Advertisement

Abstract

We experimentally demonstrate emission of two quantum-mechanically correlated light pulses with a time delay that is coherently controlled via temporal storage of photonic states in an ensemble of rubidium atoms. The experiment is based on Raman scattering, which produces correlated pairs of spin-flipped atoms and photons, followed by coherent conversion of the atomic states into a different photon beam after a controllable delay. This resonant nonlinear optical process is a promising technique for potential applications in quantum communication.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

File (vanderwal.som.pdf)

References and Notes

1
D. Bouwmeester, A. Ekert, A. Zeilinger, Eds., The Physics of Quantum Information (Springer, Berlin, 2000).
2
H. J. Briegel, W. Dür, J. I. Cirac, P. Zoller, Phys. Rev. Lett.81, 5932 (1998).
3
J. I. Cirac, P. Zoller, H. J. Kimble, H. Mabuchi, Phys. Rev. Lett.78, 3221 (1997).
4
C. J. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, H. J. Kimble, Science287, 1447 (2000).
5
P. W. H. Pinkse, T. Fischer, P. Maunz, G. Rempe, Nature404, 365 (2000).
6
L. M. Duan, M. D. Lukin, J. I. Cirac, P. Zoller, Nature414, 413 (2001).
7
A. Kuzmich, K. Molmer, E. S. Polzik, Phys. Rev. Lett.79, 4782 (1997).
8
M. D. Lukin, S. F. Yelin, M. Fleischhauer, Phys. Rev. Lett.84, 4232 (2000).
9
M. D. Lukin, Rev. Mod. Phys.75, 457 (2003).
10
S. E. Harris, Phys. Today50, 36 (July 1997).
11
K. J. Boller, A. Imamoglu, S. E. Harris, Phys. Rev. Lett.66, 2593 (1991).
12
M. O. Scully, M. S. Zubairy, Quantum Optics (Cambridge Univ. Press, Cambridge, 1997).
13
S. E. Harris, J. E. Field, A. Imamoglu, Phys. Rev. Lett.64, 1107 (1990).
14
M. D. Lukin, P. Hemmer, M. O. Scully, Adv. At. Mol. Opt. Phys.42B, 347 (1999).
15
L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, Nature397, 594 (1999).
16
M. M. Kashet al., Phys. Rev. Lett.82, 5229 (1999).
17
M. Fleischhauer, U. Rathe, M. O. Scully, Phys. Rev. A46, 5856 (1992).
18
K. M. Gheri, D. F. Walls, M. A. Marte, Phys. Rev. A50, 1871 (1994).
19
A. Imamoglu, H. Schmidt, G. Woods, M. Deutsch, Phys. Rev. Lett.79, 1467 (1997).
20
A. Imamoglu, H. Schmidt, G. Woods, M. Deutsch, Phys. Rev. Lett.81, 2836 (1998).
21
M. D. Lukin, A. B. Matsko, M. Fleischhauer, M. O. Scully, Phys. Rev. Lett.82, 1847 (1999).
22
C. Liu, Z. Dutton, C. H. Behroozi, L. V. Hau, Nature409, 490 (2001).
23
D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, M. D. Lukin, Phys. Rev. Lett.86, 783 (2001).
24
A. S. Zibrov et al., Phys. Rev. Lett.88, 103601 (2002).
25
J. Hald, J. L. Sorensen, C. Schori, E. S. Polzik, Phys. Rev. Lett.83, 1319 (1999).
26
A. Kuzmich, L. Mandel, N. P. Bigelow, Phys. Rev. Lett.85, 1594 (2000).
27
B. Julsgaard, A. Kozhekin, E. S. Polzik, Nature413, 400 (2001).
28
M. G. Raymer, I. A. Walmsley, Prog. Opt.28, 181 (1996).
29
S. E. Harris, M. K. Oshman, R. L. Byer, Phys. Rev. Lett.18, 732 (1967).
30
C. K. Hong, Z. Y. Ou, L. Mandel, Phys. Rev. Lett.59, 2044 (1987).
31
M. Fleischhauer, M. D. Lukin, Phys. Rev. Lett.84, 5094 (2000).
32
O. Aytür, P. Kumar, Phys. Rev. Lett.65, 1551 (1990).
33
D. T. Smithey, M. Beck, M. Belsley, M. G. Raymer, Phys. Rev. Lett.69, 2650 (1992).
34
Experimental details are available as supporting material on Science Online.
35
P. R. Hemmeret al., Opt. Lett.20, 982 (1995).
36
A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, Phys. Rev. Lett.59, 2555 (1987).
37
In the case where optical fields have losses before detection, the level of twin-mode squeezing that can be observed is reduced (32). For our data, the anti-Stokes signal appears identical to the Stokes signal, except for an apparent attenuation by a factor of ∼5 and a time shift (Fig. 2C). In this case, twin-mode squeezing can still be investigated when the time shift is compensated and when the unbalanced attenuation is compensated by unbalanced linear amplification of the two signals. We have developed a method based on fast, high-accuracy sampling of the Raman signals followed by software compensation of the time shift and linear amplification. Accordingly, this procedure accounts for the rescaling of photon shot-noise and detector dark-noise levels. The resulting signals are subtracted for evaluation of the spectrum in Fig. 4 For further details, see (40).
38
The criterion for two modes of light to be photon number squeezed is that for a sequence of photon number measurements, n1 and n2, the variance in (n1n2) must be less than the sum of the averages (1 + 2) (32). For measurements on two continuous photon flux signals, analyzed in the frequency domain, this corresponds to the fluctuation spectrum of the time-domain difference signal being less than such a fluctuation spectrum from two classical fields with the same average photon flux and classical intensity correlations, such as would be obtained by splitting a single light beam on a perfect beam splitter.
39
A. Kuzmich et al., Nature423, 731 (2003).
40
C. H. van der Walet al., Fluctuations and Noise 2003 (SPIE, Bellingham, WA, in press).
41
Experimental work was carried out at the Harvard University Department of Physics. We thank T. P. Zibrova, J. MacArthur, M. Hohensee, S. B. Shenai, P. R. Hemmer, and A. Trifonov for useful discussions and experimental help. Supported by NSF grant PHY-0113844, the Defense Advanced Research Projects Agency, the David and Lucille Packard Foundation, the Alfred Sloan Foundation, the Office of Naval Research (DURIP program), the Smithsonian Institution, the MIT-Harvard Center for Ultracold Atoms, a fellowship through the Netherlands Organization for Scientific Research (C.H.v.d.W.), and a NSF Graduate Research Fellowship (M.D.E.).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 301 | Issue 5630
11 July 2003

Article versions

You are viewing the most recent version of this article.

Submission history

Received: 21 April 2003
Accepted: 13 May 2003
Published in print: 11 July 2003

Permissions

Request permissions for this article.

Notes

Supporting Online Material
www.sciencemag.org/cgi/content/full/1085946/DC1
Materials and Methods
References

Authors

Affiliations

C. H. van der Wal
Department of Physics, Harvard University, Cambridge, MA 02138, USA. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA. P. N. Lebedev Institute of Physics, Moscow 117924, Russia.
M. D. Eisaman
Department of Physics, Harvard University, Cambridge, MA 02138, USA. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA. P. N. Lebedev Institute of Physics, Moscow 117924, Russia.
A. André
Department of Physics, Harvard University, Cambridge, MA 02138, USA. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA. P. N. Lebedev Institute of Physics, Moscow 117924, Russia.
R. L. Walsworth
Department of Physics, Harvard University, Cambridge, MA 02138, USA. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA. P. N. Lebedev Institute of Physics, Moscow 117924, Russia.
D. F. Phillips
Department of Physics, Harvard University, Cambridge, MA 02138, USA. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA. P. N. Lebedev Institute of Physics, Moscow 117924, Russia.
A. S. Zibrov
Department of Physics, Harvard University, Cambridge, MA 02138, USA. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA. P. N. Lebedev Institute of Physics, Moscow 117924, Russia.
M. D. Lukin* [email protected]
Department of Physics, Harvard University, Cambridge, MA 02138, USA. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA. P. N. Lebedev Institute of Physics, Moscow 117924, Russia.

Notes

*
To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Quantum Optical Tests of the Foundations of Physics, Springer Handbook of Atomic, Molecular, and Optical Physics, (1231-1257), (2023).https://doi.org/10.1007/978-3-030-73893-8_84
    Crossref
  2. Memory-assisted quantum accelerometer with multi-bandwidth, Photonics Research, 10, 4, (1022), (2022).https://doi.org/10.1364/PRJ.453940
    Crossref
  3. Nonlinear dissipation-induced photon blockade, Physical Review A, 106, 6, (2022).https://doi.org/10.1103/PhysRevA.106.063707
    Crossref
  4. Efficient transfer of spatial intensity and phase information of arbitrary modes via four-wave mixing in an atomic vapor, Physical Review A, 106, 5, (2022).https://doi.org/10.1103/PhysRevA.106.053713
    Crossref
  5. Photon-pair generation on resonance via a dark state, Physical Review A, 106, 2, (2022).https://doi.org/10.1103/PhysRevA.106.023711
    Crossref
  6. Optical quantum memory for noble-gas spins based on spin-exchange collisions, Physical Review A, 105, 4, (2022).https://doi.org/10.1103/PhysRevA.105.042606
    Crossref
  7. Towards entanglement distillation between atomic ensembles using high-fidelity spin operations, Communications Physics, 5, 1, (2022).https://doi.org/10.1038/s42005-022-00835-0
    Crossref
  8. Towards Real‐World Quantum Networks: A Review, Laser & Photonics Reviews, 16, 3, (2100219), (2022).https://doi.org/10.1002/lpor.202100219
    Crossref
  9. Unidirectional Gaussian One‐Way Steering, Annalen der Physik, 534, 6, (2100386), (2022).https://doi.org/10.1002/andp.202100386
    Crossref
  10. Nanomaterials for Quantum Information Science and Engineering, Advanced Materials, 35, 27, (2022).https://doi.org/10.1002/adma.202109621
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media