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Ischemia-reperfusion (I-R) injury is damage caused by restoring blood flow into ischemic tissues or organs. This complex and
characteristic lesion accelerates cell death induced by signaling pathways such as apoptosis, necrosis, and even ferroptosis. In
addition to the direct association between I-R and the release of reactive oxygen species and reactive nitrogen species, it is
involved in developing mitochondrial oxidative damage. Thus, its mechanism plays a critical role via reactive species
scavenging, calcium overload modulation, electron transport chain blocking, mitochondrial permeability transition pore
activation, or noncoding RNA transcription. Other receptors and molecules reduce tissue and organ damage caused by this
pathology and other related diseases. These molecular targets have been gradually discovered and have essential roles in I-R
resolution. Therefore, the current study is aimed at highlighting the importance of these discoveries. In this review, we inquire
about the oxidative damage receptors that are relevant to reducing the damage induced by oxidative stress associated with I-R.
Several complications on surgical techniques and pathology interventions do not mitigate the damage caused by I-R.
Nevertheless, these therapies developed using alternative targets could work as coadjuvants in tissue transplants or I-R-related
pathologies

1. Introduction

Ischemia-reperfusion (I-R) injury is a cellular phenomenon
caused by the interruption of oxygen flow and the consecu-
tive restoration of oxygen concentration, which is known as
reperfusion [1]. The reperfusion of ischemic tissues sub-
jected to arterial occlusion causes the formation of a charac-
teristic lesion that accelerates apoptosis and necrosis
development [2]. I-R occurs in individuals with multiple
pathologies and those receiving an intervention. Thus, it is
inevitable in different conditions, such as cardiac, thoracic,

and peripheral vascular diseases, and interventions, includ-
ing major vascular surgery and solid organ transplantation
[3–5]. Although the prevalence of ischemia is high, the treat-
ment and preventive strategies for this lesion are not stan-
dardized or, simply, not effective enough to resolve damage
[6]. Due to the impact of this condition on health systems
and its epidemiological distribution, preventive pharmaco-
logical strategy is needed urgently. Even when effective ther-
apy is necessary, I-R injury is still poorly understood, and
researchers are looking for alternatives or relevant molecular
targets that can modulate damage induced by this injury [7].
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To date, I-R is characterized by an augmented inflammatory
reaction that increases the expression of reactive oxygen spe-
cies and reactive nitrogen species, which exacerbate tissue
damage [8]. Hypoxia-inducible factors (HIF) are oxygen-
regulated transcription factors that play important roles in
the detection and adaptation of hypoxia [9]. Besides, they
act as critical effectors in response to reduced oxygen levels
and have a large number of genes under their control [10].
The expression of HIF-1α together with the generation of
mitochondrial reactive oxygen species (ROS) is reinforced
in response to ischemic oxidative stress [11]. In hypoxia,
HIF-1α stabilizes by the accumulation of elevated levels of
ROS generated from complex III in the mitochondria [11].
The mechanism behind this is oxidative inactivation of non-
heme iron at the catalytic site of the enzyme prolyl hydrox-
ylase [12]. Notably, ROS driven by hypoxia activates NF-kB
and other transcription factors such as nuclear factor ery-
throid 2-related factor 2 (NrF2), which plays a vital role in
the regulation of protein transcription involved in antioxi-
dant defense [13]. The mitogen-activated protein kinase
(MAPK) pathway has important implications as it interacts
with ROS, which leads to a higher expression of vascular
endothelial growth factor (VEFG) [14, 15]. The increased
expressions of vascular endothelial growth factor (VEGF)
and its receptors VEGF-R1 and R2 play a part in the activa-
tion of HIF-1α by ROS, and they have fundamental roles in
maximizing cell survival [16]. Moreover, ROS activates other
intracellular signaling pathways including MAPK, NF-kB,
and upstream of MMP [17]. In addition, mitochondrial
ROS can enhance damage via different mechanisms, such
as mitochondrial permeability induction, ROS-mediated
inflammatory and proapoptotic signaling, extracellular
remodeling, and primarily oxidative damage in structures
and intramitochondrial molecules, which contribute to the
development of I-R lesion [18]. The therapeutic value of
mitochondrial ROS attenuation in modulating I-R damage
to the cell must be emphasized. Hence, effective therapeutic
alternatives for ischemic reconditioning and tissue prepara-
tion for a possible ischemic event can be developed [19].
Research continues its course. However, certain points must
be clarified, and the active principles and crucial receptors
that can be an alternative for modulating this phenomenon
should be determined [20].

The I-R phenomenon is poorly understood and highly
variable between tissues. Although multiple mechanisms
are known day by day, there is no effective therapy in clinical
phases to date [21]. However, the design of effective therapy
is necessary due to the significant relationship between this
phenomenon and multiple cardio-obstructive pathologies
and surgical procedures [22]. Two main approaches come
to light: inflammation and oxidative stress induced by I-R
damage [23]. Oxidative stress is very relevant due to the
multiple opportunities for damage control. Unfortunately,
the mechanisms are not applied. That is the reason for doing
this work. Specify and conceptualize the main therapeutic
targets towards which the pharmacological designs that
allow a resolution of ischemic pathologies should be ori-
ented. Therefore, the current study is aimed at providing
ideas and research objectives for resolving oxidative and

mitochondrial damage to modulate I-R injury in different
tissues.

2. Ischemia-Reperfusion

Over the years, the concept of I-R has been changing and
developing, thereby making us closer to discovering or
establishing effective therapeutic interventions [7]. In I-R
injury, triggering mechanisms begin at the time of arterial
blood flow interruption in a tissue or organ, which produces
an imbalance of metabolic substrates, leading to hypoxia
[18]. I-R is a critical clinical condition, and physicians find
it challenging to manage as it requires the preservation of
tissue or organ function among individuals with different
pathologies or those undergoing surgical procedures [6].
However, in clinical practice, the outcomes after reperfusion
in ischemic tissues are far from optimal, and numerous
damages are induced to the tissues [24]. As a consequence,
reoxygenation is correlated with the exacerbation of local tis-
sue injury and severe local or systemic inflammatory
response. This was observed in tissues subjected to I-R,
which are comparable with the degree of necrosis observed
24 h after permanent ischemia [25]. Cell dysfunction, dam-
age, and death are associated with the magnitude and dura-
tion of ischemia. Therefore, blood flow restoration is still
based on injury resolution. However, not all tissues or
organs respond similarly to ischemic insult; thus, reperfu-
sion is important to improve cell necrosis [26, 27].

3. Mitochondrial Oxidative Damage in
Ischemia-Reperfusion Injury

Mitochondrial oxidative damage is important for the
development of I-R, which is directly correlated with mito-
chondrial ROS and reactive nitrogen species (RNS) forma-
tion [28]. In myocardial infarction, the heart requires
substantial amounts of energy from phosphates to main-
tain function and transport [29]. Nevertheless, ATP must
be continually synthesized by the oxidative substrate in
the mitochondria, thereby increasing the demand for reac-
tive species formation [22]. The inhibition of electron flow
along the respiratory chain leads to energy conservation.
In addition, limited oxygen supply can inhibit mitochon-
drial complex IV, which blocks electron transfer to molec-
ular oxygen and reduces ATP concentrations [30]. During
the ischemic phase, ATP concentrations are unsuccessfully
maintained by glycolysis; hence, the condition further
exacerbates, which leads to lactic acid accumulation. Next,
intracellular pH decreases. Simultaneously, the Na+/H+

antiporter is activated in response to decreased cytosolic
hydrogen potential. The cell is overloaded with Na+, which
cannot be pumped out of the cell by Na/K-ATPase. If the
ATP concentrations are low due to decreased inner mito-
chondrial membrane gradient, FOF1-ATPase hydrolyzes
ATP to regulate the condition [31]. Due to the inability
of the mitochondria to produce significant amounts of
ATP, compensatory anaerobic glycolysis occurs as a reso-
lution mechanism. However, paradoxically, a considerable
amount of this ATP will be hydrolyzed by FOF1-ATPase
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[32]. Concurrently, Na+ can prevent the release of Ca2+ by
the Na+ /Ca2+ antiporter, thereby attempting to reverse the
process. Calcium could enter the cytosol or even the mito-
chondria via the reversal of the Na+/Ca2+ antiporter mech-
anism [18]. However, the mitochondrial matrix absorbs
Ca2+ after the reperfusion process via the uniporter, which
then overloads the matrix with this ion. The opening of
the mitochondrial permeability transition pore (mPTP) is
one of the essential mitochondrial mechanisms in I-R.
These pores are strictly linked with mitochondrial ROS
and RNS release. Mitochondrial permeability allows ions
and solutes with a low weight to freely move between
the mitochondrial matrixes [33]. The main concept of
mPTP was considered as an in vitro artifact without any
pathophysiological significance. A previous study has later
supported this notion and confirmed their role in the
development of some diseases [34]. ROS are some of the
main triggers of mPTP opening by overloading the matrix
with high Ca2+ concentrations. However, there are other
factors and molecules implicated in reperfusion. One of
them is the influx of oxygen in anoxic cells, which leads
to the formation of free radicals, a consequence of respira-
tory chain inhibition [34]. Almost all free radicals may be
produced via the activation of xanthine oxidase. This
enzyme is activated in hypoxia during ischemia [35].

In addition to cellular phosphate and depleted adenine
nucleotide levels, which are commonly correlated with the
ischemia process, high Ca2+ concentrations and oxidative
stress conditions can activate mPTP [35]. During the reper-
fusion phase, the pH returns to preischemic insult values.
This phenomenon is attributed to the activity of Na+/H+

antiporter that grants the release of lactic acid, which makes
mPTP relevant and facilitates its full ability to exhibit its
effect [36].

4. Oxidative Molecular Mechanisms Involved in
Ischemia-Reperfusion Injury

There are complementary processes that are directly or
indirectly correlated with mitochondrial oxidative stress
and that play an essential role in the development of I-R
injury [37]. Events, such as increased cations at the cyto-
solic level, mitochondrial injury, formation of oxidative
and nitrosative species, transcriptional reprogramming,
apoptosis activation processes, autophagy, necrosis, inflam-
mation, immunity-mediated injury, endothelial injury,
activation of ferroptosis, and the nonreflux phenomenon,
are triggered or enhanced by blood flow obstruction and
restoration [38].

4.1. Calcium Overload. Calcium overload and cytosolic cat-
ion increment are the initial mechanisms activated after
the start of ischemia. All tissues and cells affected by this
condition become dependent on anaerobic glycolysis ATP
supply [39]. However, as an alternative for restoring pH to
normal levels, some anticarriers including Na+/H+ are acti-
vated to address the accumulation of cytosolic Ca2+. Never-
theless, the expression of cytosolic Ca2+ is even higher
during reperfusion, when the removal of H+ ions of extracel-

lular origin paradoxically raises the proton gradient, thereby
accelerating the proton exchange function [40]. All these
events and alterations as well as high Ca2+ concentrations
activate different pathways involved in I-R-induced cell
death. Pumping up Ca+ directly to the mitochondria via
Ca2+ uniporters is a mechanism that can help cells manage
Ca+ overload [41].

4.2. Formation of Reactive Oxygen and Nitrogen Species in
Mitochondria. ROSs are normally produced in the mito-
chondria, endoplasmic reticulum, plasma membrane, and
cytoplasm during physiological metabolic processes [42].
ROS and RNS production in the cell starts with the reduc-
tion of oxygen and nitrogen levels, which are extremely basic
and simple reactions. However, they are extremely impor-
tant in cell function [43]. Generally, the mitochondria are
the main source of cellular oxidative and nitrosative stress.
Nonetheless, study results that reinforce this argument, par-
ticularly in nitrosative stress and heart disease, must be fur-
ther validated [44, 45]. The mitochondria are involved in
reactive species formation, with production directly involved
with cytosol reactive species concentrations [46]. Moreover,
complexes I and III of the electron transport chain are
involved in ROS formation along with NAD+-linked oxido-
reductases in the mitochondrial matrix. This notion has
been reviewed and presented in several studies [42, 47, 48].
The reactive species correlated with the mitochondria and
oxidative and nitrosative damage are superoxide molecules,
hydrogen peroxide, hydroxyl radicals (-OH), nitric oxide
(NO), nitroxyl anion, nitrosonium cation (NO+), and per-
oxynitrite (ONOO-) [49, 50].

4.3. Ferroptosis in I-R Phenomenon. Ferroptosis is a type of
cell death that is an alternative to apoptosis. It is character-
ized by the accumulation of iron-dependent lipid hydroper-
oxides at alarming levels. Moreover, it cannot be inhibited
by factors associated with other known types of cell death
[51]. Hence, it is morphologically, biochemically, and genet-
ically different from other types of cell death, and it is
involved in various pathological events in which I-R is not
an exemption [52]. Further, it is one of the relevant oxidative
pathways that could modulate I-R damage due to its close
association with some oxidative components in this pathol-
ogy [53]. Lipid ROS accumulation, which leads to oxidation
and antioxidation activity mechanism via toxic lipid peroxi-
dation, is a principal ferroptosis pathway that could be cor-
related with I-R [54, 55]. As an initiation mechanism,
glutathione peroxidase (GPx) has an important antioxidant
role in ferroptosis during reperfusion. Oxygenated blood
promotes the stimulation of enzyme activity, primarily its
isoform 4 (GPX4), which has the capabilities of a cytosolic
antioxidant enzyme. This phenomenon then modulates the
substrates of the lipoperoxide pathways such as H2O2, small
hydroperoxides, and phospholipids that are inserted in the
biomembranes [56, 57]. By contrast, arachidonic acid con-
tains phosphatidylethanolamine, which plays a key role in
the ferroptosis cell death signaling. Hence, it is a crucial tar-
get for modulating this oxidizing process [57–59].
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5. Antioxidant Enzymes in I-R

Researchers are examining the safest and most effective ther-
apies for regulating I-R damage. However, this tissue pathol-
ogy is characterized by excessive oxidative damage that is
challenging to resolve because free radicals can drive cells
via different routes of cell death and subsequent necrosis
[20]. Nevertheless, in recent years, a previous study about
ROS has shown that these molecules are involved in differ-
ent pathological processes closely correlated with I-R [60].
Therefore, antioxidant activity is the main therapeutic target
of most pharmacological therapies to address this phenome-
non [60]. However, not all therapeutic approaches have
shown conclusive or favorable results. Thus, it is constantly
necessary to make updates on antioxidant therapy in this
event to improve the resolution of this pathophysiological
condition [61]. The scientific community accepts the role
of ROS and other important free radicals, such as superoxide
radical (O2), formed by adding extra electrons in an oxygen
molecule (OH), which is created from O2 via the interaction
of H2O catalyzed by transition metals including iron in I-R
[62]. Oxygen radicals can be formed by the action of singlet
oxygen, which commonly occurs in ischemic tissues [63].
The eukaryotic cell has a defense system similar to that of
enzymes, such as superoxide dismutase (SOD), catalase, glu-
tathione peroxidase (GPx), and glutathione reductase, which
inhibit reactive species formation [64, 65] For example, the
concentrations of SOD1, SOD2, CAT, and GSH-Px decrease
in I-R [66, 67]. Another important antioxidant complication
is the reduction of GSH in the ischemic myocardium by
buthionine sulfoximine, a cellular inhibitor of GSH, thereby
making the tissue more susceptible to reperfusion damage
[68]. One of the main concerns when choosing antioxidant
enzymes as possible therapeutic targets is that the enzyme
activity and the average concentration in tissue and the rela-
tionship they have in ischemia-reperfusion damage have not
yet been correctly described or have not been conclusive [69].

6. Therapeutic Targets in Oxidative Damage

A detailed review of the therapeutic targets that can be a
receptor for some antioxidant drugs should be performed.
This allows redirecting research to the establishment of ther-
apeutic alternatives that can have more interesting effects
[70]. Calcium overload, which triggers the formation of
reactive species in the mitochondria, and MPTP opening,
which is involved in the release of Ca2+ from the mitochon-
drial matrix to the cytosol, are relevant [71]. Regulating the
ferroptosis process, one of the key pathways in nonapoptotic
death that is strictly correlated with cellular antioxidant
capacity could be an interesting alternative for different
pathologies involving I-R [64]. Undoubtedly, the modula-
tion of ROS/RNS in the cytosol, which can prevent all types
of cell damage, is a strategy that remains undiscovered due
to a large number of possibilities [72]. Notably, future
research must focus on the different types of tissues, varia-
tions in I-R injury, and modulating strategies.

6.1. Mitochondrial Receptors. Alternatives for modulating I-
R damage should be identified. Oxygen depletion after ische-
mia is correlated with the inhibition of mitochondrial respi-
ratory chain electron transport and the consecutive decrease
in ATP levels, which leads to failure in Na+/K+ pump and
Ca2+ accumulation [73, 74]. The electron transport chain
can be the primary target of the mitochondria. This is con-
firmed by five main types of enzyme complexes, which are
as follows: NADH-CoQ reductase, succinate-COQ reduc-
tase, CO-Q-cytochrome c reductase, cytochrome c oxidase,
and ATP synthase, which are known in that order as com-
plexes I–V and are all integrated into the inner mitochon-
drial membrane [75, 76]. Concurrently, ubiquinone and
cytochrome c are the two freely diffusible molecules implica-
ted in electron transfer between complexes previously men-
tioned [77]. Various signaling pathways, which are essential
to normal cell function, require ROS activity from hydrogen
peroxide, hydroxyl radicals, and superoxide anions. The
main keys for triggering the formation of ROS are found
in complexes I and III [78]. NADH commonly binds to
the complex and promotes electron transfer flavin mononu-
cleotide (FMN). Reduced levels of flavin decrease O2 super-
oxide concentrations and promote proton transfer that
conducts ATP synthesis [78]. Mitochondrial complex II is
the only enzyme that is part of both the Krebs cycle and elec-
tron transport chain. Succinate, which is oxidized to fuma-
rate via the action of adenine flavin, mediated by the
dinucleotide cofactor (FAD), is involved in this reaction
[79]. Undoubtedly, mitochondrial complex II is a central
modulator in metabolic and respiratory adaptation in
response to different stimuli and abnormalities. Thus, it is
a key receptor in the modulation of oxidative damage in I-
R [80]. Previous reports have shown an overlap in respira-
tory complex II and mKATP channel agonists that can acti-
vate it. The association between mKATP and respiratory
chain complexes has shown a correlation between complex
II and decreased ROS production [81].

The complex III Q-cytochrome c reductase molecule,
which is implicated in the addition of four protons to the
intermembrane space, is a significant site for ROS produc-
tions. The free radical ubisemiquinone leads electrons to
oxygen, and this reaction results in a superoxide ion forma-
tion process that is enhanced by complex III inhibition [82].
Cytochrome c oxidase, better known as complex IV, medi-
ates O2 reduction from H2O molecules by transferring four
protons from the matrix into the intermembrane space,
thereby increasing the electrochemical gradient and then
entering as part of the intermediaries to this reaction [83,
84]. ATP synthase complex V promotes oxidative phosphor-
ylation and induces ATP synthesis resulting in ATP forma-
tion [85]. Therefore, failure in the activity of this complex
leads to inefficiency and dysregulation of mitochondrial
function [86]. Complexes I and III are the principal targets
because small amounts of free radicals are correlated with
oxidative damage induction, mainly during hypoxia or
ischemia. The inhibitors or modulators of these two mole-
cules could manage hypoxic or ischemic conditions [87].
Interestingly, modulating mPTP opening is another interest-
ing point for preventing ROS damage or even necrosis. This

4 Oxidative Medicine and Cellular Longevity



complex is a crucial effector in the cell death pathway. In
addition, the activation of the mPTP function is the first step
in the mitochondrial intrinsic necrosis pathway, leading to
mitochondrial permeability transition and loss of inner
mitochondrial potential [88]. Several pathways lead to the
opening of mPTP. As a protein complex, they must interfere
in one of its subunits, cyclophilin D (CyD), an essential
modulator of mPTP. This makes it a key target for prevent-
ing cell death due to necrosis [89, 90]. A recent study focuses
on the identification of novel compounds that can inhibit
mPTP opening without any modulation of the CyD [91].
Mitochondrial ATP-sensitive potassium channels (mKATP)
are opened after ischemia as a resolution measure, thereby
modifying the activation of mPTP and delaying apoptosis.
In addition, nonmitochondrial KATP can provide protective
effects by promoting blood flow and excessive production of
substrates [92]. These complexes promote the blocking of
mitochondrial respiration and membrane disruption during
diseases. Further, they are considered the primary cause of
cell death in myocardial infarction I-R [93–95]. The mito-
chondrial antioxidant manganese SOD (MnSOD) expres-
sion is one of the objectives for modulating its dismutase
scavenging function in superoxide radical O2 affecting sev-
eral cell compartments. These are correlated with the patho-
physiology of I-R, with the endoplasmic reticulum being
sensitive to ROS, thereby making it responsible for main-
taining calcium homeostasis [96, 97]. By contrast, autophagy
is a crucial modulation target, which is responsible for cell
recycling [98]. Previous studies have shown that this event
contributes to the processes of cellular damage, and the
key molecules are Beclin 1, mTOR, and PI3K [99, 100].
The mitochondria are important in pathological processes.
To date, there is sufficient evidence about the morphological
differences between the mitochondria, and that they are
structurally and physiologically distinguished even in the
same tissue [101] (Figure 1).

7. Molecular Targets for Ischemia in
Different Tissues

Although the I-R phenomenon has many similarities in dif-
ferent tissues, the lack of oxygen is the leading cause of cel-
lular imbalance. On the other hand, it is necessary to
highlight the differential characteristics between tissues,
mainly the critical therapeutic targets that will elucidate
pathophysiological mechanisms and the design or imple-
mentation of new therapeutics or interventions. In this
work, we selected some groups of tissues most affected by
this phenomenon and try to highlight the molecular targets.

7.1. Myocardium. The myocardium is an I-R susceptible tis-
sue after epicardial coronary artery occlusion. The hypoper-
fused myocardial zone during myocardial infarction is a risk
zone for oxidative damage and inflammation [102]. Clinical
and preclinical research has shown a large number of cardio-
protective agents, with mechanisms ranging from calcium
overload to oxidative stress modulation. However, targeted
therapy remains a challenge that has not been addressed
altogether [103]. Calcium (Ca2+) released from the sarco-

plasmic reticulum (SR) is important for excitation-
contraction (E-C) coupling. The mitochondria, the major
source of energy in the form of ATP, which is required for
cardiac contractility, are closely interconnected with the
SR, and Ca2+ is essential for the optimal function of these
organelles. However, Ca2+ accumulation can impair mito-
chondrial function, leading to reduced ATP production
and increased release of ROS. The calcium (Ca2 +) released
by the SR is essential for cardiac excitation and contraction.
ATP from the mitochondria is the main source of energy for
the myocardial contraction process. However, the accumula-
tion of mitochondrial Ca2+ affects the functioning of this
organelle, which significantly decreases ATP and increases
the formation of ROS [104]. Oxidative stress is directly asso-
ciated with heart failure. Some studies have validated the
role of Ca2+ in the development of this event, and it was
found to be closely related to mitochondrial dysfunction
[105]. Notably, there are two ways of releasing Ca2+ accumu-
lating in the mitochondria of the cardiac cell, which are as
follows: via type 2 ryanodine receptors RyR2 and type 2 ino-
sitol 1,4,5-triphosphate (IP3R2) receptors [106, 107]
(Figure 2).

7.2. Hepatic I-R. The liver is extremely sensitive to oxidative
damage caused by I-R. Therefore, blood flow must be
restored to prevent or slow down cell death [108]. Some
studies have reported the importance of ischemic precondi-
tioning for the management of this pathology and the role of
lipoperoxidation modulation in this mechanism. This
explains why peroxidation signaling pathways are relevant
in reducing this condition [109]. By contrast, it is important
to identify the role of peroxisome proliferator-activated
receptor-gamma (PPAR-γ). That is, it inhibits the produc-
tion of ROS in a pre- and posttransductional method, via
the FAM3A complex and noncoding RNA axis, as reported
by several workgroups [110]. In addition, the other impor-
tant targets for modulating oxidative damage are metallo-
proteinases and malondialdehyde, which are the enzyme
complexes involved in the cellular oxidative process [111,
112] (Figure 3).

7.3. Renal Tissue. The kidney is a specific organ that can be
affected by I-R, which could lead to irreversible kidney
injury. However, renal occlusion is inevitable during trans-
plantation. That is why there are countless models for this
phenomenon [113]. These advancements are crucial in
understanding the pathophysiology of renal I-R, and they
propose some therapeutic targets that can improve manage-
ment. It is important to provide an overview of the possible
therapies and receptors that can reduce oxidative damage in
the kidneys [113, 114]. Similar to other organs, ROS plays a
fundamental role in oxidative stress, which changes mito-
chondrial oxidative phosphorylation, ATP depletion, an
increase of intracellular calcium, and activation of mem-
brane phospholipid proteases, processes that could have
results as a therapeutic alternative [115]. The interesting
molecules to modulate the damage induced by renal I-R
are more aimed at increasing the expression of antioxidant
enzymes or their activity to offer a resolution of oxidative
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damage [116, 117]. Therefore, some interesting targets are
the SOD, CAT, and GPX receptors, since, without a doubt,
the neutralization of ROS and hydroperoxides mediated by
these enzymes is a probable target for the treatment of renal
I-R [118]. Notably, although antioxidant therapy is a viable
alternative, damage caused by I-R cannot be fully treated.
However, its efficiency is sufficient to considerably reduce
oxidative damage [62, 118]. Some studies have shown the
beneficial effects of free radical scavenging molecules on
renal I-R. Molecules including melatonin can modulate the
damage induced by renal reperfusion in ischemic kidneys
due to its antioxidant activity [119]. Moreover, lipoperoxida-
tion is a proven mechanism with good outcomes in renal tis-
sues, where we could highlight the increase in SOD activity
as the main target [120]. Furthermore, Diao et al. showed
that the inhibition of protein arginine methylation transfer-
ase 5 (PRMT5) blocked ROS-mediated pyroptosis via the
Nrf2/HO-1 signaling pathway. Therefore, PRMT5 is an
interesting management target in renal I-R injury [121,
122]. The mitochondrial receptor MnSOD, an antioxidant
enzyme capable of scavenging O2 free radicals, while con-
trolling peroxynitrite radical (ONOO-), can successfully
modulate I-R in renal tissues [123]. Although the role of fer-
roptosis in the renal I-R phenomenon has not been

completely elucidated, several molecules can be targeted
and provided interesting possibilities for therapeutics [124].
Pannexin 1 is an ATP-releasing protein that exhibits proa-
poptotic properties in renal I-R [125]. With consideration
of molecular targets for modulating ferroptosis, the GPX4
enzyme can be a key regulator of lipoperoxidation [126].
Therefore, its activation is strictly correlated with the process
of cell death and, consequently, the accumulation of ROS.
This mechanism was found to be successful in pharmacolog-
ical alternatives including irisin [127] (Figure 4).

7.4. Brain Tissue. The brain is the most sensitive organ to
blood supply interruption without the possibility of repair
in I-R. That is, 20 minutes of ischemia is enough to exceed
the threshold of damage it can withhold [18]. That can
potentially cause or lead to oxidative stress-induced behav-
ioral and cognitive decline. Oxidative stress in the brain
caused by I-R leads to the primary etiologies of brain dam-
age and significant neuronal effects, resulting in tissue
destruction and cell death. These include lipid peroxidation,
protein denaturation, inactivation of enzymes, nucleic acid,
and DNA damage, the release of Ca2+ from intracellular
stores, damage to the cytoskeletal structure, and chemotaxis
[128]. Phospholipids in the brain are vulnerable to ROS-
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Figure 3: Main targets to regulate oxidative damage during hepatic ischemia. There are three principal points in hepatic tissue when
oxidative damage is modulated. (1) Lipoperoxidation interferes with normal cellular functions and is the principal objective during
hepatic I-R. That is why the peroxisome proliferator-activated receptor-gamma (PPAR-γ) is considered a good target. (2) It inhibits ROS
production via the FAM3A complex and noncoding RNA. Besides, ROS formation of release blockade is crucial for diminishing
lipoperoxidation, in addition, with the activity of metalloproteinases and malondialdehyde antioxidative complex.
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mediated peroxidation. However, proteins and DNA are tar-
geted by ROS, and they become problematic with aging as
aging brains exhibit high oxidative stress-induced mutation
levels in the mitochondrial DNA [129, 130].

Perhaps, we cannot find an effective therapeutic target
for reducing this damage. That is why ischemic precondi-
tioning combined with antioxidant therapies will most likely
be critical regulators for ischemic stroke [131]. Current stud-
ies have focused on the pathways of oxidative stress that
involve a variety of cellular pathways, receptors, and pro-
cesses that can be used on focused therapy for oxidative
damage, such as autophagy, mitophagy, and necrosis, which
are involved in eliminating excess ROS and subsequent cell
death triggered by these free radicals [132, 133]. The endog-
enous protective mechanisms in the brain included the anti-
oxidant enzyme systems and the low-molecular-weight
antioxidants [134]. In response to stress, cells increase their
antioxidant defenses with nuclear factor erythroid 2-related
factor (Nrf2), an important transcription factor [135].
Therefore, Nrf2 has been proposed as a pharmacological tar-
get in pathologies with oxidative features since it modulates
several genes encoding antioxidants and detoxification
enzymes such as heme oxygenase 1 (HO-1), NAD(P)H
dehydrogenase quinone 1, superoxide dismutase 1 (SOD1),

glutathione peroxidase 1 (GPx1), and catalase (CAT) [136].
By contrast, mitochondrial dysfunction suggests several dis-
eases, including neurodegeneration [137].

The mitochondrial role in ischemic shock and its patho-
genesis mainly involves the formation of free radicals [138].
mtDNA is particularly susceptible to oxidative damage
because of its proximity to high levels of mitochondrial
ROS production and its relatively poor defense against dam-
age. Healthy mitochondria contribute to oxidative stress
resistance by increasing respiratory capacity [139]

Taken together, ATP synthase and the electron transport
chain make up the OxPhos system, which is the leading pro-
moter of the mitochondrial electrochemical gradient [140,
141]. Crucial key points for electrons to enter are complex
I and II of the electron transport chain, which through ubi-
quinone transfer electrons to complex III and this in turn to
complex IV. Proton pumping via the mitochondrial mem-
brane is the primary mechanism for maintaining the mem-
brane potential. These protons are then used by complex V
ATP synthase to form ATP and complete the oxidative
phosphorylation process [142]. Reversible phosphorylation
mechanisms are relevant targets of this whole process. Pre-
serving these phosphorylation epitopes could offer a regula-
tory control for reducing oxidative damage since it could
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Figure 4: Relevant targets during ischemia-reperfusion in renal tissue. The main ways to decrease renal oxidative damage during I-R are (1)
activation of phospholipid proteases, (2) the increment of antioxidant enzyme complex reducing free radicals and blocking lipoperoxidation,
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allow the regulation of OxPhos mediated by calcium and the
ADP-shuttle mechanism [143]. The OxPhos complexes are
phosphorylated in vivo by the second messenger Ca2+,
thereby triggering the phosphorylation of most mitochon-
drial proteins, a process mediated by calcium-dependent
phosphatases during ischemic stress [144]. This phosphory-
lation alters the electron transfer kinetics, which affects the
allosteric regulation of ATP and ADP [145]. The mitochon-
drial membrane potential (ΔΨm) becomes positive in the
inner chamber during oxidation, and cytochrome c (CytC)
is released into the cytoplasm. The release of CytC from
the mitochondria is an important pathway for the cascades
of apoptotic events [146]. These proapoptotic proteins, such
as Bid, Bad, Bax, Bak, Bok, and Bim, in the outer mitochon-
drial membrane, increase the permeability of membranes,
thereby forming specific pores and stimulating free CytC
release. Third, CytC binds to apoptosis protein-associated
factor 1 (Apaf-1) and forms the Apaf-1/caspase-9/CytC
complex. Finally, caspase-3 is activated, which triggers apo-
ptosis and delays neuronal death [147]. Lipid peroxidation
is one of the significant consequences of ROS-mediated
injury to the brain. This ultimately leads to the production
of conjugated diene hydroperoxides that attack lipids con-
taining carbon-carbon double bond(s) in specific polyunsat-
urated fatty acids (PUFAs). Among these compounds,
malondialdehyde (MDA) and HNE are the breakdown
products of lipid peroxidation, and they are elevated in

patients with ischemic stroke [148], with infarct size, stroke
severity, and patient outcome. MDA can be the most muta-
genic lipid peroxidation product, and HNE is the most toxic
[149]. MDA is widely used as a biomarker for lipid peroxida-
tion of omega-fatty acids, HNE is a cytotoxic product origi-
nating from peroxidation, and it is considered as one of the
significant toxic products generated from lipid peroxides.
The highly toxic characteristic of HNE can be explained by
its rapid reactions with thiols and amino groups [150].
HNE is a bioactive marker of lipid peroxidation and is a sig-
naling molecule involved in the regulation of several tran-
scription factors, such as nuclear factor erythroid 2-related
factor 2 (Nrf2), activating protein-1 (AP-1), NF-κB, and per-
oxisome proliferator-activated receptors (PPAR), cell prolif-
eration and differentiation, cell survival, autophagy,
senescence, apoptosis, and necrosis [151]. Hemoglobin
(Hb)/haem is a putative neurotoxin. Hb is the most abun-
dant protein in the blood and is released from lysed red
blood cells after stroke. It can be engulfed by the microglia
in the perihematomal zone and metabolized into ferrous/fer-
ric iron, which induces ROS formation and lipid peroxida-
tion [152]. The excess ferrous iron accumulates in the
neurons via the transferrin (Tf)–Tf receptor system that
forms highly toxic hydroxyl radicals (∙OH). These hydroxyl
radicals attack DNA, proteins, and lipid membranes, leading
to the disruption of cellular function. Ferroptosis was found
in organotypic hippocampal slice cultures exposed to
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Figure 5: Oxidative stress in neuron cells. Several mechanisms activate oxidative stress during ischemia in neuron cells, principally leading
by the quinolinic acid released by microglia and mitochondrial Ca2+ overload and ROS formation after BLD, BAD, BAX complex, and
APAF-1 and CytC activate caspases pathways that result in DNA damage. Nevertheless, astrocytes intend to block that oxidative stress
and lipoperoxidation that could damage plasmatic membrane releases kynurenic acid. Unfortunately, Tf receptors promote cell damage
through ferroptosis. Therefore, all of these would function as excellent regulatory points for I-R oxidative injury in nervous tissue.

9Oxidative Medicine and Cellular Longevity



glutamate [153]. It can be distinguished from other types of
regulated cell death because it does not require caspases ATP
depletion or mitochondrial ROS generation (Bax/Bak) or
elevations in intracellular Ca2+ levels [154]. Ferroptosis is
triggered by glutathione biosynthesis or glutathione peroxi-
dase 4 (GPX4) activity inhibition and is associated with
shrunken and electron-dense mitochondria morphologically
[155]. Tryptophan (TRP) is an aromatic essential amino acid
whose route of TRP metabolism is the kynurenine (KYN)
pathway, and the primary end products are nicotinic acid
and its derivatives and NAD+ and NADP, which are two
ubiquitous coenzymes In this catabolic process, starting
from the central compound, kynurenine (KYN) forms
kynurenic acid (KYNA), xanthurenic acid (XA), and picoli-
nic acid [156] (Figure 5). KYNA is produced mainly in
astrocytes, and quinolinic acid (QUIN) degradation occurs
in microglial cells in the central nervous system. More
recently, tryptophan oxidation via the kynurenine pathway
has been implicated in inflammation and oxidative stress
in the brain that occurs after stroke [157]. Elevated QUIN
levels can cause excitotoxic cell death. The hippocampus
and striatum are most sensitive to QUIN neurotoxicity.
QUIN can directly interact with free iron ions to form toxic

complexes that exacerbate ROS formation, oxidative stress,
and excitotoxicity [158]. Moreover, it induces lipid peroxi-
dation, produces ROS increases iNOS expression, decreases
SOD activity, and causes mitochondrial dysfunction QUIN
which stimulates mitochondrial dysfunction and apoptosis
[159]. By contrast, the advantage of KYNA is that it cannot
be metabolized to excitotoxic agents and scavenges oxygen
radicals, thereby decreasing cellular damage. The application
of KYNA in high concentrations or for a prolonged time
causes neuronal cell damage [160]. The multiple effects of
the kynurenine pathway and its changes during stroke have
increased in recent years, thereby allowing interference with
therapeutic targets. DNA damage includes oxidative modifi-
cation and endonuclease-mediated DNA fragmentation.
DNA oxidation may activate repair enzymes, such as poly
(ADP-ribose) polymerase (PARP). PARP activation pro-
gresses from neuronal elements and localization of infiltrat-
ing inflammatory cells 3–4 days after stroke. The activation
of PARP leads to DNA injury in the brain [161]. Indeed,
there is a strong association between oxidative stress and
PARP activation in the brain, and oxidative stress in the
neurons can induce PARP activation [162]. PAR can directly
affect mitochondrial membrane potential collapse [163].
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Thus, PARP-1 activation may inhibit glycolysis and cause
energy depletion, thereby leading to altered cellular
metabolism.

7.5. Lung Tissue. The lungs are affected by I-R indirectly.
Several signaling pathways such as Nrf2/HO-1 and HIF
1α/VEGF have protective effects on this organ [164]. NrF2
is a transcriptional factor that protects cells from stress,
and oxidative processes activate NrF2 to initiate such an
effect. In turn, HO-1 becomes a rate-limiting enzyme that
can reduce oxidative stress by increasing its expression in
the lung either via local or peripheral ischemia [165, 166].
Hypoxia-inducible factor 1-α (HIF-1α) and cell repair mech-
anisms mediated by VEGF are implicated in the regulation
of angiogenesis in ischemic events [167, 168]. After ischemia
damage to the lungs, there is a significant loss of plasma pro-
teins and inflammatory cells, and there are high amounts of
HIF-α and its regulatory target VEGF during I-R in local tis-
sues [169]. Moreover, recently, the close association between
these two molecules has been correlated with repair mecha-
nisms independent of angiogenic activity [164]. The mito-

chondrial approach may also be a good alternative to
modulating oxidative damage. Some reports have shown
interesting results regarding protecting the integrity of the
mitochondrial DNA using the oxidative approach. That is,
mtDNA could serve as a sentinel of ROS-mediated func-
tions, as observed primarily in the lung tissues [170]. Using
conventional oxidative stress as a therapeutic target in ische-
mia could be complicated. Therefore, preconditioning alter-
natives can be another therapeutic option. Researchers have
designed in vitro and ex vivo experimental data in which the
tissues and cells are exposed to high concentrations of poly-
ethylene glycol-catalase (PEG-CAT) to protect against cyto-
toxicity caused by oxidative stress. This mechanism then
preserves cellular metabolism and mitigates pulmonary I-
R. Therefore, PEG-CAT can be an important therapeutic
target [171]. Anti-inflammatory approaches for decreasing
pulmonary ischemia remain unclear. It was proposed that
the establishment of novel therapeutic strategies should
involve the inhibition of transcriptional factors that activate
oxidative stress with better techniques. For example, MAPKs
that are activated after oxidative stress in the inflammatory
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models of pulmonary ischemia and different signaling path-
ways, such as p38, c-jun N-terminal kinase, p38 inhibition,
or JNK, have protective effects in this organ [172]. In addi-
tion, ROS and RNS mediate inflammatory reactions by acti-
vating alveolar macrophages. With the activation of the
inflammatory cascade, multiple potential ROS generators
such as the mitochondria, xanthine oxidase, NOX, NOS
uncoupling, and neutrophils must be considered as a thera-
peutic target for oxidative damage [173]. By contrast, the
expression of DPP4 is directly correlated with decreased oxi-
dative damage. That is, the capillaries are the main concen-
tration regions of this expression, and DPP4, a serine
protease, commonly cleaves the substrates with proline and
alanine in the latter position [174] (Figure 6).

7.6. Skeletal Muscle. In the limbs, skeletal muscle is the pre-
dominant tissue, and pathophysiological literature indicates
that the damage threshold of this tissue is exceeded after
3 h of ischemia and is irreversible at 6 h [175]. Some studies
about I-R showed that the main mechanisms of cell damage
and death are mitochondrial dysfunction and mitochondrial
proapoptotic protein release [176]. Similar to other cells, I-R
in the myocyte is mediated by the mitochondrial membrane
potential and the proton gradient that promotes ATP syn-

thesis via oxidative phosphorylation [177]. This reduction
during the ischemic process promotes ATP synthesis and
inhibits Na+/K+ ATPase, thereby increasing intracellular
Na+ and Ca2+ and anaerobic glycolysis. Further, the mito-
chondria play an important role in the pathophysiology of
I-R in this tissue, and the free radicals generated by the skel-
etal muscle during rest and activity are NO and superoxide,
which is dismuted into H2O2. However, there are still several
limitations, and few studies have identified the nature of
ROS or RNS present in the muscle fibers. Most reports have
only examined cell surface free radicals [152]. Consequently,
there are only a few reports about NO or H2O2 or substances
that can cross mitochondrial barriers, but there are a large
number of reactive species that have not been confirmed to
be involved in skeletal muscle physiopathology [152]. To
avoid deleterious effects on tissues, there are several cellular
mechanisms to modulate free radicals such as the mitochon-
drial and cytosolic isoforms of superoxide dismutase
(MnSOD and CuZnSOD) in addition to CAT and GPX
modulation of their expression [178]. Any cellular processes
are regulated by ROS and RNS, such as the activity of tran-
scriptional factors, ionic transportation, apoptosis, and
metabolism [179]. Proteins in skeletal muscle are susceptible
to oxidation of their sulfhydryl groups or the formation of
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disulfide bonds. These processes are involved in the modula-
tion of protein functions [180]. In the same way, ROS also
functions as excellent second messengers in the activation
of apoptosis programs such as the NF-kappaB pathway,
which is involved in muscle degeneration and atrophy
[181]. Several alternatives of regulation, such as the PAR-
gamma coactivator-1 alpha (PGC1-α) pathway, are redox-
sensitive, in which ROS would play a regulatory role [182].
In addition, ROS dependent on Nox2 is involved in the reg-
ulation of histones such as histone deacetylase 4 (HDAC4),
this happens during vigorous muscle activity, as a regulation
mechanism [183]. Not less important is the already
described NRF2 transcriptional factor involved in multiple
regulations of antioxidant defense [184]. Under conditions
of oxidative stress, NRF2 is found in the cytoplasm thanks
to the activity of degrading proteins; after it is released, it
translocates into the nucleus where it activates the transcrip-
tion of antioxidant gene programs and their respective pro-
tein [185]. Although it well tolerates oxidative damage,
these modulation strategies are essential for the resolution
of countless pathologies correlated with ischemia [186]
(Figure 7)

8. Ischemia-Reperfusion
Antioxidant Pharmacodynamics

Antioxidant therapy has been used to modulate oxidative
stress in different experimental models. Generally, some
proven strategies are used as antioxidant preconditioning
without completely effective outcomes [7, 187, 188]. This

can be explained by the nonselective characteristic of ROS
modulation, which directly interferes with cell signaling
pathways [189]. This has led to alternative approaches such
as activation of the Nrf2 pathway by fumaric acid deriva-
tives, resulting in a proven antioxidant activity [190].
Another relevant strategy is using ROS-producing enzymes
such as Nox and MPO, which induce a more specific
response by modulating pathological conditions [191, 192].
However, the most promising approach involves enzyme
activity, particularly via drugs with a potential to reverse
eNOS activity in pathologies correlated with oxidative stress
[193]. However, despite advancements, almost all innovative
cardiovascular therapies have been inadequate in the man-
agement of these pathologies.

8.1. Free Radical Scavengers. Notably, reactive species at low
concentrations fulfill cellular functions as metabolic biopro-
ducts or second messengers. At high concentration, they
have deleterious effects, mainly in pathological events such
I-R [194]. These effects conceptualize as oxidative stress
and lead to the opening of mPTP, resulting in protein and
DNA damage [195]. ROS signaling can be interfered with
via the inhibition of complex I, using drugs such as metfor-
min. This then reduces the amount of ROS in the cyto-
sol [196].

8.2. Mitochondrial Respiration Chain Blockers. The electron
transport chain stands out during the reperfusion process.
This explains why direct modulation can be an alternative
for reducing ROS production and the consequent
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activation of mPTP with cell death as an outcome [197].
The deregulated production of ROS in the mitochondrial
respiratory complexes is associated with the I-R process.
Regulating these processes modifies the harmful nature of
ROS to a protective one, and these respiratory complexes
are the main targets to carry this out [198]. Complexes I
and III are major superoxide production sites. Electrons
are transferred along the chain and back to complex I
where NAD+/NADH is reversed and ROS production
increases [199]. Using this approach, several drugs have
been tested under I-R conditions, thereby providing vary-
ing but important results for understanding the phenome-
non [200–203]. Some reports used the reversible inhibition
of transiently inactivated complex I to diminish the gener-
ation of ROS without losing its function [59, 204, 205]. In
these categories, some compounds such as biguanides,
amobarbital, nicorandil, rotenone, and S-nitroso-2-mer-
captopropionyl glycine have shown interesting results
[205–210]. Highlighting metformin has exhibited cardio-
protective properties by modulating complex I at high
doses [211, 212]. Some strategies use acidic citric interme-
diates, malate, and oxaloacetate to inhibit complex II.
Although it is not a specific site for the formation of
ROS during the reperfusion process, it is correlated with
complex I and III modulations, which allows cardioprotec-
tion regardless of K+ concentrations [213, 214]. Notably,
some important mechanisms are not directly involved in
the production of ROS nor as second messengers in the
adaptation mechanism to hypoxia [215]. These signaling
pathways are directly linked to ischemic preconditioning
in different pathological conditions [216]. A consecutive
modulation of complex III via the ubiquinol oxidation
center (Qo site) has shown cardioprotection [217].
Reduced cytochrome c activity has a similar effect in elec-
tron transport from complex III to IV, an event that
reduces superoxide-free radical production, which is a
poorly understood mechanism [218] (Figure 8).

8.3. MPTP Inhibitors. The importance of MPTP for the
development of I-R-mediated oxidative damage has been
discussed. They represent a key point for the release of
ROS/RNS from the mitochondria [36]. However, the ther-
apeutic target approach of this protein complex is via its

subunits, with CyD as one of the main ones, to which
countless drug prototypes have been designed [219]. Nev-
ertheless, in vivo and clinical data are not favorable
enough to establish a therapy [220, 221]. Some analog
drugs of CyA have shown favorable outcomes in myocar-
dial, hepatic, and cerebral animal models [222]. Even some
drugs that are not CyA analogs have interesting outcomes
via this pathway in vivo models [223]. Other than this
therapeutic target, other possible alternative therapies such
as N-phenylbenzamides and cinnamic anilides can inhibit
mPTP activity, thereby providing protective effects against
oxidative damage [224, 225]. Nrf2 and NF-κB regulators
are also good alternatives to ameliorate oxidative damage
via this pathway [226–228] (Figure 1).

8.4. PPR’s Gamma Inhibitors. Peroxisome proliferator-
activated receptor gamma (PPAR-γ) is the target of multiple
studies about cardiovascular pathologies [229]. Several iso-
forms have been described. However, the γ isotype is the
most relevant in these I-R-related diseases [230]. After bind-
ing to endogenous ligands, the retinal X receptor is heterodi-
merized with a nuclear receptor, thereby inducing or
repressing gene expression [231]. Therefore, PPAR has rele-
vant roles in hepatic IR injury [232]. Some angiotensin II
drugs are associated with this receptor, which exhibits an
inhibitory effect [233, 234]. Several drugs attenuate PPAR
I-R via antagonism, thereby reducing ROS production.

8.5. RNAS Transcripts in I-R. RNA and DNA are targets for
modulating gene expression. Currently, advancements in
molecular biology can allow them to be used as excellent
therapeutic targets in multiple pathologies [235]. For
example, the modulation of antioxidant enzymes using
gene therapy has been useful in oxidative stress if a spe-
cific target receptor is already known [236]. Redox homeo-
stasis has a direct correlation with cell function. Redox
imbalance leads to oxidative stress production, which
inhibits the development of vascular diseases and I-R
injury, as well as triggers transcriptional and posttranscrip-
tional modulation in gene expression [237, 238]. In addi-
tion, hypoxia is considered an important stimulus to
regulate microRNA (miRNAs) expression [239]. Some
miRNAs, known as hypoxia MIR, are even associated with

Table 1: Pharmacological approaches against I-R pathologies.

Family Pharmacodynamic Results

β-Blockers
Reduce the cardiac frequency and calcium overload

blockade
Regulate myocardial infarction

Glucose modulators Regulate glucose/insulin/potassium concentration Reduce myocardial infraction and infarct size

Immunomodulators
(abciximab)

Reduce Inflammation and oxidative stress activation
Reduce infarct size in acute coronary

syndrome

Inhaled NO and NaNO2 Regulates oxidative stress Failure in reducing myocardial infarction

MPTP inhibitors Blockade of mitochondrial ROS release Adverse effects and not significant data

Statins Oxidative scavengers and IL10 expression
No significant data in acute coronary

infarction

ARA II
PPAR-γ expression and antioxidant activity, SOD2

expression
Significant data were preventing I-R
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hypoxia, and some of these transcripts are involved in the
pathophysiology of ischemic and cardiovascular diseases
[240]. An example is miR-210, a hypoxia-inducible tran-
script that promotes cell survival and improves cardiac
function via antiapoptotic and angiogenic mechanisms
[241]. Moreover, HIF is regulated by these transcripts with
an important role in these pathologies [242]. Other exam-
ples of these nuclei of response to oxidative damage are
NRF2, FOXO1, and NF-kB in the inflammatory part
[243–247]. And the widely studied transcriptional factor
p53, among the multiple stimuli that activate it, is ROS
one of them, which consecutively triggers proapoptotic
and antiproliferative mechanisms [248]. Even a single oxi-
dative stress stimulus, such as H2O2 and O2, could be cor-
related with complex redox imbalance mechanisms in
pathologies such as aging and limb ischemia [249, 250].
However, even though the role in oxidative stress of non-
coding transcripts (miRNA and lncRNA) is widely known,
their use as a therapeutic strategy remains premature [251,
252]. miRNAs are RNAs that regulate gene expression by
forming hybrids with mRNAs, altering their translation
[253]. Moreover, they have a regulatory role in oxidative
stress via their interactions with SIRT1, FOXO1, and
eNOS [254]. Furthermore, in different pathologies corre-
lated with oxidative stress, these regulatory mechanisms
have begun to take center stage [224] In I-R, miRNAs
have great advantages when used as a therapeutic target.
In the future, they could be considered pharmacological
approaches in clinical practice [255]. Noncoding RNA
similar to miR-92a has a proangiogenic effect, and miR-
499 can decrease damage induced by hypoxia-
reoxygenation. miR-24 had a similar mechanism correlated
to the attenuation of infarct size in animal models
[256–258]. Recently, the use of novel noncoding RNAs
as therapeutic alternatives is emerging. For example,
miR-181 is a drug target with an effect on experimental
myocardial I-R [259]. miR-148a alleviates hepatic I-R
and is implicated in resolution pathways [260, 261].
Another alternative is miR-374a-5p. This decreased myo-
cardial cell damage in an I-R model [262]. Small RNAs
are not the only noncoding transcripts relevant to
disease-related I-R. Long RNAs (lncRNAs) are expressed
by an opposite strand of mRNA, and they are located in
the introns of annotated genes and transcribed from
enhancer regulatory elements (eRNA) [263]. Moreover,
this transcript mechanism varies, ranging from repressors
to activators of gene expression, or even posttranductional
regulators. They are also mRNA splicing and stability
modulators; lncRNAs play an important role in regulating
the response to oxidative stress [264]. For example,
lncRNA Gpr19 inhibits and attenuates (I-R) injury after
acute myocardial infarction, and lncRNA NEAT1 alleviates
sepsis-induced myocardial injury by modulating oxidative
stress [265, 266]. Some drugs including propofol have
shown a beneficial effect against I-R oxidative stress under
different conditions via the lncRNA-TUG1/Brg1 pathway
in liver cells in an IR model [267]. Drugs such as metfor-
min regulate oxidative stress via transcripts such as
lncRNA-H19 [268]. In a recent study, ZFAS 1 lncRNA

was found to reduce ischemic stroke via the regulation of
some oxidative stress mechanisms [269]. (Figure 9).

9. Alternative Interventions in Clinical Trials

Regardless of the several researches carried out to decrease
damage caused by I-R injury, there is still no relevant phar-
macological therapy that reduces damage caused by this
condition in clinical practice. However, some studies have
shown important data, particularly about those regarding
Cyst A, in advanced pharmacological phases or pilot studies
[270]. By contrast, metoprolol, a β-blocker, exhibited inter-
esting activity in patients with I-R induced by myocardial
infarction [271, 272]. Moreover, some glucose modulators
have inhibited I-R damage via several mechanisms, with glu-
cose/insulin/potassium (GIK) as the primary on [273]. In
terms of clinical results, patients with acute coronary syn-
drome have presented with a significant reduction in infarct
size [274]. In addition, intracoronary administration com-
bined with thrombectomy significantly reduced infarct size
[275]. The application of novel therapies in clinical practice
is challenging, and there is an extensive list of not favorable
outcomes in I-R treatments in clinical trials. One of the main
reasons for these failures is the lack of clarity and signifi-
cance in preclinical trials, thereby making it impossible to
obtain relevant clinical information [276]. The most relevant
examples are studies about inhaled nitric oxide and sodium
nitrite for myocardial infarction. These strategies were tested
in clinical practice. However, they were not effective in
reducing infarct size [277]. The use of TRO40303, an MPTP
inhibitor, had unfavorable outcomes in the MITOCARE
study [253]. In the TREAT study, the outcomes of ticagrelor
and clopidogrel treatment in similar pathological conditions
were not significant [278]. However, some reports highlight
interesting epitopes or therapeutic approaches, thereby
allowing the appropriate incorporation of new clinical evi-
dence into the practice guidelines of phase III trials, which
are required to assure a solid preclinical background
(Table 1).

10. Perspective

The therapeutic targets most likely to be extrapolated in
clinics settings are not yet fully elucidated. Hence, further
studies should be performed to assess relevant epitopes.
Most approaches used to reduce I-R damage are inflamma-
tory. Therefore, many pharmacological effects of the perox-
idative type have not been considered, thereby establishing
the grouping of the said markers and targets of oxidative
damage. After elucidating the molecular targets implicated
in their physiopathology, a realistic approach in all pathol-
ogy therapies is a pragmatic approach in all pathology ther-
apies. The direct modulation of calcium overload in the
cytosol can be a common strategy and, undoubtedly, a key
element in stabilizing cellular pH. By contrast, the uptake
of ROS mainly via scavenger molecules that may reduce
damage can also be an exciting alternative.
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11. Conclusion

I-R injury caused by the interruption of oxygen flow and the
consecutive restoration of oxygen concentration, which is
known as reperfusion, is still poorly understood [279]. These
therapeutic targets can be a great alternative for modulating
I-R injury. Reducing oxidative damage in cells could address
several pathologies associated with I-R. Redox signaling is
one of the processes with several therapeutic targets. How-
ever, most interventions present extremely ambiguous phar-
macodynamics [280]. Thus, it is essential to elucidate the
specific molecular mechanisms by which pharmacological
interventions work. The mitochondria play a key role in
the development of these cellular signaling [281]. Therefore,
researchers are interested in approaches with correlated epi-
topes. Although the preclinical outcomes of targeted thera-
pies are favorable, they have not yet been applied in
clinical practice, and their adverse effects were not evaluated.
Hence, pharmacological repositioning is a good alternative
at present [282]. However, it is necessary to develop new
active principles with a specific activity to resolve this
pathology or to consider therapeutic combinations via
in vitro and even in vivo tests [283]. Nevertheless, new active
compounds with specific activity must dress to resolve
pathologies or take advantage of the drug’s antioxidant
properties that can be considered adjuvant therapies in clin-
ical settings. Proposing new therapy is necessary. This phe-
nomenon is related to multiple pathologies and surgical
procedures in oxidative stress and alterative to modulate
ischemia-reperfusion.
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