Advertisement

A window into Alzheimer’s disease

Alzheimer’s disease is pathologically defined by the accumulation of β-amyloid (Aβ) plaques and tau tangles. The cognitive and pathological correlates of Aβ deposition have been well studied owing to the availability of PET imaging ligands. Using newly available tau imaging agents, Brier et al. now explore relationships among tau pathology and Aβ with PET imaging, cerebrospinal fluid measures of disease, and cognition. Overall, tau imaging provided a more robust predictor of disease status than did Aβ imaging. Thus, whereas Aβ imaging provides a good marker for early disease state, tau imaging is a more robust predictor of disease progression.

Abstract

Alzheimer’s disease (AD) is characterized by two molecular pathologies: cerebral β-amyloidosis in the form of β-amyloid (Aβ) plaques and tauopathy in the form of neurofibrillary tangles, neuritic plaques, and neuropil threads. Until recently, only Aβ could be studied in humans using positron emission tomography (PET) imaging owing to a lack of tau PET imaging agents. Clinical pathological studies have linked tau pathology closely to the onset and progression of cognitive symptoms in patients with AD. We report PET imaging of tau and Aβ in a cohort of cognitively normal older adults and those with mild AD. Multivariate analyses identified unique disease-related stereotypical spatial patterns (topographies) for deposition of tau and Aβ. These PET imaging tau and Aβ topographies were spatially distinct but correlated with disease progression. Cerebrospinal fluid measures of tau, often used to stage preclinical AD, correlated with tau deposition in the temporal lobe. Tau deposition in the temporal lobe more closely tracked dementia status and was a better predictor of cognitive performance than Aβ deposition in any region of the brain. These data support models of AD where tau pathology closely tracks changes in brain function that are responsible for the onset of early symptoms in AD.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Methods
Fig. S1. PET tau and Aβ SUVR images from representative subjects in both the CDR0 and CDR>0 group.
Table S1. Analysis of variance (ANOVA) results related to SVD topographies.
Table S2. Mean PET and CSF correlation matrix.
Table S3. Regional regression β values.
Table S4. Comparison of PET tau SVD results.
Table S5. Leave-one-out analysis results.

Resources

File (8-338ra66_sm.pdf)
File (8-338ra66_table_s3.zip)

REFERENCES AND NOTES

1
Blennow K., de Leon M. J., Zetterberg H., Alzheimer’s disease. Lancet 368, 387–403 (2006).
2
Braak H., Braak E., Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).
3
Thal D. R., Rüb U., Orantes M., Braak H., Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58, 1791–1800 (2002).
4
Klunk W. E., Engler H., Nordberg A., Wang Y., Blomqvist G., Holt D. P., Bergström M., Savitcheva I., Huang G.-F., Estrada S., Ausén B., Debnath M. L., Barletta J., Price J. C., Sandell J., Lopresti B. J., Wall A., Koivisto P., Antoni G., Mathis C. A., Långström B., Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann. Neurol. 55, 306–319 (2004).
5
Mintun M. A., LaRossa G. N., Sheline Y. I., Dence C. S., Lee S. Y., Mach R. H., Klunk W. E., Mathis C. A., DeKosky S. T., Morris J. C., [11C]PIB in a nondemented population: Potential antecedent marker of Alzheimer disease. Neurology 67, 446–452 (2006).
6
Villemagne V. L., Fodero-Tavoletti M. T., Masters C. L., Rowe C. C., Tau imaging: Early progress and future directions. Lancet Neurol. 14, 114–124 (2015).
7
Hardy J. A., Higgins G. A., Alzheimer’s disease: The amyloid cascade hypothesis. Science 256, 184–185 (1992).
8
Jack C. R., Knopman D. S., Jagust W. J., Petersen R. C., Weiner M. W., Aisen P. S., Shaw L. M., Vemuri P., Wiste H. J., Weigand S. D., Lesnick T. G., Pankratz V. S., Donohue M. C., Trojanowski J. Q., Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12, 207–216 (2013).
9
Bateman R. J., Xiong C., Benzinger T. L. S., Fagan A. M., Goate A., Fox N. C., Marcus D. S., Cairns N. J., Xie X., Blazey T. M., Holtzman D. M., Santacruz A., Buckles V., Oliver A., Moulder K., Aisen P. S., Ghetti B., Klunk W. E., McDade E., Martins R. N., Masters C. L., Mayeux R., Ringman J. M., Rossor M. N., Schofield P. R., Sperling R. A., Salloway S., Morris J. C.; Dominantly Inherited Alzheimer Network, Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N. Engl. J. Med. 367, 795–804 (2012).
10
Perrin R. J., Fagan A. M., Holtzman D. M., Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease. Nature 461, 916–922 (2009).
11
Musiek E. S., Holtzman D. M., Three dimensions of the amyloid hypothesis: Time, space and ‘wingmen’. Nat. Neurosci. 18, 800–806 (2015).
12
Giannakopoulos P., Herrmann F. R., Bussière T., Bouras C., Kövari E., Perl D. P., Morrison J. H., Gold G., Hof P. R., Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology 60, 1495–1500 (2003).
13
Gómez-Isla T., Price J. L., McKeel D. W., Morris J. C., Growdon J. H., Hyman B. T., Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J. Neurosci. 16, 4491–4500 (1996).
14
Ingelsson M., Fukumoto H., Newell K. L., Growdon J. H., Hedley-Whyte E. T., Frosch M. P., Albert M. S., Hyman B. T., Irizarry M. C., Early Aβ accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology 62, 925–931 (2004).
15
Morris J. C., Price J. L., Pathologic correlates of nondemented aging, mild cognitive impairment, and early-stage Alzheimer’s disease. J. Mol. Neurosci. 17, 101–118 (2001).
16
Marquié M., Normandin M. D., Vanderburg C. R., Costantino I. M., Bien E. A., Rycyna L. G., Klunk W. E., Mathis C. A., Ikonomovic M. D., Debnath M. L., Vasdev N., Dickerson B. C., Gomperts S. N., Growdon J. H., Johnson K. A., Frosch M. P., Hyman B. T., Gómez-Isla T., Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann. Neurol. 78, 787–800 (2015).
17
Villain N., Chételat G., Grassiot B., Bourgeat P., Jones G., Ellis K. A., Ames D., Martins R. N., Eustache F., Salvado O., Masters C. L., Rowe C. C., Villemagne V. L., Regional dynamics of amyloid-β deposition in healthy elderly, mild cognitive impairment and Alzheimer’s disease: A voxelwise PiB–PET longitudinal study. Brain 135, 2126–2139 (2012).
18
Hampel H., Bürger K., Teipel S. J., Bokde A. L. W., Zetterberg H., Blennow K., Core candidate neurochemical and imaging biomarkers of Alzheimer’s disease. Alzheimers Dement. 4, 38–48 (2008).
19
Morris J. C., The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology 43, 2412–2414 (1993).
20
Chien D. T., Bahri S., Szardenings A. K., Walsh J. C., Mu F., Su M.-Y., Shankle W. R., Elizarov A., Kolb H. C., Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J. Alzheimers Dis. 34, 457–468 (2013).
21
Su Y., D’Angelo G. M., Vlassenko A. G., Zhou G., Snyder A. Z., Marcus D. S., Blazey T. M., Christensen J. J., Vora S., Morris J. C., Mintun M. A., Benzinger T. L. S., Quantitative analysis of PiB-PET with FreeSurfer ROIs. PLOS One 8, e73377 (2013).
22
Su Y., Blazey T. M., Snyder A. Z., Raichle M. E., Marcus D. S., Ances B. M., Bateman R. J., Cairns N. J., Aldea P., Cash L., Christensen J. J., Friedrichsen K., Hornbeck R. C., Farrar A. M., Owen C. J., Mayeux R., Brickman A. M., Klunk W., Price J. C., Thompson P. M., Ghetti B., Saykin A. J., Sperling R. A., Johnson K. A., Schofield P. R., Buckles V., Morris J. C., Benzinger T. L. S.Dominantly Inherited Alzheimer Network, Partial volume correction in quantitative amyloid imaging. Neuroimage 107, 55–64 (2015).
23
Sperling R. A., Aisen P. S., Beckett L. A., Bennett D. A., Craft S., Fagan A. M., Iwatsubo T., Jack C. R., Kaye J., Montine T. J., Park D. C., Reiman E. M., Rowe C. C., Siemers E., Stern Y., Yaffe K., Carrillo M. C., Thies B., Morrison-Bogorad M., Wagster M. V., Phelps C. H., Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7, 280–292 (2011).
24
Jack C. R., Knopman D. S., Weigand S. D., Wiste H. J., Vemuri P., Lowe V., Kantarci K., Gunter J. L., Senjem M. L., Ivnik R. J., Roberts R. O., Rocca W. A., Boeve B. F., Petersen R. C., An operational approach to National Institute on Aging-Alzheimer’s Association criteria for preclinical Alzheimer disease. Ann. Neurol. 71, 765–775 (2012).
25
Lockhart R., Taylor J., Tibshirani R. J., Tibshirani R., A significance test for the lasso. Ann. Stat. 42, 413–468 (2014).
26
Tibshirani R., Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. B Met. 58, 267–288 (1996).
27
Zou H., Hastie T., Regularization and variable selection via the elastic net. J. Roy. Stat. Soc. B 67, 301–320 (2005).
28
Small G. W., Kepe V., Ercoli L. M., Siddarth P., Bookheimer S. Y., Miller K. J., Lavretsky H., Burggren A. C., Cole G. M., Vinters H. V., Thompson P. M., Huang S.-C., Satyamurthy N., Phelps M. E., Barrio J. R., PET of brain amyloid and tau in mild cognitive impairment. N. Engl. J. Med. 355, 2652–2663 (2006).
29
Shin J., Lee S.-Y., Kim S.-H., Kim Y.-B., Cho S.-J., Multitracer PET imaging of amyloid plaques and neurofibrillary tangles in Alzheimer’s disease. Neuroimage 43, 236–244 (2008).
30
Xia C.-F., Arteaga J., Chen G., Gangadharmath U., Gomez L. F., Kasi D., Lam C., Liang Q., Liu C., Mocharla V. P., Mu F., Sinha A., Su H., Szardenings A. K., Walsh J. C., Wang E., Yu C., Zhang W., Zhao T., Kolb H. C., [18F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimers Dement. 9, 666–676 (2013).
31
Fodero-Tavoletti M. T., Okamura N., Furumoto S., Mulligan R. S., Connor A. R., McLean C. A., Cao D., Rigopoulos A., Cartwright G. A., O’Keefe G., Gong S., Adlard P. A., Barnham K. J., Rowe C. C., Masters C. L., Kudo Y., Cappai R., Yanai K., Villemagne V. L., 18F-THK523: A novel in vivo tau imaging ligand for Alzheimer’s disease. Brain 134, 1089–1100 (2011).
32
Chien D. T., Szardenings A. K., Bahri S., Walsh J. C., Mu F., Xia C., Shankle W. R., Lerner A. J., Su M.-Y., Elizarov A., Kolb H. C., Early clinical PET imaging results with the novel PHF-tau radioligand [F18]-T808. J. Alzheimers Dis. 38, 171–184 (2014).
33
Maruyama M., Shimada H., Suhara T., Shinotoh H., Ji B., Maeda J., Zhang M.-R., Trojanowski J. Q., Lee V. M.-Y., Ono M., Masamoto K., Takano H., Sahara N., Iwata N., Okamura N., Furumoto S., Kudo Y., Chang Q., Saido T. C., Takashima A., Lewis J., Jang M.-K., Aoki I., Ito H., Higuchi M., Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron 79, 1094–1108 (2013).
34
Okamura N., Furumoto S., Fodero-Tavoletti M. T., Mulligan R. S., Harada R., Yates P., Pejoska S., Kudo Y., Masters C. L., Yanai K., Rowe C. C., Villemagne V. L., Non-invasive assessment of Alzheimer’s disease neurofibrillary pathology using 18F-THK5105 PET. Brain 137 (Pt. 6), 1762–1771 (2014).
35
Villemagne V. L., Furumoto S., Fodero-Tavoletti M. T., Mulligan R. S., Hodges J., Harada R., Yates P., Piguet O., Pejoska S., Doré V., Yanai K., Masters C. L., Kudo Y., Rowe C. C., Okamura N., In vivo evaluation of a novel tau imaging tracer for Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging 41, 816–826 (2014).
36
Friston K. J., Frith C. D., Liddle P. F., Frackowiak R. S. J., Functional connectivity: The principal-component analysis of large (PET) data sets. J. Cereb. Blood Flow Metab. 13, 5–14 (1993).
37
Hardy J., Duff K., Hardy K. G., Perez-Tur J., Hutton M., Genetic dissection of Alzheimer’s disease and related dementias: Amyloid and its relationship to tau. Nat. Neurosci. 1, 355–358 (1998).
38
Clinton L. K., Blurton-Jones M., Myczek K., Trojanowski J. Q., LaFerla F. M., Synergistic Interactions between Aβ, tau, and α-synuclein: Acceleration of neuropathology and cognitive decline. J. Neurosci. 30, 7281–7289 (2010).
39
Fagan A. M., Holtzman D. M., Cerebrospinal fluid biomarkers of Alzheimer’s disease. Biomark. Med. 4, 51–63 (2010).
40
Maia L. F., Kaeser S. A., Reichwald J., Hruscha M., Martus P., Staufenbiel M., Jucker M., Changes in amyloid-β and Tau in the cerebrospinal fluid of transgenic mice overexpressing amyloid precursor protein. Sci. Transl. Med. 5, 194re2 (2013).
41
Johnson D. K., Storandt M., Morris J. C., Galvin J. E., Longitudinal study of the transition from healthy aging to Alzheimer disease. Arch. Neurol. 66, 1254–1259 (2009).
42
Grober E., Buschke H., Crystal H., Bang S., Dresner R., Screening for dementia by memory testing. Neurology 38, 900–903 (1988).
43
Rubin E. H., Storandt M., Miller J. P., Kinscherf D. A., Grant E. A., Morris J. C., Berg L., A prospective study of cognitive function and onset of dementia in cognitively healthy elders. Arch. Neurol. 55, 395–401 (1998).
44
D. Wechsler, WMS-R: Wechsler Memory Scale-Revised Manual (Harcourt Brace Jovanovich, San Antonio, TX, 1987).
45
Doppelt J. E., Wallace W. L., Standardization of the Wechsler adult intelligence scale for older persons. J. Abnorm. Psychol. 51, 312–330 (1955).
46
H. Goodglass, E. Kaplan, The Assessment of Aphasia and Related Disorders (Lea & Febiger, Philadelphia, PA, 1983).
47
S. G. Armitage, An analysis of certain psychological tests used for the evaluation of brain injury, in Psychological Monographs: General and Applied (American Psychological Association, Washington, DC, 1946).
48
Fagan A. M., Mintun M. A., Mach R. H., Lee S.-Y., Dence C. S., Shah A. R., LaRossa G. N., Spinner M. L., Klunk W. E., Mathis C. A., DeKosky S. T., Morris J. C., Holtzman D. M., Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Aβ42 in humans. Ann. Neurol. 59, 512–519 (2006).
49
Tarawneh R., D’Angelo G., Macy E., Xiong C., Carter D., Cairns N. J., Fagan A. M., Head D., Mintun M. A., Ladenson J. H., Lee J.-M., Morris J. C., Holtzman D. M., Visinin-like protein-1: Diagnostic and prognostic biomarker in Alzheimer disease. Ann. Neurol. 70, 274–285 (2011).
50
G. G. Roussas, A First Course in Mathematical Statistics (Addison-Wesley Pub. Co., Reading, MA, 1973).
51
C. E. Weatherburn, A First Course in Mathematical Statistics (The Cambridge Univ. Press, Cambridge, MA, 1946).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science Translational Medicine
Volume 8 | Issue 338
May 2016

Submission history

Received: 12 January 2016
Accepted: 22 April 2016

Permissions

Request permissions for this article.

Acknowledgments

This study was funded by NIH grants P50AG05681, P01AG003991, P01AG026276, 5P30NS048056, 2UL1TR000448, and 5RO1AG04343404 and NSF grant DMS1300280. Funding was also provided by Charles F. and Joanne Knight Alzheimer’s Research Initiative, Hope Center for Neurological Disorders, and a generous support from Fred Simmons and Olga Mohan Fund and Paula and Rodger Riney Fund. Avid Radiopharmaceuticals (a wholly owned subsidiary of Eli Lilly) provided florbetapir doses and partial financial support for the florbetapir scanning sessions. Avid Radiopharmaceuticals also provided the precursor for T807 and radiopharmaceutical chemistry and technology for the Washington University Investigational New Drug, under which this study was performed. Author contributions: M.R.B. developed the methodology, performed formal analysis, and wrote the paper; B.G. performed formal analysis; K.F. curated the data and developed the methodology; J.M. and A.S. developed the methodology and computation; J.C. performed formal analysis and curated the data; P.A. performed project administration and was responsible for subject accrual; Y.S. developed the methodology; J.H. contributed resources; N.J.C., D.M.H., A.M.F., and J.C.M. contributed to study conception, resources, and project administration; and B.M.A. and T.L.S.B. provided supervision and conception of the study. The staff of the Imaging Core at the Knight Alzheimer’s Disease Research Center performed imaging acquisition. All authors critically revised the manuscript. Competing interests: D.M.H. is co-founder of and on the scientific advisory board for C2N Diagnostics and consults for Genentech, Eli Lilly, AbbVie, Denali, and NeuroPhage. A.M.F. is on the scientific advisory board for IBL International and Roche and is a consultant for DiamiR. J.M. consults for Lilly and Takeda. B.G. is participating in a clinical trial with Avid Radiopharmaceuticals. Data and materials availability: These data are available by request at the Knight Alzheimer’s Disease Research Center at Washington University in St. Louis. AV-1451 was produced under a material transfer agreement between Washington University and Avid Radiopharmaceuticals.

Authors

Affiliations

Matthew R. Brier
Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA.
Brian Gordon
Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA.
Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA.
Karl Friedrichsen
Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA.
John McCarthy
Department of Mathematics, Washington University in St. Louis, St. Louis, MO 63110, USA.
Ari Stern
Department of Mathematics, Washington University in St. Louis, St. Louis, MO 63110, USA.
Jon Christensen
Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA.
Christopher Owen
Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA.
Patricia Aldea
Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA.
Yi Su
Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA.
Jason Hassenstab
Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA.
Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA.
Nigel J. Cairns
Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA.
Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA.
Department of Pathology, Washington University in St. Louis, St. Louis, MO 63110, USA.
David M. Holtzman
Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA.
Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA.
Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110, USA.
Anne M. Fagan
Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA.
Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA.
Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110, USA.
John C. Morris
Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA.
Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA.
Department of Pathology, Washington University in St. Louis, St. Louis, MO 63110, USA.
Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110, USA.
Tammie L. S. Benzinger*
Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA.
Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA.
Department of Neurosurgery, Washington University in St. Louis, St. Louis, MO 63110, USA.
Beau M. Ances*, [email protected]
Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA.
Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA.
Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA.
Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110, USA.

Notes

*
These authors contributed equally to this work.
Corresponding author. Email: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Do tau-synaptic long-term depression interactions in the hippocampus play a pivotal role in the progression of Alzheimer’s disease?, Neural Regeneration Research, 18, 6, (1213), (2023).https://doi.org/10.4103/1673-5374.360166
    Crossref
  2. Comparison Between 18 F-Florapronol and 18 F-Florbetaben Imaging in Patients With Cognitive Impairment , Journal of Clinical Neurology, 19, (2023).https://doi.org/10.3988/jcn.2022.0207
    Crossref
  3. Hypoperfusion Precedes Tau Deposition in the Entorhinal Cortex: A Retrospective Evaluation of ADNI-2 Data, Journal of Clinical Neurology, 19, 2, (131), (2023).https://doi.org/10.3988/jcn.2022.0088
    Crossref
  4. PHPB Attenuated Cognitive Impairment in Type 2 Diabetic KK-Ay Mice by Modulating SIRT1/Insulin Signaling Pathway and Inhibiting Generation of AGEs, Pharmaceuticals, 16, 2, (305), (2023).https://doi.org/10.3390/ph16020305
    Crossref
  5. Humulus lupulus L. Extract Protects against Senior Osteoporosis through Inhibiting Amyloid β Deposition and Oxidative Stress in APP/PS1 Mutated Transgenic Mice and Osteoblasts, Molecules, 28, 2, (583), (2023).https://doi.org/10.3390/molecules28020583
    Crossref
  6. The Future of Precision Medicine in the Cure of Alzheimer’s Disease, Biomedicines, 11, 2, (335), (2023).https://doi.org/10.3390/biomedicines11020335
    Crossref
  7. The Sensitivity of Tau Tracers for the Discrimination of Alzheimer’s Disease Patients and Healthy Controls by PET, Biomolecules, 13, 2, (290), (2023).https://doi.org/10.3390/biom13020290
    Crossref
  8. Tau protein plays a role in the mechanism of cognitive disorders induced by anesthetic drugs, Frontiers in Neuroscience, 17, (2023).https://doi.org/10.3389/fnins.2023.1145318
    Crossref
  9. Untangling the Role of Tau in Huntington’s Disease Pathology, Journal of Huntington's Disease, (1-15), (2023).https://doi.org/10.3233/JHD-220557
    Crossref
  10. The Alzheimer’s Disease Mitochondrial Cascade Hypothesis: A Current Overview, Journal of Alzheimer's Disease, 92, 3, (751-768), (2023).https://doi.org/10.3233/JAD-221286
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media