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The 2019 coronavirus pandemic (COVID-19) struck without warning, and existing medical screening and clinical management
systems were unprepared, causing a high fatality rate. Given the virus’s ongoing evolution, there is still a potential for
reemergence; earlier weak preparedness will not be accepted in such a situation. Therefore, it is vital to understand and rectify
past diagnostic work’s flaws. RT-PCR and antigen tests, both widely used, have experienced problems in the past. They either
were too sluggish or produced an excessive number of false negatives. Another issue was a lack of test kits. As a result, chest
X-ray image-based disease classification has emerged. However, managing a variety of chest X-ray pictures for COVID-19 and
pneumonia patients is complicated and error-prone. As a result, the only way to improve the current diagnosis is to apply
deep learning algorithms that learn from radiography pictures and anticipate COVID-19 development. We constructed our
own convolutional neural network (CNN) by incorporating transfer learning from the most popular ResNet, VGG, and
InceptionNet models. The endeavor necessitated the creation of a sizable dataset that accurately depicted the patient
population. Before importing the model, the images were enhanced to remove artifacts caused by noise, motion, or blurring
that could impair the detection of infection. Preprocessing has a substantial impact on the model’s accuracy. The results
indicated that the VGG16 architecture, with a detection accuracy of 95.29%, is optimal for COVID-19 identification from X-
ray images. Furthermore, most generated models outperformed current state-of-the-art research in the same field.

1. Introduction

Coronavirus disease 2019 (COVID-19) is a coronavirus
infection triggered by a new coronavirus originally called
as 2019-nCoV. It is a component of a variety of pathogens
that causes breathing infections, including severe acute
respiratory syndrome (SARS) and the Middle East respira-
tory syndrome (MERS) [1]. COVID-19 virus was discovered
for the first time in Wuhan, Hubei, China. The virus causes

breathing disease, illness, dry cough, and shortness of breath
as frequent symptoms [2]. No exact drug or vaccination is
present, and therapies are continuously being investigated
[3]. COVID-19 is a contagious illness spread mainly by
drops formed when a disease-ridden individual coughs,
sneezes, or breathes out. Before the outbreak, the infection
was utterly unknown, and it is regarded as the most signifi-
cant challenge due to the socioeconomic catastrophe it pro-
duces. The pathogen, which affects the upper respiratory
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system, is readily passed from person to person, making this
sickness hazardous. As a result, early discovery may aid in
treating, isolating, and hospitalization of infected individ-
uals. His virus’s numerous testing techniques are available,
including RT-PCR, RT-LAMP, electrochemical, and optical
biosensors for RNA recognition [4].

Presently, two methods for detecting COVID-19 con-
tamination in afflicted people are available: diagnostic test-
ing (present contamination) and antibody tests (past
infection). Rapid detection of COVID-19 is accomplished
by using diagnostic techniques like reverse transcription-
polymerase chain reaction (RT-PCR) and antigen assays.
Because false positives (FPs) are more prevalent in antigen
testing, RT-PCR is the gold standard typical for illness detec-
tion. However, RT-PCR tests need extensive laboratory work
to get the data [5], and the test’s cost is a significant problem
in several countries with a privatized wellbeing system.
While PCR and antigen testing may now offer a quick diag-
nosis, medical imaging of the lungs will provide material on
illness load. Additionally, a faster and more accurate diagno-
sis of COVID-19 would aid in detaching infected individuals
quicker, limiting disease dissemination.

Apart from laboratory detection procedures, various
alternative approaches for detecting COVID-19 are avail-
able. The usual medical imaging modalities for diagnosing
lung illness are chest radiography (CXR) and computed
tomography (CT) images [6, 7]. While CT scans are often
employed in diagnosing COVID-19 [8–10], cost [11] and
radiation exposure are significant considerations. Addition-
ally, it was discovered that chest CT has high compassion
for analysis [12] and that X-ray pictures reveal pictorial indi-
ces linked to COVID-19 [13]. CXR images are favored over
CT imaging due to their lower radiation dose and wide-
spread availability.

Nowadays, healthcare professionals collect and generate
vast amounts of data, which contain critical information
and signals that may be analyzed and used to overcome
the limitations of conventional analytical processes. How-
ever, this exponential development of medical pictures
necessitates substantial effort from medical experts, which
is highly subjective and prone to human mistakes. An alter-
native method is to systematize the composite procedure of
medical analysis by utilizing health data and contemporary
machine learning algorithms. As a result, using automated
techniques for identification aids in the diagnostic process
and provides very accurate early detection [14].

Computer-aided chest X-ray examination procedures
are required for COVID-19 case identification from chest
X-ray images. Deep learning approaches are effective in gen-
erating high-quality results while also providing extra bene-
fits such as (1) maximizing the use of unstructured data, (2)
eliminating unnecessary costs, (3) reducing feature engineer-
ing, and (4) eliminating explicit data labeling. As a result,
deep learning algorithms are frequently used to extract
essential features from photos to categorize them automati-
cally. Moreover, deep learning algorithms have made signif-
icant contributions to medical image analysis and the
accomplishment of high classification performance using
less time-consuming simulated tasks [15].

We describe a technique based on deep learning for
detecting COVID-19 infection from chest X-ray pictures
in this work. To identify X-ray pictures as COVID-19
positive or COVID-19 negative, we suggest a deep convo-
lutional neural network (CNN) model. The suggested
technique was developed utilizing a transfer learning
strategy using a variety of dense convolutional neural net-
work pretrained models, including VGG16 [16], VGG19
[16], ResNet50 [17], and InceptionResNet-V2 [18]. A
model capable of detecting COVID-19 contamination
from chest radiography pictures should benefit physicians
in the triage, quantification, and follow-up of positive
patients. Even though this approach does not entirely
swap current testing methods, it may be used to reduce
the number of situations that need urgent testing or more
review by specialists. The contributions of the work are
as follows.

(1) The current study utilized an extensive dataset for
model training and validation, resulting in a genuine
depiction of the real-world patient populace

(2) Development of fine-tuned models using state-of-
the-art CNNs to classify COVID-19 positive chest
X-rays from normal chest X-rays efficiently. Our
work modified only the fully connected networks.
Kernels for feature extraction remained unchanged

(3) Proposed efficient preprocessing and enhancement
techniques that aided in the improvement of the pro-
posed deep learning models’ accuracy

(4) Comparing the current study with previous works in
the same domain suggests that it outperforms the
vast majority of them

The design of the paper is as follows. Section 2 delivers a
summary of the previous work done in the domain. Section
3 describes the various datasets utilized for the development
of the model. Section 4 described the model architecture
followed in the work. Section 5 gives the details about the
model evaluation metrics. Results and Discussions are dis-
cussed in Section 6. A separate section is dedicated for dis-
cussion in Section 7. Related work and its comparison are
done in Section 8. Section 9 is concluded with conclusions.

2. Literature Review

Various CNN-based deep neural networks are frequently
employed to classify medical images. Using CNN as a fea-
ture extractor in medical picture classification may avoid
expensive and challenging feature extraction processes
[19]. A CNN for diagnosing lung illness from image patches
using a shallow convolutional layer (convlayer) was devel-
oped. The testing employed 16,220 patches from 92 HRCT
pictures, and the authors obtained a precision of 94 percent
utilizing the suggested model.

Reference [20] demonstrated a CNN-based approach for
analyzing large chest X-ray film datasets. The authors uti-
lized the Stanford Normal Radiology Diagnostic Dataset. It
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comprises about 400,000 CXR with 108,948 frontal-view
CXRs for experiments. It achieved an accuracy and a recall
of 0.90 and 0.91, respectively.

The authors in [21] conducted a comparative investiga-
tion on CXR into average bacterium and coronavirus using
pretrained models based on DCNN, including VGG16,
VGG19, InceptionResNet-V2, InceptionV3, ResNet50, Den-
seNet201, and MobileNetV2 (multiclass classification). The
InceptionResNet-V2 model has an accuracy of 92.11 percent
for coronavirus detection.

Reference [22] presented COVIDX-Net; this system is
based on a deep learning technique built on seven DCNNs,
including VGG19, Xception, ResNetV2, InceptionV3, Incep-
tionResNet-V2, DenseNet201, and MobileNetV2, for diag-
nosing COVID-19 using X-ray pictures. The VGG19 and
DenseNet201 models outperformed other models by 90 per-
cent accuracy, with an F1 score of 0.89 for regular and 0.91
for COVID-19.

Reference [23] also used DL to identify COVID-19
patients based on a limited number of chest X-ray pictures.
They employed pretrained ResNet50 networks, which
achieved an overall accuracy of 89.2%.

Reference [24] detected COVID-19 chest X-ray pictures
via a transfer learning InceptionV3 model, demonstrating
that the transfer learning approach is stable and simple to
extend for COVID-19 detection. Reference [25] classified
healthy individuals, COVID-19, and bacterial pneumonia cor-
rectly using an enhanced version of the ResNet50 pretrained
network. Reference [26] classified COVID-19, bacterial pneu-
monia, viral pneumonia, and standard persons with a preci-
sion rate of 80.6 percent using the GooLeNet pretraining
model. Reference [27] used a multilayer threshold in conjunc-
tion with a support vector machine (SVM) approach to accu-
rately categorize X-ray pictures of COVID-19-infected
individuals. Reference [28] classified COVID-19 X-ray pic-
tures with great accuracy using machine learning algorithms
such as SVM, CNN, and random forest (RF). Reference [29]
fine-tuned seven CNNs including InceptionV3, ResNet50V2,
Xception, DenseNet121, MobileNetV2, EfficientNet-B0, and
EfficientNetV2 for the detection of COVID. Additionally,
[30] developed an optimized CNNmodel that can be deployed
in a low-powered embedded system.

Reference [31], on the other hand, developed a
CovidGAN-based Auxiliary Classier Generative Adversarial
Network (ACGAN) model to generate synthetic chest X-
ray (CXR) imagery. Additionally, they proved that the
CovidGAN-generated synthetic pictures might be used to
improve the performance of CNNs for COVID-19 identifi-
cation. Classification using CNN solely achieved a precision
of 85%, but with the addition of synthetic pictures generated
by CovidGAN, the efficiency climbed to 95%. Some of the
similar work is available in [32].

The most significant limits of the initial research are the
comparatively small test dataset used for classification.
Additionally, no consideration was made for an unbalanced
accurate depiction of the patient population. Additionally,
most works used raw medical images for model training
without performing any preprocessing on the images. As a
result, medical images are frequently subjected to artifacts

caused by noise, motion, or blurring, all of which can impair
disease detection. Thus, preprocessing and enhancement of
images are critical steps before applying machine learning
or deep learning models. The current work addresses these
deficiencies and proposes a more effective solution.

3. Materials and Methods

3.1. Dataset. In response to the quick outbreak of the COVID-
19 pandemic and the need for efficient and early diagnosis,
several public open-source datasets of chest X-rays and com-
puterized tomography (CT) images have been available. We
used the COVIDx chest X-ray benchmark dataset available
online at [33] These data sources are the COVID-19 X-ray
images [35], COVID-19 chest X-ray dataset [36], Actualmed
COVID-19 chest X-ray dataset [37], Kaggle COVID-19 radi-
ography database-version 3 [38, 39], chest X-ray8 dataset
[20] originally acquired from the National Institute of Health
(NIH) [40], RSNA international COVID-19 open radiology
database (RICORD) [41], BIMCV-COVID19+ dataset [42],
and the Stony Brook University COVID-19 positive case data-
set [43]. The databases used in this work are summarized in
Table 1. Our dataset contains 30,882 chest X-ray images of
14,192 negative (non-COVID) and 16,690 positive COVID-
19 cases; Figure 1 shows example images of each class. The
data were acquired from 17,026 patients. The distribution of
chest X-ray images in the dataset for positive and negative
cases is shown in Figure 2.

3.2. Methodology. Transfer learning has been widely used in
image classification problems. We do not need to start learn-
ing from scratch; instead, we use pretrained deep models
trained on other enormous datasets and fine-tune the model
based on our dataset. In our approach, we focused on apply-
ing some of the most used and popular transfer learning
models available in Python’s Keras library. We applied
VGG16, VGG19, ResNet-50, and InceptionResNet-V2
models; pretrained on over a million images from the Ima-
geNet database to our dataset after preprocessing techniques
to enhance performance and improve the quality of the
input images to the models. Figure 3 shows the pipeline of
our approach.

Table 1: datasets used.

Dataset

COVIDx chest X-ray benchmark dataset [33]

COVID-Net open-source initiative researchers [34]

COVID-19 X-ray images [35]

COVID-19 chest X-ray dataset [36]

Actualmed COVID-19 chest X-ray dataset [37]

Kaggle COVID-19 radiography database-version 3 [38, 39]

Chest X-ray8 dataset [40]

RSNA international COVID-19 open radiology database
(RICORD) [41]

BIMCV-COVID19+ dataset [42]

Stony Brook University COVID-19 positive case dataset [43]

3Wireless Communications and Mobile Computing



3.3. Preprocessing. Medical images are usually exposed to
some artifacts due to noise, motion, or blurring that can
impair disease detection. Hence, image preprocessing and
enhancement are essential steps before applying any
machine learning or deep learning models. Image prepro-
cessing is aimed at enhancing the quality of the image by
suppressing distortion and enhancing the image features.
Following are the preprocessing steps we applied through
our approach:

(1) Noise removal

Salt and pepper, speckle, Gaussian, and Poisson noise
types are most common in medical images. Denoising algo-
rithms such as median, Gaussian, and Weiner filters were
proved to be effective with these types of noise. In our
approach, we used the Gaussian smoothing technique by
applying the GaussianBlur method in the OpenCV library
with a kernel of size 5 × 5.

(2) Morphology filter

Morphological operations are simply based on erosion
and dilation.While erosion removes white noise in the bound-
ary, the dilation increases the area again. Erosion followed by
dilation is known as the opening method, and the opposite
of that is the closing method. We applied opening and closing
operations with a kernel size of 3 × 3 to ensure removing any
noise still in the image and close small dots if they exist.

(3) Contrast enhancement

Contrast limited adaptive histogram equalization
(CLAHE) is very powerful in adjusting image contrast,
which improves the visibility of foggy image parts, resulting
in better image quality and enhanced details. Therefore, we
applied the CLAHE filter on our image dataset using
OpenCV createCLAHE method using a clip limit of 4 and
tile grid size of 4 × 4.

The above preprocessing steps are then applied conse-
quently to the images by converting to grayscale to apply
the filters and then back to RGB, all during image flow to
the ImageDataGenerator along with rescaling pixel values
from 0–255 to 0–1 and resizing to the networks default size
of 224 × 224 × 3. Figure 4 shows an example image before
and after applying the preprocessing method.

The dataset is then split with 60-20-20% ratio for train,
test, and validation sets, respectively, and the distribution
of the ratios is summarized in Table 2.

4. Model Architecture

As stated previously, we trained the dataset with four pre-
trained models that will be discussed in detail in this section.

4.1. VGG16 and VGG19. VGG16 was first launched in 2014
and was the winner of the ImageNet large-scale visual recog-
nition challenge (ILSVRC) [16]. The architecture of VGG

(a)

(b)

Figure 1: Sample images of chest X-ray images from the dataset: (a) COVID-19-positive case and (b) COVID-19-negative cases.
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Figure 2: Chest X-ray image class distribution.

4 Wireless Communications and Mobile Computing



models generally consists of five blocks of small convolu-
tional filters of 3 × 3 with stride = 1, each followed by RELU
activation function, using the same padding and max-
pooling layers of 2 × 2 filter size with stride = 2, and three
last fully connected layers. VGG16 and VGG19 model archi-
tectures are the same; VGG19 has three more convolutional
layers than VGG16. We used the two architectures imple-
mented in Python’s Keras library, removing the three top
fully connected layers using the parameter include top =
false and adding a global average pooling layer, a drop-out
layer with 0.2, and a softmax dense output classifier layer
(see Figure 5). VGG16 was trained with Adam optimizer,
learning rate = 0:03, and with freezing; all layers except for
the last two are fine-tuned. The same setup was used with
the VGG19 model but with a learning rate of 0.01.

ResNet-50 the deep residual network (ResNet) won
ILSVRC in 2015, introducing the skip connection concept
[17] that uses a shortcut between every two layers and direct
connections. This approach is proven to help overcome the
vanishing gradient problem that appears to go and more
profound in the network. We used the 50-layer deep ResNet
version in our experiment that consists of 5 convolution
blocks. The first block consists of a convolutional layer with
a kernel size of 7 × 7, followed by a max-pooling layer with

stride = 2. The second block contains three convolutional
layers with the first and third kernel sizes of 1 × 1 and the
second of 3 × 3. These three layers are repeated three times,
giving nine convolutional layers. Next is the third block with
three convolutional layers repeated four times with twelve
layers. The ResNet-50 architecture continues as depicted in
Figure 6 by removing the top layers and adding global aver-
age, dropout, and dense layers. The model was trained using
an RMSprop optimizer and a learning rate of 0.0001.

4.2. InceptionResNet-V2. The combination of Inception
architecture and the residual connections from the ResNet
network resulted in the InceptionResNet-V2 network (the
network architecture is shown in Figure 7), which was found
to be accelerating the training cost of Inception networks
[18] to achieve high performance with low computational
cost. It consists of a stem block (Figure 8) that carries out
an early convolution stage and pooling before the incep-
tion module. In addition, it has three Inception modules
named A, B, and C and two reduction blocks that are used
to change the grid’s width and height. The detailed struc-
ture of each of the Inception module blocks is described in
Figure 9. In our experiment, we used the InceptionResNet-
V2 architecture in Keras with a similar classifier layer
setup as the previous three models, RMSprop optimizer,
and a learning rate of 0.0001.

5. Model Evaluation Metrics

Apart from the confusion matrices, we generated some eval-
uation measures such as accuracy, precision, recall (sensitiv-
ity), F1, mean intersection union (IOU), and dice coefficient

Input RGB 
image

Convert to
grayscale Noise removal Smoothing

(Morphology)
Equalization

(CLAHE)

Convert to
RGBRescalingResizingModels train

& evaluation

Pre-processing block

Figure 3: Pipeline flow of the following approach.

(a) (b)

Figure 4: Results of applying the preprocessing technique: (a) original image; (b) enhanced image.

Table 2: Dataset distribution for training, validation, and testing.

Dataset COVID-19 positive COVID-19 negative Total

Training 10682 9082 19764

Validation 2670 2271 4941

Testing 3338 2839 6177
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scores to evaluate the performance of the proposed model
on unseen test data. While the accuracy score in (1)
checks for the number of correct predictions over the total
count of predictions, the precision metric computes the
ratio of true positives to all positive predictions as given
in (2), and the recall is given in (3), which calculates the
percentage of true positives over the ground-truth posi-
tives. In addition, F1 is a score that combines precision
and recall into one metric score, as given in (4). Further-
more, we computed another two metrics, which are the
IOU score (5); also known as the Jaccard index, which cal-
culates the percentage of overlap between the ground truth
and the prediction labels, and the dice coefficient (6) is
very similar and positively correlated to the IOU, and both

ranges from 0 (no overlap) to 1 (perfectly overlapped).

Accuracy = correct predictions
total predictions

=
TP + TN

TP + FP + TN + FN
,

ð1Þ

Precision =
TP

TP + FP
, ð2Þ

Recall sensitivityð Þ = TP
TP + FN

, ð3Þ

F1 score = 2 ∗
precision ∗ recall
precision + recall

, ð4Þ
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Figure 6: ResNet-50 architecture.
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Figure 7: InceptionResNet-V2 architecture.
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Figure 5: Architectures of (a) VGG16 network and (b) VGG19 network.
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IOU =
TP

TP + FP + FN
, ð5Þ

Dice coefficient = 2 ∗
TP

TP + FPð Þ + TP + FNð Þ : ð6Þ

6. Results and Discussion

The four model architectures were trained for 20 epochs
adding an early stopping callback function with six
patience epochs and a minimum delta change of 0.01.
Figure 10 summarizes the train validation accuracy and
loss learning curves for each model. The training learning

curve gives an idea of how well the model learnt and per-
forms over the epochs on the training set. From the vali-
dation learning curve, we follow the model performance
on unseen data, which indicates how well the model is
generalizing. The VGG16 and VGG19 models topped early
after 14 and 10 epochs. The learning curves show that the
loss is steadily decreasing for both training and validation
sets, especially the loss curve of the VGG16 model, which
is very smooth with no oscillations, and the accuracy is
increasing. The ResNet-50 model early stopped after eight
epochs, and we can observe one or two spikes in the
learning curves but within a slight difference. Additionally,
the InceptionResNet-V2 model stopped after ten epochs,
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Figure 9: Inception modules of the InceptionResNet-V2 network: (a) InceptionResNet-A, (b) InceptionResNet-B, and (c) InceptionResNet-C.
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and the learning curves show stability and smoothness but
with a prolonged convergence rate.

As mentioned earlier in Table 2, a test set of a total of
6177 images, 3338 positive COVID-19 cases and 2839 nega-
tive cases, is preserved for testing and evaluation of the gen-
eralization performance of the models. In Figure 11, we can
find the confusion matrices of each of the four models indi-

cating the number of true-positive (TP), true-negative (TN),
false-positive (FP), and false-negative (FN) predictions.
Table 3 compares our experimental results using the differ-
ent evaluation metrics previously stated. The VGG 16 model
resulted in accuracy and F1 score of 95.3% and 95.26%,
respectively, and a dice similarity coefficient of 0.953. And
next to it, with a slight difference, is the VGG19 model with
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Figure 10: Train-validation loss and accuracy learning curves of the (a) VGG16 model, (b) VGG19 model, (c) ResNet-50 model, and (d)
InceptionResNet-V2 model.
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an accuracy of 94.5%. The ResNet-50 model resulted in a
value of 91.97% for F1 score and 92.02% accuracy, while
the InceptionResNet-V2 achieved an accuracy of 88.4%
which is expected due to the very slow learning.

7. Discussion

As can be concluded from Table 3 and as expected from
the accuracy and loss learning curves, the VGG16 and
VGG19 models attained the best performance as their
evaluation metrics on the test set were the highest among
the rest of the models. Moreover, as for the confusion
matrix, the two models have the least number of false pos-
itives and false negatives. The VGG16 model has 140 false
positives and 151 false negatives. On the other hand, the
VGG19 model resulted in 223 and 116 false-positive and
false-negative predictions, respectively. This important
insight gives an advantage for the VGG19 model over
the VGG16 model in our experiment. Minimizing false-
negative predictions is a critical and essential matter in
healthcare and medical applications, as it may lead to
delayed diagnosis and hence delay diagnosis treatment.
In the next section, a comparative analysis was performed

with literature-related work for COVID-19 detection from
chest X-ray images or CT scan images using different
approaches.

8. Related Work Comparison

In Table 4, we summarize the performance comparison of
our approach compared to other similar studies. Regarding
the study conducted by Wang et al. [44], they proposed
the same benchmark dataset we are using in our study
applying COVID-Net deep convolutional neural network,
the first open-source network implemented for COVID-19
detection from chest X-ray images. COVID-Net resulted in
93.3% accuracy, while the VGG19 and ResNet-50 models
were used and resulted in 83% and 90.6% accuracies, respec-
tively. Horry et al. [32] developed a study to classify COVID-
19 into the three most used medical imaging techniques,
chest X-rays, ultrasound, and CT scan images, using transfer
learning. Their study resulted in 79%, 87%, 73%, and 75%
accuracies on the VGG16, VGG19, InceptionResNet-V2,
and ResNet-50 models, respectively. Image-enhancing tech-
nique preprocessing and image-enhancing techniques exhib-
ited a distinct advantage with the same transfer learning
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Figure 11: Confusion matrix of the (a) VGG16 model, (b) VGG19 model, (c) ResNet-50 model, and (d) InceptionResNet-V2 model.

Table 3: Comparison of models’ performance metrics.

Architecture Accuracy (%) Precision (%) Recall (%) F1 score (%) IOU Dice coefficient

VGG16 95.29 95.27 95.24 95.26 0.909 0.953

VGG19 94.51 94.42 94.62 94.49 0.895 0.945

ResNet-50 92.02 91.94 92.01 91.97 0.851 0.9197

InceptionResNet-V2 88.39 88.37 88.24 88.3 0.790 0.883
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paradigm. In addition, Oyelade et al. [45] conducted another
study proposing a CNN framework called CovFrameNet to
classify and detect COVID-19 disease from chest X-ray
images. Although their proposed model achieved an accu-
racy of 99.9%, it resulted in 85% for precision and recall
and a 90% F1 score due to the class imbalance in the used
dataset. Another study was conducted by Ahmed et al. [46]
which introduced an Internet of things- (IoT-) based frame-
work for early detection of COVID-19 using a faster region-
based convolutional neural network (Faster R-CNN), result-
ing in 98% accuracy, recall of 98%, and 97% for negative and
positive images, respectively. When we compared the find-
ings of these investigations, we discovered that only Ahmed
et al. [46], who employed the Faster R-CNN, had a model
that outperformed ours, providing our technique an advan-
tage over previous COVID-19 detection studies, especially
those that used transfer learning models.

As a follow-up to our previous research, we aimed to
broaden our investigation to include real-world datasets
comprising a variety of chest infections brought on by
COVID-19 (multiclass). In addition to this, we may work
on developing models that are both more lightweight and
highly accurate to use them in portable devices. Finally, as
the study focuses on medical data, which is of extremely
highly crucial value, having an awareness of the errors asso-
ciated with each model prediction will also be an asset.

9. Conclusions

Despite marking two years since the COVID-19 outbreak, an
early and accurate diagnosis is still necessary and needed. This
work implemented and evaluated four pretrained models,
VGG16, VGG19, ResNet-50, and InceptionResNet-V2 archi-
tecture models, for COVID-19 disease detection from chest
X-ray images which are considered an inexpensive, fast, and
most available test that can potentially be used in COVID-19
diagnosis. We applied our proposed method on an available

large-sized benchmark dataset collected from seven different
open sources of chest X-ray images. Our approach exam-
ined the significance of image preprocessing and enhance-
ment techniques such as smoothing, denoising, and
contrast equalization for enhancing model performance,
particularly with this complex dataset compiled from multi-
ple sources. This could be useful for other researchers who
wish to utilize this dataset for their own investigations. Our
results demonstrated the power of transfer learning-based
methodologies in addressing such problems with satisfying
performance. The VGG architecture is proven effective
throughout the executed experiments for classifying normal
and COVID-19 chest X-ray images with up to 95.3% accu-
racy, precision, and recall. Overall, the “results of the four
models” were very promising and showed that the transfer
learning pretrained models perform very well on diseases
detected from chest X-ray images.
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Table 4: Comparison results of similar studies in the literature with our results.

Reference Dataset Proposed approach Accuracy (%)

COVIDx chest X-ray-2 dataset

VGG16 95.23%

VGG19 94.51%

ResNet-50 92.02%

InceptionResnet-V2 88.39%

[44] COVIDx chest X-ray-2 dataset

COVID-Net 93.3%

VGG19 83%

ResNet-50 90.6%

[32] Chest X-rays, ultrasound, and CT scan images

VGG16 79%

VGG19 87%

InceptionResNet-V2 73%

ResNet-50 75%

[45]
COVID-19 chest X-ray

CovFrameNet 99.9% (90% F1 score)
Dataset+NIH chest X-ray dataset

[46]
Different online

Faster-RCNN 98%
Available chest X-ray datasets
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