ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Curcumin as the OO Bidentate Ligand in “2 + 1” Complexes with the [M(CO)3]+ (M = Re, 99mTc) Tricarbonyl Core for Radiodiagnostic Applications

View Author Information
Institute of Biology
Institute of Radioisotopes/Radiodiagnostic Products
§ Institute of Materials Science
National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece
*To whom correspondence should be addressed. Telephone: +30210 6503555. Fax: +30210 6511767. E-mail: [email protected]
Cite this: Inorg. Chem. 2011, 50, 4, 1295–1303
Publication Date (Web):January 21, 2011
https://doi.org/10.1021/ic102228u
Copyright © 2011 American Chemical Society

    Article Views

    1766

    Altmetric

    -

    Citations

    75
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (2)»

    Abstract

    Abstract Image

    The synthesis and characterization of “2 + 1” complexes of the [M(CO)3]+ (M = Re, 99mTc) core with the β-diketones acetylacetone (complexes 2, 8) and curcumin (complexes 5, 10 and 6, 11) as bidentate OO ligands, and imidazole or isocyanocyclohexane as monodentate ligands is reported. The complexes were synthesized by reacting the [NEt4]2[Re(CO)3Br3] precursor with the β-diketone to generate the intermediate aqua complex fac-Re(CO)3(OO)(H2O) that was isolated and characterized, followed by replacement of the labile water by the monodentate ligand. All complexes were characterized by mass spectrometry, NMR and IR spectroscopies, and elemental analysis. In the case of complex 2, bearing imidazole as the monodentate ligand, X-ray analysis was possible. The chemistry was successfully transferred at 99mTc tracer level. The curcumin complexes 5 and 6, as well as their intermediate aqua complex 4, that bear potential for radiopharmaceutical applications due to the wide spectrum of pharmacological activity of curcumin, were successfully tested for selective staining of β-amyloid plaques of Alzheimer’s disease. The fact that the complexes maintain the affinity of the mother compound curcumin for β-amyloid plaques prompts for further exploration of their chemistry and biological properties as radioimaging probes.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    1H and 13C spectra of NMR spectra of imidazole in DMSO-d6; NOESY spectrum of complex 2; 1H NMR spectrum of complex 4; IR spectrum of complex 6; UV absorbance and fluorescence spectra of curcumin and complexes 5 and 6; β-amyloid plaque staining with thioflavin S, complex 6, and curcumin. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 75 publications.

    1. Marina Sagnou, Barbara Mavroidi, Antonio Shegani, Maria Paravatou-Petsotas, Catherine Raptopoulou, Vassilis Psycharis, Ioannis Pirmettis, Minas S. Papadopoulos, Maria Pelecanou. Remarkable Brain Penetration of Cyclopentadienyl M(CO)3+ (M = 99mTc, Re) Derivatives of Benzothiazole and Benzimidazole Paves the Way for Their Application as Diagnostic, with Single-Photon-Emission Computed Tomography (SPECT), and Therapeutic Agents for Alzheimer’s Disease. Journal of Medicinal Chemistry 2019, 62 (5) , 2638-2650. https://doi.org/10.1021/acs.jmedchem.8b01949
    2. Charalampos Triantis, Antonio Shegani, Christos Kiritsis, Myrto Ischyropoulou, Ioanna Roupa, Vassilis Psycharis, Catherine Raptopoulou, Patricia Kyprianidou, Maria Pelecanou, Ioannis Pirmettis, Minas S. Papadopoulos. Dicarbonyl cis-[M(CO)2(N,O)(C)(P)] (M = Re, 99mTc) Complexes with a New [2 + 1 + 1] Donor Atom Combination. Inorganic Chemistry 2018, 57 (14) , 8354-8363. https://doi.org/10.1021/acs.inorgchem.8b01014
    3. David J. Hayne, Jonathan M. White, Catriona A. McLean, Victor L. Villemagne, Kevin J. Barnham, and Paul S. Donnelly . Synthesis of Oxorhenium(V) and Oxotechnetium(V) Complexes That Bind to Amyloid-β Plaques. Inorganic Chemistry 2016, 55 (16) , 7944-7953. https://doi.org/10.1021/acs.inorgchem.6b00972
    4. Samya Banerjee and Akhil R. Chakravarty . Metal Complexes of Curcumin for Cellular Imaging, Targeting, and Photoinduced Anticancer Activity. Accounts of Chemical Research 2015, 48 (7) , 2075-2083. https://doi.org/10.1021/acs.accounts.5b00127
    5. Abdolreza Yazdani, Nancy Janzen, Laura Banevicius, Shannon Czorny, and John F. Valliant . Imidazole-Based [2 + 1] Re(I)/99mTc(I) Complexes as Isostructural Nuclear and Optical Probes. Inorganic Chemistry 2015, 54 (4) , 1728-1736. https://doi.org/10.1021/ic502663p
    6. Riccardo Pettinari, Fabio Marchetti, Francesca Condello, Claudio Pettinari, Giulio Lupidi, Rosario Scopelliti, Suman Mukhopadhyay, Tina Riedel, and Paul J. Dyson . Ruthenium(II)–Arene RAPTA Type Complexes Containing Curcumin and Bisdemethoxycurcumin Display Potent and Selective Anticancer Activity. Organometallics 2014, 33 (14) , 3709-3715. https://doi.org/10.1021/om500317b
    7. Mattia Asti, Erika Ferrari, Stefania Croci, Giulia Atti, Sara Rubagotti, Michele Iori, Pier C. Capponi, Alessandro Zerbini, Monica Saladini, and Annibale Versari . Synthesis and Characterization of 68Ga-Labeled Curcumin and Curcuminoid Complexes as Potential Radiotracers for Imaging of Cancer and Alzheimer’s Disease. Inorganic Chemistry 2014, 53 (10) , 4922-4933. https://doi.org/10.1021/ic403113z
    8. Charalampos Triantis, Theodoros Tsotakos, Charalampos Tsoukalas, Marina Sagnou, Catherine Raptopoulou, Aris Terzis, Vassilis Psycharis, Maria Pelecanou, Ioannis Pirmettis, and Minas Papadopoulos . Synthesis and Characterization of fac-[M(CO)3(P)(OO)] and cis-trans-[M(CO)2(P)2(OO)] Complexes (M = Re, 99mTc) with Acetylacetone and Curcumin as OO Donor Bidentate Ligands. Inorganic Chemistry 2013, 52 (22) , 12995-13003. https://doi.org/10.1021/ic401503b
    9. Goreti Ribeiro Morais, António Paulo, and Isabel Santos . Organometallic Complexes for SPECT Imaging and/or Radionuclide Therapy. Organometallics 2012, 31 (16) , 5693-5714. https://doi.org/10.1021/om300501d
    10. Yan Cheng, Masahiro Ono, Hiroyuki Kimura, Masashi Ueda, and Hideo Saji . Technetium-99m Labeled Pyridyl Benzofuran Derivatives as Single Photon Emission Computed Tomography Imaging Probes for β-Amyloid Plaques in Alzheimer’s Brains. Journal of Medicinal Chemistry 2012, 55 (5) , 2279-2286. https://doi.org/10.1021/jm201513c
    11. Raghuraman Kannan, Nagavarakishore Pillarsetty, Hariprasad Gali, Timothy J. Hoffman, Charles L. Barnes, Silvia S. Jurisson, Charles J. Smith, and Wynn A. Volkert . Design and Synthesis of a Bombesin Peptide-Conjugated Tripodal Phosphino Dithioether Ligand Topology for the Stabilization of the fac-[M(CO)3]+ Core (M = 99 mTc or Re). Inorganic Chemistry 2011, 50 (13) , 6210-6219. https://doi.org/10.1021/ic200491z
    12. Hesham A. Shamsel-Din, Mohamed A. Gizawy, Amany Attaallah, Kamel A. Moustafa. Microwave-assisted synthesis and 99mTc-radiolabeling of anti-inflammatory active curcumin derivatives for inflammation diagnosis and therapy. Journal of Radioanalytical and Nuclear Chemistry 2024, 333 (3) , 1323-1332. https://doi.org/10.1007/s10967-024-09373-1
    13. Wenzhi Yang, Wenjie Zhang, Jingyu Chen, Jiong Zhou. Mono-functionalized pillar[n]arenes: Syntheses, host–guest properties and applications. Chinese Chemical Letters 2024, 35 (1) , 108740. https://doi.org/10.1016/j.cclet.2023.108740
    14. Michael I. Webb. The Design of Metal Complexes to Target the Amyloid‐β Peptide in Alzheimer's Disease. 2023, 1-26. https://doi.org/10.1002/9781119951438.eibc2846
    15. Amanda-Lee E. Manicum, Hitler Louis, Ernest C. Agwamba, Chioma M. Chima, Wakopo J. Nzondomyo, SibusisoA. Sithole. Acetylacetone and imidazole coordinated Re(I) tricarbonyl complexes: Experimental, DFT studies, and molecular docking approach. Chemical Physics Impact 2023, 6 , 100165. https://doi.org/10.1016/j.chphi.2023.100165
    16. Chengfei Liu, Caiping Liu, Yang Bai, Jingxia Wang, Wei Tian. Drug Self‐Delivery Systems: Molecule Design, Construction Strategy, and Biological Application. Advanced Healthcare Materials 2023, 12 (10) https://doi.org/10.1002/adhm.202202769
    17. Georgy V. Sidorenko, Alexander E. Miroslavov, Margarita Yu. Tyupina. Technetium(I) carbonyl complexes for nuclear medicine: Coordination-chemical aspect. Coordination Chemistry Reviews 2023, 476 , 214911. https://doi.org/10.1016/j.ccr.2022.214911
    18. Chengfei Liu, Muqiong Li, Jianxiang Sun, Pengxiang Li, Yang Bai, JuAn Zhang, Yongchao Qian, Menghan Shi, Jia He, Hongbin Huo, Jun Pang, Li Fan, Wei Tian. Cation‐π Interaction‐Mediated Tumour Drug Delivery for Deep Intratumoral Penetration and Treatment. Advanced Functional Materials 2022, 32 (40) https://doi.org/10.1002/adfm.202205043
    19. Amanda-Lee Ezra Manicum, Marietjie Schutte-Smith, Frederick P. Malan, Hendrik Gideon Visser. Steric and electronic influence of Re(I) tricarbonyl complexes with various coordinated β-diketones. Journal of Molecular Structure 2022, 1264 , 133278. https://doi.org/10.1016/j.molstruc.2022.133278
    20. Veroniki P. Vidali, Georgia Nigianni, Georgia D. Athanassopoulou, Aleksander Canko, Barbara Mavroidi, Dimitris Matiadis, Maria Pelecanou, Marina Sagnou. Synthesis of Novel Pyrazolo[3,4-b]pyridines with Affinity for β-Amyloid Plaques. Molbank 2022, 2022 (1) , M1343. https://doi.org/10.3390/M1343
    21. Qaisar Nadeem, Federica Battistin, Olivier Blacque, Roger Alberto. Naphthalene Exchange in [Re(η 6 ‐napht) 2 ] + with Pharmaceuticals Leads to Highly Functionalized Sandwich Complexes [M(η 6 ‐pharm) 2 ] + (M=Re/ 99m Tc). Chemistry – A European Journal 2022, 28 (5) https://doi.org/10.1002/chem.202103566
    22. Chengfei Liu, Muqiong Li, Pengxiang Li, Yang Bai, Jun Pang, Li Fan, Wei Tian. Ruthenium (II)‐Coordinated Supramolecular Metallodrug Complex Realizing Oxygen Self‐Supply In Situ for Overcoming Hypoxic Tumors. Advanced Functional Materials 2021, 31 (47) https://doi.org/10.1002/adfm.202105837
    23. Antonio Shegani, Myrto Ischyropoulou, Ioanna Roupa, Christos Kiritsis, Konstantina Makrypidi, Afroditi Papasavva, Catherine Raptopoulou, Vassilis Psycharis, Heather M. Hennkens, Maria Pelecanou, Minas S. Papadopoulos, Ioannis Pirmettis. Synthesis and evaluation of new mixed “2 + 1” Re, 99mTc and 186Re tricarbonyl dithiocarbamate complexes with different monodentate ligands. Bioorganic & Medicinal Chemistry 2021, 47 , 116373. https://doi.org/10.1016/j.bmc.2021.116373
    24. Dan DuBourdieu, Sahdeo Prasad, Rajiv Lall. Curcuminoid–metal complexes for oxidative stress. 2021, 571-584. https://doi.org/10.1016/B978-0-12-821038-3.00036-7
    25. Wei Wei, Guochen Jia. Metal-Carbon Bonds of Heavier Group 7 and 8 Metals (Tc, Re, Ru, Os): Mononuclear Tc/Re/Ru/Os Complexes With Metal-Carbon Bonds. 2021, 123-439. https://doi.org/10.1016/B978-0-08-102688-5.00049-0
    26. Aaron S. Crossman, Michael P. Marshak. β-Diketones: Coordination and Application. 2021, 331-365. https://doi.org/10.1016/B978-0-08-102688-5.00069-6
    27. Krishnan Balasubramanian. Relativistic Quantum Chemical and Molecular Dynamics Techniques for Medicinal Chemistry of Bioinorganic Compounds. 2021, 133-193. https://doi.org/10.1007/7355_2020_109
    28. Dionysia Papagiannopoulou. 99m Tc Radiopharmaceutical Chemistry. 2020, 375-433. https://doi.org/10.1002/9781119500575.ch12
    29. Amanda-Lee Manicum, Orbett Alexander, Marietjie Schutte-Smith, Hendrik G. Visser. Synthesis, characterization and substitution reactions of fac-[Re(O,O′-bid)(CO)3(P)] complexes, using the “2+1” mixed ligand model. Journal of Molecular Structure 2020, 1209 , 127953. https://doi.org/10.1016/j.molstruc.2020.127953
    30. Linli Wang, Nan Lu, Longshan Zhao, Chao Qi, Weiyang Zhang, Jinhua Dong, Xiaohong Hou. Characterization of stress degradation products of curcumin and its two derivatives by UPLC–DAD–MS/MS. Arabian Journal of Chemistry 2019, 12 (8) , 3998-4005. https://doi.org/10.1016/j.arabjc.2016.02.003
    31. Alexander Sturzu, Sumbla Sheikh, Hubert Kalbacher, Thomas Nägele, Christopher Weidenmaier, Bettina M. Wegenast-Braun, Nadine Schilling, Ulrike Ernemann, Stefan Heckl. Synthesis of a Novel Curcumin Derivative as a Potential Imaging Probe in Alzheimer’s Disease Imaging. Current Alzheimer Research 2019, 16 (8) , 723-731. https://doi.org/10.2174/1567205016666190816130516
    32. Sajjad Molavipordanjani, Saeed Emami, Seyed Jalal Hosseinimehr. 99mTc-labeled Small Molecules for Diagnosis of Alzheimer’s Disease: Past, Recent and Future Perspectives. Current Medicinal Chemistry 2019, 26 (12) , 2166-2189. https://doi.org/10.2174/0929867325666180410104023
    33. Davide Corinti, Alessandro Maccelli, Barbara Chiavarino, Philippe Maitre, Debora Scuderi, Enrico Bodo, Simonetta Fornarini, Maria Elisa Crestoni. Vibrational signatures of curcumin’s chelation in copper(II) complexes: An appraisal by IRMPD spectroscopy. The Journal of Chemical Physics 2019, 150 (16) https://doi.org/10.1063/1.5086666
    34. Amanda-Lee E. Manicum, Marietjie Schutte-Smith, Orbett T. Alexander, Linette Twigge, Andreas Roodt, Hendrik G. Visser. First kinetic data of the CO substitution in fac-[Re(L,L′-Bid)(CO)3(X)] complexes (L,L′-Bid = acacetylacetonate or tropolonate) by tertiary phosphines PTA and PPh3: Synthesis and crystal structures of water-soluble rhenium(I) tri- and dicarbonyl complexes with 1,3,5-triaza-7-phosphaadamantane (PTA). Inorganic Chemistry Communications 2019, 101 , 93-98. https://doi.org/10.1016/j.inoche.2019.01.014
    35. Erika Ferrari. Curcumin Derivatives as Metal-Chelating Agents: Implications for Potential Therapeutic Agents for Neurological Disorders. 2019, 275-299. https://doi.org/10.1016/B978-0-12-815461-8.00015-3
    36. Krzysztof Lyczko, Monika Lyczko, Sylwia Meczynska-Wielgosz, Marcin Kruszewski, Józef Mieczkowski. Tricarbonylrhenium(I) complexes with the N-methylpyridine-2-carbothioamide ligand – Synthesis, characterization and cytotoxicity studies. Journal of Organometallic Chemistry 2018, 866 , 59-71. https://doi.org/10.1016/j.jorganchem.2018.04.008
    37. Amanda-Lee E. Manicum, Marietjie Schutte-Smith, Hendrik G. Visser. The synthesis and structural comparison of fac-[Re(CO)3]+ containing complexes with altered β-diketone and phosphine ligands. Polyhedron 2018, 145 , 80-87. https://doi.org/10.1016/j.poly.2018.01.022
    38. Govindarajan Padmanaban, Viswanathan Arun Nagaraj. Curcumin From Turmeric as an Adjunct Drug?. 2018, 179-202. https://doi.org/10.1016/B978-0-444-64057-4.00006-5
    39. Chilaluck C. Konkankit, Sierra C. Marker, Kevin M. Knopf, Justin J. Wilson. Anticancer activity of complexes of the third row transition metals, rhenium, osmium, and iridium. Dalton Transactions 2018, 47 (30) , 9934-9974. https://doi.org/10.1039/C8DT01858H
    40. Amanda-Lee Manicum, Orbett Alexander, Marietjie Schutte-Smith, Hendrik G. Visser, Andreas Roodt. Crystal structure of fac -(acetylacetonato-κ 2 O , O′ )tricarbonyl(benzyldiphenylphosphine-κ P )rhenium(I), C 27 H 24 O 5 PRe. Zeitschrift für Kristallographie - New Crystal Structures 2017, 232 (6) , 957-959. https://doi.org/10.1515/ncrs-2017-0097
    41. Riccardo Pettinari, Francesca Condello, Fabio Marchetti, Claudio Pettinari, Piotr Smoleński, Tina Riedel, Rosario Scopelliti, Paul J. Dyson. Dicationic Ruthenium(II)–Arene–Curcumin Complexes Containing Methylated 1,3,5‐Triaza‐7‐phosphaadamantane: Synthesis, Structure, and Cytotoxicity. European Journal of Inorganic Chemistry 2017, 2017 (22) , 2905-2910. https://doi.org/10.1002/ejic.201700183
    42. Shimpei Iikuni, Masahiro Ono, Keiichi Tanimura, Hiroyuki Watanabe, Masashi Yoshimura, Hideo Saji. Synthesis and biological evaluation of novel technetium-99m-labeled phenylquinoxaline derivatives as single photon emission computed tomography imaging probes targeting β-amyloid plaques in Alzheimer's disease. RSC Advances 2017, 7 (33) , 20582-20590. https://doi.org/10.1039/C6RA28395K
    43. Kaihua Chen, Mengchao Cui. Recent progress in the development of metal complexes as β-amyloid imaging probes in the brain. MedChemComm 2017, 8 (7) , 1393-1407. https://doi.org/10.1039/C7MD00064B
    44. Jianhua Jia, Kaixiang Zhou, Jiapei Dai, Boli Liu, Mengchao Cui. 2-Arylbenzothiazoles labeled with [CpRe/ 99m Tc(CO) 3 ] and evaluated as β -amyloid imaging probes. European Journal of Medicinal Chemistry 2016, 124 , 763-772. https://doi.org/10.1016/j.ejmech.2016.09.001
    45. Jaclyn L. Lange, David J. Hayne, Peter Roselt, Catriona A. McLean, Jonathan M. White, Paul S. Donnelly. A gallium(III) Schiff base-curcumin complex that binds to amyloid-β plaques. Journal of Inorganic Biochemistry 2016, 162 , 274-279. https://doi.org/10.1016/j.jinorgbio.2016.02.029
    46. Sara Rubagotti, Stefania Croci, Erika Ferrari, Michele Iori, Pier Capponi, Luca Lorenzini, Laura Calzà, Annibale Versari, Mattia Asti. Affinity of nat/68Ga-Labelled Curcumin and Curcuminoid Complexes for β-Amyloid Plaques: Towards the Development of New Metal-Curcumin Based Radiotracers. International Journal of Molecular Sciences 2016, 17 (9) , 1480. https://doi.org/10.3390/ijms17091480
    47. Theocharis E. Kydonaki, Evangelos Tsoukas, Filipa Mendes, Antonios G. Hatzidimitriou, António Paulo, Lefkothea C. Papadopoulou, Dionysia Papagiannopoulou, George Psomas. Synthesis, characterization and biological evaluation of 99mTc/Re–tricarbonyl quinolone complexes. Journal of Inorganic Biochemistry 2016, 160 , 94-105. https://doi.org/10.1016/j.jinorgbio.2015.12.010
    48. Zhengyi Li, Jinbei Yan, Yue Yin, Zhihui Zhang, Zhiming Wang, Defeng Xu, Xiaoqiang Sun. A Fluorescent Chemosensor for Al 3+ Based on CO Isomerization Derivated from Curcumin. Chinese Journal of Chemistry 2016, 34 (7) , 657-661. https://doi.org/10.1002/cjoc.201600110
    49. Charalampos Triantis, Antonio Shegani, Christos Kiritsis, Catherine Raptopoulou, Vassilis Psycharis, Maria Pelecanou, Ioannis Pirmettis, Minas Papadopoulos. Crystal structure of fac -tricarbonyl(cyclohexyl isocyanide-κ C )(quinoline-2-carboxylato-κ 2 N , O )rhenium(I). Acta Crystallographica Section E Crystallographic Communications 2016, 72 (3) , 358-362. https://doi.org/10.1107/S2056989016002206
    50. A. Kunwar, K. I. Priyadarsini. Curcumin and Its Role in Chronic Diseases. 2016, 1-25. https://doi.org/10.1007/978-3-319-41334-1_1
    51. Tukki Sarkar, Ray J. Butcher, Samya Banerjee, Sanjoy Mukherjee, Akhtar Hussain. Visible light-induced cytotoxicity of a dinuclear iron(III) complex of curcumin with low-micromolar IC50 value in cancer cells. Inorganica Chimica Acta 2016, 439 , 8-17. https://doi.org/10.1016/j.ica.2015.09.026
    52. Tukki Sarkar, Samya Banerjee, Sanjoy Mukherjee, Akhtar Hussain. Mitochondrial selectivity and remarkable photocytotoxicity of a ferrocenyl neodymium( iii ) complex of terpyridine and curcumin in cancer cells. Dalton Transactions 2016, 45 (15) , 6424-6438. https://doi.org/10.1039/C5DT04775G
    53. Michael Pröhl, Ulrich S. Schubert, Wolfgang Weigand, Michael Gottschaldt. Metal complexes of curcumin and curcumin derivatives for molecular imaging and anticancer therapy. Coordination Chemistry Reviews 2016, 307 , 32-41. https://doi.org/10.1016/j.ccr.2015.09.001
    54. Thomas R. Hayes, Ashton S. Powell, Charles L. Barnes, Paul D. Benny. Synthesis and stability of 2+1 complexes of N,N-diethylbenzoylthiourea with [M I (CO) 3 ] + (M = Re, 99m Tc). Journal of Coordination Chemistry 2015, 68 (19) , 3432-3448. https://doi.org/10.1080/00958972.2015.1071801
    55. Afsoon Yousefi, Reza Yousefi, Farhad Panahi, Samira Sarikhani, Amin Reza Zolghadr, Aminollah Bahaoddini, Ali Khalafi-Nezhad. Novel curcumin-based pyrano[2,3-d]pyrimidine anti-oxidant inhibitors for α-amylase and α-glucosidase: Implications for their pleiotropic effects against diabetes complications. International Journal of Biological Macromolecules 2015, 78 , 46-55. https://doi.org/10.1016/j.ijbiomac.2015.03.060
    56. Daniel T. Marake, Penny P. Mokolokolo, Hendrik G. Visser, Alice Brink. Structural comparison of group 7 tricarbonyl complexes of 2-{[2-(1 H -imidazol-4-yl)ethyl]iminomethyl}-5-methylphenolate. Acta Crystallographica Section C Structural Chemistry 2015, 71 (6) , 423-429. https://doi.org/10.1107/S2053229615008360
    57. Masahiro Ono, Hideo Saji. Recent advances in molecular imaging probes for β-amyloid plaques. MedChemComm 2015, 6 (3) , 391-402. https://doi.org/10.1039/C4MD00365A
    58. Krzysztof Lyczko, Monika Lyczko, Józef Mieczkowski. A series of tricarbonylrhenium(I) complexes with the N-methyl-2-pyridinecarboxyamide ligand: Synthesis, structure, spectroscopic characterization and computational studies. Polyhedron 2015, 87 , 122-134. https://doi.org/10.1016/j.poly.2014.11.005
    59. Tukki Sarkar, Samya Banerjee, Akhtar Hussain. Remarkable visible light-triggered cytotoxicity of mitochondria targeting mixed-ligand cobalt( iii ) complexes of curcumin and phenanthroline bases binding to human serum albumin. RSC Advances 2015, 5 (22) , 16641-16653. https://doi.org/10.1039/C4RA17314G
    60. Riccardo Pettinari, Fabio Marchetti, Claudio Pettinari, Francesca Condello, Agnese Petrini, Rosario Scopelliti, Tina Riedel, Paul J. Dyson. Organometallic rhodium( iii ) and iridium( iii ) cyclopentadienyl complexes with curcumin and bisdemethoxycurcumin co-ligands. Dalton Transactions 2015, 44 (47) , 20523-20531. https://doi.org/10.1039/C5DT03037D
    61. Kavirayani Priyadarsini. The Chemistry of Curcumin: From Extraction to Therapeutic Agent. Molecules 2014, 19 (12) , 20091-20112. https://doi.org/10.3390/molecules191220091
    62. Veerasamy Sathish, Eththilu Babu, Arumugam Ramdass, Zong-Zhan Lu, Murugesan Velayudham, Pounraj Thanasekaran, Kuang-Lieh Lu, Seenivasan Rajagopal. Alkoxy bridged binuclear rhenium (I) complexes as a potential sensor for β-amyloid aggregation. Talanta 2014, 130 , 274-279. https://doi.org/10.1016/j.talanta.2014.06.070
    63. Charalampos Triantis, Marina Sagnou, Barbara Mavroidi, Maria Paravatou-Petsotas, Ioannis Pirmettis, Minas Papadopoulos, Maria Pelecanou. Mixed pharmacophore fac-[M(OO)(isc)(CO)3] (M = Re, 99mTc) complexes. Nuclear Medicine and Biology 2014, 41 (7) , 626. https://doi.org/10.1016/j.nucmedbio.2014.05.053
    64. Timothy U. Connell, David J. Hayne, Uwe Ackermann, Henri J. Tochon‐Danguy, Jonathan M. White, Paul S. Donnelly. Rhenium and technetium tricarbonyl complexes of 1,4‐Substituted pyridyl‐1,2,3‐triazole bidentate ‘click’ ligands conjugated to a targeting RGD peptide. Journal of Labelled Compounds and Radiopharmaceuticals 2014, 57 (4) , 262-269. https://doi.org/10.1002/jlcr.3169
    65. Guoyong Xu, Dong Wei, Jiafeng Wang, Bo Jiang, Mahong Wang, Xuan Xue, Shuangsheng Zhou, Baoxing Wu, Minghua Jiang. Crystal structure, optical properties and biological imaging of two curcumin derivatives. Dyes and Pigments 2014, 101 , 312-317. https://doi.org/10.1016/j.dyepig.2013.09.034
    66. Jianhua Jia, Mengchao Cui, Jiapei Dai, Xuedan Wang, Yu-Shin Ding, Hongmei Jia, Boli Liu. 99m Tc-labeled benzothiazole and stilbene derivatives as imaging agents for Aβ plaques in cerebral amyloid angiopathy. MedChemComm 2014, 5 (2) , 153-158. https://doi.org/10.1039/C3MD00195D
    67. David J. Hayne, SinChun Lim, Paul S. Donnelly. Metal complexes designed to bind to amyloid-β for the diagnosis and treatment of Alzheimer's disease. Chem. Soc. Rev. 2014, 43 (19) , 6701-6715. https://doi.org/10.1039/C4CS00026A
    68. Yanping Yang, Mengchao Cui, Bing Jin, Xuedan Wang, Zijing Li, Pingrong Yu, Jianhua Jia, Hualong Fu, Hongmei Jia, Boli Liu. 99mTc-labeled dibenzylideneacetone derivatives as potential SPECT probes for in vivo imaging of β-amyloid plaque. European Journal of Medicinal Chemistry 2013, 64 , 90-98. https://doi.org/10.1016/j.ejmech.2013.03.057
    69. Melita Menelaou, Thomas Weyhermüller, Mònica Soler, Núria Aliaga-Alcalde. Novel paramagnetic-luminescent building blocks containing manganese(II) and anthracene-based curcuminoids. Polyhedron 2013, 52 , 398-405. https://doi.org/10.1016/j.poly.2012.08.061
    70. Akhtar Hussain, Kumar Somyajit, Bhabatosh Banik, Samya Banerjee, Ganesh Nagaraju, Akhil R. Chakravarty. Enhancing the photocytotoxic potential of curcumin on terpyridyl lanthanide( iii ) complex formation. Dalton Trans. 2013, 42 (1) , 182-195. https://doi.org/10.1039/C2DT32042H
    71. Anna K. Renfrew, Nicole S. Bryce, Trevor W. Hambley. Delivery and release of curcumin by a hypoxia-activated cobalt chaperone: a XANES and FLIM study. Chemical Science 2013, 4 (9) , 3731. https://doi.org/10.1039/c3sc51530c
    72. Jeffrey Klenc, Malgorzata Lipowska, Andrew T. Taylor, Luigi G. Marzilli. Synthesis and Characterization of fac ‐Re(CO) 3 ‐aspartic‐ N ‐monoacetic Acid: Structural Analogue of a Potential Renal Tracer, fac ‐ 99m Tc(CO) 3 (ASMA). European Journal of Inorganic Chemistry 2012, 2012 (27) , 4334-4341. https://doi.org/10.1002/ejic.201200599
    73. Fatemeh Niroomand Hosseini, S. Masoud Nabavizadeh. Theoretical investigation of the thermodynamics on monomerization of a rhenium(V) dimer with imidazole-based ligands. Polyhedron 2012, 34 (1) , 163-170. https://doi.org/10.1016/j.poly.2011.12.031
    74. Samya Banerjee, Puja Prasad, Akhtar Hussain, Imran Khan, Paturu Kondaiah, Akhil R. Chakravarty. Remarkable photocytotoxicity of curcumin in HeLa cells in visible light and arresting its degradation on oxovanadium(iv) complex formation. Chemical Communications 2012, 48 (62) , 7702. https://doi.org/10.1039/c2cc33576j
    75. Alvin A. Holder. Inorganic pharmaceuticals. Annual Reports Section "A" (Inorganic Chemistry) 2012, 108 , 350. https://doi.org/10.1039/c2ic90009b

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect