Skip to main content
Log in

Study of brine–halite phase separation through optical constringence and molecular dynamics

  • Regular Article - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

This work presents a study of the reciprocal dispersive power, also known as constringence or Abbe number of an aqueous solution of NaCl in a wide range of concentrations. The constringence exhibited a distinct behavior in the region close to the phase transition between a phase containing exclusively brine and a phase containing brine+halite. Molecular dynamics simulations of this system indicated the existence of halite formation below the known saturation curve, which agreed with the experimental measurements, indicating a crystal growth in the unsaturated region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Yu, J. Geophys. Res. 116, C10025 (2011). https://doi.org/10.1029/2010JC006937

    Article  ADS  Google Scholar 

  2. J. Cullum, D.P. Stevens, M.M. Joshi, P. Natl, Acad. Sci. USA 113, 4278–4283 (2016). https://doi.org/10.1073/pnas.1522034113

    Article  ADS  Google Scholar 

  3. J.M. Laskar, P.S. Kumar, S. Herminghaus, K.E. Daniels, M. Schroter, Appl. Opt. 55, 3165–3169 (2016). https://doi.org/10.1364/AO.55.003165

    Article  ADS  Google Scholar 

  4. B.R.T.M. Rawdon, M.P. Appleby, Proc. R. Soc. Lond. A 85, 489–505 (1911). https://doi.org/10.1098/rspa.1911.0063

    Article  ADS  Google Scholar 

  5. W.F. Linke, A. Seidell, Solubilities, Inorganic and Metal-Organic Compounds: K–Z: A Compilation of Solubility Data from the Periodical Literature, 4th edn. (American Chemical Society, Washington, DC, 1958)

    Google Scholar 

  6. R.D. Guenther, Modern Optics (Wiley international edition, Wiley, 1990)

  7. E. Hecht, Optics (Pearson education, Addison-Wesley, Boston, 2002)

    Google Scholar 

  8. S. Wiederseiner, N. Andreini, G. Epely Chauvin, C. Ancey, Exp. Fluids 50, 1183–1206 (2011). https://doi.org/10.1007/s00348-010-0996-8

    Article  Google Scholar 

  9. H. Ohtaki, N. Fukushima, Pure Appl. Chem. 63, 1743–1748 (1991). https://doi.org/10.1351/pac199163121743

    Article  Google Scholar 

  10. D. Zahn, Phys. Rev. Lett. 92, 040801 (2004). https://doi.org/10.1103/PhysRevLett.92.040801

    Article  ADS  Google Scholar 

  11. I.G. Nahtigal, A.Y. Zasetsky, I.M. Svishchev, J. Phys. Chem. B 112, 7537–7543 (2008). https://doi.org/10.1021/jp709688g

    Article  Google Scholar 

  12. D. Chakraborty, G.N. Patey, J. Phys. Chem. Lett. 4, 573–578 (2013). https://doi.org/10.1021/jz302065w

    Article  Google Scholar 

  13. S. Plimpton, J. Comput. Phys. 117, 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  ADS  Google Scholar 

  14. J. Alejandre, G.A. Chapela, F. Bresme, J.P. Hansen, J. Chem. Phys. 130, 174505 (2009). https://doi.org/10.1063/1.3124184

    Article  ADS  Google Scholar 

  15. A.K. Giri, E. Spohr, J. Mol. Liq. 228, 63–70 (2017). https://doi.org/10.1016/j.molliq.2016.09.089

    Article  Google Scholar 

  16. H.A. Lorentz, Ann. Phys. 248, 127–136 (1881). https://doi.org/10.1002/andp.18812480110

    Article  Google Scholar 

  17. D. Berthelot, Compt. Rendus 126, 1703–1706 (1898)

    Google Scholar 

  18. C.-Y. Tan, Y.-X. Huang, J. Chem. Eng. Data 60, 2827–2833 (2015). https://doi.org/10.1021/acs.jced.5b00018

    Article  Google Scholar 

  19. J.V. Leyendekkers, R.J. Hunter, J. Chem. Eng. Data 22, 427–431 (1977). https://doi.org/10.1021/je60075a019

    Article  Google Scholar 

  20. C.C. Wang, J.Y. Tan, L.H. Liu, Appl. Opt. 56, 7662 (2017). https://doi.org/10.1364/AO.56.007662

    Article  ADS  Google Scholar 

  21. X. Li, L. Liu, J. Zhao, J. Tan, Appl. Spectrosc. 69, 635–640 (2015). https://doi.org/10.1366/14-07769R

    Article  ADS  Google Scholar 

  22. W.M.B.M. Yunus, A.B.A. Rahman, Appl. Opt. 27, 3341 (1988). https://doi.org/10.1364/AO.27.003341

    Article  ADS  Google Scholar 

  23. P. Valley, N. Savidis, J. Schwiegerling, M.R. Dodge, G. Peyman, N. Peyghambarian, Opt. Exp. 19, 7468 (2011). https://doi.org/10.1364/OE.19.007468

    Article  Google Scholar 

  24. A.N. Bashkatov, E.A. Genina, Proc. SPIE 5068, 393–395 (2003). https://doi.org/10.1117/12.518857

    Article  ADS  Google Scholar 

  25. J. Israelachvili, Intermolecular and Surface Forces (Academic Press, New York, 2011). https://doi.org/10.1016/C2009-0-21560-1

    Book  Google Scholar 

  26. T. Satoh, K. Hayashi, J. Phys. Soc. Jpn. 15, 1658–1663 (1960). https://doi.org/10.1143/JPSJ.15.1658

    Article  ADS  Google Scholar 

  27. W. Zhang, X. Chen, Y. Wang, L. Wu, Y. Hu, ACS Omega 5, 22465–22474 (2020). https://doi.org/10.1021/acsomega.0c03013

    Article  Google Scholar 

  28. Y. Iwadate, K. Kikuchi, K. Igarashi, J. Modiinaga, Z. Naturforsch. 37a, 1284–1288 (1982). https://doi.org/10.1515/zna-1982-1112

    Article  ADS  Google Scholar 

  29. H.H. Li, J. Phys. Chem. Ref. Data 5, 329 (1976). https://doi.org/10.1063/1.555536

    Article  ADS  Google Scholar 

  30. P. Bharmoria, H. Gupta, V.P. Mohandas, P.K. Ghosh, A. Kumar, J. Phys. Chem. B 116, 11712–11719 (2012). https://doi.org/10.1021/jp307261g

    Article  Google Scholar 

  31. A.S. Wexler, K. Patel, M. Gen, C.K. Chan, ACS Omega 5, 8754–8765 (2020). https://doi.org/10.1021/acsomega.0c00311

    Article  Google Scholar 

  32. C.S. Widodo, H. Sela, D.R. Santosa, AIP Conf. Proc. 2021, 050003 (2018). https://doi.org/10.1063/1.5062753

    Article  Google Scholar 

  33. A.B. de Haan, H.B. Eral, B. Schuur, Industrial Separation Process: Fundamentals, ch. 8 (de Gruyter, Berlin, Boston, 2020). https://doi.org/10.1515/9783110654806-008

  34. W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 14, 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5

    Article  Google Scholar 

  35. Q. Sun, S. Cui, M. Zhang, Crystals 10, 107 (2020). https://doi.org/10.3390/cryst10020107

    Article  Google Scholar 

  36. S. Karthika, T.K. Radhakrishnan, P. Kalaichelvi, Cryst. Growth Des. 16, 6663–6681 (2016). https://doi.org/10.1021/acs.cgd.6b00794

  37. J.W.P. Schmelzer, A.S. Abyzov, Thermal Physics and Thermal Analysis, in From Macro to Micro, Highlighting Thermodynamics, Kinetics and Nanomaterials. ed. by J. Šesták, P. Hubík, J.J. Mareš (Springer, Cham, 2017), pp. 195–211

    Google Scholar 

  38. T. Nakamuro, M. Sakakibara, H. Nada, K. Harano, E. Nakamura, J. Am. Chem. Soc. 143, 1763–1767 (2021). https://doi.org/10.1021/jacs.0c12100

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from INCT-FCx, CNPq, CAPES (Proc. \(\hbox {n}^{\circ }\) 88882.316859/2019-01), SETI, and Fundaçáo Araucária, and for the technical support from C-LabMu (UEPG). Authors are also grateful to CENAPAD-SP Supercomputers.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to Rozane F. Turchiello.

Ethics declarations

Conflict of interest

None conflict.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors consent to publish the results.

Availability of data and material

All data are available.

Code availability

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenart, V.M., de Lara, L.S., Gómez, S.L. et al. Study of brine–halite phase separation through optical constringence and molecular dynamics. Eur. Phys. J. E 45, 57 (2022). https://doi.org/10.1140/epje/s10189-022-00214-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-022-00214-1

Navigation