mitochondrial redox regulation in human failing myocardium. Biochim Biophys Acta 1797: 1138–1148, 2010.
160.
Sibbing DPfeufer APerisic TMannes AMFritz-Wolf KUnwin SSinner MFGieger CGloeckner CJWichmann HEKremmer ESchafer ZWalch AHinterseer MNabauer MKaab SKastrati ASchomig AMeitinger TBornkamm GWConrad Mvon Beckerath N. Mutations in the mitochondrial thioredoxin reductase gene TXNRD2 cause dilated cardiomyopathyEur Heart J321121-11332011. 160. Sibbing D, Pfeufer A, Perisic T, Mannes AM, Fritz-Wolf K, Unwin S, Sinner MF, Gieger C, Gloeckner CJ, Wichmann HE, Kremmer E, Schafer Z, Walch A, Hinterseer M, Nabauer M, Kaab S, Kastrati A, Schomig A, Meitinger T, Bornkamm GW, Conrad M, and von Beckerath N. Mutations in the mitochondrial thioredoxin reductase gene TXNRD2 cause dilated cardiomyopathy. Eur Heart J 32: 1121–1133, 2011.
161.
Sies HMoss K. A role of mitochondrial glutathione peroxidase in modulating mitochondrial oxidations in liverEur J Biochem84377-3831978. 161. Sies H and Moss K. A role of mitochondrial glutathione peroxidase in modulating mitochondrial oxidations in liver. Eur J Biochem 84: 377–383, 1978.
162.
Simonian NACoyle JT. Oxidative stress in neurodegenerative diseasesAnnu Rev Pharmacol Toxicol3683-1061996. 162. Simonian NA and Coyle JT. Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 36: 83–106, 1996.
163.
Sims NRAnderson MF. Mitochondrial contributions to tissue damage in strokeNeurochem Int40511-5262002. 163. Sims NR and Anderson MF. Mitochondrial contributions to tissue damage in stroke. Neurochem Int 40: 511–526, 2002.
164.
Singh ALing GSuhasini ANZhang PYamamoto MNavas-Acien ACosgrove GTuder RMKensler TWWatson WHBiswal S. Nrf2-dependent sulfiredoxin-1 expression protects against cigarette smoke-induced oxidative stress in lungsFree Radic Biol Med46376-3862009. 164. Singh A, Ling G, Suhasini AN, Zhang P, Yamamoto M, Navas-Acien A, Cosgrove G, Tuder RM, Kensler TW, Watson WH, and Biswal S. Nrf2-dependent sulfiredoxin-1 expression protects against cigarette smoke-induced oxidative stress in lungs. Free Radic Biol Med 46: 376–386, 2009.
165.
Sohal RSArnold LOrr WC. Effect of age on superoxide dismutase, catalase, glutathione reductase, inorganic peroxides, TBA-reactive material, GSH/GSSG, NADPH/NADP+ and NADH/NAD+ in Drosophila melanogasterMech Ageing Dev56223-2351990. 165. Sohal RS, Arnold L, and Orr WC. Effect of age on superoxide dismutase, catalase, glutathione reductase, inorganic peroxides, TBA-reactive material, GSH/GSSG, NADPH/NADP+ and NADH/NAD+ in Drosophila melanogaster. Mech Ageing Dev 56: 223–235, 1990.
166.
Sohal RSDubey A. Mitochondrial oxidative damage, hydrogen peroxide release, and agingFree Radic Biol Med16621-6261994. 166. Sohal RS and Dubey A. Mitochondrial oxidative damage, hydrogen peroxide release, and aging. Free Radic Biol Med 16: 621–626, 1994.
167.
Spyrou GEnmark EMiranda-Vizuete AGustafsson J. Cloning and expression of a novel mammalian thioredoxinJ Biol Chem2722936-29411997. 167. Spyrou G, Enmark E, Miranda-Vizuete A, and Gustafsson J. Cloning and expression of a novel mammalian thioredoxin. J Biol Chem 272: 2936–2941, 1997.
168.
Svoboda DJManning RT. Chronic alcoholism with fatty metamorphosis of the liver. Mitochondrial alterations in hepatic cellsAm J Pathol44645-6621964. 168. Svoboda DJ and Manning RT. Chronic alcoholism with fatty metamorphosis of the liver. Mitochondrial alterations in hepatic cells. Am J Pathol 44: 645–662, 1964.
169.
Tanaka THosoi FYamaguchi-Iwai YNakamura HMasutani HUeda SNishiyama ATakeda SWada HSpyrou GYodoi J. Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosisEMBO J211695-17032002. 169. Tanaka T, Hosoi F, Yamaguchi-Iwai Y, Nakamura H, Masutani H, Ueda S, Nishiyama A, Takeda S, Wada H, Spyrou G, Yodoi J. Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis. EMBO J 21: 1695–1703, 2002.
170.
Taylor ERHurrell FShannon RJLin TKHirst JMurphy MP. Reversible glutathionylation of complex I increases mitochondrial superoxide formationJ Biol Chem27819603-196102003. 170. Taylor ER, Hurrell F, Shannon RJ, Lin TK, Hirst J, and Murphy MP. Reversible glutathionylation of complex I increases mitochondrial superoxide formation. J Biol Chem 278: 19603–19610, 2003.
171.
Terada LS. Specificity in reactive oxidant signaling: Think globally, act locallyJ Cell Biol174615-6232006. 171. Terada LS. Specificity in reactive oxidant signaling: Think globally, act locally. J Cell Biol 174: 615–623., 2006.
172.
Thompson C. Apoptosis in the pathogenesis and treatment of diseaseScience2671456-14621995. 172. Thompson C. Apoptosis in the pathogenesis and treatment of disease. Science 267: 1456–1462, 1995.
173.
Trujillo MClippe AManta BFerrer-Sueta GSmeets ADeclercq JPKnoops BRadi R. Pre-steady state kinetic characterization of human peroxiredoxin 5: Taking advantage of Trp84 fluorescence increase upon oxidationArch Biochem Biophys46795-1062007. 173. Trujillo M, Clippe A, Manta B, Ferrer-Sueta G, Smeets A, Declercq JP, Knoops B, and Radi R. Pre-steady state kinetic characterization of human peroxiredoxin 5: Taking advantage of Trp84 fluorescence increase upon oxidation. Arch Biochem Biophys 467: 95–106, 2007.
174.
Tsujimoto YNakagawa TShimizu S. Mitochondrial membrane permeability transition and cell deathBiochim Biophys Acta17571297-13002006. 174. Tsujimoto Y, Nakagawa T, and Shimizu S. Mitochondrial membrane permeability transition and cell death. Biochim Biophys Acta 1757: 1297–1300, 2006.
175.
Ueda SMasutani HNakamura HTanaka TUeno MYodoi J. Redox control of cell deathAntioxid Redox Signal4405-4142002. 175. Ueda S, Masutani H, Nakamura H, Tanaka T, Ueno M, and Yodoi J. Redox control of cell death. Antioxid Redox Signal 4: 405–414, 2002.
176.
Valdez LBZaobornyj TBoveris A. Mitochondrial metabolic states and membrane potential modulate mtNOS activityBiochim Biophys Acta1757166-1722006. 176. Valdez LB, Zaobornyj T, and Boveris A. Mitochondrial metabolic states and membrane potential modulate mtNOS activity. Biochim Biophys Acta 1757: 166–172, 2006.
177.
Van Remmen HJones DP. Current thoughts on the role of mitochondria and free radicals in the biology of agingJ Gerontol A Biol Sci Med Sci64171-1742009. 177. Van Remmen H and Jones DP. Current thoughts on the role of mitochondria and free radicals in the biology of aging. J Gerontol A Biol Sci Med Sci 64: 171–174, 2009.
178.
Veal EDay A. Hydrogen peroxide as a signaling moleculeAntioxid Redox Signal15147-1512011. 178. Veal E and Day A. Hydrogen peroxide as a signaling molecule. Antioxid Redox Signal 15: 147–151., 2011.
179.
Vendemiale GGrattagliano IAltomare ETurturro NGuerrieri F. Effect of acetaminophen administration on hepatic glutathione compartmentation and mitochondrial energy metabolism in the ratBiochem Pharmacol521147-11541996. 179. Vendemiale G, Grattagliano I, Altomare E, Turturro N, and Guerrieri F. Effect of acetaminophen administration on hepatic glutathione compartmentation and mitochondrial energy metabolism in the rat. Biochem Pharmacol 52: 1147–1154, 1996.
180.
Venkatakrishnan PNakayasu ESAlmeida ICMiller RT. Absence of nitric-oxide synthase in sequentially purified rat liver mitochondriaJ Biol Chem28419843-198552009. 180. Venkatakrishnan P, Nakayasu ES, Almeida IC, and Miller RT. Absence of nitric-oxide synthase in sequentially purified rat liver mitochondria. J Biol Chem 284: 19843–19855, 2009.
181.
Vina JSastre JAnton VBruseghini LEsteras AAsensi M. Effect of aging on glutathione metabolism. Protection by antioxidantsEXS62136-1441992. 181. Vina J, Sastre J, Anton V, Bruseghini L, Esteras A, and Asensi M. Effect of aging on glutathione metabolism. Protection by antioxidants. EXS 62: 136–144, 1992.
182.
Wang DMasutani HOka STanaka TYamaguchi-Iwai YNakamura HYodoi J. Control of mitochondrial outer membrane permeabilization and Bcl-xL levels by thioredoxin 2 in DT40 cellsJ Biol Chem2817384-73912006. 182. Wang D, Masutani H, Oka S, Tanaka T, Yamaguchi-Iwai Y, Nakamura H, and Yodoi J. Control of mitochondrial outer membrane permeabilization and Bcl-xL levels by thioredoxin 2 in DT40 cells. J Biol Chem 281: 7384–7391, 2006.
183.
Wei QJiang HMatthews CPColburn NH. Sulfiredoxin is an AP-1 target gene that is required for transformation and shows elevated expression in human skin malignanciesProc Natl Acad Sci USA10519738-197432008. 183. Wei Q, Jiang H, Matthews CP, and Colburn NH. Sulfiredoxin is an AP-1 target gene that is required for transformation and shows elevated expression in human skin malignancies. Proc Natl Acad Sci USA 105: 19738–19743, 2008.
184.
Weil MJacobson MDColes HSDavies TJGardner RLRaff KDRaff MC. Constitutive expression of the machinery for programmed cell deathJ Cell Biol1331053-10591996. 184. Weil M, Jacobson MD, Coles HS, Davies TJ, Gardner RL, Raff KD, and Raff MC. Constitutive expression of the machinery for programmed cell death. J Cell Biol 133: 1053–1059, 1996.
185.
Wenzel PHink UOelze MSchuppan SSchaeuble KSchildknecht SHo KKWeiner HBachschmid MMunzel TDaiber A. Role of reduced lipoic acid in the redox regulation of mitochondrial aldehyde dehydrogenase (ALDH-2) activity. Implications for mitochondrial oxidative stress and nitrate toleranceJ Biol Chem282792-7992007. 185. Wenzel P, Hink U, Oelze M, Schuppan S, Schaeuble K, Schildknecht S, Ho KK, Weiner H, Bachschmid M, Munzel T, and Daiber A. Role of reduced lipoic acid in the redox regulation of mitochondrial aldehyde dehydrogenase (ALDH-2) activity. Implications for mitochondrial oxidative stress and nitrate tolerance. J Biol Chem 282: 792–799, 2007.
186.
West MBHill BGXuan YTBhatnagar A. Protein glutathiolation by nitric oxide: An intracellular mechanism regulating redox protein modificationFASEB J201715-17172006. 186. West MB, Hill BG, Xuan YT, and Bhatnagar A. Protein glutathiolation by nitric oxide: An intracellular mechanism regulating redox protein modification. FASEB J 20: 1715–1717, 2006.
187.
Wilkins HMMarquardt KLash LHLinseman DA. Bcl-2 is a novel interacting partner for the 2-oxoglutarate carrier and a key regulator of mitochondrial glutathioneFree Radic Biol Med52410-4192012. 187. Wilkins HM, Marquardt K, Lash LH, and Linseman DA. Bcl-2 is a novel interacting partner for the 2-oxoglutarate carrier and a key regulator of mitochondrial glutathione. Free Radic Biol Med 52: 410–419, 2012.
188.
Wonsey DRZeller KIDang CV. The c-Myc target gene PRDX3 is required for mitochondrial homeostasis and neoplastic transformationProc Natl Acad Sci USA996649-66542002. 188. Wonsey DR, Zeller KI, and Dang CV. The c-Myc target gene PRDX3 is required for mitochondrial homeostasis and neoplastic transformation. Proc Natl Acad Sci USA 99: 6649–6654, 2002.
189.
Woo HAChae HZHwang SCYang KSKang SWKim KRhee SG. Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formationScience300653-6562003. 189. Woo HA, Chae HZ, Hwang SC, Yang KS, Kang SW, Kim K, and Rhee SG. Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science 300: 653–656, 2003.
190.
Woo HAJeong WChang TSPark KJPark SJYang JSRhee SG. Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys peroxiredoxinsJ Biol Chem2803125-31282005. 190. Woo HA, Jeong W, Chang TS, Park KJ, Park SJ, Yang JS, and Rhee SG. Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys peroxiredoxins. J Biol Chem 280: 3125–3128, 2005.
191.
Woo HAYim SHShin DHKang DYu DYRhee SG. Inactivation of peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signalingCell140517-5282010. 191. Woo HA, Yim SH, Shin DH, Kang D, Yu DY, and Rhee SG. Inactivation of peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signaling. Cell 140: 517–528, 2010.
192.
Wood-Allum CABarber SCKirby JHeath PHolden HMead RHigginbottom AAllen SBeaujeux TAlexson SEInce PGShaw PJ. Impairment of mitochondrial anti-oxidant defence in SOD1-related motor neuron injury and amelioration by ebselenBrain1291693-17092006. 192. Wood-Allum CA, Barber SC, Kirby J, Heath P, Holden H, Mead R, Higginbottom A, Allen S, Beaujeux T, Alexson SE, Ince PG, and Shaw PJ. Impairment of mitochondrial anti-oxidant defence in SOD1-related motor neuron injury and amelioration by ebselen. Brain 129: 1693–1709, 2006.
193.
Wood ZAPoole LBKarplus PA. Peroxiredoxin evolution and the regulation of hydrogen peroxide signalingScience300650-6532003. 193. Wood ZA, Poole LB, and Karplus PA. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300: 650–653, 2003.
194.
Wood ZASchroder ERobin Harris JPoole LB. Structure, mechanism and regulation of peroxiredoxinsTrends Biochem Sci2832-402003. 194. Wood ZA, Schroder E, Robin Harris J, and Poole LB. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28: 32–40, 2003.
195.
Wüllner USeyfried JGroscurth PBeinroth SWinter SGleichmann MHeneka MLöschmann PASchulz JBWeller MKlockgether T. Glutathione depletion and neuronal cell death: The role of reactive oxygen intermediates and mitochondrial functionBrain Res82653-621999. 195. Wüllner U, Seyfried J, Groscurth P, Beinroth S, Winter S, Gleichmann M, Heneka M, Löschmann PA, Schulz JB, Weller M, and Klockgether T. Glutathione depletion and neuronal cell death: The role of reactive oxygen intermediates and mitochondrial function. Brain Res 826: 53–62, 1999.
196.
Yin FSancheti HCadenas E. Silencing of nicotinamide nucleotide transhydrogenase impairs cellular redox homeostasis and energy metabolism in PC12 cellsBiochim Biophys Acta1817401-4092012. 196. Yin F, Sancheti H, and Cadenas E. Silencing of nicotinamide nucleotide transhydrogenase impairs cellular redox homeostasis and energy metabolism in PC12 cells. Biochim Biophys Acta 1817: 401–409, 2012.
197.
Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: Regulation and biological consequencesAntioxid Redox Signal10179-2062008. 197. Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: Regulation and biological consequences. Antioxid Redox Signal 10: 179–206, 2008.
198.
Zhang DLu CWhiteman MChance BArmstrong JS. The mitochondrial permeability transition regulates cytochrome c release for apoptosis during endoplasmic reticulum stress by remodeling the cristae junctionJ Biol Chem2833476-34862008. 198. Zhang D, Lu C, Whiteman M, Chance B, and Armstrong JS. The mitochondrial permeability transition regulates cytochrome c release for apoptosis during endoplasmic reticulum stress by remodeling the cristae junction. J Biol Chem 283: 3476–3486, 2008.
199.
Zhang HGo YMJones DP. Mitochondrial thioredoxin-2/peroxiredoxin-3 system functions in parallel with mitochondrial GSH system in protection against oxidative stressArch Biochem Biophys465119-1262007. 199. Zhang H, Go YM, and Jones DP. Mitochondrial thioredoxin-2/peroxiredoxin-3 system functions in parallel with mitochondrial GSH system in protection against oxidative stress. Arch Biochem Biophys 465: 119–126, 2007.
200.
Zhang RAl-Lamki RBai LStreb JWMiano JMBradley JMin W. Thioredoxin-2 inhibits mitochondria-located ASK1-mediated apoptosis in a JNK-independent mannerCirc Res941483-14912004. 200. Zhang R, Al-Lamki R, Bai L, Streb JW, Miano JM, Bradley J, and Min W. Thioredoxin-2 inhibits mitochondria-located ASK1-mediated apoptosis in a JNK-independent manner. Circ Res 94: 1483–1491, 2004.
201.
Zhao PKalhorn TFSlattery JT. Selective mitochondrial glutathione depletion by ethanol enhances acetaminophen toxicity in rat liverHepatology36326-3352002. 201. Zhao P, Kalhorn TF, and Slattery JT. Selective mitochondrial glutathione depletion by ethanol enhances acetaminophen toxicity in rat liver. Hepatology 36: 326–335, 2002.
202.
Zhao PSlattery JT. Effects of ethanol dose and ethanol withdrawal on rat liver mitochondrial glutathione: Implication of potentiated acetaminophen toxicity in alcoholicsDrug Metab Dispos.301413-14172002. 202. Zhao P and Slattery JT. Effects of ethanol dose and ethanol withdrawal on rat liver mitochondrial glutathione: Implication of potentiated acetaminophen toxicity in alcoholics. Drug Metab Dispos. 30: 1413–1417, 2002.
203.
Zheng LMZychlinsky ALiu CCOjcius DMYoung JD. Extracellular ATP as a trigger for apoptosis or programmed cell deathJ Cell Biol112279-2881991. 203. Zheng LM, Zychlinsky A, Liu CC, Ojcius DM, and Young JD. Extracellular ATP as a trigger for apoptosis or programmed cell death. J Cell Biol 112: 279–288, 1991.
204.
Zhong QPutt DAXu FLash LH. Hepatic mitochondrial transport of glutathione: Studies in isolated rat liver mitochondria and H4IIE rat hepatoma cellsArch Biochem Biophys474119-1272008. 204. Zhong Q, Putt DA, Xu F, and Lash LH. Hepatic mitochondrial transport of glutathione: Studies in isolated rat liver mitochondria and H4IIE rat hepatoma cells. Arch Biochem Biophys 474: 119–127, 2008.
205.
Zhou YKok KHChun ACWong CMWu HWLin MCFung PCKung HJin DY. Mouse peroxiredoxin V is a thioredoxin peroxidase that inhibits p53-induced apoptosisBiochem Biophys Res Commun268921-9272000. 205. Zhou Y, Kok KH, Chun AC, Wong CM, Wu HW, Lin MC, Fung PC, Kung H, and Jin DY. Mouse peroxiredoxin V is a thioredoxin peroxidase that inhibits p53-induced apoptosis. Biochem Biophys Res Commun 268: 921–927, 2000.
206.
Zimmermann AKLoucks FASchroeder EKBouchard RJTyler KLLinseman DA. Glutathione binding to the Bcl-2 homology-3 domain groove: A molecular basis for Bcl-2 antioxidant function at mitochondriaJ Biol Chem28229296-293042007. 206. Zimmermann AK, Loucks FA, Schroeder EK, Bouchard RJ, Tyler KL, and Linseman DA. Glutathione binding to the Bcl-2 homology-3 domain groove: A molecular basis for Bcl-2 antioxidant function at mitochondria. J Biol Chem 282: 29296–29304, 2007.

Information & Authors

Information

Published In

cover image Antioxidants & Redox Signaling
Antioxidants & Redox Signaling
Volume 17Issue Number 12December 15, 2012
Pages: 1714 - 1727
PubMed: 22530585

History

Published in print: December 15, 2012
Published online: 17 October 2012
Published ahead of print: 11 June 2012
Published ahead of production: 24 April 2012
Accepted: 24 April 2012
Received: 9 April 2012

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Fei Yin
Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California.
Harsh Sancheti
Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California.
Enrique Cadenas
Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California.

Notes

Address correspondence to:Prof. Enrique CadenasDepartment of Pharmacology and Pharmaceutical SciencesSchool of PharmacyUniversity of Southern California1985 Zonal AvenueLos Angeles, CA 90089E-mail: [email protected]

Author Disclosure Statement

No competing financial interests exist.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top