Advertisement
No access
Special Issue Research Article

Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs

Science
12 Dec 2014
Vol 346, Issue 6215

Structured Abstract

INTRODUCTION

Crocodilians and birds are the two extant clades of archosaurs, a group that includes the extinct dinosaurs and pterosaurs. Fossils suggest that living crocodilians (alligators, crocodiles, and gharials) have a most recent common ancestor 80 to 100 million years ago. Extant crocodilians are notable for their distinct morphology, limited intraspecific variation, and slow karyotype evolution. Despite their unique biology and phylogenetic position, little is known about genome evolution within crocodilians.

RATIONALE

Genome sequences for the American alligator, saltwater crocodile, and Indian gharial—representatives of all three extant crocodilian families—were obtained to facilitate better understanding of the unique biology of this group and provide a context for studying avian genome evolution. Sequence data from these three crocodilians and birds also allow reconstruction of the ancestral archosaurian genome.

RESULTS

We sequenced shotgun genomic libraries from each species and used a variety of assembly strategies to obtain draft genomes for these three crocodilians. The assembled scaffold N50 was highest for the alligator (508 kilobases). Using a panel of reptile genome sequences, we generated phylogenies that confirm the sister relationship between crocodiles and gharials, the relationship with birds as members of extant Archosauria, and the outgroup status of turtles relative to birds and crocodilians.
We also estimated evolutionary rates along branches of the tetrapod phylogeny using two approaches: ultraconserved element–anchored sequences and fourfold degenerate sites within stringently filtered orthologous gene alignments. Both analyses indicate that the rates of base substitution along the crocodilian and turtle lineages are extremely low. Supporting observations were made for transposable element content and for gene family evolution. Analysis of whole-genome alignments across a panel of reptiles and mammals showed that the rate of accumulation of micro-insertions and microdeletions is proportionally lower in crocodilians, consistent with a single underlying cause of a reduced rate of evolutionary change rather than intrinsic differences in base repair machinery. We hypothesize that this single cause may be a consistently longer generation time over the evolutionary history of Crocodylia.
Low heterozygosity was observed in each genome, consistent with previous analyses, including the Chinese alligator. Pairwise sequential Markov chain analysis of regional heterozygosity indicates that during glacial cycles of the Pleistocene, each species suffered reductions in effective population size. The reduction was especially strong for the American alligator, whose current range extends farthest into regions of temperate climates.

CONCLUSION

We used crocodilian, avian, and outgroup genomes to reconstruct 584 megabases of the archosaurian common ancestor genome and the genomes of key ancestral nodes. The estimated accuracy of the archosaurian genome reconstruction is 91% and is higher for conserved regions such as genes. The reconstructed genome can be improved by adding more crocodilian and avian genome assemblies and may provide a unique window to the genomes of extinct organisms such as dinosaurs and pterosaurs.

Abstract

To provide context for the diversification of archosaurs—the group that includes crocodilians, dinosaurs, and birds—we generated draft genomes of three crocodilians: Alligator mississippiensis (the American alligator), Crocodylus porosus (the saltwater crocodile), and Gavialis gangeticus (the Indian gharial). We observed an exceptionally slow rate of genome evolution within crocodilians at all levels, including nucleotide substitutions, indels, transposable element content and movement, gene family evolution, and chromosomal synteny. When placed within the context of related taxa including birds and turtles, this suggests that the common ancestor of all of these taxa also exhibited slow genome evolution and that the comparatively rapid evolution is derived in birds. The data also provided the opportunity to analyze heterozygosity in crocodilians, which indicates a likely reduction in population size for all three taxa through the Pleistocene. Finally, these data combined with newly published bird genomes allowed us to reconstruct the partial genome of the common ancestor of archosaurs, thereby providing a tool to investigate the genetic starting material of crocodilians, birds, and dinosaurs.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Materials and Methods
Figs. S1 to S29
Tables S1 to S24
References (84206)

Resources

File (green.sm.pdf)

References and Notes

1
Janke A., Arnason U., The complete mitochondrial genome of Alligator mississippiensis and the separation between recent archosauria (birds and crocodiles). Mol. Biol. Evol. 14, 1266–1272 (1997).
2
Sennikov A. G., The first ctenosauriscid (Reptilia: Archosauromorpha) from the Lower Triassic of eastern Europe. Paleontol. J. 46, 499–511 (2012).
3
Brochu C. A., Phylogenetic approaches toward crocodylian history. Annu. Rev. Earth Planet. Sci. 31, 357–397 (2003).
4
G. Grigg, F. Seebacher, C. E. Franklin, Eds., Crocodilian Biology and Evolution (Surrey Beatty, Chipping Norton, NSW, Australia, 2001).
5
Cohen M. M., Gans C., The chromosomes of the order Crocodilia. Cytogenetics 9, 81–105 (1970).
6
Lang J. W., Andrews H. V., Temperature-dependent sex determination in crocodilians. J. Exp. Zool. 270, 28–44 (1994).
7
Olmo E., Evolution of genome size and DNA base composition in reptiles. Genetica 57, 39–50 (1981).
8
Harshman J., Huddleston C. J., Bollback J. P., Parsons T. J., Braun M. J., True and false gharials: A nuclear gene phylogeny of crocodylia. Syst. Biol. 52, 386–402 (2003).
9
Oaks J. R., A time-calibrated species tree of Crocodylia reveals a recent radiation of the true crocodiles. Evolution 65, 3285–3297 (2011).
10
Janke A., Gullberg A., Hughes S., Aggarwal R. K., Arnason U., Mitogenomic analyses place the gharial (Gavialis gangeticus) on the crocodile tree and provide pre-K/T divergence times for most crocodilians. J. Mol. Evol. 61, 620–626 (2005).
11
Alföldi J., Di Palma F., Grabherr M., Williams C., Kong L., Mauceli E., Russell P., Lowe C. B., Glor R. E., Jaffe J. D., Ray D. A., Boissinot S., Shedlock A. M., Botka C., Castoe T. A., Colbourne J. K., Fujita M. K., Moreno R. G., ten Hallers B. F., Haussler D., Heger A., Heiman D., Janes D. E., Johnson J., de Jong P. J., Koriabine M. Y., Lara M., Novick P. A., Organ C. L., Peach S. E., Poe S., Pollock D. D., de Queiroz K., Sanger T., Searle S., Smith J. D., Smith Z., Swofford R., Turner-Maier J., Wade J., Young S., Zadissa A., Edwards S. V., Glenn T. C., Schneider C. J., Losos J. B., Lander E. S., Breen M., Ponting C. P., Lindblad-Toh K., The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 477, 587–591 (2011).
12
Castoe T. A., de Koning A. P., Hall K. T., Card D. C., Schield D. R., Fujita M. K., Ruggiero R. P., Degner J. F., Daza J. M., Gu W., Reyes-Velasco J., Shaney K. J., Castoe J. M., Fox S. E., Poole A. W., Polanco D., Dobry J., Vandewege M. W., Li Q., Schott R. K., Kapusta A., Minx P., Feschotte C., Uetz P., Ray D. A., Hoffmann F. G., Bogden R., Smith E. N., Chang B. S., Vonk F. J., Casewell N. R., Henkel C. V., Richardson M. K., Mackessy S. P., Bronikowski A. M., Yandell M., Warren W. C., Secor S. M., Pollock D. D., The Burmese python genome reveals the molecular basis for extreme adaptation in snakes. Proc. Natl. Acad. Sci. U.S.A. 110, 20645–20650 (2013).
13
Shaffer H. B., Minx P., Warren D. E., Shedlock A. M., Thomson R. C., Valenzuela N., Abramyan J., Amemiya C. T., Badenhorst D., Biggar K. K., Borchert G. M., Botka C. W., Bowden R. M., Braun E. L., Bronikowski A. M., Bruneau B. G., Buck L. T., Capel B., Castoe T. A., Czerwinski M., Delehaunty K. D., Edwards S. V., Fronick C. C., Fujita M. K., Fulton L., Graves T. A., Green R. E., Haerty W., Hariharan R., Hernandez O., Hillier L. W., Holloway A. K., Janes D., Janzen F. J., Kandoth C., Kong L., de Koning A. P., Li Y., Literman R., McGaugh S. E., Mork L., O’Laughlin M., Paitz R. T., Pollock D. D., Ponting C. P., Radhakrishnan S., Raney B. J., Richman J. M., St John J., Schwartz T., Sethuraman A., Spinks P. Q., Storey K. B., Thane N., Vinar T., Zimmerman L. M., Warren W. C., Mardis E. R., Wilson R. K., The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biol. 14, R28 (2013).
14
Vonk F. J., Casewell N. R., Henkel C. V., Heimberg A. M., Jansen H. J., McCleary R. J., Kerkkamp H. M., Vos R. A., Guerreiro I., Calvete J. J., Wüster W., Woods A. E., Logan J. M., Harrison R. A., Castoe T. A., de Koning A. P., Pollock D. D., Yandell M., Calderon D., Renjifo C., Currier R. B., Salgado D., Pla D., Sanz L., Hyder A. S., Ribeiro J. M., Arntzen J. W., van den Thillart G. E., Boetzer M., Pirovano W., Dirks R. P., Spaink H. P., Duboule D., McGlinn E., Kini R. M., Richardson M. K., The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proc. Natl. Acad. Sci. U.S.A. 110, 20651–20656 (2013).
15
Wan Q. H., Pan S. K., Hu L., Zhu Y., Xu P. W., Xia J. Q., Chen H., He G. Y., He J., Ni X. W., Hou H. L., Liao S. G., Yang H. Q., Chen Y., Gao S. K., Ge Y. F., Cao C. C., Li P. F., Fang L. M., Liao L., Zhang S., Wang M. Z., Dong W., Fang S. G., Genome analysis and signature discovery for diving and sensory properties of the endangered Chinese alligator. Cell Res. 23, 1091–1105 (2013).
16
Wang Z., Pascual-Anaya J., Zadissa A., Li W., Niimura Y., Huang Z., Li C., White S., Xiong Z., Fang D., Wang B., Ming Y., Chen Y., Zheng Y., Kuraku S., Pignatelli M., Herrero J., Beal K., Nozawa M., Li Q., Wang J., Zhang H., Yu L., Shigenobu S., Wang J., Liu J., Flicek P., Searle S., Wang J., Kuratani S., Yin Y., Aken B., Zhang G., Irie N., The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat. Genet. 45, 701–706 (2013).
17
See supplementary materials on Science Online.
18
Hillier L. W., Miller W., Birney E., Warren W., Hardison R. C., Ponting C. P., Bork P., Burt D. W., Groenen M. A. M., Delany M. E., Dodgson J. B., Chinwalla A. T., Cliften P. F., Clifton S. W., Delehaunty K. D., Fronick C., Fulton R. S., Graves T. A., Kremitzki C., Layman D., Magrini V., McPherson J. D., Miner T. L., Minx P., Nash W. E., Nhan M. N., Nelson J. O., Oddy L. G., Pohl C. S., Randall-Maher J., Smith S. M., Wallis J. W., Yang S.-P., Romanov M. N., Rondelli C. M., Paton B., Smith J., Morrice D., Daniels L., Tempest H. G., Robertson L., Masabanda J. S., Griffin D. K., Vignal A., Fillon V., Jacobbson L., Kerje S., Andersson L., Crooijmans R. P. M., Aerts J., van der Poel J. J., Ellegren H., Caldwell R. B., Hubbard S. J., Grafham D. V., Kierzek A. M., McLaren S. R., Overton I. M., Arakawa H., Beattie K. J., Bezzubov Y., Boardman P. E., Bonfield J. K., Croning M. D. R., Davies R. M., Francis M. D., Humphray S. J., Scott C. E., Taylor R. G., Tickle C., Brown W. R. A., Rogers J., Buerstedde J.-M., Wilson S. A., Stubbs L., Ovcharenko I., Gordon L., Lucas S., Miller M. M., Inoko H., Shiina T., Kaufman J., Salomonsen J., Skjoedt K., Wong G. K.-S., Wang J., Liu B., Wang J., Yu J., Yang H., Nefedov M., Koriabine M., deJong P. J., Goodstadt L., Webber C., Dickens N. J., Letunic I., Suyama M., Torrents D., von Mering C., Zdobnov E. M., Makova K., Nekrutenko A., Elnitski L., Eswara P., King D. C., Yang S., Tyekucheva S., Radakrishnan A., Harris R. S., Chiaromonte F., Taylor J., He J., Rijnkels M., Griffiths-Jones S., Ureta-Vidal A., Hoffman M. M., Severin J., Searle S. M. J., Law A. S., Speed D., Waddington D., Cheng Z., Tuzun E., Eichler E., Bao Z., Flicek P., Shteynberg D. D., Brent M. R., Bye J. M., Huckle E. J., Chatterji S., Dewey C., Pachter L., Kouranov A., Mourelatos Z., Hatzigeorgiou A. G., Paterson A. H., Ivarie R., Brandstrom M., Axelsson E., Backstrom N., Berlin S., Webster M. T., Pourquie O., Reymond A., Ucla C., Antonarakis S. E., Long M., Emerson J. J., Betrán E., Dupanloup I., Kaessmann H., Hinrichs A. S., Bejerano G., Furey T. S., Harte R. A., Raney B., Siepel A., Kent W. J., Haussler D., Eyras E., Castelo R., Abril J. F., Castellano S., Camara F., Parra G., Guigo R., Bourque G., Tesler G., Pevzner P. A., Smit A., Fulton L. A., Mardis E. R., Wilson R. K., Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432, 695–716 (2004).
19
Huerta-Cepas J., Capella-Gutiérrez S., Pryszcz L. P., Marcet-Houben M., Gabaldón T., PhylomeDB v4: Zooming into the plurality of evolutionary histories of a genome. Nucleic Acids Res. 42, D897–D902 (2014).
20
Lander E. S., Linton L. M., Birren B., Nusbaum C., Zody M. C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W., Funke R., Gage D., Harris K., Heaford A., Howland J., Kann L., Lehoczky J., LeVine R., McEwan P., McKernan K., Meldrim J., Mesirov J. P., Miranda C., Morris W., Naylor J., Raymond C., Rosetti M., Santos R., Sheridan A., Sougnez C., Stange-Thomann N., Stojanovic N., Subramanian A., Wyman D., Rogers J., Sulston J., Ainscough R., Beck S., Bentley D., Burton J., Clee C., Carter N., Coulson A., Deadman R., Deloukas P., Dunham A., Dunham I., Durbin R., French L., Grafham D., Gregory S., Hubbard T., Humphray S., Hunt A., Jones M., Lloyd C., McMurray A., Matthews L., Mercer S., Milne S., Mullikin J. C., Mungall A., Plumb R., Ross M., Shownkeen R., Sims S., Waterston R. H., Wilson R. K., Hillier L. W., McPherson J. D., Marra M. A., Mardis E. R., Fulton L. A., Chinwalla A. T., Pepin K. H., Gish W. R., Chissoe S. L., Wendl M. C., Delehaunty K. D., Miner T. L., Delehaunty A., Kramer J. B., Cook L. L., Fulton R. S., Johnson D. L., Minx P. J., Clifton S. W., Hawkins T., Branscomb E., Predki P., Richardson P., Wenning S., Slezak T., Doggett N., Cheng J. F., Olsen A., Lucas S., Elkin C., Uberbacher E., Frazier M., Gibbs R. A., Muzny D. M., Scherer S. E., Bouck J. B., Sodergren E. J., Worley K. C., Rives C. M., Gorrell J. H., Metzker M. L., Naylor S. L., Kucherlapati R. S., Nelson D. L., Weinstock G. M., Sakaki Y., Fujiyama A., Hattori M., Yada T., Toyoda A., Itoh T., Kawagoe C., Watanabe H., Totoki Y., Taylor T., Weissenbach J., Heilig R., Saurin W., Artiguenave F., Brottier P., Bruls T., Pelletier E., Robert C., Wincker P., Smith D. R., Doucette-Stamm L., Rubenfield M., Weinstock K., Lee H. M., Dubois J., Rosenthal A., Platzer M., Nyakatura G., Taudien S., Rump A., Yang H., Yu J., Wang J., Huang G., Gu J., Hood L., Rowen L., Madan A., Qin S., Davis R. W., Federspiel N. A., Abola A. P., Proctor M. J., Myers R. M., Schmutz J., Dickson M., Grimwood J., Cox D. R., Olson M. V., Kaul R., Raymond C., Shimizu N., Kawasaki K., Minoshima S., Evans G. A., Athanasiou M., Schultz R., Roe B. A., Chen F., Pan H., Ramser J., Lehrach H., Reinhardt R., McCombie W. R., de la Bastide M., Dedhia N., Blöcker H., Hornischer K., Nordsiek G., Agarwala R., Aravind L., Bailey J. A., Bateman A., Batzoglou S., Birney E., Bork P., Brown D. G., Burge C. B., Cerutti L., Chen H. C., Church D., Clamp M., Copley R. R., Doerks T., Eddy S. R., Eichler E. E., Furey T. S., Galagan J., Gilbert J. G., Harmon C., Hayashizaki Y., Haussler D., Hermjakob H., Hokamp K., Jang W., Johnson L. S., Jones T. A., Kasif S., Kaspryzk A., Kennedy S., Kent W. J., Kitts P., Koonin E. V., Korf I., Kulp D., Lancet D., Lowe T. M., McLysaght A., Mikkelsen T., Moran J. V., Mulder N., Pollara V. J., Ponting C. P., Schuler G., Schultz J., Slater G., Smit A. F., Stupka E., Szustakowski J., Thierry-Mieg D., Thierry-Mieg J., Wagner L., Wallis J., Wheeler R., Williams A., Wolf Y. I., Wolfe K. H., Yang S. P., Yeh R. F., Collins F., Guyer M. S., Peterson J., Felsenfeld A., Wetterstrand K. A., Patrinos A., Morgan M. J., de Jong P., Catanese J. J., Osoegawa K., Shizuya H., Choi S., Chen Y. J., Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).
21
Warren W. C., Clayton D. F., Ellegren H., Arnold A. P., Hillier L. W., Künstner A., Searle S., White S., Vilella A. J., Fairley S., Heger A., Kong L., Ponting C. P., Jarvis E. D., Mello C. V., Minx P., Lovell P., Velho T. A., Ferris M., Balakrishnan C. N., Sinha S., Blatti C., London S. E., Li Y., Lin Y. C., George J., Sweedler J., Southey B., Gunaratne P., Watson M., Nam K., Backström N., Smeds L., Nabholz B., Itoh Y., Whitney O., Pfenning A. R., Howard J., Völker M., Skinner B. M., Griffin D. K., Ye L., McLaren W. M., Flicek P., Quesada V., Velasco G., Lopez-Otin C., Puente X. S., Olender T., Lancet D., Smit A. F., Hubley R., Konkel M. K., Walker J. A., Batzer M. A., Gu W., Pollock D. D., Chen L., Cheng Z., Eichler E. E., Stapley J., Slate J., Ekblom R., Birkhead T., Burke T., Burt D., Scharff C., Adam I., Richard H., Sultan M., Soldatov A., Lehrach H., Edwards S. V., Yang S. P., Li X., Graves T., Fulton L., Nelson J., Chinwalla A., Hou S., Mardis E. R., Wilson R. K., The genome of a songbird. Nature 464, 757–762 (2010).
22
Warren W. C., Hillier L. W., Marshall Graves J. A., Birney E., Ponting C. P., Grützner F., Belov K., Miller W., Clarke L., Chinwalla A. T., Yang S. P., Heger A., Locke D. P., Miethke P., Waters P. D., Veyrunes F., Fulton L., Fulton B., Graves T., Wallis J., Puente X. S., López-Otín C., Ordóñez G. R., Eichler E. E., Chen L., Cheng Z., Deakin J. E., Alsop A., Thompson K., Kirby P., Papenfuss A. T., Wakefield M. J., Olender T., Lancet D., Huttley G. A., Smit A. F., Pask A., Temple-Smith P., Batzer M. A., Walker J. A., Konkel M. K., Harris R. S., Whittington C. M., Wong E. S., Gemmell N. J., Buschiazzo E., Vargas Jentzsch I. M., Merkel A., Schmitz J., Zemann A., Churakov G., Kriegs J. O., Brosius J., Murchison E. P., Sachidanandam R., Smith C., Hannon G. J., Tsend-Ayush E., McMillan D., Attenborough R., Rens W., Ferguson-Smith M., Lefèvre C. M., Sharp J. A., Nicholas K. R., Ray D. A., Kube M., Reinhardt R., Pringle T. H., Taylor J., Jones R. C., Nixon B., Dacheux J. L., Niwa H., Sekita Y., Huang X., Stark A., Kheradpour P., Kellis M., Flicek P., Chen Y., Webber C., Hardison R., Nelson J., Hallsworth-Pepin K., Delehaunty K., Markovic C., Minx P., Feng Y., Kremitzki C., Mitreva M., Glasscock J., Wylie T., Wohldmann P., Thiru P., Nhan M. N., Pohl C. S., Smith S. M., Hou S., Nefedov M., de Jong P. J., Renfree M. B., Mardis E. R., Wilson R. K., Genome analysis of the platypus reveals unique signatures of evolution. Nature 453, 175–183 (2008).
23
Chinwalla A. T., Cook L. L., Delehaunty K. D., Fewell G. A., Fulton L. A., Fulton R. S., Graves T. A., Hillier L. D. W., Mardis E. R., McPherson J. D., Miner T. L., Nash W. E., Nelson J. O., Nhan M. N., Pepin K. H., Pohl C. S., Ponce T. C., Schultz B., Thompson J., Trevaskis E., Waterston R. H., Wendl M. C., Wilson R. K., Yang S.-P., An P., Berry E., Birren B., Bloom T., Brown D. G., Butler J., Daly M., David R., Deri J., Dodge S., Foley K., Gage D., Gnerre S., Holzer T., Jaffe D. B., Kamal M., Karlsson E. K., Kells C., Kirby A., Kulbokas E. J., Lander E. S., Landers T., Leger J. P., Levine R., Lindblad-Toh K., Mauceli E., Mayer J. H., McCarthy M., Meldrim J., Meldrim J., Mesirov J. P., Nicol R., Nusbaum C., Seaman S., Sharpe T., Sheridan A., Singer J. B., Santos R., Spencer B., Stange-Thomann N., Vinson J. P., Wade C. M., Wierzbowski J., Wyman D., Zody M. C., Birney E., Goldman N., Kasprzyk A., Mongin E., Rust A. G., Slater G., Stabenau A., Ureta-Vidal A., Whelan S., Ainscough R., Attwood J., Bailey J., Barlow K., Beck S., Burton J., Clamp M., Clee C., Coulson A., Cuff J., Curwen V., Cutts T., Davies J., Eyras E., Grafham D., Gregory S., Hubbard T., Hunt A., Jones M., Joy A., Leonard S., Lloyd C., Matthews L., McLaren S., McLay K., Meredith B., Mullikin J. C., Ning Z., Oliver K., Overton-Larty E., Plumb R., Potter S., Quail M., Rogers J., Scott C., Searle S., Shownkeen R., Sims S., Wall M., West A. P., Willey D., Williams S., Abril J. F., Guigó R., Parra G., Agarwal P., Agarwala R., Church D. M., Hlavina W., Maglott D. R., Sapojnikov V., Alexandersson M., Pachter L., Antonarakis S. E., Dermitzakis E. T., Reymond A., Ucla C., Baertsch R., Diekhans M., Furey T. S., Hinrichs A., Hsu F., Karolchik D., Kent W. J., Roskin K. M., Schwartz M. S., Sugnet C., Weber R. J., Bork P., Letunic I., Suyama M., Torrents D., Zdobnov E. M., Botcherby M., Brown S. D., Campbell R. D., Jackson I., Bray N., Couronne O., Dubchak I., Poliakov A., Rubin E. M., Brent M. R., Flicek P., Keibler E., Korf I., Batalov S., Bult C., Frankel W. N., Carninci P., Hayashizaki Y., Kawai J., Okazaki Y., Cawley S., Kulp D., Wheeler R., Chiaromonte F., Collins F. S., Felsenfeld A., Guyer M., Peterson J., Wetterstrand K., Copley R. R., Mott R., Dewey C., Dickens N. J., Emes R. D., Goodstadt L., Ponting C. P., Winter E., Dunn D. M., von Niederhausern A. C., Weiss R. B., Eddy S. R., Johnson L. S., Jones T. A., Elnitski L., Kolbe D. L., Eswara P., Miller W., O’Connor M. J., Schwartz S., Gibbs R. A., Muzny D. M., Glusman G., Smit A., Green E. D., Hardison R. C., Yang S., Haussler D., Hua A., Roe B. A., Kucherlapati R. S., Montgomery K. T., Li J., Li M., Lucas S., Ma B., McCombie W. R., Morgan M., Pevzner P., Tesler G., Schultz J., Smith D. R., Tromp J., Worley K. C., Lander E. S., Abril J. F., Agarwal P., Alexandersson M., Antonarakis S. E., Baertsch R., Berry E., Birney E., Bork P., Bray N., Brent M. R., Brown D. G., Butler J., Bult C., Chiaromonte F., Chinwalla A. T., Church D. M., Clamp M., Collins F. S., Copley R. R., Couronne O., Cawley S., Cuff J., Curwen V., Cutts T., Daly M., Dermitzakis E. T., Dewey C., Dickens N. J., Diekhans M., Dubchak I., Eddy S. R., Elnitski L., Emes R. D., Eswara P., Eyras E., Felsenfeld A., Flicek P., Frankel W. N., Fulton L. A., Furey T. S., Gnerre S., Glusman G., Goldman N., Goodstadt L., Green E. D., Gregory S., Guigó R., Hardison R. C., Haussler D., Hillier L. D. W., Hinrichs A., Hlavina W., Hsu F., Hubbard T., Jaffe D. B., Kamal M., Karolchik D., Karlsson E. K., Kasprzyk A., Keibler E., Kent W. J., Kirby A., Kolbe D. L., Korf I., Kulbokas E. J., Kulp D., Lander E. S., Letunic I., Li M., Lindblad-Toh K., Ma B., Maglott D. R., Mauceli E., Mesirov J. P., Miller W., Mott R., Mullikin J. C., Ning Z., Pachter L., Parra G., Pevzner P., Poliakov A., Ponting C. P., Potter S., Reymond A., Roskin K. M., Sapojnikov V., Schultz J., Schwartz M. S., Schwartz S., Searle S., Singer J. B., Slater G., Smit A., Stabenau A., Sugnet C., Suyama M., Tesler G., Torrents D., Tromp J., Ucla C., Vinson J. P., Wade C. M., Weber R. J., Wheeler R., Winter E., Yang S.-P., Zdobnov E. M., Waterston R. H., Whelan S., Worley K. C., Zody M. C., Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).
24
Bejerano G., Pheasant M., Makunin I., Stephen S., Kent W. J., Mattick J. S., Haussler D., Ultraconserved elements in the human genome. Science 304, 1321–1325 (2004).
25
Faircloth B. C., McCormack J. E., Crawford N. G., Harvey M. G., Brumfield R. T., Glenn T. C., Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst. Biol. 61, 717–726 (2012).
26
McCormack J. E., Faircloth B. C., Crawford N. G., Gowaty P. A., Brumfield R. T., Glenn T. C., Ultraconserved elements are novel phylogenomic markers that resolve placental mammal phylogeny when combined with species-tree analysis. Genome Res. 22, 746–754 (2012).
27
Siepel A., Bejerano G., Pedersen J. S., Hinrichs A. S., Hou M., Rosenbloom K., Clawson H., Spieth J., Hillier L. W., Richards S., Weinstock G. M., Wilson R. K., Gibbs R. A., Kent W. J., Miller W., Haussler D., Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050 (2005).
28
Chiari Y., Cahais V., Galtier N., Delsuc F., Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biol. 10, 65 (2012).
29
Crawford N. G., Faircloth B. C., McCormack J. E., Brumfield R. T., Winker K., Glenn T. C., More than 1000 ultraconserved elements provide evidence that turtles are the sister group of archosaurs. Biol. Lett. 8, 783–786 (2012).
30
Tzika A. C., Helaers R., Schramm G., Milinkovitch M. C., Reptilian-transcriptome v1.0, a glimpse in the brain transcriptome of five divergent Sauropsida lineages and the phylogenetic position of turtles. EvoDevo 2, 19 (2011).
31
Chamary J. V., Parmley J. L., Hurst L. D., Hearing silence: Non-neutral evolution at synonymous sites in mammals. Nat. Rev. Genet. 7, 98–108 (2006).
32
Künstner A., Nabholz B., Ellegren H., Significant selective constraint at 4-fold degenerate sites in the avian genome and its consequence for detection of positive selection. Genome Biol. Evol. 3, 1381–1389 (2011).
33
Brochu C. A., Morphology, fossils, divergence timing, and the phylogenetic relationships of Gavialis. Syst. Biol. 46, 479–522 (1997).
34
Glazko G. V., Nei M., Estimation of divergence times for major lineages of primate species. Mol. Biol. Evol. 20, 424–434 (2003).
35
Cordaux R., Lee J., Dinoso L., Batzer M. A., Recently integrated Alu retrotransposons are essentially neutral residents of the human genome. Gene 373, 138–144 (2006).
36
Paten B., Herrero J., Fitzgerald S., Beal K., Flicek P., Holmes I., Birney E., Genome-wide nucleotide-level mammalian ancestor reconstruction. Genome Res. 18, 1829–1843 (2008).
37
Blanchette M., Green E. D., Miller W., Haussler D., Reconstructing large regions of an ancestral mammalian genome in silico. Genome Res. 14, 2412–2423 (2004).
38
Niimura Y., Olfactory receptor multigene family in vertebrates: From the viewpoint of evolutionary genomics. Curr. Genomics 13, 103–114 (2012).
39
Huerta-Cepas J., Dopazo H., Dopazo J., Gabaldón T., The human phylome. Genome Biol. 8, R109 (2007).
40
Niimura Y., Nei M., Extensive gains and losses of olfactory receptor genes in mammalian evolution. PLOS ONE 2, e708 (2007).
41
C. Stevenson, R. Whitaker, in Crocodiles. Status Survey and Conservation Action Plan, S. C. Manolis, C. Stevenson, Eds. (Crocodile Specialist Group, Darwin, Australia, 2010), pp. 139–143.
42
R. M. Elsey, A. R. Woodward, in Crocodiles. Status Survey and Conservation Action Plan, S. C. Manolis, C. Stevenson, Eds. (Crocodile Specialist Group, Darwin, Australia, 2010), pp. 1–4.
43
Li H., Durbin R., Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).
44
van de Wal R. S. W., de Boer B., Lourens L. J., Kohler P., Bintanja R., Reconstruction of a continuous high-resolution CO2 record over the past 20 million years. Clim. Past 7, 1459–1469 (2011).
45
Zhang G., Li C., Li Q., Li B., Larkin D. M., Lee C., Storz J. F., Antunes A., Greenwold M. J., Meredith R. W., Ödeen A., Cui J., Zhou Q., Xu L., Pan H., Wang Z., Jin L., Zhang P., Hu H., Yang W., Hu J., Xiao J., Yang Z., Liu Y., Xie Q., Yu H., Lian J., Wen P., Zhang F., Li H., Zeng Y., Xiong Z., Liu S., Zhou L., Huang Z., An N., Wang J., Zheng Q., Xiong Y., Wang G., Wang B., Wang J., Fan Y., da Fonseca R. R., Alfaro-Núñez A., Schubert M., Orlando L., Mourier T., Howard J. T., Ganapathy G., Pfenning A., Whitney O., Rivas M. V., Hara E., Smith J., Farré M., Narayan J., Slavov G., Romanov M. N., Borges R., Machado J. P., Khan I., Springer M. S., Gatesy J., Hoffmann F. G., Opazo J. C., Håstad O., Sawyer R. H., Kim H., Kim K.-W., Kim H. J., Cho S., Li N., Huang Y., Bruford M. W., Zhan X., Dixon A., Bertelsen M. F., Derryberry E., Warren W., Wilson R. K., Li S., Ray D. A., Green R. E., O’Brien S. J., Griffin D., Johnson W. E., Haussler D., Ryder O. A., Willerslev E., Graves G. R., Alström P., Fjeldså J., Mindell D. P., Edwards S. V., Braun E. L., Rahbek C., Burt D. W., Houde P., Zhang Y., Yang H., Wang J.Avian Genome Consortium, Jarvis E. D., Gilbert M. T. P., Wang J., Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346, 1311–1320 (2014).
46
Wu C. I., Li W. H., Evidence for higher rates of nucleotide substitution in rodents than in man. Proc. Natl. Acad. Sci. U.S.A. 82, 1741–1745 (1985).
47
Lin Y. H., Waddell P. J., Penny D., Pika and vole mitochondrial genomes increase support for both rodent monophyly and glires. Gene 294, 119–129 (2002).
48
Martin A. P., Palumbi S. R., Body size, metabolic rate, generation time, and the molecular clock. Proc. Natl. Acad. Sci. U.S.A. 90, 4087–4091 (1993).
49
Gillooly J. F., Allen A. P., West G. B., Brown J. H., The rate of DNA evolution: Effects of body size and temperature on the molecular clock. Proc. Natl. Acad. Sci. U.S.A. 102, 140–145 (2005).
50
Blueweiss L., Fox H., Kudzma V., Nakashima D., Peters R., Sams S., Relationships between body size and some life history parameters. Oecologia 37, 257–272 (1978).
51
Savage V. M., Gillooly J. F., Brown J. H., West G. B., Charnov E. L., Effects of body size and temperature on population growth. Am. Nat. 163, 429–441 (2004).
52
Lee M. S., Cau A., Naish D., Dyke G. J., Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds. Science 345, 562–566 (2014).
53
Gnerre S., Maccallum I., Przybylski D., Ribeiro F. J., Burton J. N., Walker B. J., Sharpe T., Hall G., Shea T. P., Sykes S., Berlin A. M., Aird D., Costello M., Daza R., Williams L., Nicol R., Gnirke A., Nusbaum C., Lander E. S., Jaffe D. B., High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc. Natl. Acad. Sci. U.S.A. 108, 1513–1518 (2011).
54
Shedlock A. M., Botka C. W., Zhao S., Shetty J., Zhang T., Liu J. S., Deschavanne P. J., Edwards S. V., Phylogenomics of nonavian reptiles and the structure of the ancestral amniote genome. Proc. Natl. Acad. Sci. U.S.A. 104, 2767–2772 (2007).
55
Li R., Zhu H., Ruan J., Qian W., Fang X., Shi Z., Li Y., Li S., Shan G., Kristiansen K., Li S., Yang H., Wang J., Wang J., De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20, 265–272 (2010).
56
Stanke M., Diekhans M., Baertsch R., Haussler D., Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24, 637–644 (2008).
57
Kim D., Pertea G., Trapnell C., Pimentel H., Kelley R., Salzberg S. L., TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).
58
Langmead B., Trapnell C., Pop M., Salzberg S. L., Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).
59
A. F. A. Smit, R. Hubley, RepeatModeler Open-1.0; www.repeatmasker.org.
60
Edgar R. C., Myers E. W., PILER: Identification and classification of genomic repeats. Bioinformatics 21 (suppl. 1), i152–i158 (2005).
61
Price A. L., Jones N. C., Pevzner P. A., De novo identification of repeat families in large genomes. Bioinformatics 21 (suppl. 1), i351–i358 (2005).
62
Ellinghaus D., Kurtz S., Willhoeft U., LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics 9, 18 (2008).
63
Stephen S., Pheasant M., Makunin I. V., Mattick J. S., Large-scale appearance of ultraconserved elements in tetrapod genomes and slowdown of the molecular clock. Mol. Biol. Evol. 25, 402–408 (2008).
64
Stamatakis A., RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).
65
Huerta-Cepas J., Bueno A., Dopazo J., Gabaldón T., PhylomeDB: A database for genome-wide collections of gene phylogenies. Nucleic Acids Res. 36, D491–D496 (2008).
66
Wallace M. R., Andersen L. B., Saulino A. M., Gregory P. E., Glover T. W., Collins F. S., A de novo Alu insertion results in neurofibromatosis type 1. Nature 353, 864–866 (1991).
67
Capella-Gutiérrez S., Silla-Martínez J. M., Gabaldón T., trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
68
Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O., New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
69
Gabaldón T., Large-scale assignment of orthology: Back to phylogenetics? Genome Biol. 9, 235 (2008).
70
Huerta-Cepas J., Dopazo J., Gabaldón T., ETE: A python environment for tree exploration. BMC Bioinformatics 11, 24 (2010).
71
Huerta-Cepas J., Gabaldón T., Assigning duplication events to relative temporal scales in genome-wide studies. Bioinformatics 27, 38–45 (2011).
72
Wehe A., Bansal M. S., Burleigh J. G., Eulenstein O., DupTree: A program for large-scale phylogenetic analyses using gene tree parsimony. Bioinformatics 24, 1540–1541 (2008).
73
Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S., MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011).
74
Steiger S. S., Kuryshev V. Y., Stensmyr M. C., Kempenaers B., Mueller J. C., A comparison of reptilian and avian olfactory receptor gene repertoires: Species-specific expansion of group gamma genes in birds. BMC Genomics 10, 446 (2009).
75
Paten B., Earl D., Nguyen N., Diekhans M., Zerbino D., Haussler D., Cactus: Algorithms for genome multiple sequence alignment. Genome Res. 21, 1512–1528 (2011).
76
Jarvis E. D., Mirarab S., Aberer A. J., Li B., Houde P., Li C., Ho S. Y. W., Faircloth B. C., Nabholz B., Howard J. T., Suh A., Weber C. C., da Fonseca R. R., Li J., Zhang F., Li H., Zhou L., Narula N., Liu L., Ganapathy G., Boussau B., Bayzid Md. S., Zavidovych V., Subramanian S., Gabaldón T., Capella-Gutiérrez S., Huerta-Cepas J., Rekepalli B., Munch K., Schierup M., Lindow B., Warren W. C., Ray D., Green R. E., Bruford M., Zhan X., Dixon A., Li S., Li N., Huang Y., Derryberry E. P., Bertelsen M. F., Sheldon F.H., Brumfield R. T., Mello C. V., Lovell P. V., Wirthlin M., Cruz Schneider M. P., Prosdocimi F., Samaniego J. A., Vargas Velazquez A. M., Alfaro-Núñez A., Campos P.F., Petersen B., Sicheritz-Ponten T., Pas A., Bailey T., Scofield P., Bunce M., Lambert D. M., Zhou Q., Perelman P., Driskell A. C., Shapiro B., Xiong Z., Zeng Y., Liu S., Li Z., Liu B., Wu K., Xiao J., Yinqi X., Zheng Q., Zhang Y., Yang H., Wang J., Smeds L., Rheindt F. E., Braun M., Fjeldsa J., Orlando L., Barker K., Jønsson K. A., Johnson W., Koepfli K.-P., O’Brien S., Haussler D., Ryder O. A., Rahbek C., Willerslev E., Graves G. R., Glenn T. C., McCormack J., Burt D., Ellegren H., Alström P., Edwards S. V., Stamatakis A., Mindell D. P., Cracraft J., Braun E. L., Warnow T., Jun W., Gilbert M. T. P., Zhang G., Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346, 1320–1331 (2014).
77
Barker F. K., Cibois A., Schikler P., Feinstein J., Cracraft J., Phylogeny and diversification of the largest avian radiation. Proc. Natl. Acad. Sci. U.S.A. 101, 11040–11045 (2004).
78
Wright T. F., Schirtzinger E. E., Matsumoto T., Eberhard J. R., Graves G. R., Sanchez J. J., Capelli S., Müller H., Scharpegge J., Chambers G. K., Fleischer R. C., A multilocus molecular phylogeny of the parrots (Psittaciformes): Support for a Gondwanan origin during the Cretaceous. Mol. Biol. Evol. 25, 2141 (2008).
79
Thomson R. C., Shaffer H. B., Sparse supermatrices for phylogenetic inference: Taxonomy, alignment, rogue taxa, and the phylogeny of living turtles. Syst. Biol. 59, 42–58 (2010).
80
Nguyen N., Hickey G., Zerbino D. R., Raney B., Earl D., Armstrong J., Haussler D., Paten B., Building a pangenome reference for a population. Res. Comput. Mol. Biol. 8394, 207–221 (2014).
81
Hickey G., Paten B., Earl D., Zerbino D., Haussler D., HAL: A hierarchical format for storing and analyzing multiple genome alignments. Bioinformatics 29, 1341–1342 (2013).
82
Hubisz M. J., Pollard K. S., Siepel A., PHAST and RPHAST: Phylogenetic analysis with space/time models. Brief. Bioinform. 12, 41–51 (2011).
83
Li H., Durbin R., Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
84
Jaratlerdsiri W., et al., Comparative analyses reveal adaptive MHC structure in the saltwater crocodile (Crocodylus porosus). PLOS ONE 10.1371/journal.pone.0114631, (2014).
85
Grabherr M. G., Haas B. J., Yassour M., Levin J. Z., Thompson D. A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., Chen Z., Mauceli E., Hacohen N., Gnirke A., Rhind N., di Palma F., Birren B. W., Nusbaum C., Lindblad-Toh K., Friedman N., Regev A., Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).
86
Bao Z., Eddy S. R., Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res. 12, 1269–1276 (2002).
87
Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J., Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).
88
Kohany O., Gentles A. J., Hankus L., Jurka J., Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics 7, 474 (2006).
89
A. F. A. Smit, R. Hubley, P. Green, RepeatMasker Open-3.0; www.repeatmasker.org.
90
Feschotte C., Keswani U., Ranganathan N., Guibotsy M. L., Levine D., Exploring repetitive DNA landscapes using REPCLASS, a tool that automates the classification of transposable elements in eukaryotic genomes. Genome Biol. Evol. 1, 205–220 (2009).
91
R. S. Harris, thesis, Pennsylvania State University (2007); www.bx.psu.edu/~rsharris/lastz.
92
Katoh K., Kuma K., Toh H., Miyata T., MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 33, 511–518 (2005).
93
Lanfear R., Calcott B., Ho S. Y., Guindon S., Partitionfinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701 (2012).
94
Lanfear R., Calcott B., Kainer D., Mayer C., Stamatakis A., Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evol. Biol. 14, 82 (2014).
95
Sanderson M. J., r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19, 301–302 (2003).
96
Benton M. J., Donoghue P. C. J., Paleontological evidence to date the tree of life. Mol. Biol. Evol. 24, 26–53 (2007).
97
Ksepka D. T., Boyd C. A., Quantifying historical trends in the completeness of the fossil record and the contributing factors: An example using Aves. Paleobiology 38, 112–125 (2012).
98
Müller J., Reisz R. R., Four well-constrained calibration points from the vertebrate fossil record for molecular clock estimates. BioEssays 27, 1069–1075 (2005).
99
Parham J. F., Donoghue P. C., Bell C. J., Calway T. D., Head J. J., Holroyd P. A., Inoue J. G., Irmis R. B., Joyce W. G., Ksepka D. T., Patané J. S., Smith N. D., Tarver J. E., van Tuinen M., Yang Z., Angielczyk K. D., Greenwood J. M., Hipsley C. A., Jacobs L., Makovicky P. J., Müller J., Smith K. T., Theodor J. M., Warnock R. C., Benton M. J., Best practices for justifying fossil calibrations. Syst. Biol. 61, 346–359 (2012).
100
Ksepka D. T., Benton M. J., Carrano M. T., Gandolfo M. A., Head J. J., Hermsen E. J., Joyce W. G., Lamm K. S., Patané J. S., Phillips M. J., Polly P. D., Van Tuinen M., Ware J. L., Warnock R. C., Parham J. F., Synthesizing and databasing fossil calibrations: Divergence dating and beyond. Biol. Lett. 7, 801–803 (2011).
101
Brochu C. A., A new Late Cretaceous gavialoid crocodylian from eastern North America and the phylogenetic relationships of thoracosaurs. J. Vertebr. Paleontol. 24, 610–633 (2004).
102
Gatesy J., Amato G., Norell M., DeSalle R., Hayashi C., Combined support for wholesale taxic atavism in gavialine crocodylians. Syst. Biol. 52, 403–422 (2003).
103
Salisbury S. W., Molnar R. E., Frey E., Willis P. M. A., The origin of modern crocodyliforms: New evidence from the Cretaceous of Australia. Proc. R. Soc. B 273, 2439 (2006).
104
Salisbury S. W., Frey E., Martill D. M., Buchy M. C., A new crocodilian from the Lower Cretaceous Crato Formation of north-eastern Brazil. Palaeontogr. Abt. A 270, 3 (2003).
105
Ősi A., Clark J. M., Weishampel D. B., First report on a new basal eusuchian crocodyliform with multicusped teeth from the Upper Cretaceous (Santonian) of Hungary. Neues Jahrb. Geol. Palaontol. Abh. 243, 169–177 (2007).
106
Pol D., Turner A. H., Norell M. A., Morphology of the Late Cretaceous crocodylomorph Shamosuchus djadochtaensis and a discussion of Neosuchian phylogeny as related to the origin of Eusuchia. Bull. Am. Mus. Nat. Hist. 324 (2009).
107
Fortier D. C., Schultz C. L., A new Neosuchian crocodylomorph (Crocodyliformes, Mesoeucrocodylia) from the Early Cretaceous of north-east Brazil. Palaeontology 52, 991–1007 (2009).
108
Buscalioni A. D., Piras P., Vullo R., Signore M., Barbera C., Early eusuchia crocodylomorpha from the vertebrate-rich Plattenkalk of Pietraroia (Lower Albian, southern Apennines, Italy). Zool. J. Linn. Soc. 163, S199–S227 (2011).
109
Holliday C. M., Gardner N. M., A new eusuchian crocodyliform with novel cranial integument and its significance for the origin and evolution of Crocodylia. PLOS ONE 7, e30471 (2012).
110
Montefeltro F. C., Larsson H. C. E., de França M. A. G., Langer M. C., A new neosuchian with Asian affinities from the Jurassic of northeastern Brazil. Naturwissenschaften 100, 835–841 (2013).
111
Brochu C. A., A new Late Cretaceous gavialoid crocodylian from eastern North America and the phylogenetic relationships of thoracosaurs. J. Vertebr. Paleontol. 24, 610–633 (2004).
112
Wu X. C., Russell A. P., Brinkman D. B., A review of Leidyosuchus canadensis Lambe, 1907 (Archosauria: Crocodylia) and an assessment of cranial variation based upon new material. Can. J. Earth Sci. 38, 1665–1687 (2001).
113
X. C. Wu, in Dinosaur Provincial Park: A Spectacular Ancient Ecosystem Revealed, P. J. Currie, E. B. Koppelhus, Eds. (Indiana Univ. Press, Bloomington, 2005), pp. 277–290.
114
R. B. Irmis, J. H. Hutchison, J. J. W. Sertich, A. L. Titus, in At the Top of the Grand Staircase: The Late Cretaceous of Southern Utah, A. L. Titus, M. A. Loewen, Eds. (Indiana Univ. Press, Bloomington, 2013), pp. 424–444.
115
Lillegraven J. A., A new genus of therian mammal from the Late Cretaceous “El Gallo Formation,” Baja California, Mexico. J. Paleontol. 50, 437 (1976).
116
Brochu C. A., Langston W., Rowe T., A new, phylogenetically significant alligatoroid from the Late Cretaceous (Campanian) of Mexico. J. Vertebr. Paleontol. 33, 94A (2013).
117
W. J. Morris, in A Guidebook to the Geology of Peninsular California, G. Gastil, J. A. Lillegraven, Eds. (American Association of Petroleum Geologists/Society of Economic Geologists, Pacific Section, Los Angeles, 1974), pp. 60–66.
118
Renne P. R., Fulford M. M., Busbyspera C., High-resolution 40Ar/39Ar chronostratigraphy of the Late Cretaceous El Gallo formation, Baja-California Del Norte, Mexico. Geophys. Res. Lett. 18, 459–462 (1991).
119
Roberts E. M., Deino A. L., Chan M. A., 40Ar/39Ar age of the Kaipirowits Formation, southern Utah, and correlation of contemporaenous Campanian strata and vertebrate faunas along the margin of the Western Interior Basin. Cretac. Res. 26, 307–318 (2005).
120
D. A. Eberth, in Dinosaur Provincial Park: A Spectacular Ancient Ecosystem Revealed, P. J. Currie, E. B. Koppelhus, Eds. (Indiana Univ. Press, Bloomington, 2005), pp. 54–82.
121
Colbert E. H., Bird R. T., A gigantic crocodile from the Upper Cretaceous beds of Texas. Am. Mus. Novit. 1688, 1 (1954).
122
D. R. Schwimmer, King of the Crocodylians: The Paleobiology of Deinosuchus (Indiana Univ. Press, Bloomington, 2002).
123
Wahl W., Hogbin J., Deinosuchus material from the Mesaerde formation of Wyoming: Filling in a gap. J. Vertebr. Paleontol. 23, 107A (2003).
124
Lucas S. G., Spielmann J. A., Sullivan R. M., Lewis C., Late Cretaceous crocodylians from the San Juan Basin, New Mexico. New Mexico Mus. Nat. Hist. Sci. Bull. 35, 249 (2006).
125
Rivera-Sylva H. E., Frey E., The first mandible fragment of Deinosuchus (Eusuchia: Alligatoroidea) discovered in Coahuila, Mexico. Bol. Soc. Geol. Mex. 63, 459 (2011).
126
Buscalioni A. D., Sanz J. L., Casanovas M. L., A new species of the eusuchian crocodile Diplocynodon from the Eocene of Spain. Neues Jahrb. Geol. Palaontol. Abh. 187, 1 (1992).
127
Ginsburg L., Bulot C., Les Diplocynodon (Reptilia, Crocodylia) de l’Orléanien (Miocène inférieur à moyen) de France. Geodiversitas 19, 107 (1997).
128
Martin J., Gross M., Taxonomic clarification of Diplocynodon Pomel, 1847 (Crocodilia) from the Miocene of Styria, Austria. Neues Jahrb. Geol. Palaontol. Abh. 261, 177–193 (2011).
129
Delfino M., Smith T., Reappraisal of the morphology and phylogenetic relationships of the Middle Eocene alligatoroid Diplocynodon Deponiae (Frey, Laemmert, and Riess, 1987) based on a three-dimensional specimen. J. Vertebr. Paleontol. 32, 1358–1369 (2012).
130
Mook C. C., A new crocodilian from the Lance Formation. Am. Mus. Novit. 1128, 1 (1941).
131
Buscalioni A. D., Ortega F., Vasse D., New crocodiles (Eusuchia: Alligatoroidea) from the Upper Cretaceous of southern Europe. C. R. Acad. Sci. Ser. II A 325, 525 (1997).
132
Martin J. E., New material of the Late Cretaceous globidontan Acynodon iberoccitanus (Crocodylia) from southern France. J. Vertebr. Paleontol. 27, 362–372 (2007).
133
Martin J. E., Allodaposuchus Nopsca, 1928 (Crocodylia, Eusuchia), from the Late Cretaceous of southern France and its relationships to Alligatoroidea. J. Vertebr. Paleontol. 30, 756–767 (2010).
134
Delfino M., Martin J. E., Buffetaut E., A new species of Acynodon (Crocodylia) from the Upper Cretaceous (Santonian-Campanian) of Villaggio del Pescatore, Italy. Palaeontology 51, 1091–1106 (2008).
135
Martin J. E., Buffetaut E., Crocodilus affuvelensis Matheron, 1869 from the Late Cretaceous of southern France: A reassessment. Zool. J. Linn. Soc. 152, 567–580 (2008).
136
Puértolas E., Canudo J. I., Cruzado-Caballero P., A new crocodylian from the late Maastrichtian of Spain: Implications for the initial radiation of crocodyloids. PLOS ONE 6, e20011 (2011).
137
Buscalioni A. D., Ortega F., Weishampel D. B., Jianu C. M., A revision of the crocodyliform Allodaposuchus precedens from the Upper Cretaceous of the Hateg Basin, Romania. Its relevance in the phylogeny of Eusuchia. J. Vertebr. Paleontol. 21, 74–86 (2001).
138
Delfino M., Codrea V., Folie A., Dica P., Godefroit P., Smith T., A complete skull of Allodaposuchus precedens Nopcsa, 1928 (Eusuchia) and a reassessment of the morphology of the taxon based on the Romanian remains. J. Vertebr. Paleontol. 28, 111–122 (2008).
139
Brochu C. A., Parris D. C., Grandstaff B. S., Denton R. K., Gallagher W. B., A new species of Borealosuchus (Crocodyliformes, Eusuchia) from the Late Cretaceous-Early Paleogene of New Jersey. J. Vertebr. Paleontol. 32, 105–116 (2012).
140
Butler R. J., Brusatte S. L., Reich M., Nesbitt S. J., Schoch R. R., Hornung J. J., The sail-backed reptile Ctenosauriscus from the latest Early Triassic of Germany and the timing and biogeography of the early archosaur radiation. PLOS ONE 6, e25693 (2011).
141
S. J. Nesbitt, The early evolution of archosaurs: Relationships and the origin of major clades. Bull. Am. Mus. Nat. Hist. 352 (2011).
142
Nesbitt S. J., Liu J., Li C., A sail-backed suchian from the Heshanggou Formation (Early Triassic: Olenekian) of China. Earth Environ. Sci. Trans. R. Soc. Edinburgh 101, 271 (2010).
143
Brusatte S. L., Niedźwiedzki G., Butler R. J., Footprints pull origin and diversification of dinosaur stem lineage deep into Early Triassic. Proc. R. Soc. B 278, 1107 (2011).
144
Lyson T. R., Bever G. S., Bhullar B. A. S., Joyce W. G., Gauthier J. A., Transitional fossils and the origin of turtles. Biol. Lett. 6, 830–833 (2010).
145
Lyson T. R., Bever G. S., Scheyer T. M., Hsiang A. Y., Gauthier J. A., Evolutionary origin of the turtle shell. Curr. Biol. 23, 1113–1119 (2013).
146
Gauthier J., Kluge A. G., Rowe T., Amniote phylogeny and the importance of fossils. Cladistics 4, 105–209 (1988).
147
Lee M. S. Y., Pareiasaur phylogeny and the origin of turtles. Zool. J. Linn. Soc. 120, 197–280 (1997).
148
Rieppel O., Reisz R. R., The origin and early evolution of turtles. Annu. Rev. Ecol. Syst. 30, 1–22 (1999).
149
R. L. Carroll, in Morphology and Evolution of Turtles, D. B. Brinkman, P. A. Holroyd, J. D. Gardner, Eds. (Springer, Dordrecht, Netherlands, 2013), pp. 19–38.
150
Katsu Y., Braun E. L., Guillette L. J., Iguchi T., From reptilian phylogenomics to reptilian genomes: Analyses of c-Jun and DJ-1 proto-oncogenes. Cytogenet. Genome Res. 127, 79–93 (2009).
151
Field D. J., Gauthier J. A., King B. L., Pisani D., Lyson T. R., Peterson K. J., Toward consilience in reptile phylogeny: miRNAs support an archosaur, not lepidosaur, affinity for turtles. Evol. Dev. 16, 189–196 (2014).
152
Clarke J. A., Tambussi C. P., Noriega J. I., Erickson G. M., Ketcham R. A., Definitive fossil evidence for the extant avian radiation in the Cretaceous. Nature 433, 305–308 (2005).
153
Longrich N. R., Tokaryk T., Field D. J., Mass extinction of birds at the Cretaceous-Paleogene (K-Pg) boundary. Proc. Natl. Acad. Sci. U.S.A. 108, 15253–15257 (2011).
154
Feduccia A., Avian extinction at the end of the Cretaceous: Assessing the magnitude and subsequent explosive radiation. Cretac. Res. 50, 1–15 (2014).
155
Lee M. S., Cau A., Naish D., Dyke G. J., Morphological clocks in paleontology, and a mid-Cretaceous origin of crown Aves. Syst. Biol. 63, 442–449 (2014).
156
Sicheritz-Pontén T., Andersson S. G., A phylogenomic approach to microbial evolution. Nucleic Acids Res. 29, 545–552 (2001).
157
Smith T. F., Waterman M. S., Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197 (1981).
158
Edgar R. C., MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113 (2004).
159
Katoh K., Toh H., Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 9, 286–298 (2008).
160
Subramanian A. R., Kaufmann M., Morgenstern B., DIALIGN-TX: Greedy and progressive approaches for segment-based multiple sequence alignment. Algorithms Mol. Biol. 3, 6 (2008).
161
Landan G., Graur D., Heads or tails: A simple reliability check for multiple sequence alignments. Mol. Biol. Evol. 24, 1380–1383 (2007).
162
Wallace I. M., O’Sullivan O., Higgins D. G., Notredame C., M-Coffee: Combining multiple sequence alignment methods with T-Coffee. Nucleic Acids Res. 34, 1692–1699 (2006).
163
Gascuel O., BIONJ: An improved version of the NJ algorithm based on a simple model of sequence data. Mol. Biol. Evol. 14, 685–695 (1997).
164
Akaike H., A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19, 716–723 (1974).
165
Huerta-Cepas J., Capella-Gutierrez S., Pryszcz L. P., Denisov I., Kormes D., Marcet-Houben M., Gabaldón T., PhylomeDB v3.0: An expanding repository of genome-wide collections of trees, alignments and phylogeny-based orthology and paralogy predictions. Nucleic Acids Res. 39, D556–D560 (2011).
166
Shimodaira H., Hasegawa M., CONSEL: For assessing the confidence of phylogenetic tree selection. Bioinformatics 17, 1246–1247 (2001).
167
Eddy S. R., Accelerated profile HMM searches. PLOS Comput. Biol. 7, e1002195 (2011).
168
Medina I., Carbonell J., Pulido L., Madeira S. C., Goetz S., Conesa A., Tárraga J., Pascual-Montano A., Nogales-Cadenas R., Santoyo J., García F., Marbà M., Montaner D., Dopazo J., Babelomics: An integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling. Nucleic Acids Res. 38, W210–W213 (2010).
169
Supek F., Bošnjak M., Škunca N., Šmuc T., REVIGO summarizes and visualizes long lists of gene ontology terms. PLOS ONE 6, e21800 (2011).
170
Song S., Liu L., Edwards S. V., Wu S., Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. Proc. Natl. Acad. Sci. U.S.A. 109, 14942–14947 (2012).
171
Teeling E. C., Hedges S. B., Making the impossible possible: Rooting the tree of placental mammals. Mol. Biol. Evol. 30, 1999–2000 (2013).
172
Nishihara H., Maruyama S., Okada N., Retroposon analysis and recent geological data suggest near-simultaneous divergence of the three superorders of mammals. Proc. Natl. Acad. Sci. U.S.A. 106, 5235–5240 (2009).
173
Kurtz S., Phillippy A., Delcher A. L., Smoot M., Shumway M., Antonescu C., Salzberg S. L., Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).
174
Raney B. J., Dreszer T. R., Barber G. P., Clawson H., Fujita P. A., Wang T., Nguyen N., Paten B., Zweig A. S., Karolchik D., Kent W. J., Track data hubs enable visualization of user-defined genome-wide annotations on the UCSC Genome Browser. Bioinformatics 30, 1003–1005 (2014).
175
Quinlan A. R., Hall I. M., BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
176
Katoh K., Standley D. M., MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
177
E. L. Sonnhammer, G. von Heijne, A. Krogh, A hidden Markov model for predicting transmembrane helices in protein sequences. In ISMB ’98 Proceedings of the 6th International Conference on Intelligent Systems for Molecular Biology (1998), pp. 175–182.
178
Fujita M. K., Edwards S. V., Ponting C. P., The Anolis lizard genome: An amniote genome without isochores. Genome Biol. Evol. 3, 974–984 (2011).
179
Fullerton S. M., Bernardo Carvalho A., Clark A. G., Local rates of recombination are positively correlated with GC content in the human genome. Mol. Biol. Evol. 18, 1139–1142 (2001).
180
Hardison R. C., Roskin K. M., Yang S., Diekhans M., Kent W. J., Weber R., Elnitski L., Li J., O’Connor M., Kolbe D., Schwartz S., Furey T. S., Whelan S., Goldman N., Smit A., Miller W., Chiaromonte F., Haussler D., Covariation in frequencies of substitution, deletion, transposition, and recombination during eutherian evolution. Genome Res. 13, 13–26 (2003).
181
Mouchiroud D., D’Onofrio G., Aïssani B., Macaya G., Gautier C., Bernardi G., The distribution of genes in the human genome. Gene 100, 181–187 (1991).
182
Boussau B., Gouy M., Efficient likelihood computations with nonreversible models of evolution. Syst. Biol. 55, 756–768 (2006).
183
Romiguier J., Ranwez V., Douzery E. J., Galtier N., Contrasting GC-content dynamics across 33 mammalian genomes: Relationship with life-history traits and chromosome sizes. Genome Res. 20, 1001–1009 (2010).
184
Duret L., Arndt P. F., The impact of recombination on nucleotide substitutions in the human genome. PLOS Genet. 4, e1000071 (2008).
185
dos Reis M., Inoue J., Hasegawa M., Asher R. J., Donoghue P. C., Yang Z., Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proc. R. Soc. B 279, 3491–3500 (2012).
186
Reisz R. R., Modesto S. P., Scott D. M., A new Early Permian reptile and its significance in early diapsid evolution. Proc. R. Soc. B 278, 3731–3737 (2011).
187
Jones M. E., Anderson C. L., Hipsley C. A., Müller J., Evans S. E., Schoch R. R., Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara). BMC Evol. Biol. 13, 208 (2013).
188
Hirayama R., Oldest known sea turtle. Nature 392, 705–708 (1998).
189
Niimura Y., Nei M., Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods. Proc. Natl. Acad. Sci. U.S.A. 102, 6039–6044 (2005).
190
Niimura Y., On the origin and evolution of vertebrate olfactory receptor genes: Comparative genome analysis among 23 chordate species. Genome Biol. Evol. 1, 34–44 (2009).
191
Nei M., Niimura Y., Nozawa M., The evolution of animal chemosensory receptor gene repertoires: Roles of chance and necessity. Nat. Rev. Genet. 9, 951–963 (2008).
192
Joanen T., Mcnease L. L., Ecology and physiology of nesting and early development of the American alligator. Am. Zool. 29, 987 (1989).
193
M. W. J. Ferguson, in Biology of the Reptilia, C. Gans, F. Billett, P. F. A. Maderson, Eds. (Wiley, New York, 1985), vol. 14, pp. 329–492.
194
S. E. Klause, thesis, North Carolina State University (1984).
195
J. Caldwell, “World trade in crocodilian skins 2008–2010” (UNEP World Conservation Monitoring Centre, Cambridge, 2012).
196
Dalrymple G. H., Growth of American alligators in the Shark Valley region of Everglades National Park. Copeia 1996, 212 (1996).
197
T. Joanen, Nesting ecology of alligators in Louisiana. Proceedings of the Annual Conference of Southeastern Association of Game and Fish Commissioners 23, 141 (1969).
198
C. L. Abercrombie, in Crocodiles: Their Ecology, Management, and Conservation, P. Hall, Ed. (International Union for the Conservation of Nature and Natural Resources, Gland, Switzerland, 1989), pp. 1–16.
199
Webb G. J. W., Messel H., Crawford J., Yerbury M. J., Growth rates of Crocodylus porosus (Reptilia: Crocodilia) from Arnhem Land, Northern Australia. Wildl. Res. 5, 385 (1978).
200
G. J. W. Webb, S. C. Manolis, M. L. Brien, in Crocodiles. Status Survey and Conservation Action Plan, S. C. Manolis, C. Stevenson, Eds. (Crocodile Specialist Group, Darwin, Australia, 2010), pp. 99–113.
201
Webb G. J. W., Messel H., Magnusson W., The nesting of Crocodylus porosus in Arnhem Land, Northern Territory. Copeia 1977, 238 (1977).
202
Stirrat S. C., Lawson D., Freeland W. J., Morton R., Monitoring Crocodylus porosus populations in the Northern Territory of Australia: A retrospective power analysis. Wildl. Res. 28, 547 (2001).
203
Bustard H. R., Maharana S., Size at first breeding in the gharial (Gavialis gangeticus (Gmelin)) (Reptilia: Crocodilia) in captivity. J. Bombay Nat. Hist. Soc. 79, 206 (1982).
204
A. Das, A. K. Das, P. K. Sarma, A. K. Singh, “An assessment of assisted recovery of gharial (Gavialis gangeticus) in river systems of Northeast India. Final technical report” (Aaranyak, Assam, India, 2011).
205
R. Whitaker, in Wildlife Management: Crocodiles and Alligators, G. J. W. Webb, S. C. Manolis, P. J. Whitehead, Eds. (Surrey Beatty, Chipping Norton, NSW, Australia, 1987), pp. 63–72.
206
Hussain S. A., Reproductive success, hatchling survival and rate of increase of gharial Gavialis gangeticus in National Chambal Sanctuary, India. Biol. Conserv. 87, 261–268 (1999).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 346 | Issue 6215
12 December 2014

Submission history

Received: 7 April 2014
Accepted: 6 November 2014
Published in print: 12 December 2014

Permissions

Request permissions for this article.

Acknowledgments

Genome drafts have been submitted to the National Center for Biotechnology Information repository under the following accession numbers: Alligator mississippiensis, AKHW00000000; Crocodylus porosus, JRXG00000000; Gavialis gangeticus, JRWT00000000. Supplemental files have been archived at GigaScience (DOIs: 10.5524/100125, 10.5524/100126, 10.5524/100127, and 10.5524/100128) and at crocgenomes.org. This project was conducted by the International Crocodilian Genomes Working Group (ICGWG; www.crocgenomes.org). Supported by NSF grants MCB-1052500 and DEB-1020865 (D.A.R.), MCB-0841821 (D.A.R., D.G.P., F.M.M., C.J.S.), DUE-0920151 (E.L.B., E.W.T.), DBI-0905714 (M.K.F.), and DEB-1242260 (B.C.F.). D.A.R., F.M.M., and D.G.P. were also supported by the Institute for Genomics, Biocomputing and Biotechnology at Mississippi State University. S.R.I., L.G.M., J.G., and C.M. were supported by Australian Rural Industries Research and Development Corporation grants (RIRDC PRJ-000549, RIRDC PRJ- 005355, RIRDC PRJ-002461). R.E.G. is a Searle Scholar, Sloan Fellow, and consultant for Dovetail Genomics. E.D.J. was supported by the Howard Hughes Medical Institute and the National Institutes of Health. E.L. received support from the Gordon and Betty Moore Foundation (#3383). R. Elsey, S. Lance, and T. Tuberville aided in collecting alligator samples. The following centers were vital in permitting the computational analyses required for this project: The High Performance Computing Collaborative (HPC2) at Mississippi State University, the High Performance Computing Center at Texas Tech University, the Georgia Advanced Computing Resource Center at the University of Georgia, the University of Florida High Performance Computing Center. The National Institutes of Health provided funding for UCSC infrastructure used in computing whole genome alignments and ancestral genome reconstructions (1U41HG007234-01, 1U41HG006992-2, 5U01HG004695). Finally, we are grateful to K. Vliet and D. Barber for providing access to fresh gharial blood.

Authors

Affiliations

Richard E. Green* [email protected]
Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA.
Edward L. Braun
Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA.
Joel Armstrong
Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA.
Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA.
Dent Earl
Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA.
Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA.
Ngan Nguyen
Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA.
Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA.
Glenn Hickey
Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA.
Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA.
Michael W. Vandewege
Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA.
John A. St. John
Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA.
Present address: Driver Group LLC, 1700 Owens Street, Suite 200, San Francisco, CA 94158, USA.
Salvador Capella-Gutiérrez
Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain.
Universitat Pompeu Fabra, 08003 Barcelona, Spain.
Todd A. Castoe
Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
Department of Biology, University of Texas, Arlington, TX 76019, USA.
Colin Kern
Department of Computer and Information Sciences, University of Delaware, Newark, DE 19717, USA.
Matthew K. Fujita
Department of Biology, University of Texas, Arlington, TX 76019, USA.
Juan C. Opazo
Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
Jerzy Jurka
Genetic Information Research Institute, Mountain View, CA 94043, USA.
Deceased.
Kenji K. Kojima
Genetic Information Research Institute, Mountain View, CA 94043, USA.
Juan Caballero
Institute for Systems Biology, Seattle, WA 98109, USA.
Robert M. Hubley
Institute for Systems Biology, Seattle, WA 98109, USA.
Arian F. Smit
Institute for Systems Biology, Seattle, WA 98109, USA.
Roy N. Platt
Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA.
Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA.
Christine A. Lavoie
Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA.
Meganathan P. Ramakodi
Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA.
Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA.
Present address: Cancer Prevention and Control, Fox Chase Cancer Center, Philadelphia, PA 19111, USA, and Department of Biology, Temple University, Philadelphia, PA 19122, USA.
John W. Finger, Jr.
Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA.
Alexander Suh
Institute of Experimental Pathology (ZMBE), University of Münster, D-48149 Münster, Germany.
Department of Evolutionary Biology (EBC), Uppsala University, SE-752 36 Uppsala, Sweden.
Sally R. Isberg
Porosus Pty. Ltd., Palmerston, NT 0831, Australia.
Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia.
Centre for Crocodile Research, Noonamah, NT 0837, Australia.
Lee Miles
Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia.
Present address: FB Rice Patent & Trade Mark Attorneys, 44 Market Street, Sydney, NSW 2000, Australia.
Amanda Y. Chong
Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia.
Weerachai Jaratlerdsiri
Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia.
Jaime Gongora
Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia.
Christopher Moran
Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia.
Andrés Iriarte
Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
John McCormack
Moore Laboratory of Zoology, Occidental College, Los Angeles, CA 90041, USA.
Shane C. Burgess
College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA.
Scott V. Edwards
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
Eric Lyons
School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA.
Christina Williams
Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA.
Matthew Breen
Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA.
Jason T. Howard
Howard Hughes Medical Institute, Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
Cathy R. Gresham
Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA.
Daniel G. Peterson
Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA.
Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS 39762, USA.
Jürgen Schmitz
Institute of Experimental Pathology (ZMBE), University of Münster, D-48149 Münster, Germany.
David D. Pollock
Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
David Haussler
Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA.
Howard Hughes Medical Institute, Bethesda, MD 20814, USA.
Eric W. Triplett
Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA.
Guojie Zhang
China National GeneBank, BGI-Shenzhen, Shenzhen, China.
Center for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
Naoki Irie
Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan.
Erich D. Jarvis
Howard Hughes Medical Institute, Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
Christopher A. Brochu
Department of Earth and Environmental Sciences, University of Iowa, Iowa City, IA 52242, USA.
Carl J. Schmidt
Department of Animal and Food Sciences, University of Delaware, Newark, DE 19717, USA.
Fiona M. McCarthy
School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA.
Brant C. Faircloth
Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90019, USA.
Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
Federico G. Hoffmann
Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA.
Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA.
Travis C. Glenn
Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA.
Toni Gabaldón
Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain.
Universitat Pompeu Fabra, 08003 Barcelona, Spain.
Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain.
Benedict Paten
Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA.
David A. Ray* [email protected]
Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA.
Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA.
Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.

Notes

*
Corresponding author. E-mail: [email protected] (R.E.G.); [email protected] (D.A.R.)

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Genome Evolution and the Future of Phylogenomics of Non-Avian Reptiles, Animals, 13, 3, (471), (2023).https://doi.org/10.3390/ani13030471
    Crossref
  2. Gaze following in Archosauria—Alligators and palaeognath birds suggest dinosaur origin of visual perspective taking, Science Advances, 9, 20, (2023)./doi/10.1126/sciadv.adf0405
    Abstract
  3. Evidence for ecotone speciation across an African rainforest‐savanna gradient, Molecular Ecology, (2023).https://doi.org/10.1111/mec.16867
    Crossref
  4. Genomes of two Extinct‐in‐the‐Wild reptiles from Christmas Island reveal distinct evolutionary histories and conservation insights, Molecular Ecology Resources, (2023).https://doi.org/10.1111/1755-0998.13780
    Crossref
  5. Evolution of the germline mutation rate across vertebrates, Nature, 615, 7951, (285-291), (2023).https://doi.org/10.1038/s41586-023-05752-y
    Crossref
  6. The effect of androgen exposure on cerebral lateralization in the American alligator (Alligator mississippiensis), General and Comparative Endocrinology, 336, (114248), (2023).https://doi.org/10.1016/j.ygcen.2023.114248
    Crossref
  7. Avian surfactant protein (SP)-A2 first arose in an early tetrapod before the divergence of amphibians and gradually lost the collagen domain, Developmental & Comparative Immunology, 139, (104582), (2023).https://doi.org/10.1016/j.dci.2022.104582
    Crossref
  8. Evolution and molecular basis of a novel allosteric property of crocodilian hemoglobin, Current Biology, 33, 1, (98-108.e4), (2023).https://doi.org/10.1016/j.cub.2022.11.049
    Crossref
  9. Visualizing genomic data: The mixing perspective, Biosystems, 224, (104839), (2023).https://doi.org/10.1016/j.biosystems.2023.104839
    Crossref
  10. Distinguishing Evolutionary Conservation from Derivedness, Life, 12, 3, (440), (2022).https://doi.org/10.3390/life12030440
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media