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Plants of the Brassicaceae family are well‐known for containing the glucosinolate

myrosinase system, which is able to release isothiocyanates after plant biotic and abi-

otic lesions. Erucin (ERU; 1‐isothiocyanato‐4‐(methylthio)‐butane), an isothiocyanate

particularly abundant in arugula (Eruca sativaMill., Eruca vesicaria L., etc.), derives from

the hydrolysis of the glucosinolate glucoerucin by the enzyme myrosinase. Many

other natural isothiocyanates influence cancer cells and, in particular, induce antipro-

liferative effects at relatively high concentrations. Similar antiproliferative effects

have also been shown by the newly emerging gasotransmitter hydrogen sulfide

(H2S) and by H2S‐releasing compounds. In a previous study, our group demonstrated

that isothiocyanates release H2S in biological environments. In this work, we demon-

strated the H2S‐donor properties of ERU in pancreatic adenocarcinoma cells (AsPC‐1)

and delineated its profile as a chemopreventive or anticancer agent. Indeed, ERU

showed significant antiproliferative effects: ERU inhibited AsPC‐1 cell viability at

relatively high concentrations (30–100 μM). Moreover, ERU inhibited cell migration,

altered the AsPC‐1 cell cycle, and exhibited proapoptotic effects. Finally, ERU

inhibited ERK1/2 phosphorylation. This mechanism is particularly important in

AsPC‐1 cells because they are characterized by a mutation in KRAS that determines

KRAS hyperactivation followed by MAP‐kinase hyperphosphorylation, which plays a

pivotal role in pancreatic cancer proliferation, growth, and survival.
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1 | INTRODUCTION

In recent years, the anticancer properties of dietary agents

have been widely investigated, and in particular, it has been
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demonstrated that the consumption of Brassicaceae vegetables

(crucifers), such as broccoli, cauliflower, cabbage, and rocket salad,

is associated with a lower risk of cancer (Fofaria, Ranjan, Kim, &

Srivastava, 2015).
e; BITC, benzyl isothiocyanate; DADS, diallyl disulfide; DATS, diallyl trisulfide;

BS, foetal bovine serum; FI, fluorescence index; ITCs, isothiocyanates; MAPK,
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These edible plants contain high amounts of isothiocyanates (ITCs),

which are produced through the enzymatic hydrolysis of glucosinolates

by endogenous myrosinase and exhibit antiproliferative activity against

cancer in both cell culture and animal models (Nastruzzi et al., 2000).

In fact, some natural ITCs, such as sulforaphane (SFN), phenethyl

isothiocyanate, benzyl isothiocyanate (BITC), and erucin (ERU) derive

from Brassicaceae plants and have inhibitory effects on the growth

of several types of cultured cancer cells, including leukaemia, prostate

cancer, breast cancer, lung cancer, cervical cancer, and colorectal

cancer. Moreover, ITCs are well absorbed and highly bioavailable,

making them promising compounds for anticancer therapies (Fofaria

et al., 2015).

Many studies have demonstrated that ITCs exert anticancer

effects through different mechanisms of action, including promoting

cell cycle arrest and apoptosis, interacting with the Keap1‐Nrf2‐ARE

pathway and upregulating phase II detoxification enzymes (Fuentes,

Paredes‐Gonzalez, & Kong, 2015).

SFN is the most studied isothiocyanate in Brassicaceae vegetables

and has been particularly studied in broccoli and broccoli sprouts

(Clarke et al., 2011). However, ERU, an isothiocyanate structurally

related to SFN and typically present in high amounts in wild rocket

(Eruca sativaMill.), is still less studied. ERU is produced from its precur-

sor, the glucosinolate glucoerucin, by the plant enzyme myrosinase; a

myrosinase‐like thioglucosidase activity has been recognized in the

bacteria of the human gut. Notably, ERU is also produced in the

human body after the biotransformation of SFN through the reduction

of the sulfur atom (Melchini & Traka, 2010).

Recently, our group described some synthetic aryl isothiocyanates

as H2S‐donor agents, exhibiting significant effects on the cardiovascu-

lar system, attributable to the donation of H2S (Martelli et al., 2014).

Aside from these synthetic compounds, other natural ITCs, such

as allyl isothiocyanate, which is highly present in black mustard

(Brassica nigra L.), 4‐hydroxybenzyl isothiocyanate, which is highly

present in white mustard (Sinapis alba L.), benzyl isothiocyanate, which

is highly present in garden cress (Lepidium sativum L.), SFN, and ERU

have also been described as slow H2S‐releasing compounds (Citi

et al., 2014; Lucarini et al., 2018).

H2S is a well‐known endogenous gasotransmitter that plays piv-

otal roles in the cardiovascular system and respiratory system and in

regulating cell growth. Recent studies have indicated that H2S has

two opposite effects on cancer cell growth that may be due to the

concentration of H2S and the time of exposure to cancer cells. This

behaviour, defined as “hormetic,” has been confirmed in different

studies reporting that endogenous H2S, as well as the exposure to

low levels of exogenous H2S or H2S‐donors for a short duration, could

have antiapoptotic effects in cancer cells, promoting and maintaining

cancer growth (Hellmich, Coletta, Chao, & Szabo, 2015). In contrast,

treatment with a relatively high concentration of H2S‐donors for a

long time has been reported to inhibit cancer cell growth in different

types of tumours, thus indicating that slow‐releasing H2S donors could

be an innovative and promising therapeutic strategy in antineoplastic

therapy (Calderone, Martelli, Testai, Citi, & Breschi, 2016).

Interestingly, there is an intriguing overlap betweenmany anticancer

effects attributed to some ITCs and those exhibited by treatments

with some known H2S donors (De Cicco et al., 2017; Panza et al., 2015).
Among the several types of cancer, pancreatic adenocarcinoma is

one of the most lethal forms, and although substantial progress has

been made in understanding the biology of this cancer, it still has an

extremely poor prognosis.

For this reason, in this paper, the AsPC‐1 human pancreatic adeno-

carcinoma cell linewas selected. AsPC‐1 cells are particularly aggressive

due to their molecular and genetic status; in fact, they are characterized

by the lack of the LKB1 tumour suppressor protein causing a particular

resistance to apoptosis and by homozygote mutations in the KRAS

gene, promoting the constitutive activation of this kinase (Deer et al.,

2010). On this basis, in this study, we focused our attention on the anti-

cancer effects of ERU, a natural isothiocyanate with H2S donor proper-

ties, to investigate the following primary endpoints: its ability to enter

AsPC‐1 cells and to release H2S at the intracellular level, its capacity

to inhibit cell viability and migration, its ability to alter the AsPC‐1 basal

cell cycle, and its ability to exert proapoptotic effects. Finally, a possible

mechanism of action was investigated to evaluate the involvement

of the MAPK/ERK pathway in the anticancer properties of ERU.
2 | MATERIALS AND METHODS

2.1 | Isolation of natural ERU

Erucin was produced from natural glucoerucin by myrosinase‐catalysed

hydrolysis. The glucosinolate was purified from E. sativa Mill. seeds

stored in the Brassicaceae collection at CREA‐CI, Bologna, Italy (Lazzeri

et al., 2013). Glucoerucin was isolated as K+ salts from defatted seed

meal via extraction with boiling 70% ethanol followed by ion exchange

chromatography and gel filtration chromatography, as described previ-

ously (Franco et al., 2016). Isolated glucoerucin was analysed by HPLC‐

UV after enzymatic desulfation according to the ISO 9167‐1 method,

yielding 99% purity based on the peak area value and 96% purity based

on weight. Myrosinase, 36 U/ml, was isolated from ripe seeds of white

mustard (S. alba L.) as previously reported (Pessina, Thomas, Palmieri, &

Luisi, 1990) and stored at 4°C in sterile distilled water until use. One

myrosinase unit (U) is defined as the amount of enzyme that can hydro-

lyse 1 μmol sinigrin per min at a pH of 6.5 at 37°C. A total of 500 mg of

glucoerucin was hydrolysed in the presence of 25 U of myrosinase in

0.1 M potassium phosphate buffer, pH 6.5, for 2 hr at 37°C. ERU was

extracted three times with 50 ml dichloromethane using a 250 ml sep-

arating funnel. The collected organic phases were unified and concen-

trated at 37°C by a rotary evaporator under vacuum. The obtained

solution was dried using anhydrous Na2SO4 and filtered, and the

remaining dichloromethane was evaporated under a weak current of

nitrogen. ERU was finally identified by GC–MS analysis on a Bruker

GC 451 gas chromatograph equipped with an HP‐5 fused silica capil-

lary column (30 m by 0.25 mm inside diameter; 0.25 μm film thickness,

J&W Scientific Inc, Folsom, California) connected to a quadrupole mass

detector (Bruker Scion SQ Premium, Bruker Daltonics, Macerata, Italy).

The oven temperature was set at 60°C and maintained for 4 min. Then,

the temperature was programmed to rise from 60°C to 220°C at a rate

of 10°C min−1 and was finally held at 220°C for 4 min. The transfer line

was maintained at 280°C, and the ion source was maintained at 220°C.

Split injection (1:20) was applied, and the carrier gas flow (helium) was



CITI ET AL. 847
set at 1 ml min−1. The mass spectrometer was operated in electron

impact mode at 70 eV, scanning the range of 10–250m/z, in a full scan

acquisition mode. Mass spectra were identified by matching the

recorded mass spectra with the NIST/EPA/NIH Mass Spectral

Database (NIST 11, Gaithersburg, Maryland). A dichloromethane

solution containing 0.2 mg/ml ERU and BITC (Sigma Aldrich 89983)

as an internal standard was analysed to estimate the purity of the final

natural ERU preparation. A response coefficient of 1.67 was calculated

by the ratio of the slope of the calibration curves of BITC (Sigma Aldrich

89983) and of ERU (Santa Cruz sc‐204741) dichloromethane solutions

in the concentration range of 0.05 ÷ 1 mg/ml.
2.2 | Cell culture and cell viability assay

The human pancreas adenocarcinoma ascites metastasis cell line

AsPC‐1 (Sigma‐Aldrich, passage number 3, population doubling time

38–40 hr) was cultured in RPMI 1640 (Sigma‐Aldrich) supplemented

with 2 mM glutamine (Sigma‐Aldrich), 1 mM sodium pyruvate (Sigma‐

Aldrich), 10% foetal bovine serum (Sigma‐Aldrich), and 1% of

100 units/ml penicillin and 100 mg/ml streptomycin (Sigma‐Aldrich) in

tissue culture flasks at 37°C in a humidified atmosphere and 5% CO2.

AsPC‐1 cells were seeded onto 96‐well plates at a density of 104

cells per well. After 24 hr, to allow cell attachment, the medium was

replaced in each 96‐well plate, and the cells were treated for 72 hr

with ERU at the concentrations of 100, 30, 10 μM, or vehicle

(dimethyl sulfoxide [DMSO] 1%). At the end of each treatment, cell

viability was assessed using the cell proliferation reagent WST‐1

(Roche, Basel, Switzerland; Citi et al., 2018), which is cleaved to

formazan in living cells. WST‐1 was added at a ratio of 1:10 of the

total volume of the wells, and after 60 min of incubation at 37°C,

the absorbance was measured at 450 nm by a multiplate reader

(Enspire, Perkin‐Elmer, Waltham, Massachusetts, United States).
2.3 | Evaluation of H2S release in AsPC‐1 cells

The evaluation of H2S release into the cytosol of AsPC‐1 cells was

assessed by the spectrofluorometric method as previously described

(Barresi et al., 2017). Briefly, AsPC‐1 cells were cultured up to approxi-

mately 90% confluence, and 24 hr before the experiment, cells were

seeded onto a 96‐well black plate at a density of 72 × 103 cells per well.

After 24 hr, the cells were preloaded with a 100 μM solution of

the fluorescent dye WSP‐1 (Washington State Probe‐1, Cayman

Chemical; Liu et al., 2011). WSP‐1 was first incubated with AsPC‐1

cells for 30 min (allowing cells to upload the dye), then the supernatant

was removed and replaced with a solution of the compounds to be

tested, a reference drug or vehicle (dimethyl sulfoxide, DMSO 1%).

The well‐known H2S‐releasing agent diallyl disulfide (DADS;

Benavides et al., 2007; Liang, Wu, Wong, & Huang, 2015) was

selected as a reference drug because it shows some physiochemical

similarities to ERU (relatively low molecular weight, no charge, lipophi-

licity). The tested compound ERU, at the following concentrations 10,

30, and 100 μM and DADS 100 μM were first dissolved in DMSO and

then diluted in buffer standard. This range of concentrations was

selected on the basis of the anticancer concentrations found in the
literature for several ITCs (Su et al., 2015). When WSP‐1 reacts with

H2S, it releases a fluorophore detectable by a spectrofluorometer at

λ = 465–515 nm (Peng et al., 2014). The increase in fluorescence

(expressed as fluorescence index = FI) was monitored for 45 min using

a spectrofluorometer (EnSpire, Perkin Elmer).

2.4 | Wound healing assay

AsPC‐1 cells (4 × 105 cells per well) were plated in six‐well tissue cul-

ture plates and grown to 90–95% confluence. After aspirating the

medium, the centres of the cell monolayers were scraped with a

200 μl pipette tip to create a denuded zone (gap) of consistent width.

Then, cellular debris was washed with phosphate buffer solution

(PBS), and cells were treated with ERU at concentrations of 10 and

30 μM. The wound closure was monitored and photographed every

24 hr for 72 hr with an Olympus inverted microscope and camera

(4x zoom). The gap was measured with ImageJ software.

2.5 | Analysis of cell cycle, caspase 3/7 activity,
mitochondrial potential, and ERK1/2 phosphorylation

2.5.1 | General conditions

AsPC‐1 cells were seeded, and after 24 hr, to allow cell attachment,

the medium was replaced, and the cells were treated for 72 hr with

30 μM ERU, 10 μM Paclitaxel (positive control for caspase 3/7

activity), or vehicle (DMSO 1%) or were not treated.

2.5.2 | Cell cycle assay

The distribution of the cell cycle was analysed by flow cytometry using

the Muse™ Cell Cycle Kit from EMD Millipore Bioscience. Cell cycle

analysis was performed according to the manufacturer's protocol.

AsPC‐1 cells were seeded into 6‐well plates at a density of 5 × 105

cells per well, and after incubation with the treatments (see general

conditions), the cells were washed with PBS, detached, and fixed with

1 ml ice‐cold 70% ethanol at −20°C for at least 3 hr. The cells were

then washed with PBS, and 1 × 106 cells were stained with 200 μL

of muse cell cycle reagent for 30 min at 37°C in the dark. Then, the

cells were analysed by the Muse™ Cell Analyzer.

2.5.3 | Caspase 3/7 activity

Caspase 3/7 activity was analysed by flow cytometry using the

Muse™ Caspase 3/7 Activity Kit from EMD Millipore Bioscience.

Caspase 3/7 activity was evaluated according to the manufacturer's

protocol. AsPC‐1 cells were seeded into 24‐well plates at a density

of 1 × 105 cells per well, and after incubation with the treatments

(see general conditions), the cells were detached, washed with PBS,

and resuspended at a concentration of 1 × 105 to 5 × 106 cells/ml in

the 1X assay buffer provided. Subsequently, 5 μl of Muse™ Caspase‐

3/7 Reagent working solution was added to 50 μl of cell suspension

and incubated at 37°C for 30 min. Then, 150 μl of Muse™ Caspase

7‐AAD working solution was added and incubated at 37°C for 5 min

protected from light; cells were analysed by the Muse™ Cell Analyzer.
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2.5.4 | Analysis of mitochondrial potential

Mitochondrial potential was analysed by flow cytometry using the

Muse™ MitoPotential Assay Kit from EMD Millipore Bioscience. The

mitochondrial potential was evaluated according to the manufacturer's

protocol. AsPC‐1 cells were seeded onto 24‐well plates at a density of

5 × 105 cells per well, and after incubationwith the treatments (see gen-

eral conditions), the cells were detached and resuspended at a concen-

tration of 1 × 105 cells/ml in the 1X assay buffer provided. Then, 95 μl of

Muse™MitoPotential working solution was added to 100 μl of cell sus-

pension and incubated at 37°C for 20 min protected from light. Then,

5 μl of Muse™ 7‐AAD working solution was added and incubated at

37°C for 5 min; cells were analysed by the Muse™ Cell Analyser.

2.5.5 | Analysis of ERK1/2 phosphorylation

ERK1/2 phosphorylation was analysed by flow cytometry using the

Muse™ MAPK phosphorylation Assay Kit from EMD Millipore

Bioscience.

ERK1/2 phosphorylation was evaluated according to the manu-

facturer's protocol. AsPC‐1 cells were seeded onto 24‐well plates at

a density of 5 × 105 cells per well, and after incubation with the treat-

ments (see general conditions), the cells were detached and suspended

in 500 μl of 1X assay buffer for every 106 cells. Then, fixation buffer

was added in equal parts to the cell suspension (1:1 ratio) and incu-

bated for 5 min on ice. After centrifugation (300 g for 5 min), the

supernatant was removed, and the cells were suspended in 1 ml ice‐

cold permeabilization buffer and incubated for 5 min on ice. After

centrifugation (300 g for 5 min), the supernatant was removed, and

the cells were suspended in 450 μl of 1X assay buffer. Following the

incubation of 5 μl of anti‐ERK1/2, PECy5 antibody to 90 μl of cell sus-

pension for 3 min in the dark at room temperature, 100 μl of 1X assay

buffer was added, and cells were centrifuged (300 g for 5 min) to
FIGURE 1 GC chromatogram, MS spectra, and chemical structure of eru
purified after exogenous myrosinase hydrolysis of glucoerucin from Eruca
discard the supernatant. Cells were suspended in 200 μl of 1X assay

buffer and analysed by the Muse™ Cell Analyzer.

2.6 | Statistical analysis

Experiments were performed in triplicate each in three replicates. All

data were expressed as the mean ± standard error; ANOVA (followed

by Bonferroni post test, when required) and student's t test were

selected for the statistical analysis. p < 0.05 was considered represen-

tative of significant differences (software: GraphPad Prism 6.0).
3 | RESULTS

3.1 | Production of natural ERU

Natural ERU (0.146 g, 0.878 mmol, 84% yield) was recovered as a light‐

yellow oil from the myrosinase catalysed hydrolysis of glucoerucin

(96% purity, 0.5 g, 1.042 mmol). GC–MS analysis revealed a 97% purity

level based on weight of ERU and the presence of 5‐(methylsulfanyl)

pentanenitrile at 1.7% based on the total peak area (Figure 1).

3.2 | Fluorometric recording of intracellular H2S‐
release

In a previous study, we reported the ability of ERU and other isothio-

cyanates to release H2S in a cell‐free amperometric assay (Citi et al.,

2014). According to these data, ERU exhibited a profile of a slow

H2S‐donor able to increase the release of H2S in the presence of an

excess of L‐cysteine, which was added into the medium (PBS buffer,

pH = 7.4) to mimic a biological environment, rich in thiol groups. In

the current study, we found that ERU releases H2S also inside cells.

In particular, in this experimental assay, the increase of H2S‐release
cin (ERU). GC chromatogram and MS spectra (insert) of natural ERU
sativa seeds [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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inside the AsPC‐1 cell line was followed for 45 min until reaching the

FI plateau (Figure 2a). The area under the curve (AUC) graph allows to

better appreciate that ERU releases H2S in a concentration‐dependent

manner when administered to AsPC‐1 cells at 10, 30, and 100 μM and

that the highest concentration induces a H2S‐release of approximately

40% of that of the natural reference H2S‐donor DADS at the same

concentration (Figure 2b).
3.3 | Cell viability

The results, expressed as a percentage of the value recorded for the

vehicle‐treated AsPC‐1, showed a significant and concentration‐

dependent reduction of cell viability in cells treated for 72 hr with

both 30 and 100 μM of ERU, whereas the 10 μM concentration did

not evoke any inhibition. This ERU‐induced inhibition of cell viability

reached an efficacy value of approximately 90% at the highest con-

centration administered (100 μM) and a pIC50 value of 4.43 ± 0.01

(Figure 2c).
3.4 | The ERU‐induced inhibition of AsPC‐1 cell
migration

The inhibition of AsPC‐1 cell migration induced by two different con-

centrations of ERU (10 and 30 μM) was assessed by a wound healing

assay at 24, 48, and 72 hr. The 10 and 30 μM concentrations of ERU

were selected because they showed submaximal effects on cell viabil-

ity, and this feature made them more suitable for the wound healing

assay than the 100 μM, which would cause a massive cell death. In
FIGURE 2 Fluorometric recording of erucin (ERU)‐mediated H2S release
AsPC‐1 cells after 72 hr of incubation. (a) Fluorometric recordings of H2S
45 min: The increase in H2S is expressed as fluorescence index. (b) The hist
100 μM ERU and 100 μM DADS during 45 min, expressed as AUC. (c) Th
10, 30, and 100 μM ERU. Data are expressed as a percentage of the valu
vertical bars represent the standard error (n = 9). The asterisks indicate a s
***p < 0.001)

TABLE 1 The table shows the percentages of the wound range recorded a
of incubation. Data are expressed as mean ± SEM

Control (%) Vehicle (%)

T24 57.0 ± 1.7 18.3 ± 4.1

T48 92.2 ± 3.5 80.1 ± 2.3

T72 98.0 ± 1.5 87.6 ± 3.7

Note. ERU: erucin.
this assay, untreated cells exhibited a time‐dependent wound healing

rate recorded after 24, 48, and 72 hr (Table 1). Treatment with vehicle

decreased the wound healing rate, but only after 24 hr, while after 48

and 72 hr, a recovery of wound healing rate percentage was observed

(Table 1). Finally, treatment with ERU inhibited the migration of AsPC‐

1 cells in a concentration‐ dependent manner, at all timepoints

(Figure 3a). In fact, wound healing ranges and migration rates were sig-

nificantly decreased in AsPC‐1 cells treated with 30 and 10 μM ERU

(Figure 3b; Table 1).
3.5 | Inhibition of the cell cycle

After 72 hr of treatment with 30 μM ERU, a significant inhibition of

AsPC‐1 cell cycle progression was observed, with a particular increase

of cells number in the G2/M phase (36.6% ± 3.5 vs. vehicle‐treated

cells in the G2/M phase: 24.0% ± 1.3) and in the S‐phase

(18.1% ± 1.5 vs. vehicle‐treated cells in the S phase: 11.0% ± 0.7)

and a consequent significant reduction of cells in the G0/G1 phase

(35.1% ± 5.0 vs. vehicle‐treated cells in the G0/G1 phase: 59.5% ± 1.8;

Figure 4). Significant effects on the cell cycle have already been

observed in several cancer cell lines treated with natural isothiocya-

nates (Abbaoui et al., 2012).
3.6 | Proapoptotic effects of ERU

In this work, we also investigated the ability of ERU to induce mito-

chondrial depolarization (a marker of early apoptosis). As shown in

the graph (Figure 5d), 72 hr of treatment with 30 μM ERU, induced
inside AsPC‐1 cells and inhibition of cell viability induced by ERU in
released by vehicle, 10, 30, and 100 μM ERU and 100 μM DADS for
ograms show the total amount of H2S released by vehicle, 10, 30, and
e histograms show the viability of AsPC‐1 cells treated with vehicle or
e of absorbance recorded for AsPC‐1 cells treated with vehicle. The
tatistically significant difference from vehicle (*p < 0.05, **p < 0.01,

t T0, evoked by vehicle or erucin 10 and 30 μM after 24, 48, and 72 hr

ERU 10 μM (%) ERU 30 μM (%)

19.3 ± 4.6 −11.2 ± 5.2

27.1 ± 5.8 −22.1 ± 1.7

57.5 ± 4.3 −0.1 ± 5.8



FIGURE 3 The inhibition of cell migration assessed by a wound healing assay at 24, 48, and 72 hr. (a) The inhibition of cell migration was
observed in the pictures obtained through the wound healing technique. The effects of vehicle, 10 and 30 μM ERU were observed after 0, 24,
48, and 72 hr of incubation. Pictures were obtained with a 4x objective. (b) The histograms represent the recovery of the wound range, expressed
as a percentage of the wound range recorded at T0, evoked by vehicle or 10 and 30 μM ERU after 0, 24, 48, and 72 hr of incubation. The vertical
bars represent the standard errors (n = 9). The asterisks indicate a statistically significant difference from the value of the T0 wound range
(*p < 0.05, **p < 0.01, ***p < 0.001)
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a decrease in live cells (vehicle: 78.2% ± 4.5 vs. ERU: 60.0% ± 5.0) and

a significant increase in mitochondrial depolarization in both live cells

(vehicle: 7.3% ± 2.6 vs. ERU: 20.8% ± 4.1) and dead cells (vehicle:

12.9% ± 1.5 vs. ERU: 17.8% ± 1.9). The increase of mitochondrial

depolarization in cells treated with ERU is even more evident in graph

7B, in which the whole percentage of mitochondrial depolarization (in

both live and dead cells) is shown (vehicle: 20.3% ± 4.1 vs. ERU:

42.9% ± 2.5; Figure 5e).

In this study, we also investigated a mild stage of apoptosis by

evaluating the effect of ERU treatment on the increase in a well‐

known marker of apoptosis, caspase 3/7, in AsPC‐1 cells after 72 hr
of treatment. Recording the caspase 3/7 levels, we obtained a graph

in which we have four different states of cells: live, apoptotic live, apo-

ptotic dead, and dead. In graph 8A, the effect of ERU on caspase 3/7

was compared with the effect of a well‐known chemotherapeutic

proapoptotic drug, paclitaxel at a concentration of 10 μM. After

72 hr, both 30 μM ERU and paclitaxel caused a significant reduction

in the number of live cells (vehicle:78.4% ± 1.3 vs. ERU: 61.9% ± 1.3

vs. paclitaxel: 62.0% ± 1.0), and treatment with paclitaxel resulted in

an increase in the number of apoptotic cells, which was statistically

significant both for apoptotic live (vehicle: 8.1% ± 1.1 vs. paclitaxel:

13.0% ± 1.0) and apoptotic dead cells (vehicle: 9.6% ± 1.4 vs.



FIGURE 4 Inhibition of cell cycle progression after 72 hr. A, b, c: typical cell cycle profiles of AsPC‐1 cells with no treatment (a), after treatment
with vehicle (b), and after treatment with 30 μM ERU (c). D: The histograms indicate the percentage of AsPC‐1 cells in G0/G1, S, and G2/M cell
cycle phases with no treatment (control), treatment with vehicle and 30 μM ERU, after 72 hr of incubation. The vertical bars represent the
standard errors (n = 9). The asterisks indicate a statistically significant difference from the percentage of AsPC‐1 cells in different cell cycle phases
after 72 hr of treatment with vehicle (**p < 0.01)
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paclitaxel: 16.6% ± 0.9). For ERU, the effect was significant only for

apoptotic dead cells (ERU: 20.4% ± 2.0; Figure 5l). Overall, both

30 μM ERU and 10 μM paclitaxel (the positive control) significantly

increased the number of total apoptotic cells (apoptotic dead cells

and apoptotic live cells; vehicle: 17.7% ± 2.5 vs. ERU: 28.7% ± 4.2

vs. paclitaxel: 29.1% ± 0.5), suggesting a relevant role of the

proapoptotic activity of ERU (Figure 5m).
3.7 | ERK1/2 phosphorylation in AsPC‐1 cells

The MAPK/ERK pathway represents a fundamental step in cell prolif-

eration, growth, and survival, and, as recently observed for other nat-

ural isothiocyanates, the inhibition of ERK phosphorylation represents

a key target to suppress cancer cell proliferation (Jeong et al., 2017).

Our data, obtained by recording the percentage of total ERK1/2 and

phosphorylated ERK1/2 in AsPC‐1 cells treated for 72 hr with vehicle

or 30 μM ERU, showed reduced levels of phosphorylated ERK1/2

(vehicle: 69.2% ± 2.4 vs. ERU: 56.3% ± 3.5), suggesting a possible

mechanism of action for the antiproliferative effect observed in the

previous experiments (Figure 6a–c).
4 | DISCUSSION

Natural isothiocyanates have been known for their anticancer and

chemopreventive effects (Jeon, Yoo, Jang, Jang, & Nam, 2011). Among

natural isothiocyanates, the most studied is SFN, which is present in

Brassica oleracea L. var. italica (broccoli), in particular, and few other

species. ERU is a close analogue of SFN and is the isothiocyanate that

is most present in rocket salad species, particularly in E. sativa Mill.

seeds, in which its content is commonly close to 100 μmol/g (Lazzeri,

Errani, Leoni, & Venturi, 2004). In the human body, ERU can also be
found as a metabolite derived from the in vivo reduction of SFN

(Melchini & Traka, 2010). Among the several mechanisms of action

proposed for the chemopreventive and anticancer properties of iso-

thiocyanates, a recent observation of SFN was very promising: At

low concentrations (1–5 μM), SFN was able to promote cell prolifera-

tion, whereas at high concentrations (10–40 μM), SFN inhibited cell

proliferation, cell migration, and angiogenesis in several cancer types

(Bao, Wang, Zhou, & Sun, 2014). This particular behaviour is called

“hormesis,” which has also been used to describe the endogenous

gasotransmitter hydrogen sulfide (Hellmich et al., 2015). Recently,

our research group demonstrated that isothiocyanates, including natu-

ral isothiocyanates derived from Brassicaceae such as ERU, are real

H2S donors that are able to increase their release of H2S in environ-

ments rich in free thiol groups such as biological environments (for

instance, the cell cytosol; Citi et al., 2014; Martelli et al., 2014).

Natural isothiocyanates showed anticancer and chemopreventive

properties with hormetic behaviour. Our group has already demon-

strated that the natural isothiocyanate ERU exhibits hydrogen

sulfide‐releasing properties, and, because there is an intriguing overlap

in the anticancer effect of isothiocyanates and H2S, in this work, we

evaluated the anticancer properties of the natural isothiocyanate

ERU on one of the most aggressive pancreatic adenocarcinoma cell

lines (AsPC‐1).

The first investigation was aimed at detecting the ability of ERU

to release H2S inside AsPC‐1 cells, thus showing the ability to cross

the AsPC‐1 cell membrane and release H2S at the intracellular level.

As clearly highlighted in the experiments carried out with the fluo-

rometric dye WSP‐1, ERU was able to release H2S inside cells in a

concentration‐dependent manner, and this observation led to the

conclusion that ERU acts as a H2S donor at the intracellular level.

Exogenous H2S exhibits antiproliferative effects in different cancer

cell lines (Ma et al., 2018). Consistently, the anticancer effects of slow



FIGURE 5 The effect of erucin (ERU) on early (mitochondrial depolarization) and mild (caspase 3/7 levels) apoptosis in AsPC‐1 cells after 72 hr
of treatment. A, b, c: typical mitochondrial depolarization profiles of AsPC‐1 cells with no treatment (a), after treatment with vehicle (b), and after
treatment with 30 μM ERU (c). (d) Early apoptosis was recorded as mitochondrial depolarization of AsPC‐1 cells after 72 hr of no treatment
(control), treatment with vehicle or 30 μM ERU. For each treatment, four different states of mitochondrial depolarization were examined and
reported as a percentage of the total number of cells: live, live with mitochondrial depolarization, dead with mitochondrial depolarization, and
dead. (e) When the mitochondrial depolarization of live and dead cells was grouped, a higher significance was observed between AsPC‐1 cells
treated with vehicle or 30 μM ERU. F, g, h, i: typical apoptotic profiles of AsPC‐1 cells with no treatment (f), after treatment with vehicle (g), after
treatment with 30 μM ERU (h), and after treatment with 10 μM paclitaxel (i). (l) Mild apoptosis was recorded as an increase in caspase 3/7 levels in
AsPC‐1 cells after 72 hr of no treatment (control), treatment with vehicle, treatment with 30 μM ERU, or treatment with 10 μM paclitaxel. For

each treatment, four different states of cell apoptosis were examined and reported as a percentage of the total number of cells: live, apoptotic live,
apoptotic dead, and dead. The vertical bars represent the standard errors (n = 9). The asterisks indicate a statistically significant difference from the
percentage of AsPC‐1 cells in different degrees of apoptosis after the 72 hr of treatment between vehicle‐, ERU‐treated cells, or paclitaxel‐treated
cells (*p < 0.05, **p < 0.01, and ***p < 0.001)
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H2S‐donors, such as GYY4137 (one of the pioneer compounds of this

class), have been reported; GYY4137, a hydrogen sulfide (H₂S) donor,

shows potent anti‐hepatocellular carcinoma activity by blocking the

STAT3 pathway (Lu, Gao, Huang, & Wang, 2014). Even other natural

H2S donors, such as acetyl deacylase disulfide, have been reported

to promote H2S‐mediated anticancer effects (De Cicco et al., 2017).

On the basis of these premises, we hypothesize that the H2S‐releasing

effects of ERU could be a reasonable mechanism for its anticancer

effects. Consistently in this work, 72 hr of incubation with ERU
produced a concentration‐dependent inhibition of AsPC‐1 cell viability

with a pIC50 value of 4.43 ± 0.01. In addition to the antiproliferative

effect, ERU also significantly inhibited AsPC‐1 migration. The AsPC‐

1 cell line, derived from ascitic metastasis of an adenocarcinoma of

the head of the pancreas, represents a reliable model to verify the

anti‐migration properties of ERU. The reduction of wound healing

was greatly impaired by ERU in a concentration‐dependent manner.

The concentration of 30 μM ERU could evoke an almost maximal

effect, leading to an almost full abolishment of AsPC‐1 cell migration.



FIGURE 6 p‐ERK1/2 in AsPC‐1 cells after 72 hr of treatment with erucin (ERU). A, b: typical ERK1/2 phosphorylation profiles of AsPC‐1 cells
after treatment with vehicle (a) and after treatment with 30 μM ERU (b; the % of inactivated cells indicates the nonphosphorylated ERK1/2 levels,
the % of activated cells indicates the p‐ERK1/2 levels, and the % of nonexpressing cells indicates cells not expressing ERK1/2). (c) The action of a
72 hr treatment with 30 μM ERU on the MAPK/ERK pathway of AsPC‐1 cells was recorded, and the amount of total ERK1/2, phosphorylated
ERK1/2, and the ratio between phosphor‐ERK1/2 and total‐ERK1/2 were calculated comparing the ERU‐treated and vehicle‐treated cells. The
vertical bars represent the standard errors (n = 9). In the second set of histograms, the asterisks indicate a statistically significant difference
compared with the percentage of phosphorylated ERK1/2 in vehicle‐treated AsPC‐1 cells after 72 hr (*p < 0.05). In the third set of histograms, the
asterisks indicate a statistically significant difference compared with the percentage of the phosphor‐ERK1/2/total‐ERK1/2 ratio in vehicle‐
treated AsPC‐1 cells after 72 hr (*p < 0.05)
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This property of ERU has great importance in counteracting the met-

astatic process of particularly aggressive cancers, such as pancreatic

adenocarcinoma. As already shown for other isothiocyanates and in

other types of cancer, ERU demonstrated a clear ability to arrest the

cell cycle in the G2/M phase and in the S phase, showing a conse-

quent reduction of cells in the G0/G1 phase. This important property

was coupled with another fundamental feature of a chemopreventive

anticancer drug: ERU induced significant proapoptotic effects, which

emerged when observing both early and mild stages of apoptosis. In

fact, we recorded a marked increase in mitochondrial depolarization

in AsPC‐1 cells treated with ERU for 72 hr. We also found a significant

increase in caspase 3/7 levels as a marker of cell apoptosis after ERU

incubation for 72 hr. For the final investigation, we focused on the

phosphorylation status of ERK1/2. In fact, pancreatic cancer cell lines

are characterized by frequent mutations in the KRAS (v‐Ki‐ras2 Kirsten

rat sarcoma viral oncogene homologue) gene, and in particular, AsPC‐1

cells showed a mutation in the 12 codon of KRAS. This mutation led to

a hyperactivation of KRAS with a consequent hyperphosphorylation

of the downstream kinases (Deer et al., 2010). On this basis, we

investigated the effect of 72 hr of treatment with 30 μM ERU on

the phosphorylation of ERK1/2 in AsPC‐1 cells. ERU did not affect

the expression of ERK1/2 but led to significantly lower levels of

phosphorylated ERK1/2. Because ERK1/2 is involved in the regulation

of cell proliferation and cell survival, this ERU‐mediated effect may

contribute to the anticancer activity of this isothiocyanate.
5 | CONCLUSIONS

This work delineates the chemopreventive and anticancer profile of ERU

in pancreatic adenocarcinoma. Our group first described natural and

synthetic isothiocyanates as molecules that are able to release H2S. In

this study, we demonstrated that treatment with ERU promotes a
significant intracellular increase of this gasotransmitter in AsPC‐1 cells.

Moreover, high concentrations of ERU (30–100 μM) inhibited AsPC‐1

cell viability. ERU also inhibited cell migration and altered the AsPC‐1 cell

cycle, reducing G0/G1 phase and increasing G2/M and S phases,

demonstrating proapoptotic effects in the early and mild stages. Finally,

ERU administration was associated with reduced levels of phosphory-

lated ERK1/2. This feature is particularly important in pancreatic AsPC‐

1 cells because AsPC‐1 are characterized by an activating mutation in

KRAS that determines the hyperphosphorylation of ERK1/2 kinase,

leading to pancreatic cancer cell proliferation, growth, and survival.

Despite the wide characterization of ERU anticancer activities in human

pancreatic adenocarcinoma, this study did not include in vivo experi-

ments on animal xenograft models. This aspect is interesting, has many

implications, and will be the main topic of future work. In conclusion,

these data highlight the interesting biological properties of ERU, which

can pave the way to a potential pharmacological exploitation of this

compound and its analogues and facilitate the development of intriguing

perspectives for nutraceutical products derived from E. sativa Mill.
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