Kinetics of peroxynitrite reaction with amino acids and human serum albumin

J Biol Chem. 1999 Jan 8;274(2):842-8. doi: 10.1074/jbc.274.2.842.

Abstract

An initial rate approach was used to study the reaction of peroxynitrite with human serum albumin (HSA) through stopped-flow spectrophotometry. At pH 7.4 and 37 degreesC, the second order rate constant for peroxynitrite reaction with HSA was 9.7 +/- 1.1 x 10(3) M-1 s-1. The rate constants for sulfhydryl-blocked HSA and for the single sulfhydryl were 5.9 +/- 0.3 and 3.8 +/- 0.8 x 10(3) M-1 s-1, respectively. The corresponding values for bovine serum albumin were also determined. The reactivity of sulfhydryl-blocked HSA increased at acidic pH, whereas plots of the rate constant with the sulfhydryl versus pH were bell-shaped. The kinetics of peroxynitrite reaction with all free L-amino acids were determined under pseudo-first order conditions. The most reactive amino acids were cysteine, methionine, and tryptophan. Histidine, leucine, and phenylalanine (and by extension tyrosine) did not affect peroxynitrite decay rate, whereas for the remaining amino acids plots of kobs versus concentration were hyperbolic. The sum of the contributions of the constituent amino acids of the protein to HSA reactivity was comparable to the experimentally determined rate constant, where cysteine and methionine (seven residues in 585) accounted for an estimated 65% of the reactivity. Nitration of aromatic amino acids occurred in HSA following peroxynitrite reaction, with nitration of sulfhydryl-blocked HSA 2-fold higher than native HSA. Carbon dioxide accelerated peroxynitrite decomposition, enhanced aromatic amino acid nitration, and partially inhibited sulfhydryl oxidation of HSA. Nitration in the presence of carbon dioxide increased when the sulfhydryl was blocked. Thus, cysteine 34 was a preferential target of peroxynitrite both in the presence and in the absence of carbon dioxide.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acids / chemistry*
  • Carbon Dioxide / chemistry
  • Hot Temperature
  • Hydrogen-Ion Concentration
  • Kinetics
  • Nitrates / chemistry*
  • Serum Albumin / chemistry*
  • Sulfhydryl Compounds / chemistry

Substances

  • Amino Acids
  • Nitrates
  • Serum Albumin
  • Sulfhydryl Compounds
  • Carbon Dioxide
  • peroxynitric acid