<iframe src="//www.googletagmanager.com/ns.html?id=GTM-5TSRKG" height="0" width="0" style="display: none; visibility: hidden">
Review Article
No access
Published Online: 26 September 2013

Specificity in S-Nitrosylation: A Short-Range Mechanism for NO Signaling?

Publication: Antioxidants & Redox Signaling
Volume 19, Issue Number 11

Abstract

Significance: Nitric oxide (NO) classical and less classical signaling mechanisms (through interaction with soluble guanylate cyclase and cytochrome c oxidase, respectively) operate through direct binding of NO to protein metal centers, and rely on diffusibility of the NO molecule. S-Nitrosylation, a covalent post-translational modification of protein cysteines, has emerged as a paradigm of nonclassical NO signaling. Recent Advances: Several nonenzymatic mechanisms for S-nitrosylation formation and destruction have been described. Enzymatic mechanisms for transnitrosylation and denitrosylation have been also studied as regulators of the modification of specific subsets of proteins. The advancement of modification-specific proteomic methodologies has allowed progress in the study of diverse S-nitrosoproteomes, raising clues and questions about the parameters for determining the protein specificity of the modification. Critical Issues: We propose that S-nitrosylation is mainly a short-range mechanism of NO signaling, exerted in a relatively limited range of action around the NO sources, and tightly related to the very controlled regulation of subcellular localization of nitric oxide synthases. We review the nonenzymatic and enzymatic mechanisms that support this concept, as well as physiological examples of mammalian systems that illustrate well the precise compartmentalization of S-nitrosylation. Future Directions: Individual and proteomic studies of protein S-nitrosylation-based signaling should take into account the subcellular localization in order to gain further insight into the functional role of this modification in (patho)physiological settings. Antioxid. Redox Signal. 19, 1220–1235.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Aarts MLiu YLiu LBesshoh SArundine MGurd JWWang YTSalter MWTymianski M. Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactionsScience298846-8502002. 1. Aarts M, Liu Y, Liu L, Besshoh S, Arundine M, Gurd JW, Wang YT, Salter MW, and Tymianski M. Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science 298: 846–850, 2002.
2.
Aarts MMTymianski M. Molecular mechanisms underlying specificity of excitotoxic signaling in neuronsCurr Mol Med4137-1472004. 2. Aarts MM, and Tymianski M. Molecular mechanisms underlying specificity of excitotoxic signaling in neurons. Curr Mol Med 4: 137–147, 2004.
3.
Adachi TWeisbrod RMPimentel DRYing JSharov VSSchoneich CCohen RA. S-glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxideNat Med101200-12072004. 3. Adachi T, Weisbrod RM, Pimentel DR, Ying J, Sharov VS, Schoneich C, and Cohen RA. S-glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat Med 10: 1200–1207, 2004.
4.
Ahern GPKlyachko VAJackson MB. cGMP and S-nitrosylation: Two routes for modulation of neuronal excitability by NOTrends Neurosci25510-5172002. 4. Ahern GP, Klyachko VA, and Jackson MB. cGMP and S-nitrosylation: Two routes for modulation of neuronal excitability by NO. Trends Neurosci 25: 510–517, 2002.
5.
Anand PStamler JS. Enzymatic mechanisms regulating protein S-nitrosylation: Implications in health and diseaseJ Mol Med (Berl)90233-2442012. 5. Anand P, and Stamler JS. Enzymatic mechanisms regulating protein S-nitrosylation: Implications in health and disease. J Mol Med (Berl) 90: 233–244, 2012.
6.
Araújo IMAmbrósio AFLeal ECSantos PFCarvalho APCarvalho CM. Neuronal nitric oxide synthase proteolysis limits the involvement of nitric oxide in kainate-induced neurotoxicity in hippocampal neuronsJ Neurochem85791-8002003. 6. Araújo IM, Ambrósio AF, Leal EC, Santos PF, Carvalho AP, and Carvalho CM. Neuronal nitric oxide synthase proteolysis limits the involvement of nitric oxide in kainate-induced neurotoxicity in hippocampal neurons. J Neurochem 85: 791–800, 2003.
7.
Araújo IMCarvalho CM. Role of nitric oxide and calpain activation in neuronal death and survivalCurr Drug Targets CNS Neurol Disord4319-3242005. 7. Araújo IM, and Carvalho CM. Role of nitric oxide and calpain activation in neuronal death and survival. Curr Drug Targets CNS Neurol Disord 4: 319–324, 2005.
8.
Arner ESHolmgren A. Physiological functions of thioredoxin and thioredoxin reductaseEur J Biochem2676102-61092000. 8. Arner ES, and Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267: 6102–6109, 2000.
9.
Arstall MASawyer DBFukazawa RKelly RA. Cytokine-mediated apoptosis in cardiac myocytes: The role of inducible nitric oxide synthase induction and peroxynitrite generationCirc Res85829-8401999. 9. Arstall MA, Sawyer DB, Fukazawa R, and Kelly RA. Cytokine-mediated apoptosis in cardiac myocytes: The role of inducible nitric oxide synthase induction and peroxynitrite generation. Circ Res 85: 829–840, 1999.
10.
Arundine MTymianski M. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicityCell Calcium34325-3372003. 10. Arundine M, and Tymianski M. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 34: 325–337, 2003.
11.
Awad HHStanbury DM. Autoxidation of NO in aqueous solutionIntl J Chem Kinetics25375-3811993. 11. Awad HH, and Stanbury DM. Autoxidation of NO in aqueous solution. Intl J Chem Kinetics 25: 375–381, 1993.
12.
Balligand JLUngureanu-Longrois DSimmons WWKobzik LLowenstein CJLamas SKelly RASmith TWMichel T. Induction of NO synthase in rat cardiac microvascular endothelial cells by IL-1 beta and IFN-gammaAm J Physiol268H1293-13031995. 12. Balligand JL, Ungureanu-Longrois D, Simmons WW, Kobzik L, Lowenstein CJ, Lamas S, Kelly RA, Smith TW, and Michel T. Induction of NO synthase in rat cardiac microvascular endothelial cells by IL-1 beta and IFN-gamma. Am J Physiol 268: H1293–1303, 1995.
13.
Barouch LAHarrison RWSkaf MWRosas GOCappola TPKobeissi ZAHobai IALemmon CABurnett ALO'Rourke BRodriguez ERHuang PLLima JABerkowitz DEHare JM. Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoformsNature416337-3392002. 13. Barouch LA, Harrison RW, Skaf MW, Rosas GO, Cappola TP, Kobeissi ZA, Hobai IA, Lemmon CA, Burnett AL, O'Rourke B, Rodriguez ER, Huang PL, Lima JA, Berkowitz DE, and Hare JM. Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 416: 337–339, 2002.
14.
Bateman RLRauh DTavshanjian BShokat KM. Human carbonyl reductase 1 is an S-nitrosoglutathione reductaseJ Biol Chem28335756-357622008. 14. Bateman RL, Rauh D, Tavshanjian B, and Shokat KM. Human carbonyl reductase 1 is an S-nitrosoglutathione reductase. J Biol Chem 283: 35756–35762, 2008.
15.
Batista WLOgata FTCurcio MFMiguel RBArai RJMatsuo ALMoraes MSStern AMonteiro HP. S-nitrosoglutathione and endothelial nitric oxide synthase-derived nitric oxide regulate compartmentalized Ras S-nitrosylation and stimulate cell proliferationAntioxid Redox Signal18221-2382013. 15. Batista WL, Ogata FT, Curcio MF, Miguel RB, Arai RJ, Matsuo AL, Moraes MS, Stern A, and Monteiro HP. S-nitrosoglutathione and endothelial nitric oxide synthase-derived nitric oxide regulate compartmentalized Ras S-nitrosylation and stimulate cell proliferation. Antioxid Redox Signal 18: 221–238, 2013.
16.
Benhar MForrester MTHess DTStamler JS. Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxinsScience3201050-10542008. 16. Benhar M, Forrester MT, Hess DT, and Stamler JS. Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science 320: 1050–1054, 2008.
17.
Benhar MForrester MTStamler JS. Protein denitrosylation: Enzymatic mechanisms and cellular functionsNat Rev Mol Cell Biol10721-7322009. 17. Benhar M, Forrester MT, and Stamler JS. Protein denitrosylation: Enzymatic mechanisms and cellular functions. Nat Rev Mol Cell Biol 10: 721–732, 2009.
18.
Benhar MThompson JWMoseley MAStamler JS. Identification of S-nitrosylated targets of thioredoxin using a quantitative proteomic approachBiochemistry496963-69692010. 18. Benhar M, Thompson JW, Moseley MA, and Stamler JS. Identification of S-nitrosylated targets of thioredoxin using a quantitative proteomic approach. Biochemistry 49: 6963–6969, 2010.
19.
Berthiaume LG. Insider information: How palmitoylation of Ras makes it a signaling double agentSci STKE2002pe412002. 19. Berthiaume LG. Insider information: How palmitoylation of Ras makes it a signaling double agent. Sci STKE 2002: pe41, 2002.
20.
Bosworth CAToledo JC Jr.Zmijewski JWLi QLancaster JR Jr. Dinitrosyliron complexes and the mechanism(s) of cellular protein nitrosothiol formation from nitric oxideProc Natl Acad Sci USA1064671-46762009. 20. Bosworth CA, Toledo JC, Jr., Zmijewski JW, Li Q, and Lancaster JR, Jr. Dinitrosyliron complexes and the mechanism(s) of cellular protein nitrosothiol formation from nitric oxide. Proc Natl Acad Sci USA 106: 4671–4676, 2009.
21.
Bredt DSSnyder SH. Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellumProc Natl Acad Sci USA869030-90331989. 21. Bredt DS, and Snyder SH. Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc Natl Acad Sci USA 86: 9030–9033, 1989.
22.
Brenman JEBredt DS. Synaptic signaling by nitric oxideCurr Opin Neurobiol7374-3781997. 22. Brenman JE, and Bredt DS. Synaptic signaling by nitric oxide. Curr Opin Neurobiol 7: 374–378, 1997.
23.
Broniowska KAHogg N. The chemical biology of S-nitrosothiolsAntioxid Redox Signal17969-9802012. 23. Broniowska KA, and Hogg N. The chemical biology of S-nitrosothiols. Antioxid Redox Signal 17: 969–980, 2012.
24.
Calabrese VBoyd-Kimball DScapagnini GButterfield DA. Nitric oxide and cellular stress response in brain aging and neurodegenerative disorders: The role of vitagenesIn Vivo18245-2672004. 24. Calabrese V, Boyd-Kimball D, Scapagnini G, and Butterfield DA. Nitric oxide and cellular stress response in brain aging and neurodegenerative disorders: The role of vitagenes. In Vivo 18: 245–267, 2004.
25.
Cao SYao JMcCabe TJYao QKatusic ZSSessa WCShah V. Direct interaction between endothelial nitric-oxide synthase and dynamin-2. Implications for nitric-oxide synthase functionJ Biol Chem27614249-142562001. 25. Cao S, Yao J, McCabe TJ, Yao Q, Katusic ZS, Sessa WC, and Shah V. Direct interaction between endothelial nitric-oxide synthase and dynamin-2. Implications for nitric-oxide synthase function. J Biol Chem 276: 14249–14256, 2001.
26.
Cary SPWinger JADerbyshire ERMarletta MA. Nitric oxide signaling: No longer simply on or offTrends Biochem Sci31231-2392006. 26. Cary SP, Winger JA, Derbyshire ER, and Marletta MA. Nitric oxide signaling: No longer simply on or off. Trends Biochem Sci 31: 231–239, 2006.
27.
Chabrier PEDemerle-Pallardy CAuguet M. Nitric oxide synthases: Targets for therapeutic strategies in neurological diseasesCell Mol Life Sci551029-10351999. 27. Chabrier PE, Demerle-Pallardy C, and Auguet M. Nitric oxide synthases: Targets for therapeutic strategies in neurological diseases. Cell Mol Life Sci 55: 1029–1035, 1999.
28.
Cho DHNakamura TFang JCieplak PGodzik AGu ZLipton SA. S-Nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injuryScience324102-1052009. 28. Cho DH, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, and Lipton SA. S-Nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 324: 102–105, 2009.
29.
Choi YBLipton SA. Redox modulation of the NMDA receptorCell Mol Life Sci571535-15412000. 29. Choi YB, and Lipton SA. Redox modulation of the NMDA receptor. Cell Mol Life Sci 57: 1535–1541, 2000.
30.
Choi YBTenneti LLe DAOrtiz JBai GChen HSLipton SA. Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylationNat Neurosci315-212000. 30. Choi YB, Tenneti L, Le DA, Ortiz J, Bai G, Chen HS, and Lipton SA. Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation. Nat Neurosci 3: 15–21, 2000.
31.
Christopherson KSHillier BJLim WABredt DS. PSD-95 assembles a ternary complex with the N-methyl-D-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domainJ Biol Chem27427467-274731999. 31. Christopherson KS, Hillier BJ, Lim WA, and Bredt DS. PSD-95 assembles a ternary complex with the N-methyl-D-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. J Biol Chem 274: 27467–27473, 1999.
32.
Church JEFulton D. Differences in eNOS activity because of subcellular localization are dictated by phosphorylation state rather than the local calcium environmentJ Biol Chem2811477-14882006. 32. Church JE, and Fulton D. Differences in eNOS activity because of subcellular localization are dictated by phosphorylation state rather than the local calcium environment. J Biol Chem 281: 1477–1488, 2006.
33.
D'Mello RMarchand FPezet SMcMahon SBDickenson AH. Perturbing PSD-95 interactions with NR2B-subtype receptors attenuates spinal nociceptive plasticity and neuropathic painMol Ther191780-17922011. 33. D'Mello R, Marchand F, Pezet S, McMahon SB, and Dickenson AH. Perturbing PSD-95 interactions with NR2B-subtype receptors attenuates spinal nociceptive plasticity and neuropathic pain. Mol Ther 19: 1780–1792, 2011.
34.
Dawson VLDawson TMLondon EDBredt DSSnyder SH. Nitric oxide mediates glutamate neurotoxicity in primary cortical culturesProc Natl Acad Sci USA886368-63711991. 34. Dawson VL, Dawson TM, London ED, Bredt DS, and Snyder SH. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci USA 88: 6368–6371, 1991.
35.
Derakhshan BHao GGross SS. Balancing reactivity against selectivity: The evolution of protein S-nitrosylation as an effector of cell signaling by nitric oxideCardiovasc Res75210-2192007. 35. Derakhshan B, Hao G, and Gross SS. Balancing reactivity against selectivity: The evolution of protein S-nitrosylation as an effector of cell signaling by nitric oxide. Cardiovasc Res 75: 210–219, 2007.
36.
Dudzinski DMMichel T. Life history of eNOS: Partners and pathwaysCardiovasc Res75247-2602007. 36. Dudzinski DM, and Michel T. Life history of eNOS: Partners and pathways. Cardiovasc Res 75: 247–260, 2007.
37.
Erwin PALin AJGolan DEMichel T. Receptor-regulated dynamic S-nitrosylation of endothelial nitric oxide synthase in vascular endothelial cellsJ Biol Chem28019888-198942005. 37. Erwin PA, Lin AJ, Golan DE, and Michel T. Receptor-regulated dynamic S-nitrosylation of endothelial nitric oxide synthase in vascular endothelial cells. J Biol Chem 280: 19888–19894, 2005.
38.
Erwin PAMitchell DASartoretto JMarletta MAMichel T. Subcellular targeting and differential S-nitrosylation of endothelial nitric oxide synthaseJ Biol Chem281151-1572006. 38. Erwin PA, Mitchell DA, Sartoretto J, Marletta MA, and Michel T. Subcellular targeting and differential S-nitrosylation of endothelial nitric oxide synthase. J Biol Chem 281: 151–157, 2006.
39.
Ferrante RJKowall NWBeal MFRichardson EP Jr.Bird EDMartin JB. Selective sparing of a class of striatal neurons in Huntington's diseaseScience230561-5631985. 39. Ferrante RJ, Kowall NW, Beal MF, Richardson EP, Jr., Bird ED, and Martin JB. Selective sparing of a class of striatal neurons in Huntington's disease. Science 230: 561–563, 1985.
40.
Fontana JFulton DChen YFairchild TAMcCabe TJFujita NTsuruo TSessa WC. Domain mapping studies reveal that the M domain of hsp90 serves as a molecular scaffold to regulate Akt-dependent phosphorylation of endothelial nitric oxide synthase and NO releaseCirc Res90866-8732002. 40. Fontana J, Fulton D, Chen Y, Fairchild TA, McCabe TJ, Fujita N, Tsuruo T, and Sessa WC. Domain mapping studies reveal that the M domain of hsp90 serves as a molecular scaffold to regulate Akt-dependent phosphorylation of endothelial nitric oxide synthase and NO release. Circ Res 90: 866–873, 2002.
41.
Forder JPTymianski M. Postsynaptic mechanisms of excitotoxicity: Involvement of postsynaptic density proteins, radicals, and oxidant moleculesNeuroscience158293-3002009. 41. Forder JP, and Tymianski M. Postsynaptic mechanisms of excitotoxicity: Involvement of postsynaptic density proteins, radicals, and oxidant molecules. Neuroscience 158: 293–300, 2009.
42.
Forman HJFukuto JMTorres M. Redox signaling: Thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengersAm J Physiol Cell Physiol287C246-2562004. 42. Forman HJ, Fukuto JM, and Torres M. Redox signaling: Thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. Am J Physiol Cell Physiol 287: C246–256, 2004.
43.
Forrester MTSeth DHausladen AEyler CEFoster MWMatsumoto ABenhar MMarshall HEStamler JS. Thioredoxin-interacting protein (Txnip) is a feedback regulator of S-nitrosylationJ Biol Chem28436160-361662009. 43. Forrester MT, Seth D, Hausladen A, Eyler CE, Foster MW, Matsumoto A, Benhar M, Marshall HE, and Stamler JS. Thioredoxin-interacting protein (Txnip) is a feedback regulator of S-nitrosylation. J Biol Chem 284: 36160–36166, 2009.
44.
Foster MWHess DTStamler JS. Protein S-nitrosylation in health and disease: A current perspectiveTrends Mol Med15391-4042009. 44. Foster MW, Hess DT, and Stamler JS. Protein S-nitrosylation in health and disease: A current perspective. Trends Mol Med 15: 391–404, 2009.
45.
Fulton DBabbitt RZoellner SFontana JAcevedo LMcCabe TJIwakiri YSessa WC. Targeting of endothelial nitric-oxide synthase to the cytoplasmic face of the Golgi complex or plasma membrane regulates Akt- versus calcium-dependent mechanisms for nitric oxide releaseJ Biol Chem27930349-303572004. 45. Fulton D, Babbitt R, Zoellner S, Fontana J, Acevedo L, McCabe TJ, Iwakiri Y, and Sessa WC. Targeting of endothelial nitric-oxide synthase to the cytoplasmic face of the Golgi complex or plasma membrane regulates Akt- versus calcium-dependent mechanisms for nitric oxide release. J Biol Chem 279: 30349–30357, 2004.
46.
Fulton DGratton JPSessa WC. Post-translational control of endothelial nitric oxide synthase: Why isn't calcium/calmodulin enough?J Pharmacol Exp Ther299818-8242001. 46. Fulton D, Gratton JP, and Sessa WC. Post-translational control of endothelial nitric oxide synthase: Why isn't calcium/calmodulin enough? J Pharmacol Exp Ther 299: 818–824, 2001.
47.
Garthwaite JCharles SLChess-Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brainNature336385-3881988. 47. Garthwaite J, Charles SL, and Chess-Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336: 385–388, 1988.
48.
Goldstein SCzapski G. Kinetics of nitric oxide autoxidation in aqueous solution in the absence and presence of various reductants. The nature of the oxidizing intermediatesJ Am Chem Soc11712078-120841995. 48. Goldstein S, and Czapski G. Kinetics of nitric oxide autoxidation in aqueous solution in the absence and presence of various reductants. The nature of the oxidizing intermediates. J Am Chem Soc 117: 12078–12084, 1995.
49.
Gonzalez DRBeigi FTreuer AVHare JM. Deficient ryanodine receptor S-nitrosylation increases sarcoplasmic reticulum calcium leak and arrhythmogenesis in cardiomyocytesProc Natl Acad Sci USA10420612-206172007. 49. Gonzalez DR, Beigi F, Treuer AV, and Hare JM. Deficient ryanodine receptor S-nitrosylation increases sarcoplasmic reticulum calcium leak and arrhythmogenesis in cardiomyocytes. Proc Natl Acad Sci USA 104: 20612–20617, 2007.
50.
Gow AJStamler JS. Reactions between nitric oxide and haemoglobin under physiological conditionsNature391169-1731998. 50. Gow AJ, and Stamler JS. Reactions between nitric oxide and haemoglobin under physiological conditions. Nature 391: 169–173, 1998.
51.
Gratton JPFontana JO'Connor DSGarcia-Cardena GMcCabe TJSessa WC. Reconstitution of an endothelial nitric-oxide synthase (eNOS), hsp90, and caveolin-1 complex in vitro. Evidence that hsp90 facilitates calmodulin stimulated displacement of eNOS from caveolin-1J Biol Chem27522268-222722000. 51. Gratton JP, Fontana J, O'Connor DS, Garcia-Cardena G, McCabe TJ, and Sessa WC. Reconstitution of an endothelial nitric-oxide synthase (eNOS), hsp90, and caveolin-1 complex in vitro. Evidence that hsp90 facilitates calmodulin stimulated displacement of eNOS from caveolin-1. J Biol Chem 275: 22268–22272, 2000.
52.
Gryglewski RJPalmer RMMoncada S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factorNature320454-4561986. 52. Gryglewski RJ, Palmer RM, and Moncada S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320: 454–456, 1986.
53.
Guikema BLu QJourd'heuil D. Chemical considerations and biological selectivity of protein nitrosation: Implications for NO-mediated signal transductionAntioxid Redox Signal7593-6062005. 53. Guikema B, Lu Q, and Jourd'heuil D. Chemical considerations and biological selectivity of protein nitrosation: Implications for NO-mediated signal transduction. Antioxid Redox Signal 7: 593–606, 2005.
54.
Haendeler JHoffmann JTischler VBerk BCZeiher AMDimmeler S. Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69Nat Cell Biol4743-7492002. 54. Haendeler J, Hoffmann J, Tischler V, Berk BC, Zeiher AM, and Dimmeler S. Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69. Nat Cell Biol 4: 743–749, 2002.
55.
Hammond JBalligand JL. Nitric oxide synthase and cyclic GMP signaling in cardiac myocytes: From contractility to remodelingJ Mol Cell Cardiol52330-3402012. 55. Hammond J, and Balligand JL. Nitric oxide synthase and cyclic GMP signaling in cardiac myocytes: From contractility to remodeling. J Mol Cell Cardiol 52: 330–340, 2012.
56.
Hara MRAgrawal NKim SFCascio MBFujimuro MOzeki YTakahashi MCheah JHTankou SKHester LDFerris CDHayward SDSnyder SHSawa A. S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 bindingNat Cell Biol7665-6742005. 56. Hara MR, Agrawal N, Kim SF, Cascio MB, Fujimuro M, Ozeki Y, Takahashi M, Cheah JH, Tankou SK, Hester LD, Ferris CD, Hayward SD, Snyder SH, and Sawa A. S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat Cell Biol 7: 665–674, 2005.
57.
Hare JMLofthouse RAJuang GJColman LRicker KMKim BSenzaki HCao STunin RSKass DA. Contribution of caveolin protein abundance to augmented nitric oxide signaling in conscious dogs with pacing-induced heart failureCirc Res861085-10922000. 57. Hare JM, Lofthouse RA, Juang GJ, Colman L, Ricker KM, Kim B, Senzaki H, Cao S, Tunin RS, and Kass DA. Contribution of caveolin protein abundance to augmented nitric oxide signaling in conscious dogs with pacing-induced heart failure. Circ Res 86: 1085–1092, 2000.
58.
Harris LKMcCormick JCartwright JEWhitley GSDash PR. S-Nitrosylation of proteins at the leading edge of migrating trophoblasts by inducible nitric oxide synthase promotes trophoblast invasionExp Cell Res3141765-17762008. 58. Harris LK, McCormick J, Cartwright JE, Whitley GS, and Dash PR. S-Nitrosylation of proteins at the leading edge of migrating trophoblasts by inducible nitric oxide synthase promotes trophoblast invasion. Exp Cell Res 314: 1765–1776, 2008.
59.
Hashemy SIHolmgren A. Regulation of the catalytic activity and structure of human thioredoxin 1 via oxidation and S-nitrosylation of cysteine residuesJ Biol Chem28321890-218982008. 59. Hashemy SI, and Holmgren A. Regulation of the catalytic activity and structure of human thioredoxin 1 via oxidation and S-nitrosylation of cysteine residues. J Biol Chem 283: 21890–21898, 2008.
60.
Hernansanz-Agustín PIzquierdo-Álvarez AGarcía-Ortiz AIbiza SSerrador JMMartínez-Ruiz A. Nitrosothiols in the immune system: Signaling and protectionAntioxid Redox Signal18288-3082013. 60. Hernansanz-Agustín P, Izquierdo-Álvarez A, García-Ortiz A, Ibiza S, Serrador JM, and Martínez-Ruiz A. Nitrosothiols in the immune system: Signaling and protection. Antioxid Redox Signal 18: 288–308, 2013.
61.
Hess DTMatsumoto AKim S-OMarshall HEStamler JS. Protein S-nitrosylation: Purview and parametersNat Rev Mol Cell Biol6150-1662005. 61. Hess DT, Matsumoto A, Kim S-O, Marshall HE, and Stamler JS. Protein S-nitrosylation: Purview and parameters. Nat Rev Mol Cell Biol 6: 150–166, 2005.
62.
Hickok JRSahni SShen HArvind AAntoniou CFung LWThomas DD. Dinitrosyliron complexes are the most abundant nitric oxide-derived cellular adduct: Biological parameters of assembly and disappearanceFree Radic Biol Med511558-15662011. 62. Hickok JR, Sahni S, Shen H, Arvind A, Antoniou C, Fung LW, and Thomas DD. Dinitrosyliron complexes are the most abundant nitric oxide-derived cellular adduct: Biological parameters of assembly and disappearance. Free Radic Biol Med 51: 1558–1566, 2011.
63.
Ho GPSelvakumar BMukai JHester LDWang YGogos JASnyder SH. S-Nitrosylation and S-palmitoylation reciprocally regulate synaptic targeting of PSD-95Neuron71131-1412011. 63. Ho GP, Selvakumar B, Mukai J, Hester LD, Wang Y, Gogos JA, and Snyder SH. S-Nitrosylation and S-palmitoylation reciprocally regulate synaptic targeting of PSD-95. Neuron 71: 131–141, 2011.
64.
Hou YGuo ZLi JWang PG. Seleno compounds and glutathione peroxidase catalyzed decomposition of S-nitrosothiolsBiochem Biophys Res Commun22888-931996. 64. Hou Y, Guo Z, Li J, and Wang PG. Seleno compounds and glutathione peroxidase catalyzed decomposition of S-nitrosothiols. Biochem Biophys Res Commun 228: 88–93, 1996.
65.
Huang YMan HYSekine-Aizawa YHan YJuluri KLuo HCheah JLowenstein CHuganir RLSnyder SH. S-nitrosylation of N-ethylmaleimide sensitive factor mediates surface expression of AMPA receptorsNeuron46533-5402005. 65. Huang Y, Man HY, Sekine-Aizawa Y, Han Y, Juluri K, Luo H, Cheah J, Lowenstein C, Huganir RL, and Snyder SH. S-nitrosylation of N-ethylmaleimide sensitive factor mediates surface expression of AMPA receptors. Neuron 46: 533–540, 2005.
66.
Hyman BTMarzloff KWenniger JJDawson TMBredt DSSnyder SH. Relative sparing of nitric oxide synthase-containing neurons in the hippocampal formation in Alzheimer's diseaseAnn Neurol32818-8201992. 66. Hyman BT, Marzloff K, Wenniger JJ, Dawson TM, Bredt DS, and Snyder SH. Relative sparing of nitric oxide synthase-containing neurons in the hippocampal formation in Alzheimer's disease. Ann Neurol 32: 818–820, 1992.
67.
Ibiza SPérez-Rodríguez AOrtega ÁMartínez-Ruiz ABarreiro OGarcía-Domínguez CAVíctor VMEsplugues JVRojas JMSánchez-Madrid FSerrador JM. Endothelial nitric oxide synthase regulates N-Ras activation on the Golgi complex of antigen-stimulated T cellsProc Natl Acad Sci USA10510507-105122008. 67. Ibiza S, Pérez-Rodríguez A, Ortega Á, Martínez-Ruiz A, Barreiro O, García-Domínguez CA, Víctor VM, Esplugues JV, Rojas JM, Sánchez-Madrid F, and Serrador JM. Endothelial nitric oxide synthase regulates N-Ras activation on the Golgi complex of antigen-stimulated T cells. Proc Natl Acad Sci USA 105: 10507–10512, 2008.
68.
Ignarro LJBuga GMWood KSByrns REChaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxideProc Natl Acad Sci USA849265-92691987. 68. Ignarro LJ, Buga GM, Wood KS, Byrns RE, and Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84: 9265–9269, 1987.
69.
Ischiropoulos H. Protein tyrosine nitration—An updateArch Biochem Biophys484117-1212009. 69. Ischiropoulos H. Protein tyrosine nitration—An update. Arch Biochem Biophys 484: 117–121, 2009.
70.
Iwakiri Y. S-Nitrosylation of proteins: A new insight into endothelial cell function regulated by eNOS-derived NONitric Oxide2595-1012011. 70. Iwakiri Y. S-Nitrosylation of proteins: A new insight into endothelial cell function regulated by eNOS-derived NO. Nitric Oxide 25: 95–101, 2011.
71.
Iwakiri YSatoh AChatterjee SToomre DKChalouni CMFulton DGroszmann RJShah VHSessa WC. Nitric oxide synthase generates nitric oxide locally to regulate compartmentalized protein S-nitrosylation and protein traffickingProc Natl Acad Sci USA10319777-197822006. 71. Iwakiri Y, Satoh A, Chatterjee S, Toomre DK, Chalouni CM, Fulton D, Groszmann RJ, Shah VH, and Sessa WC. Nitric oxide synthase generates nitric oxide locally to regulate compartmentalized protein S-nitrosylation and protein trafficking. Proc Natl Acad Sci USA 103: 19777–19782, 2006.
72.
Jagnandan DSessa WCFulton D. Intracellular location regulates calcium-calmodulin-dependent activation of organelle-restricted eNOSAm J Physiol Cell Physiol289C1024-10332005. 72. Jagnandan D, Sessa WC, and Fulton D. Intracellular location regulates calcium-calmodulin-dependent activation of organelle-restricted eNOS. Am J Physiol Cell Physiol 289: C1024–1033, 2005.
73.
Janssen-Heininger YMMossman BTHeintz NHForman HJKalyanaraman BFinkel TStamler JSRhee SGvan der Vliet A. Redox-based regulation of signal transduction: Principles, pitfalls, and promisesFree Radic Biol Med451-172008. 73. Janssen-Heininger YM, Mossman BT, Heintz NH, Forman HJ, Kalyanaraman B, Finkel T, Stamler JS, Rhee SG, and van der Vliet A. Redox-based regulation of signal transduction: Principles, pitfalls, and promises. Free Radic Biol Med 45: 1–17, 2008.
74.
Jarabek BRYasuda RPWolfe BB. Regulation of proteins affecting NMDA receptor-induced excitotoxicity in a Huntington's mouse modelBrain127505-5162004. 74. Jarabek BR, Yasuda RP, and Wolfe BB. Regulation of proteins affecting NMDA receptor-induced excitotoxicity in a Huntington's mouse model. Brain 127: 505–516, 2004.
75.
Jia LBonaventura CBonaventura JStamler JS. S-nitrosohaemoglobin: A dynamic activity of blood involved in vascular controlNature380221-2261996. 75. Jia L, Bonaventura C, Bonaventura J, and Stamler JS. S-nitrosohaemoglobin: A dynamic activity of blood involved in vascular control. Nature 380: 221–226, 1996.
76.
Jourd'heuil DJourd'heuil FLFeelisch M. Oxidation and nitrosation of thiols at low micromolar exposure to nitric oxide. Evidence for a free radical mechanismJ Biol Chem27815720-157262003. 76. Jourd'heuil D, Jourd'heuil FL, and Feelisch M. Oxidation and nitrosation of thiols at low micromolar exposure to nitric oxide. Evidence for a free radical mechanism. J Biol Chem 278: 15720–15726, 2003.
77.
Jourd'heuil DLaroux FSMiles AMWink DAGrisham MB. Effect of superoxide dismutase on the stability of S-nitrosothiolsArch Biochem Biophys361323-3301999. 77. Jourd'heuil D, Laroux FS, Miles AM, Wink DA, and Grisham MB. Effect of superoxide dismutase on the stability of S-nitrosothiols. Arch Biochem Biophys 361: 323–330, 1999.
78.
Keynes RGGarthwaite J. Nitric oxide and its role in ischaemic brain injuryCurr Mol Med4179-1912004. 78. Keynes RG, and Garthwaite J. Nitric oxide and its role in ischaemic brain injury. Curr Mol Med 4: 179–191, 2004.
79.
Kim WKChoi YBRayudu PVDas PAsaad WArnelle DRStamler JSLipton SA. Attenuation of NMDA receptor activity and neurotoxicity by nitroxyl anion, NONeuron24461-4691999. 79. Kim WK, Choi YB, Rayudu PV, Das P, Asaad W, Arnelle DR, Stamler JS, and Lipton SA. Attenuation of NMDA receptor activity and neurotoxicity by nitroxyl anion, NO. Neuron 24: 461–469, 1999.
80.
Klatt PLamas S. Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stressEur J Biochem2674928-49442000. 80. Klatt P, and Lamas S. Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Eur J Biochem 267: 4928–4944., 2000.
81.
Kornberg MDSen NHara MRJuluri KRNguyen JVSnowman AMLaw LHester LDSnyder SH. GAPDH mediates nitrosylation of nuclear proteinsNat Cell Biol121094-11002010. 81. Kornberg MD, Sen N, Hara MR, Juluri KR, Nguyen JV, Snowman AM, Law L, Hester LD, and Snyder SH. GAPDH mediates nitrosylation of nuclear proteins. Nat Cell Biol 12: 1094–1100, 2010.
82.
Lancaster JR Jr. Nitroxidative, nitrosative, and nitrative stress: Kinetic predictions of reactive nitrogen species chemistry under biological conditionsChem Res Toxicol191160-11742006. 82. Lancaster JR, Jr. Nitroxidative, nitrosative, and nitrative stress: Kinetic predictions of reactive nitrogen species chemistry under biological conditions. Chem Res Toxicol 19: 1160–1174, 2006.
83.
Lancaster JR JrGaston B. NO and nitrosothiols: Spatial confinement and free diffusionAm J Physiol Lung Cell Mol Physiol287L465-4662004. 83. Lancaster JR Jr, and Gaston B. NO and nitrosothiols: Spatial confinement and free diffusion. Am J Physiol Lung Cell Mol Physiol 287: L465–466, 2004.
84.
Lau ATymianski M. Glutamate receptors, neurotoxicity and neurodegenerationPflugers Arch460525-5422010. 84. Lau A, and Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 460: 525–542, 2010.
85.
Lei SZPan ZHAggarwal SKChen HSHartman JSucher NJLipton SA. Effect of nitric oxide production on the redox modulatory site of the NMDA receptor–channel complexNeuron81087-10991992. 85. Lei SZ, Pan ZH, Aggarwal SK, Chen HS, Hartman J, Sucher NJ, and Lipton SA. Effect of nitric oxide production on the redox modulatory site of the NMDA receptor–channel complex. Neuron 8: 1087–1099, 1992.
86.
Lillig CHHolmgren A. Thioredoxin and related molecules—From biology to health and diseaseAntioxid Redox Signal925-472007. 86. Lillig CH, and Holmgren A. Thioredoxin and related molecules—From biology to health and disease. Antioxid Redox Signal 9: 25–47, 2007.
87.
Lim CHDedon PCDeen WM. Kinetic analysis of intracellular concentrations of reactive nitrogen speciesChem Res Toxicol212134-21472008. 87. Lim CH, Dedon PC, and Deen WM. Kinetic analysis of intracellular concentrations of reactive nitrogen species. Chem Res Toxicol 21: 2134–2147, 2008.
88.
Lima BForrester MTHess DTStamler JS. S-Nitrosylation in cardiovascular signalingCirc Res106633-6462010. 88. Lima B, Forrester MT, Hess DT, and Stamler JS. S-Nitrosylation in cardiovascular signaling. Circ Res 106: 633–646, 2010.
89.
Lima BLam GKWXie LDiesen DLVillamizar NNienaber JMessina EBowles DKontos CDHare JMStamler JSRockman HA. Endogenous S-nitrosothiols protect against myocardial injuryProc Natl Acad Sci USA1066297-63022009. 89. Lima B, Lam GKW, Xie L, Diesen DL, Villamizar N, Nienaber J, Messina E, Bowles D, Kontos CD, Hare JM, Stamler JS, and Rockman HA. Endogenous S-nitrosothiols protect against myocardial injury. Proc Natl Acad Sci USA 106: 6297–6302, 2009.
90.
Lindermayr CDurner J. S-Nitrosylation in plants: Pattern and functionJ Proteomics731-92009. 90. Lindermayr C, and Durner J. S-Nitrosylation in plants: Pattern and function. J Proteomics 73: 1–9, 2009.
91.
Lipton SAChoi YBPan ZHLei SZChen HSSucher NJLoscalzo JSingel DJStamler JS. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compoundsNature364626-6321993. 91. Lipton SA, Choi YB, Pan ZH, Lei SZ, Chen HS, Sucher NJ, Loscalzo J, Singel DJ, and Stamler JS. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364: 626–632, 1993.
92.
Lipton SARayudu PVChoi YBSucher NJChen HS. Redox modulation of the NMDA receptor by NO-related speciesProg Brain Res11873-821998. 92. Lipton SA, Rayudu PV, Choi YB, Sucher NJ, and Chen HS. Redox modulation of the NMDA receptor by NO-related species. Prog Brain Res 118: 73–82, 1998.
93.
Lipton SAStamler JS. Actions of redox-related congeners of nitric oxide at the NMDA receptorNeuropharmacology331229-12331994. 93. Lipton SA, and Stamler JS. Actions of redox-related congeners of nitric oxide at the NMDA receptor. Neuropharmacology 33: 1229–1233, 1994.
94.
Liu JGarcía-Cardeña GSessa WC. Palmitoylation of endothelial nitric oxide synthase is necessary for optimal stimulated release of nitric oxide: Implications for caveolae localizationBiochemistry3513277-132811996. 94. Liu J, García-Cardeña G, and Sessa WC. Palmitoylation of endothelial nitric oxide synthase is necessary for optimal stimulated release of nitric oxide: Implications for caveolae localization. Biochemistry 35: 13277–13281, 1996.
95.
Liu LHausladen AZeng MQue LHeitman JStamler JS. A metabolic enzyme for S-nitrosothiol conserved from bacteria to humansNature410490-4942001. 95. Liu L, Hausladen A, Zeng M, Que L, Heitman J, and Stamler JS. A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410: 490–494, 2001.
96.
Liu LYan YZeng MZhang JHanes MAAhearn GMcMahon TJDickfeld TMarshall HEQue LGStamler JS. Essential roles of S-nitrosothiols in vascular homeostasis and endotoxic shockCell116617-6282004. 96. Liu L, Yan Y, Zeng M, Zhang J, Hanes MA, Ahearn G, McMahon TJ, Dickfeld T, Marshall HE, Que LG, and Stamler JS. Essential roles of S-nitrosothiols in vascular homeostasis and endotoxic shock. Cell 116: 617–628, 2004.
97.
Liu XMiller MJJoshi MSThomas DDLancaster JR Jr. Accelerated reaction of nitric oxide with O2 within the hydrophobic interior of biological membranesProc Natl Acad Sci USA952175-21791998. 97. Liu X, Miller MJ, Joshi MS, Thomas DD, and Lancaster JR, Jr. Accelerated reaction of nitric oxide with O2 within the hydrophobic interior of biological membranes. Proc Natl Acad Sci USA 95: 2175–2179, 1998.
98.
Lu WMan HJu WTrimble WSMacDonald JFWang YT. Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neuronsNeuron29243-2542001. 98. Lu W, Man H, Ju W, Trimble WS, MacDonald JF, and Wang YT. Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron 29: 243–254, 2001.
99.
Malik MJividen KPadmakumar VCCataisson CLi LLee JHoward OMYuspa SH. Inducible NOS-induced chloride intracellular channel 4 (CLIC4) nuclear translocation regulates macrophage deactivationProc Natl Acad Sci USA1096130-61352012. 99. Malik M, Jividen K, Padmakumar VC, Cataisson C, Li L, Lee J, Howard OM, and Yuspa SH. Inducible NOS-induced chloride intracellular channel 4 (CLIC4) nuclear translocation regulates macrophage deactivation. Proc Natl Acad Sci USA 109: 6130–6135, 2012.
100.
Mannick JBHausladen ALiu LHess DTZeng MMiao QXKane LSGow AJStamler JS. Fas-induced caspase denitrosylationScience284651-6541999. 100. Mannick JB, Hausladen A, Liu L, Hess DT, Zeng M, Miao QX, Kane LS, Gow AJ, and Stamler JS. Fas-induced caspase denitrosylation. Science 284: 651–654, 1999.
101.
Marino SMGladyshev VN. Structural analysis of cysteine S-nitrosylation: A modified acid-based motif and the emerging role of trans-nitrosylationJ Mol Biol395844-8592010. 101. Marino SM, and Gladyshev VN. Structural analysis of cysteine S-nitrosylation: A modified acid-based motif and the emerging role of trans-nitrosylation. J Mol Biol 395: 844–859, 2010.
102.
Maron BATang SSLoscalzo J. S-nitrosothiols and the S-nitrosoproteome of the cardiovascular systemAntioxid Redox Signal18270-2872013. 102. Maron BA, Tang SS, and Loscalzo J. S-nitrosothiols and the S-nitrosoproteome of the cardiovascular system. Antioxid Redox Signal 18: 270–287, 2013.
103.
Martínez-Ruiz ACadenas SLamas S. Nitric oxide signaling: Classical, less classical, and nonclassical mechanismsFree Radic Biol Med5117-292011. 103. Martínez-Ruiz A, Cadenas S, and Lamas S. Nitric oxide signaling: Classical, less classical, and nonclassical mechanisms. Free Radic Biol Med 51: 17–29, 2011.
104.
Martínez-Ruiz ALamas S. S-Nitrosylation: A potential new paradigm in signal transductionCardiovasc Res6243-522004. 104. Martínez-Ruiz A, and Lamas S. S-Nitrosylation: A potential new paradigm in signal transduction. Cardiovasc Res 62: 43–52, 2004.
105.
Martínez-Ruiz ALamas S. Signalling by NO-induced protein S-nitrosylation and S-glutathionylation: convergences and divergencesCardiovasc Res75220-2282007. 105. Martínez-Ruiz A, and Lamas S. Signalling by NO-induced protein S-nitrosylation and S-glutathionylation: convergences and divergences. Cardiovasc Res 75: 220–228, 2007.
106.
Martínez-Ruiz ALamas S. Two decades of new concepts in nitric oxide signaling: From the discovery of a gas messenger to the mediation of nonenzymatic posttranslational modificationsIUBMB Life6191-982009. 106. Martínez-Ruiz A, and Lamas S. Two decades of new concepts in nitric oxide signaling: From the discovery of a gas messenger to the mediation of nonenzymatic posttranslational modifications. IUBMB Life 61: 91–98, 2009.
107.
Martínez-Ruiz AVillanueva Lde Orduña CGLópez-Ferrer DHigueras MÁTarín CRodríguez-Crespo IVázquez JLamas S. S-Nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activitiesProc Natl Acad Sci USA1028525-85302005. 107. Martínez-Ruiz A, Villanueva L, de Orduña CG, López-Ferrer D, Higueras MÁ, Tarín C, Rodríguez-Crespo I, Vázquez J, and Lamas S. S-Nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proc Natl Acad Sci USA 102: 8525–8530, 2005.
108.
Massion PBFeron ODessy CBalligand J-L. Nitric oxide and cardiac function: Ten years after, and continuingCirc Res93388-3982003. 108. Massion PB, Feron O, Dessy C, and Balligand J-L. Nitric oxide and cardiac function: Ten years after, and continuing. Circ Res 93: 388–398, 2003.
109.
Matsushita KMorrell CNCambien BYang SXYamakuchi MBao CHara MRQuick RACao WO'Rourke BLowenstein JMPevsner JWagner DDLowenstein CJ. Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factorCell115139-1502003. 109. Matsushita K, Morrell CN, Cambien B, Yang SX, Yamakuchi M, Bao C, Hara MR, Quick RA, Cao W, O'Rourke B, Lowenstein JM, Pevsner J, Wagner DD, and Lowenstein CJ. Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. Cell 115: 139–150, 2003.
110.
McCormick MEGoel RFulton DOess SNewman DTzima E. Platelet-endothelial cell adhesion molecule-1 regulates endothelial NO synthase activity and localization through signal transducers and activators of transcription 3-dependent NOSTRIN expressionArterioscler Thromb Vasc Biol31643-6492011. 110. McCormick ME, Goel R, Fulton D, Oess S, Newman D, and Tzima E. Platelet-endothelial cell adhesion molecule-1 regulates endothelial NO synthase activity and localization through signal transducers and activators of transcription 3-dependent NOSTRIN expression. Arterioscler Thromb Vasc Biol 31: 643–649, 2011.
111.
Mieyal JJGallogly MMQanungo SSabens EAShelton MD. Molecular mechanisms and clinical implications of reversible protein S-glutathionylationAntioxid Redox Signal101941-19882008. 111. Mieyal JJ, Gallogly MM, Qanungo S, Sabens EA, and Shelton MD. Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid Redox Signal 10: 1941–1988, 2008.
112.
Mitchell DAMarletta MA. Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteineNat Chem Biol1154-1582005. 112. Mitchell DA, and Marletta MA. Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteine. Nat Chem Biol 1: 154–158, 2005.
113.
Möller MNLi QLancaster JR JrDenicola A. Acceleration of nitric oxide autoxidation and nitrosation by membranesIUBMB Life59243-2482007. 113. Möller MN, Li Q, Lancaster JR Jr, and Denicola A. Acceleration of nitric oxide autoxidation and nitrosation by membranes. IUBMB Life 59: 243–248, 2007.
114.
Möller MNLi QVitturi DARobinson JMLancaster JR JrDenicola A. Membrane “lens” effect: Focusing the formation of reactive nitrogen oxides from the *NO/O2 reactionChem Res Toxicol20709-7142007. 114. Möller MN, Li Q, Vitturi DA, Robinson JM, Lancaster JR, Jr, and Denicola A. Membrane “lens” effect: Focusing the formation of reactive nitrogen oxides from the *NO/O2 reaction. Chem Res Toxicol 20: 709–714, 2007.
115.
Moreno-López BGonzález-Forero D. Nitric oxide and synaptic dynamics in the adult brain: Physiopathological aspectsRev Neurosci17309-3572006. 115. Moreno-López B, and González-Forero D. Nitric oxide and synaptic dynamics in the adult brain: Physiopathological aspects. Rev Neurosci 17: 309–357, 2006.
116.
Morrell CNMatsushita KChiles KScharpf RBYamakuchi MMason RJBergmeier WMankowski JLBaldwin WM 3rdFaraday NLowenstein CJ. Regulation of platelet granule exocytosis by S-nitrosylationProc Natl Acad Sci USA1023782-37872005. 116. Morrell CN, Matsushita K, Chiles K, Scharpf RB, Yamakuchi M, Mason RJ, Bergmeier W, Mankowski JL, Baldwin WM, 3rd, Faraday N, and Lowenstein CJ. Regulation of platelet granule exocytosis by S-nitrosylation. Proc Natl Acad Sci USA 102: 3782–3787, 2005.
117.
Mukhopadhyay SLee JSehgal PB. Depletion of the ATPase NSF from Golgi membranes with hypo-S-nitrosylation of vasorelevant proteins in endothelial cells exposed to monocrotaline pyrroleAm J Physiol Heart Circ Physiol295H1943-19552008. 117. Mukhopadhyay S, Lee J, and Sehgal PB. Depletion of the ATPase NSF from Golgi membranes with hypo-S-nitrosylation of vasorelevant proteins in endothelial cells exposed to monocrotaline pyrrole. Am J Physiol Heart Circ Physiol 295: H1943–1955, 2008.
118.
Mukhopadhyay SXu FSehgal PB. Aberrant cytoplasmic sequestration of eNOS in endothelial cells after monocrotaline, hypoxia, and senescence: Live-cell caveolar and cytoplasmic NO imagingAm J Physiol Heart Circ Physiol292H1373-13892007. 118. Mukhopadhyay S, Xu F, and Sehgal PB. Aberrant cytoplasmic sequestration of eNOS in endothelial cells after monocrotaline, hypoxia, and senescence: Live-cell caveolar and cytoplasmic NO imaging. Am J Physiol Heart Circ Physiol 292: H1373–1389, 2007.
119.
Nakamura TLipton SA. Emerging role of protein–protein transnitrosylation in cell signaling pathwaysAntioxid Redox Signal18239-2492013. 119. Nakamura T, and Lipton SA. Emerging role of protein–protein transnitrosylation in cell signaling pathways. Antioxid Redox Signal 18: 239–249, 2013.
120.
Nakamura TWang LWong CCScott FLEckelman BPHan XTzitzilonis CMeng FGu ZHolland EAClemente ATOkamoto SSalvesen GSRiek RYates JR 3rdLipton SA. Transnitrosylation of XIAP regulates caspase-dependent neuronal cell deathMol Cell39184-1952010. 120. Nakamura T, Wang L, Wong CC, Scott FL, Eckelman BP, Han X, Tzitzilonis C, Meng F, Gu Z, Holland EA, Clemente AT, Okamoto S, Salvesen GS, Riek R, Yates JR, 3rd, and Lipton SA. Transnitrosylation of XIAP regulates caspase-dependent neuronal cell death. Mol Cell 39: 184–195, 2010.
121.
Nott AWatson PMRobinson JDCrepaldi LRiccio A. S-Nitrosylation of histone deacetylase 2 induces chromatin remodelling in neuronsNature455411-4152008. 121. Nott A, Watson PM, Robinson JD, Crepaldi L, and Riccio A. S-Nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons. Nature 455: 411–415, 2008.
122.
Oess SIcking AFulton DGovers RMüller-Esterl W. Subcellular targeting and trafficking of nitric oxide synthasesBiochem J396401-4092006. 122. Oess S, Icking A, Fulton D, Govers R, and Müller-Esterl W. Subcellular targeting and trafficking of nitric oxide synthases. Biochem J 396: 401–409, 2006.
123.
Ozawa KWhalen EJNelson CDMu YHess DTLefkowitz RJStamler JS. S-Nitrosylation of beta-arrestin regulates beta-adrenergic receptor traffickingMol Cell31395-4052008. 123. Ozawa K, Whalen EJ, Nelson CD, Mu Y, Hess DT, Lefkowitz RJ, and Stamler JS. S-Nitrosylation of beta-arrestin regulates beta-adrenergic receptor trafficking. Mol Cell 31: 395–405, 2008.
124.
Pacher PBeckman JSLiaudet L. Nitric oxide and peroxynitrite in health and diseasePhysiol Rev87315-4242007. 124. Pacher P, Beckman JS, and Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87: 315–424, 2007.
125.
Paige JSXu GStancevic BJaffrey SR. Nitrosothiol reactivity profiling identifies S-nitrosylated proteins with unexpected stabilityChem Biol151307-13162008. 125. Paige JS, Xu G, Stancevic B, and Jaffrey SR. Nitrosothiol reactivity profiling identifies S-nitrosylated proteins with unexpected stability. Chem Biol 15: 1307–1316, 2008.
126.
Palmer LADoctor AChhabra PSheram MLLaubach VEKarlinsey MZForbes MSMacdonald TGaston B. S-nitrosothiols signal hypoxia-mimetic vascular pathologyJ Clin Invest1172592-26012007. 126. Palmer LA, Doctor A, Chhabra P, Sheram ML, Laubach VE, Karlinsey MZ, Forbes MS, Macdonald T, and Gaston B. S-nitrosothiols signal hypoxia-mimetic vascular pathology. J Clin Invest 117: 2592–2601, 2007.
127.
Palmer RMAshton DSMoncada S. Vascular endothelial cells synthesize nitric oxide from L-arginineNature333664-6661988. 127. Palmer RM, Ashton DS, and Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333: 664–666, 1988.
128.
Pawloski JRHess DTStamler JS. Export by red blood cells of nitric oxide bioactivityNature409622-6262001. 128. Pawloski JR, Hess DT, and Stamler JS. Export by red blood cells of nitric oxide bioactivity. Nature 409: 622–626, 2001.
129.
Peng HMMorishima YPratt WBOsawa Y. Modulation of heme/substrate binding cleft of neuronal nitric-oxide synthase (nNOS) regulates binding of Hsp90 and Hsp70 proteins and nNOS ubiquitinationJ Biol Chem2871556-15652012. 129. Peng HM, Morishima Y, Pratt WB, and Osawa Y. Modulation of heme/substrate binding cleft of neuronal nitric-oxide synthase (nNOS) regulates binding of Hsp90 and Hsp70 proteins and nNOS ubiquitination. J Biol Chem 287: 1556–1565, 2012.
130.
Pi XWu YFerguson JE 3rdPortbury ALPatterson C. SDF-1alpha stimulates JNK3 activity via eNOS-dependent nitrosylation of MKP7 to enhance endothelial migrationProc Natl Acad Sci USA1065675-56802009. 130. Pi X, Wu Y, Ferguson JE, 3rd, Portbury AL, and Patterson C. SDF-1alpha stimulates JNK3 activity via eNOS-dependent nitrosylation of MKP7 to enhance endothelial migration. Proc Natl Acad Sci USA 106: 5675–5680, 2009.
131.
Qian JZhang QChurch JEStepp DWRudic RDFulton DJ. Role of local production of endothelium-derived nitric oxide on cGMP signaling and S-nitrosylationAm J Physiol Heart Circ Physiol298H112-1182010. 131. Qian J, Zhang Q, Church JE, Stepp DW, Rudic RD, and Fulton DJ. Role of local production of endothelium-derived nitric oxide on cGMP signaling and S-nitrosylation. Am J Physiol Heart Circ Physiol 298: H112–118, 2010.
132.
Qu JNakamura TCao GHolland EAMcKercher SRLipton SA. S-Nitrosylation activates Cdk5 and contributes to synaptic spine loss induced by beta-amyloid peptideProc Natl Acad Sci USA10814330-143352011. 132. Qu J, Nakamura T, Cao G, Holland EA, McKercher SR, and Lipton SA. S-Nitrosylation activates Cdk5 and contributes to synaptic spine loss induced by beta-amyloid peptide. Proc Natl Acad Sci USA 108: 14330–14335, 2011.
133.
Radi R. Nitric oxide, oxidants, and protein tyrosine nitrationProc Natl Acad Sci USA1014003-40082004. 133. Radi R. Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci USA 101: 4003–4008, 2004.
134.
Radi RBeckman JSBush KMFreeman BA. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxideJ Biol Chem2664244-42501991. 134. Radi R, Beckman JS, Bush KM, and Freeman BA. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266: 4244–4250, 1991.
135.
Reiter ELefkowitz RJ. GRKs and beta-arrestins: Roles in receptor silencing, trafficking and signalingTrends Endocrinol Metab17159-1652006. 135. Reiter E, and Lefkowitz RJ. GRKs and beta-arrestins: Roles in receptor silencing, trafficking and signaling. Trends Endocrinol Metab 17: 159–165, 2006.
136.
Sangwung PGreco TMWang YIschiropoulos HSessa WCIwakiri Y. Proteomic identification of S-nitrosylated Golgi proteins: New insights into endothelial cell regulation by eNOS-derived NOPLoS One7e315642012. 136. Sangwung P, Greco TM, Wang Y, Ischiropoulos H, Sessa WC, and Iwakiri Y. Proteomic identification of S-nitrosylated Golgi proteins: New insights into endothelial cell regulation by eNOS-derived NO. PLoS One 7: e31564, 2012.
137.
Sattler RXiong ZLu WYHafner MMacDonald JFTymianski M. Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 proteinScience2841845-18481999. 137. Sattler R, Xiong Z, Lu WY, Hafner M, MacDonald JF, and Tymianski M. Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284: 1845–1848, 1999.
138.
Schulman IHHare JM. Regulation of cardiovascular cellular processes by S-nitrosylationBiochim Biophys Acta1820752-7622012. 138. Schulman IH, and Hare JM. Regulation of cardiovascular cellular processes by S-nitrosylation. Biochim Biophys Acta 1820: 752–762, 2012.
139.
Seddon MShah AMCasadei B. Cardiomyocytes as effectors of nitric oxide signallingCardiovasc Res75315-3262007. 139. Seddon M, Shah AM, and Casadei B. Cardiomyocytes as effectors of nitric oxide signalling. Cardiovasc Res 75: 315–326, 2007.
140.
Selvakumar BHuganir RLSnyder SH. S-Nitrosylation of stargazin regulates surface expression of AMPA-glutamate neurotransmitter receptorsProc Natl Acad Sci USA10616440-164452009. 140. Selvakumar B, Huganir RL, and Snyder SH. S-Nitrosylation of stargazin regulates surface expression of AMPA-glutamate neurotransmitter receptors. Proc Natl Acad Sci USA 106: 16440–16445, 2009.
141.
Seth DStamler JS. The SNO-proteome: Causation and classificationsCurr Opin Chem Biol15129-1362011. 141. Seth D, and Stamler JS. The SNO-proteome: Causation and classifications. Curr Opin Chem Biol 15: 129–136, 2011.
142.
Singel DJStamler JS. Chemical physiology of blood flow regulation by red blood cells: The role of nitric oxide and S-nitrosohemoglobinAnnu Rev Physiol6799-1452005. 142. Singel DJ, and Stamler JS. Chemical physiology of blood flow regulation by red blood cells: The role of nitric oxide and S-nitrosohemoglobin. Annu Rev Physiol 67: 99–145, 2005.
143.
Sliskovic IRaturi AMutus B. Characterization of the S-denitrosation activity of protein disulfide isomeraseJ Biol Chem2808733-87412005. 143. Sliskovic I, Raturi A, and Mutus B. Characterization of the S-denitrosation activity of protein disulfide isomerase. J Biol Chem 280: 8733–8741, 2005.
144.
Sossa KGBeattie JBCarroll RC. AMPAR exocytosis through NO modulation of PICK1Neuropharmacology5392-1002007. 144. Sossa KG, Beattie JB, and Carroll RC. AMPAR exocytosis through NO modulation of PICK1. Neuropharmacology 53: 92–100, 2007.
145.
Souza JMPeluffo GRadi R. Protein tyrosine nitration—Functional alteration or just a biomarker?Free Rad Biol Med45357-3662008. 145. Souza JM, Peluffo G, and Radi R. Protein tyrosine nitration—Functional alteration or just a biomarker? Free Rad Biol Med 45: 357–366, 2008.
146.
Sowa GLiu JPapapetropoulos ARex-Haffner MHughes TESessa WC. Trafficking of endothelial nitric-oxide synthase in living cells. Quantitative evidence supporting the role of palmitoylation as a kinetic trapping mechanism limiting membrane diffusionJ Biol Chem27422524-225311999. 146. Sowa G, Liu J, Papapetropoulos A, Rex-Haffner M, Hughes TE, and Sessa WC. Trafficking of endothelial nitric-oxide synthase in living cells. Quantitative evidence supporting the role of palmitoylation as a kinetic trapping mechanism limiting membrane diffusion. J Biol Chem 274: 22524–22531, 1999.
147.
Stamler JSToone EJ. The decomposition of thionitritesCurr Opin Chem Biol6779-7852002. 147. Stamler JS, and Toone EJ. The decomposition of thionitrites. Curr Opin Chem Biol 6: 779–785, 2002.
148.
Takahashi HShin YCho S-JZago WMNakamura TGu ZMa YFurukawa HLiddington RZhang DTong GChen H-SVLipton SA. Hypoxia enhances S-nitrosylation-mediated NMDA receptor inhibition via a thiol oxygen sensor motifNeuron5353-642007. 148. Takahashi H, Shin Y, Cho S-J, Zago WM, Nakamura T, Gu Z, Ma Y, Furukawa H, Liddington R, Zhang D, Tong G, Chen H-SV, and Lipton SA. Hypoxia enhances S-nitrosylation-mediated NMDA receptor inhibition via a thiol oxygen sensor motif. Neuron 53: 53–64, 2007.
149.
Takahashi SMendelsohn ME. Synergistic activation of endothelial nitric-oxide synthase (eNOS) by HSP90 and Akt: calcium-independent eNOS activation involves formation of an HSP90-Akt-CaM-bound eNOS complexJ Biol Chem27830821-308272003. 149. Takahashi S, and Mendelsohn ME. Synergistic activation of endothelial nitric-oxide synthase (eNOS) by HSP90 and Akt: calcium-independent eNOS activation involves formation of an HSP90-Akt-CaM-bound eNOS complex. J Biol Chem 278: 30821–30827, 2003.
150.
Tamargo JCaballero RGómez RDelpón E. Cardiac electrophysiological effects of nitric oxideCardiovasc Res87593-6002010. 150. Tamargo J, Caballero R, Gómez R, and Delpón E. Cardiac electrophysiological effects of nitric oxide. Cardiovasc Res 87: 593–600, 2010.
151.
Tegeder IScheving RWittig IGeisslinger G. SNO-ing at the nociceptive synapse?Pharmacol Rev63366-892011. 151. Tegeder I, Scheving R, Wittig I, and Geisslinger G. SNO-ing at the nociceptive synapse? Pharmacol Rev 63: 366–89, 2011.
152.
Tello DTarín CAhicart PBretón-Romero RLamas SMartínez-Ruiz A. A “fluorescence switch” technique increases the sensitivity of proteomic detection and identification of S-nitrosylated proteinsProteomics95359-53702009. 152. Tello D, Tarín C, Ahicart P, Bretón-Romero R, Lamas S, and Martínez-Ruiz A. A “fluorescence switch” technique increases the sensitivity of proteomic detection and identification of S-nitrosylated proteins. Proteomics 9: 5359–5370, 2009.
153.
Thibeault SRautureau YOubaha MFaubert DWilkes BCDelisle CGratton JP. S-Nitrosylation of beta-catenin by eNOS-derived NO promotes VEGF-induced endothelial cell permeabilityMol Cell39468-4762010. 153. Thibeault S, Rautureau Y, Oubaha M, Faubert D, Wilkes BC, Delisle C, and Gratton JP. S-Nitrosylation of beta-catenin by eNOS-derived NO promotes VEGF-induced endothelial cell permeability. Mol Cell 39: 468–476, 2010.
154.
Trujillo MAlvarez MNPeluffo GFreeman BARadi R. Xanthine oxidase-mediated decomposition of S-nitrosothiolsJ Biol Chem2737828-78341998. 154. Trujillo M, Alvarez MN, Peluffo G, Freeman BA, and Radi R. Xanthine oxidase-mediated decomposition of S-nitrosothiols. J Biol Chem 273: 7828–7834, 1998.
155.
Tsang AHLee YIKo HSSavitt JMPletnikova OTroncoso JCDawson VLDawson TMChung KK. S-Nitrosylation of XIAP compromises neuronal survival in Parkinson's diseaseProc Natl Acad Sci USA1064900-49052009. 155. Tsang AH, Lee YI, Ko HS, Savitt JM, Pletnikova O, Troncoso JC, Dawson VL, Dawson TM, and Chung KK. S-Nitrosylation of XIAP compromises neuronal survival in Parkinson's disease. Proc Natl Acad Sci USA 106: 4900–4905, 2009.
156.
Umar Svan der Laarse A. Nitric oxide and nitric oxide synthase isoforms in the normal, hypertrophic, and failing heartMol Cell Biochem333191-2012010. 156. Umar S, and van der Laarse A. Nitric oxide and nitric oxide synthase isoforms in the normal, hypertrophic, and failing heart. Mol Cell Biochem 333: 191–201, 2010.
157.
Viner RIWilliams TDSchöneich C. Peroxynitrite modification of protein thiols: Oxidation, nitrosylation, and S-glutathiolation of functionally important cysteine residue(s) in the sarcoplasmic reticulum Ca-ATPaseBiochemistry3812408-124151999. 157. Viner RI, Williams TD, and Schöneich C. Peroxynitrite modification of protein thiols: Oxidation, nitrosylation, and S-glutathiolation of functionally important cysteine residue(s) in the sarcoplasmic reticulum Ca-ATPase. Biochemistry 38: 12408–12415, 1999.
158.
Wang GMoniri NHOzawa KStamler JSDaaka Y. Nitric oxide regulates endocytosis by S-nitrosylation of dynaminProc Natl Acad Sci USA1031295-13002006. 158. Wang G, Moniri NH, Ozawa K, Stamler JS, and Daaka Y. Nitric oxide regulates endocytosis by S-nitrosylation of dynamin. Proc Natl Acad Sci USA 103: 1295–1300, 2006.
159.
Wang XSu BZheng LPerry GSmith MAZhu X. The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer's diseaseJ Neurochem 109 Suppl1153-1592009. 159. Wang X, Su B, Zheng L, Perry G, Smith MA, and Zhu X. The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer's disease. J Neurochem 109 Suppl 1: 153–159, 2009.
160.
Wang YYun BWKwon EHong JKYoon JLoake GJ. S-Nitrosylation: An emerging redox-based post-translational modification in plantsJ Exp Bot571777-17842006. 160. Wang Y, Yun BW, Kwon E, Hong JK, Yoon J, and Loake GJ. S-Nitrosylation: An emerging redox-based post-translational modification in plants. J Exp Bot 57: 1777–1784, 2006.
161.
Wang ZHumphrey CFrilot NWang GNie ZMoniri NHDaaka Y. Dynamin2- and endothelial nitric oxide synthase-regulated invasion of bladder epithelial cells by uropathogenic Escherichia coliJ Cell Biol192101-1102011. 161. Wang Z, Humphrey C, Frilot N, Wang G, Nie Z, Moniri NH, and Daaka Y. Dynamin2- and endothelial nitric oxide synthase-regulated invasion of bladder epithelial cells by uropathogenic Escherichia coli. J Cell Biol 192: 101–110, 2011.
162.
Wei WLi BHanes MAKakar SChen XLiu L. S-nitrosylation from GSNOR deficiency impairs DNA repair and promotes hepatocarcinogenesisSci Transl Med219ra132010. 162. Wei W, Li B, Hanes MA, Kakar S, Chen X, and Liu L. S-nitrosylation from GSNOR deficiency impairs DNA repair and promotes hepatocarcinogenesis. Sci Transl Med 2: 19ra13, 2010.
163.
West MBHill BGXuan YTBhatnagar A. Protein glutathiolation by nitric oxide: an intracellular mechanism regulating redox protein modificationFASEB J201715-17172006. 163. West MB, Hill BG, Xuan YT, and Bhatnagar A. Protein glutathiolation by nitric oxide: an intracellular mechanism regulating redox protein modification. FASEB J 20: 1715–1717, 2006.
164.
Whalen EJFoster MWMatsumoto AOzawa KViolin JDQue LGNelson CDBenhar MKeys JRRockman HAKoch WJDaaka YLefkowitz RJStamler JS. Regulation of [beta]-adrenergic receptor signaling by S-nitrosylation of G-protein-coupled receptor kinase 2Cell129511-5222007. 164. Whalen EJ, Foster MW, Matsumoto A, Ozawa K, Violin JD, Que LG, Nelson CD, Benhar M, Keys JR, Rockman HA, Koch WJ, Daaka Y, Lefkowitz RJ, and Stamler JS. Regulation of [beta]-adrenergic receptor signaling by S-nitrosylation of G-protein-coupled receptor kinase 2. Cell 129: 511–522, 2007.
165.
Wink DADarbyshire JFNims RWSaavedra JEFord PC. Reactions of the bioregulatory agent nitric oxide in oxygenated aqueous media: Determination of the kinetics for oxidation and nitrosation by intermediates generated in the NO/O2 reactionChem Res Toxicol623-271993. 165. Wink DA, Darbyshire JF, Nims RW, Saavedra JE, and Ford PC. Reactions of the bioregulatory agent nitric oxide in oxygenated aqueous media: Determination of the kinetics for oxidation and nitrosation by intermediates generated in the NO/O2 reaction. Chem Res Toxicol 6: 23–27, 1993.
166.
Wu CLiu TChen WOka SFu CJain MRParrott AMBaykal ATSadoshima JLi H. Redox regulatory mechanism of transnitrosylation by thioredoxinMol Cell Proteomics92262-22752010. 166. Wu C, Liu T, Chen W, Oka S, Fu C, Jain MR, Parrott AM, Baykal AT, Sadoshima J, and Li H. Redox regulatory mechanism of transnitrosylation by thioredoxin. Mol Cell Proteomics 9: 2262–2275, 2010.
167.
Wu CParrott AMFu CLiu TMarino SMGladyshev VNJain MRBaykal ATLi QOka SSadoshima JBeuve ASimmons WJLi H. Thioredoxin 1-mediated post-translational modifications: Reduction, transnitrosylation, denitrosylation, and related proteomics methodologiesAntioxid Redox Signal152565-26042011. 167. Wu C, Parrott AM, Fu C, Liu T, Marino SM, Gladyshev VN, Jain MR, Baykal AT, Li Q, Oka S, Sadoshima J, Beuve A, Simmons WJ, and Li H. Thioredoxin 1-mediated post-translational modifications: Reduction, transnitrosylation, denitrosylation, and related proteomics methodologies. Antioxid Redox Signal 15: 2565–2604, 2011.
168.
Wu CParrott AMLiu TJain MRYang YSadoshima JLi H. Distinction of thioredoxin transnitrosylation and denitrosylation target proteins by the ICAT quantitative approachJ Proteomics742498-25092011. 168. Wu C, Parrott AM, Liu T, Jain MR, Yang Y, Sadoshima J, and Li H. Distinction of thioredoxin transnitrosylation and denitrosylation target proteins by the ICAT quantitative approach. J Proteomics 74: 2498–2509, 2011.
169.
Yoshida MXia Y. Heat shock protein 90 as an endogenous protein enhancer of inducible nitric-oxide synthaseJ Biol Chem27836953-369582003. 169. Yoshida M, and Xia Y. Heat shock protein 90 as an endogenous protein enhancer of inducible nitric-oxide synthase. J Biol Chem 278: 36953–36958, 2003.
170.
Zhang QChurch JEJagnandan DCatravas JDSessa WCFulton D. Functional relevance of Golgi- and plasma membrane-localized endothelial NO synthase in reconstituted endothelial cellsArterioscler Thromb Vasc Biol261015-10212006. 170. Zhang Q, Church JE, Jagnandan D, Catravas JD, Sessa WC, and Fulton D. Functional relevance of Golgi- and plasma membrane-localized endothelial NO synthase in reconstituted endothelial cells. Arterioscler Thromb Vasc Biol 26: 1015–1021, 2006.
171.
Zucker BLuthi-Carter RKama JADunah AWStern EAFox JHStandaert DGYoung ABAugood SJ. Transcriptional dysregulation in striatal projection- and interneurons in a mouse model of Huntington's disease: Neuronal selectivity and potential neuroprotective role of HAP1Hum Mol Genet14179-1892005. 171. Zucker B, Luthi-Carter R, Kama JA, Dunah AW, Stern EA, Fox JH, Standaert DG, Young AB, and Augood SJ. Transcriptional dysregulation in striatal projection- and interneurons in a mouse model of Huntington's disease: Neuronal selectivity and potential neuroprotective role of HAP1. Hum Mol Genet 14: 179–189, 2005.

Information & Authors

Information

Published In

cover image Antioxidants & Redox Signaling
Antioxidants & Redox Signaling
Volume 19Issue Number 11October 10, 2013
Pages: 1220 - 1235
PubMed: 23157283

History

Published in print: October 10, 2013
Published online: 26 September 2013
Published ahead of print: 4 January 2013
Published ahead of production: 19 November 2012
Accepted: 18 November 2012
Received: 1 November 2012

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Antonio Martínez-Ruiz
Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain.
Inês M. Araújo
Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal.
IBB-Institute for Biotechnology and Bioengineering, Centre of Molecular and Structural Biomedicine, University of Algarve, Faro, Portugal.
Alicia Izquierdo-Álvarez
Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain.
Pablo Hernansanz-Agustín
Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain.
Santiago Lamas
Laboratorio Mixto Consejo Superior de Investigaciones Científicas (CSIC)/Fundación Renal “Iñigo Alvarez de Toledo” (FRIAT), Madrid, Spain.
Dpto. Biología Celular e Inmunología, Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, Madrid, Spain.
Juan M. Serrador
Dpto. Biología Celular e Inmunología, Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, Madrid, Spain.

Notes

Address correspondence to:Dr. Antonio Martínez-RuizServicio de InmunologíaHospital Universitario de La PrincesaInstituto de Investigación Princesa (IP)C/ Diego de León 62E-28006 MadridSpain
E-mail: [email protected]

Author Disclosure Statement

No competing financial interests exist.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top