Advertisement
No access
Report

Senescent intimal foam cells are deleterious at all stages of atherosclerosis

Science
28 Oct 2016
Vol 354, Issue 6311
pp. 472-477

Wreaking havoc while (growth-)arrested

Cells enter a state of senescence in response to certain stresses. Studying mouse models, Childs et al. examined the role of senescent lipid-loaded macrophages (so-called “foam cells”) in the pathogenesis of atherosclerosis. At early stages of atherosclerosis, senescent foam cells promoted the expression of inflammatory cytokines. At later stages, they promoted the expression of matrix metalloproteases implicated in the rupture of atherosclerotic plaque, which can lead to blood clots. Experimental removal of the senescent cells had beneficial effects at both stages of the disease.
Science, this issue p. 472

Abstract

Advanced atherosclerotic lesions contain senescent cells, but the role of these cells in atherogenesis remains unclear. Using transgenic and pharmacological approaches to eliminate senescent cells in atherosclerosis-prone low-density lipoprotein receptor–deficient (Ldlr–/–) mice, we show that these cells are detrimental throughout disease pathogenesis. We find that foamy macrophages with senescence markers accumulate in the subendothelial space at the onset of atherosclerosis, where they drive pathology by increasing expression of key atherogenic and inflammatory cytokines and chemokines. In advanced lesions, senescent cells promote features of plaque instability, including elastic fiber degradation and fibrous cap thinning, by heightening metalloprotease production. Together, these results demonstrate that senescent cells are key drivers of atheroma formation and maturation and suggest that selective clearance of these cells by senolytic agents holds promise for the treatment of atherosclerosis.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Materials and Methods
Figs. S1 to S13
References (28, 29)

Resources

File (childs.sm.pdf)

References and Notes

1
Tabas I., García-Cardeña G., and Owens G. K., Recent insights into the cellular biology of atherosclerosis. J. Cell Biol. 209, 13–22 (2015).
2
Weber C. and Noels H., Atherosclerosis: Current pathogenesis and therapeutic options. Nat. Med. 17, 1410–1422 (2011).
3
Sakakura K., Nakano M., Otsuka F., Ladich E., Kolodgie F. D., and Virmani R., Pathophysiology of atherosclerosis plaque progression. Heart Lung Circ. 22, 399–411 (2013).
4
Gorenne I., Kavurma M., Scott S., and Bennett M., Vascular smooth muscle cell senescence in atherosclerosis. Cardiovasc. Res. 72, 9–17 (2006).
5
Minamino T., Miyauchi H., Yoshida T., Ishida Y., Yoshida H., and Komuro I., Endothelial cell senescence in human atherosclerosis: Role of telomere in endothelial dysfunction. Circulation 105, 1541–1544 (2002).
6
Wang J. C. and Bennett M., Aging and atherosclerosis: Mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ. Res. 111, 245–259 (2012).
7
Muñoz-Espín D. and Serrano M., Cellular senescence: From physiology to pathology. Nat. Rev. Mol. Cell Biol. 15, 482–496 (2014).
8
Wang J., Uryga A. K., Reinhold J., Figg N., Baker L., Finigan A., Gray K., Kumar S., Clarke M., and Bennett M., Vascular smooth muscle cell senescence promotes atherosclerosis and features of plaque vulnerability. Circulation 132, 1909–1919 (2015).
9
Khanna A. K., Enhanced susceptibility of cyclin kinase inhibitor p21 knockout mice to high fat diet induced atherosclerosis. J. Biomed. Sci. 16, 66 (2009).
10
Mercer J., Figg N., Stoneman V., Braganza D., and Bennett M. R., Endogenous p53 protects vascular smooth muscle cells from apoptosis and reduces atherosclerosis in ApoE knockout mice. Circ. Res. 96, 667–674 (2005).
11
González-Navarro H., Abu Nabah Y. N., Vinué A., Andrés-Manzano M. J., Collado M., Serrano M., and Andrés V., p19ARF deficiency reduces macrophage and vascular smooth muscle cell apoptosis and aggravates atherosclerosis. J. Am. Coll. Cardiol. 55, 2258–2268 (2010).
12
Wouters K., Cudejko C., Gijbels M. J. J., Fuentes L., Bantubungi K., Vanhoutte J., Dièvart R., Paquet C., Bouchaert E., Hannou S. A., Gizard F., Tailleux A., de Winther M. P. J., Staels B., and Paumelle R., Bone marrow p16INK4a-deficiency does not modulate obesity, glucose homeostasis or atherosclerosis development. PLOS ONE 7, e32440 (2012).
13
Kuo C. L., Murphy A. J., Sayers S., Li R., Yvan-Charvet L., Davis J. Z., Krishnamurthy J., Liu Y., Puig O., Sharpless N. E., Tall A. R., and Welch C. L., Cdkn2a is an atherosclerosis modifier locus that regulates monocyte/macrophage proliferation. Arterioscler. Thromb. Vasc. Biol. 31, 2483–2492 (2011).
14
Demaria M., Ohtani N., Youssef S. A., Rodier F., Toussaint W., Mitchell J. R., Laberge R.-M., Vijg J., Van Steeg H., Dollé M. E. T., Hoeijmakers J. H. J., de Bruin A., Hara E., and Campisi J., An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014).
15
Feil S., Fehrenbacher B., Lukowski R., Essmann F., Schulze-Osthoff K., Schaller M., and Feil R., Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis. Circ. Res. 115, 662–667 (2014).
16
Shankman L. S., Gomez D., Cherepanova O. A., Salmon M., Alencar G. F., Haskins R. M., Swiatlowska P., Newman A. A. C., Greene E. S., Straub A. C., Isakson B., Randolph G. J., and Owens G. K., KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat. Med. 21, 628–637 (2015).
17
Williams H., Johnson J. L., Carson K. G., and Jackson C. L., Characteristics of intact and ruptured atherosclerotic plaques in brachiocephalic arteries of apolipoprotein E knockout mice. Arterioscler. Thromb. Vasc. Biol. 22, 788–792 (2002).
18
Baker D. J., Wijshake T., Tchkonia T., LeBrasseur N. K., Childs B. G., van de Sluis B., Kirkland J. L., and van Deursen J. M., Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).
19
Baker D. J., Childs B. G., Durik M., Wijers M. E., Sieben C. J., Zhong J., Saltness R. A., Jeganathan K. B., Verzosa G. C., Pezeshki A., Khazaie K., Miller J. D., and van Deursen J. M., Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016).
20
Chang J., Wang Y., Shao L., Laberge R.-M., Demaria M., Campisi J., Janakiraman K., Sharpless N. E., Ding S., Feng W., Luo Y., Wang X., Aykin-Burns N., Krager K., Ponnappan U., Hauer-Jensen M., Meng A., and Zhou D., Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78–83 (2016).
21
Nakashima Y., Raines E. W., Plump A. S., Breslow J. L., and Ross R., Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler. Thromb. Vasc. Biol. 18, 842–851 (1998).
22
Johnson J. L. and Jackson C. L., Atherosclerotic plaque rupture in the apolipoprotein E knockout mouse. Atherosclerosis 154, 399–406 (2001).
23
Clarke M. C., Figg N., Maguire J. J., Davenport A. P., Goddard M., Littlewood T. D., and Bennett M. R., Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nat. Med. 12, 1075–1080 (2006).
24
Maldonado N., Kelly-Arnold A., Vengrenyuk Y., Laudier D., Fallon J. T., Virmani R., Cardoso L., and Weinbaum S., A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability: Potential implications for plaque rupture. Am. J. Physiol. Heart Circ. Physiol. 303, H619–H628 (2012).
25
Silvestre-Roig C., de Winther M. P., Weber C., Daemen M. J., Lutgens E., and Soehnlein O., Atherosclerotic plaque destabilization: Mechanisms, models, and therapeutic strategies. Circ. Res. 114, 214–226 (2014).
26
Ghaderian S. M., Akbarzadeh Najar R., and Tabatabaei Panah A. S., Genetic polymorphisms and plasma levels of matrix metalloproteinases and their relationships with developing acute myocardial infarction. Coron. Artery Dis. 21, 330–335 (2010).
27
Finn A. V., Nakano M., Narula J., Kolodgie F. D., and Virmani R., Concept of vulnerable/unstable plaque. Arterioscler. Thromb. Vasc. Biol. 30, 1282–1292 (2010).
28
Curado S., Stainier D. Y., and Anderson R. M., Nitroreductase-mediated cell/tissue ablation in zebrafish: A spatially and temporally controlled ablation method with applications in developmental and regeneration studies. Nat. Protoc. 3, 948–954 (2008).
29
Conover C. A., Mason M. A., Bale L. K., Harrington S. C., Nyegaard M., Oxvig C., and Overgaard M. T., Transgenic overexpression of pregnancy-associated plasma protein-A in murine arterial smooth muscle accelerates atherosclerotic lesion development. Am. J. Physiol. Heart Circ. Physiol. 299, H284–H291 (2010).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 354 | Issue 6311
28 October 2016

Submission history

Received: 11 March 2016
Accepted: 29 September 2016
Published in print: 28 October 2016

Permissions

Request permissions for this article.

Acknowledgments

We thank R.-M. Laberge and M. Demaria for sharing data on the senolytic properties of ABT263, as well as N. David, Y. Poon, M. Hofker, B. van de Sluis, and the van Deursen lab for helpful discussions. This work was supported by a grant from the Paul F. Glenn Foundation (to J.M.v.D. and D.J.B.) and NIH grants R01CA96985 and CA168709 (to J.M.v.D.). J.M.v.D. and J.C. are cofounders of Unity Biotechnology, a company developing senolytic medicines including small molecules that selectively eliminate senescent cells. J.M.v.D., D.J.B., B.G.C., and J.C. are co-inventors on patent applications licensed to or filed by Unity Biotechnology. The p16-3MR mice are available from J.C. under a material transfer agreement. INK-ATTAC and INK-NTR mice are available from J.M.v.D. under a material transfer agreement.

Authors

Affiliations

Bennett G. Childs
Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
Darren J. Baker
Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA.
Tobias Wijshake
Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA.
Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, Netherlands.
Cheryl A. Conover
Division of Endocrinology, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN 55905, USA.
Judith Campisi
Buck Institute for Research on Aging, Novato, CA 94945, USA.
Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Jan M. van Deursen* [email protected]
Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA.

Notes

*
Corresponding author. Email: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. IRF3 activates RB to authorize cGAS-STING–induced senescence and mitigate liver fibrosis, Science Advances, 10, 9, (2024)./doi/10.1126/sciadv.adj2102
    Abstract
  2. Genetic Markers of Endothelial Dysfunction, Endothelial Dysfunction - A Novel Paradigm, (2023).https://doi.org/10.5772/intechopen.109272
    Crossref
  3. New Senolysis Approach via Antibody–Drug Conjugate Targeting of the Senescent Cell Marker Apolipoprotein D for Skin Rejuvenation, International Journal of Molecular Sciences, 24, 6, (5857), (2023).https://doi.org/10.3390/ijms24065857
    Crossref
  4. Emerging Therapeutic Approaches to Target the Dark Side of Senescent Cells: New Hopes to Treat Aging as a Disease and to Delay Age-Related Pathologies, Cells, 12, 6, (915), (2023).https://doi.org/10.3390/cells12060915
    Crossref
  5. Exercise protects vascular function by countering senescent cells in older adults, Frontiers in Physiology, 14, (2023).https://doi.org/10.3389/fphys.2023.1138162
    Crossref
  6. cGAS-STING pathway as a potential trigger of immunosenescence and inflammaging, Frontiers in Immunology, 14, (2023).https://doi.org/10.3389/fimmu.2023.1132653
    Crossref
  7. Adipose tissue aging is regulated by an altered immune system, Frontiers in Immunology, 14, (2023).https://doi.org/10.3389/fimmu.2023.1125395
    Crossref
  8. Molecular signatures distinguish senescent cells from inflammatory cells in aged mouse callus stromal cells, Frontiers in Endocrinology, 14, (2023).https://doi.org/10.3389/fendo.2023.1090049
    Crossref
  9. Cell non-autonomous regulation of cerebrovascular aging processes by the somatotropic axis, Frontiers in Endocrinology, 14, (2023).https://doi.org/10.3389/fendo.2023.1087053
    Crossref
  10. Endothelial Senescence in Neurological Diseases, Aging and disease, (0), (2023).https://doi.org/10.14336/AD.2023.0226-1
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media