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I. Supplementary Methods 

1 Sample preparation 

1.1 Sample collection 
Sample collection for all European studies was approved by Ethics committee (different committees for 
different studies). 

1.1.1 Danish individuals 
Danish individuals were examined at Steno Diabetes Center, Gentofte. The participants were asked to 
provide a frozen, crude fecal sample. Samples were collected at home, and immediately frozen in their 
home freezer. The samples were delivered to Steno Diabetes Center using insulating polystyrene foam 
containers and stored at -80°C until analysis.  

1.1.2 Spanish individuals 
Patients with ulcerative colitis (UC) or Crohn’s disease (CD) attending the outpatient clinic of Hospital 
Vall d’Hebron were asked to give written consent to take part in this study. Eligible patients were aged 
18 to 75 years, had UC or CD previously diagnosed by endoscopy and histological examination of 
intestinal mucosal biopsies. They were in clinical remission for at least 3 months, and had stable 
maintenance therapy with mesalazine or azathioprine. Exclusion criteria included pregnancy or breast 
feeding, severe concomitant disease involving the liver, heart, lungs or kidneys, treatment with steroids, 
cyclosporine, anti-TNF drugs or topical anti-inflammatory preparations during the previous 3 months, 
and treatment with antibiotics during the previous 4 weeks. Healthy controls were recruited among 
family relatives of the UC and CD patients; antibiotic treatment for at least 4 weeks before fecal sample 
collection was excluded. The protocol was approved by the Ethics Committee of our institution (CEIC, 
Hospital Vall d’Hebron). 

Patients and healthy controls were asked to provide a frozen stool sample. Fresh stool samples were 
obtained at home, and samples were immediately frozen by storing them in their home freezer. Frozen 
samples were delivered to the Hospital using insulating polystyrene foam containers, and then they 
were stored at -80°C until analysis. None of the patients or controls underwent bowel cleansing or 
endoscopic procedures before fecal sampling. 

1.1.3 Italian individuals 
Fecal samples were obtained from 6 elderly living in Camerino, Italy. The elderly volunteers consumed 
an unrestricted Western-type diet. They took neither antibiotics nor any drug known to influence the 
fecal microbiota composition for at least three months prior to sampling and were free of known 
metabolic or gastrointestinal diseases. Whole stools were collected in clean boxes and stored at 4°C 
under anaerobic conditions using an anaerocult®  A (Merck, Nogent sur Marne, France) until sampling as 
200 mg aliquots in 2 ml sterile screw-cap tubes which were frozen at -20°C for further analysis. 

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09944

WWW.NATURE.COM/NATURE | 4



5 
 

1.1.4 French individuals 
Fecal samples were obtained from 4 obese and 4 healthy individuals, frozen immediately, and delivered 
at INRA. 

1.2 DNA extraction 

1.2.1 Danish, French, Italian and Spanish individuals 
A frozen aliquot (200 mg) of each fecal sample was suspended in 250 µl of 4 M guanidine thiocyanate–
0.1 M Tris (pH 7.5) and 40 µl of 10% N-lauroyl sarcosine. Then, DNA extraction was conducted using 
bead beating method as previously described37. The DNA concentration and its molecular size were 
estimated by nanodrop (Thermo Scientific) and agarose gel electrophoresis. 

2 Sequence processing 

2.1 European samples 
Sanger sequencing was performed using standard protocols. Shotgun randomly shared DNA libraries 
were constructed using low copy plasmid (pCNS, 3 kb insert). Terminal clone end sequences were 
determined using BigDye terminator chemistry and capillary DNA sequencers (3730XL, Applied 
Biosystems) according to standard protocols established at Genoscope. Cloning vector and sequencing 
primer were removed from raw reads after aligning reads to the vector/primer sequences using BLASTN. 
Reads were quality trimmed by removing bases in either end with phred quality under 15. Lastly, reads 
shorter than 300bp were removed. 

2.2 American samples 
Sanger reads for two American adult human gut metagenomes4 were downloaded from NCBI Trace 
Archive. The vector and sequence trimming coordinates from the trace information were used to 
remove the cloning vector and sequencing primer. 

Titanium reads for two American female obese individuals5 were downloaded from the NCBI Short Read 
Archive. These reads were not processed further than the trimming provided by the authors. 

2.3 Japanese samples 
We identified the following unclipped vector/linker sequences in the Japanese samples: 

1. 5’- GAGAGCTCCTGCAGGCTAGCTTGCGCAAGGATCCTAGGCCTGAAGCTTGTC - 3’ 
2. 5’- GCATGGTACCACGCGTACGTAAGCAAGATCTTCCCGGGTGAATTCGTC - 3’ 

These sequences from the pTS1 cloning vector (K. K. and T. H., personal communication) were clipped 
from the 13 Japanese samples using the makeClip program from Forge assembler41. 

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09944

WWW.NATURE.COM/NATURE | 5



6 
 

2.4 Further trimming 
All Sanger reads were finally trimmed for low quality regions in the ends using makeClip. 

2.5 Removal of potential human reads 
Sequence reads were aligned against human genome assembly hg18 obtained from UCSC Genome 
Browser42 using BLAT43 (gfClient v 31, default parameters). Possible human DNA sequences were 
identified with a very low alignment threshold to maximize true positives and minimize false negatives 
(‘pslFilter -minMatch=50’ from the BLAT package), and were removed. 

3 Assembly and gene prediction 
Assembly and gene prediction were performed using the SMASH comparative metagenomics pipeline38.  
To obtain contigs and scaffolds from the reads, we employed SMASH’s iterative assembly procedure 
using Arachne software44-45. This procedure iteratively assembles unassembled reads (singletons) from 
the previous iteration until no more assembly is possible. Protein coding genes were predicted using 
GeneMark46 (v 2.6p) by the SMASH pipeline. SMASH uses the GC-content based heuristic models 
(provided with GeneMark software) to predict genes on scaffolds shorter than 200kb as well as 
unassembled reads, and a self-trained hybrid model using both GC-content and sequence content on 
scaffolds longer than 200kb. 

4 Phylogenetic annotation 
Phylogenetic annotation of each metagenome sample was performed using the SMASH pipeline38. 

4.1 Reference genome set 
We obtained a set of 1511 reference microbial genomes from the National Center for Biotechnology 
Information (NCBI), Human Microbiome Project10 and the MetaHIT Consortium11. We identified 16S 
rRNA gene sequences from each of these genomes using an HMM-based algorithm47 and assigned a 
taxonomic rank to the genome based on the classification of the 16S rRNA gene using the RDP 
Classifier39. We used the taxonomic tree provided with the RDP Classifier, which is based on the 
bacterial taxonomy proposed by the Taxonomic Outline of Bacteria and Archaea48, with further 
rearrangements proposed for Firmicutes and Cyanobacteria by the Bergey’s Manual of Systematic 
Bacteriology49-50.  

4.2 Reference genome mapping 
Sequence reads were aligned to the reference microbial genomes (listed in Supplementary Table 3) 
using BLASTN (WU-BLAST 2.0, default parameters except E=1e-20 Z=4000000000 B=5). Each read was 
assigned the taxonomy of the highest scoring hit(s) above the similarity threshold for the taxonomic 
rank (>65% for phylum and >85% for genus established by parameter exploration, see Supplementary 
Methods Section 4.3). Alignments were also required to span over 75bp covering >80% of the read 
length. Since paired-end reads are from two ends of a cloned DNA fragment, two reads from such a 
fragment represent only one physical DNA fragment. Hence taxonomy assignments of reads were 
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transferred to the corresponding fragments. The numbers of fragments assigned to each reference 
genome were counted. (A fragment assigned to N different reference genomes contributes 1/N to each 
genome). These counts were normalized by the sizes of these genomes to obtain the quantitative 
relative abundance (relative number of individuals) of each genome in the sample. Number of 
unassigned fragments was normalized by the average genome size in the reference set (3.54Mb) to 
calculate the approximate abundance of unknown genomes. Phylogenetic abundances at various 
phylogenetic ranks (species, genus, phylum etc) were calculated by adding the abundances of genomes 
under that rank. 

4.3 Estimating sequence similarity barriers across phylogenetic ranks 
Since there are no established sequence similarity barriers to differentiate genomes from different 
phylogenetic ranks, we estimated the sequence similarity cutoffs to safely assign a sequence to either a 
genus or a phylum. For this purpose, we retrieved 40 single copy marker genes51 from a subset of 835 
genomes (after removing some redundancy at species level) and generated 40 sets of pairwise 
alignments using BLASTN. These marker genes are highly representative of the reference genome set, 
and hence of at least the sequenced microbial species, since 801 of the 853 genomes (94.6%) contained 
at least 38 out of the 40 genes. Supplementary Figure 1a shows the distribution of sequence similarity 
levels between genomes from the same phylum (green) and different phyla (red). Supplementary Figure 
1b shows the same distribution at genus level. We estimated the false positive rates at different 
similarity thresholds at both phylum and genus levels (Supplementary Figure 15).  At the phylum level, a 
65% threshold had 0.77% false positive rate; at the genus level, an 85% threshold had 1.84% false 
positive rate. Thus we chose 65% and 85% as the thresholds for the genus and phylum level 
assignments. This is a rather conservative cutoff, since the marker genes are among the genes under the 
highest levels of selective constraint51.  

4.4 HITChip analysis 
10 ng from the fecal DNA extract was used to amplify the 16S rRNA genes with the T7prom-Bact-27-for 
and Uni-1492-rev primers. Subsequently, an in vitro transcription and labeling with Cy3 and Cy5 dyes, 
was performed. Fragmentation of Cy3/Cy5 labeled target mixes was followed by hybridization on the 
arrays at 62.5˚C for 16h in a rotation oven (Agilent Technologies, Amstelveen, The Netherlands). The 
slides were washed and dried before scanning. Signal intensity data was obtained from the microarray 
images using the Agilent Feature Extraction software, version 9.1 (http://www.agilent.com). Microarray 
data normalization and further analysis was performed using a set of R-based scripts (http://r-
project.org) in combination with a custom designed relational database20 which operates under the 
MySQL database management system (http://www.mysql.com). 

5 Phylogenetic analysis of external datasets 

5.1 Analyzing 16S rRNA sequences from 154 American individuals 
Published 16S rRNA sequence data5 derived from fecal samples of 154 individuals, including female 
monozygotic and dizygotic twin pairs and their mothers, were downloaded from 
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http://gordonlab.wustl.edu/NatureTwins_2008/V2.fasta.gz. This dataset containing 1119519 sequence 
reads from the V2 region of the 16S rRNA gene was processed using the SMASH pipeline38 to classify the 
reads using the RDP Classifier39 (using minimum read length of 200 and a minimum confidence score of 
0.5). For each sample, the number of reads assigned to different genera by the RDP classifier were 
normalized by the average 16S gene copy number in genomes belonging to each genus obtained from 
rrnDB52. This resulting relative abundance profile at the genus level was used for further analysis. 

5.2 Analyzing Illumina-based metagenome sequences from 85 Danish 
individuals 

Illumina reads from 85 Danish individuals from a previously published dataset8 (we focused on the 
Danish individuals as most of the Spanish ones came from patients with Crohn’s disease with dysbiosis 
and a known reduction of species complexity, which introduces biases and caused technical difficulties 
in assignment and analysis) were quality trimmed and filtered using a customized pipeline based on the 
FASTX toolkit53. Briefly, (i) bases were trimmed from the beginning of reads unless the number of base 
calls for any base (A, T, G, C) was within the average across all cycles plus/minus two standard 
deviations, (ii) bases were trimmed from the end of reads if the quality score was <20, and (iii) reads 
shorter than 35 bp or reads with a median quality score < 20 were removed. The resulting high-quality 
reads were mapped to the reference microbial genomes (split into two files) using SOAP version 2.2054 
with the option –r 2 (keep all best hits). The mapping results were merged and filtered, i.e., only higher-
scoring reads (or read-pairs) were kept if the number (or the sum) of mismatches of reads (or read-pairs) 
mapping to both reference files was not the same. Taxonomies were assigned by the same procedure as 
described above for the Sanger reads. 

6 Functional annotation 
Functional annotation of each sample was performed using the SMASH pipeline38.  

6.1 Estimating abundance of a gene/protein 
Abundance of each predicted gene from a sample was estimated analogous to the contig coverage in 
sequence assembly. If  𝑅 = {𝑟} is the set of assembled reads overlapping the locus of predicted gene 𝑔 
in a contig, abundance of 𝑔 was calculated as 

abundance(𝑔) = �
base_overlap(𝑔, 𝑟)

base_length(𝑔)
𝑟∈𝑅

 (1) 

Genes on a singleton read thus have an abundance of 1.  

6.2 Assigning proteins to eggNOG orthologous groups 
Each predicted protein was assigned to an orthologous group in the eggNOG v2 database12. We use the 
term “orthologous group” in the broadly accepted sense to mean group of genes “assumed to have 
evolved from an individual ancestral gene through a series of speciation and duplication events”55. 
Readers are advised to refer to the original definition of clusters of orthologous groups (COGs) in ref. 55. 
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Predicted proteins were aligned to proteins from the eggNOG v2 database using BLASTP (WU-BLAST 2.0, 
default parameters except E=1e-5 B=10000) and were assigned to an orthologous group as described 
elsewhere56. From these alignments between the set of predicted proteins  𝐺 = {𝑔} from a sample and 
the set of eggNOG reference proteins 𝐾 = {𝑘}, the abundance of each reference protein 𝑘 in the sample 
was calculated as 

abundance(𝑘) = �
aa_overlap(𝑘,𝑔) ∗ abundance(𝑔)

aa_length(𝑘)
𝑔∈𝐺

 (2) 

Functional abundances at the OG level were calculated by adding abundances of reference proteins 
under each OG. 

6.3 Assigning proteins to KEGG orthologous groups, modules and 
pathways 

Predicted proteins were also aligned to proteins from Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database57 as before. Each protein was assigned to the KEGG orthologous group (KO) containing 
the highest scoring annotated hit(s) containing at least one HSP scoring over 60 bits. The abundance of 
each KEGG protein was calculated as in Equation (2). Functional abundances at KO, KEGG module and 
KEGG pathway levels were calculated by adding abundances of KEGG proteins under each KO, module 
and pathway, respectively. We use the term functional module to mean “smaller pieces of subpathways 
manually defined as consecutive reaction steps, operon or other regulatory units, phylogenetic units 
obtained by genome comparisons”57 as defined by KEGG. 

7 Clustering 

7.1 Clustering algorithm 
We used the Partitioning around medoids (PAM) clustering algorithm58 to cluster the abundance 
profiles. PAM derives from the basic k-means algorithm, but has the advantage that it supports any 
arbitrary distance measure and is more robust than k-means58. 

7.2 Distance metric 
Genus abundance profiles (phylogenetic) and OG abundance profiles (functional) were normalized to 
generate probability distributions (called abundance distributions hereafter). We used a probability 
distribution distance metric59-60 related to Jensen-Shannon divergence (JSD) to cluster the samples. The 
distance 𝐷(𝑎, 𝑏) between samples 𝑎 and 𝑏 is defined as 

𝐷(𝑎, 𝑏) = �𝐽𝑆𝐷(𝑝𝑎 ,𝑝𝑏) (3) 

 

where 𝑝𝑎 and 𝑝𝑏 are the abundance distributions of samples 𝑎 and 𝑏 and 𝐽𝑆𝐷(𝑥,𝑦) is the Jensen-
Shannon divergence between two probability distributions 𝑥 and 𝑦 defined as 
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𝐽𝑆𝐷(𝑥,𝑦) =
1
2
𝐾𝐿𝐷(𝑥,𝑚) +

1
2
𝐾𝐿𝐷(𝑦,𝑚) (4) 

 

where 𝑚 = 𝑥+𝑦
2

 and 𝐾𝐿𝐷(𝑥,𝑦) is the Kullback-Leibler divergence between 𝑥 and 𝑦 defined as 

𝐾𝐿𝐷(𝑥,𝑦) = �𝑥𝑖 log
𝑥𝑖
𝑦𝑖𝑖

 (5) 

 

We added a pseudocount of 0.000001 to the abundance distributions and renormalized them to avoid 
zero in the numerator and/or denominator of equation (5). 

7.3 Optimal number of clusters 
To assess the optimal number of clusters our dataset was most robustly partitioned into, we used the 
Calinski-Harabasz (CH) Index61  that has shown good performance in recovering the number of clusters62. 
It is defined as: 

𝐶𝐻𝑘 =
𝐵𝑘
𝑘 − 1
𝑊𝑘
𝑛 − 𝑘

 

 

(6) 

where 𝐵𝑘 is the between-cluster sum of squares (i.e. the squared distances between all points i and j, 
for which i and j are not in the same cluster) and 𝑊𝑘 is the within-clusters sum of squares (i.e. the 
squared distances between all points i and j, for which i and j are in the same cluster). This measure 
implements the idea that the clustering is more robust when between-cluster distances are substantially 
larger than within-cluster distances. Consequently, we chose the number of clusters k such that 𝐶𝐻𝑘 
was maximal. 

7.4 Cluster validation 
Cluster validation methods are useful to assess the quality of a clustering with respect to the underlying 
data points. Here we use the silhouette validation technique21. The silhouette width S(i) of individual 
data points i is calculated using following formula: 

𝑆(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max (𝑎(𝑖), 𝑏(𝑖))
 (7) 

where a(i) is the average dissimilarity (or distance) of sample i to all other samples in the same cluster, 
while b(i) is the average dissimilarity (or distance) to all objects in the closest other cluster.  

The formula implies −1 ≤ 𝑆(𝑖) ≤ 1. A sample which is much closer to its own cluster than to any other 
cluster has a high S(i) value, while S(i) close to 0 implies that the given sample lies somewhere between 
two clusters. Large negative S(i) values indicate that the sample was assigned to the wrong cluster. To 
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obtain a global assessment of the cluster quality, the average S(i) over all data points is a useful 
measure. 

7.5 Cluster similarity measurement 
To assess cluster similarity between the enterotype clusters and the new clusters, we determined (a) the 
number of pairs of related samples in both clustering, (b) the number of pairs of samples not related in 
both clustering, (c) the number of related samples in new clusters but not in the enterotype clusters, (d) 
the number of related samples in enterotype clusters but not in new clusters. These data were used to 
calculate the Rand index63 R which give the cluster similarity between the enterotype clustering and the 
new clustering.  

𝑅 =
(𝑎 + 𝑏)

(𝑎 + 𝑏 + 𝑐 + 𝑑)
 

8 Simulating phylogenetic/functional compositions 
For a given set of N feature vectors, each representing the phylogenetic (genus, phylum, etc) or the 
functional (gene, orthologous group, functional modules, etc) composition of a metagenomic sample, 
we simulated N hypothetical metagenomic samples containing the same number of features by 
sampling from a continuum as follows:  

random-uniform: each generated feature is uniformly distributed in the interval [0,1) 

template-uniform: each generated feature corresponds to a feature in the real dataset and its values 
across multiple samples is uniformly distributed between the minimum and maximum abundances of 
that feature in the real dataset 

template-Gaussian: each generated feature corresponds to a feature in the real dataset and its values 
across multiple samples followed a Gaussian distribution with the same mean and standard deviation as 
observed in the corresponding real data 

Generated values are then normalized so that abundances within a sample sum to 1. 

9 Supervised learning 
We built predictive models from the enterotype clusterings of all different datasets as well as from 
simulated data using decision tree learning64. We evaluated the ability of these models to accurately 
predict new data points in a leave-one-sample-out cross-validation scheme and compared the models 
using different statistics. We estimated the classification accuracy defined as the ratio between the 
number of correctly assigned samples and the number of all samples. Further, we estimated precision, 
which is the ratio between the number of true assignments to a given class and the number of all 
samples assigned to this class and averaged it over all classes. Additionally, average precision gain was 
estimated based on this as the ratio of the actual precision and the precision of random guessing 
averaged over the three classes. Here it is important to note that classification accuracy and average 
precision are measures which are influenced by class abundances, which may differ between real and 
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simulated data. In contrast, average precision gain is implicitly normalized for this and thus best suited 
for comparisons between different data sets. 

10 Between-class analysis 
Between-class analysis was performed to support the clustering and identify the drivers for the 
enterotypes. The analysis was done using R with the ade4 package65. Prior to the analysis the data was 
sample size normalized and very low abundant genera / orthologous groups were removed to decrease 
noise if their average abundance across all samples was below 0.01%. The between-class analysis is a 
particular case of principal component analysis with an instrumental variable: here the variable is a 
qualitative factor (i.e. enterotypes cluster). The between-class analysis enables us first to find the 
principal components based on the center of gravity of each group in a way to highlight differences 
between groups and then to link each sample with its group. According to the dataset, the between-
class analysis was based on genera or OGs abundance using scaling and centering. In addition to this 
analysis concerning the microbial composition, best top species that mainly contribute to each principal 
component obtained from between-class analysis were highlighted in the graphical representation (such 
as Fig. 2). 

11 Network correlation analysis 
Spearman correlations were computed between the three main contributors (Prevotella, Bacteroides 
and Ruminococcus) and other genera. 5% of the correlations had an absolute Spearman correlation 
above 0.4, and these correlations were transformed into links between two genera in the genus 
network. The "network" package in R was then used to construct network figures with a spring-based 
algorithm. 

12 Statistical treatment of over-/under-representation 
Over- and underrepresented features (OGs, KEGG modules, KEGG maps, genera, and phyla) were 
identified using Fisher’s exact test on pooled counts depending on the sample groups compared. 
Correction for multiple testing was done based on the Benjamini-Hochberg False Discovery Rate 
(corrected p-value <0.05). To avoid artifacts, we only took those features into account that were 
specifically overrepresented in only one metadata group (e.g., only in one enterotype). Case studies 
described in the main text were further manually scrutinized to avoid artifacts.  

13 Correlations with host properties 
Correlation analysis between host metadata (Supplementary Table 1) and feature (OG, module, 
pathway, genus, phylum) frequencies was done as described previously40. In short, Spearman pairwise 
correlations between continuous metadata variables (age, bmi) were calculated and p-values were 
corrected for multiple testing using Benjamini-Hochberg False Discovery Rate correction. Significant 
features were used as input for building linear models using stepwise regression (top-down and bottom-
up feature selection) based on the Akaike Information Criterion. For categorical metadata, samples were 
pooled into bins (male/female, obese/lean, specific nationality/rest) and treated as in Supplementary 
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Methods Section 12. For nationality analysis, also the general variability of features across nations was 
investigated. For each nationality, we calculated the standard deviation (SD) of investigated features 
(relative abundance of OGs, genera) across samples, and compared this to the SD of the distribution of 
mean relative abundances of each nationality (to measure across-nationality variation). Examples with a 
across SD/within SD ratio >1 are discussed in the main text. 
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II. Supplementary Notes 

1 Feasibility of comparative gut metagenomics 
We compared the metagenomes derived from fecal samples from 22 European individuals and 17 
others from two other continents. European individuals were drawn from four different nations 
(Denmark, France, Italy and Spain), included both healthy individuals and patients suffering from 
microbiota-associated disorders (6 obese individuals and 2 inflammatory bowel disease patients; see 
Supplementary Table 1) and were selected for a broad range of microbiota (8 of a larger group of 40 
were found by HITChip20 analysis to be particularly divergent and 6 were over 70 years old, as it was 
reported that the diversity of the microbiota increases with age66-67). Their fecal metagenomes were 
Sanger-sequenced at an average depth of 105 Mb each (Supplementary Table 1 and Supplementary 
Table 2). Of the non-European samples, 13 were from Japan6 and 4 from America4-5, sequenced at an 
average depth of 61Mb and 92 Mb, respectively; the latter include only 2 out of 18 metagenomes from 
one American study5 determined using pyrosequencing68 that had sufficient read length and sequencing 
depth. 

We developed unified phylogenetic and functional annotation protocols to analyze data generated by 
different sequencing centers using different sample preparation protocols and sequencing technologies. 
We establish the feasibility of comparative metagenomic analysis on data with diverse origins using the 
following methods. 

1.1 Functional repertoire of samples compared to bacterial genomes 
We derived the relative abundance of COG functional categories in 575 microbial genomes in the 
STRING (v8) database15, containing a subset of 53 gut-specific genomes (see Supplementary Notes 
Section 1.3 for details), after normalizing for genome size (red and blue dots in Supplementary Figure 16 
respectively). We also derived their relative abundance in the metagenomes through the functional 
annotation of predicted genes as described in Supplementary Methods Section 6. The coverage of 
functional categories is similar between samples (grey box-plots). Functional profiles of metagenomes 
and 53 gut-specific microbial genomes are significantly different (overrepresented) only for category L 
(replication, recombination and repair) and V (defense mechanisms), even though other  differences 
between the profiles of metagenomes and the 575 microbial genomes can be observed, such as 
enrichment of M (cell wall/membrane/envelope biogenesis) and G (carbohydrate transport and 
metabolism), and depletion of I(Lipid transport and metabolism) and Q(Secondary metabolites 
biosynthesis, transport and catabolism). 

1.2 Comparing different sequencing technologies 
We sequenced two of the Danish samples (DA-AD-1 and DA-AD-3) using Sanger and 454 Titanium 
methods and compared the species retrieval and function retrieval to compare the technologies (See 
Supplementary Table 20). We used the reference genome mapping approach (See Supplementary 
Methods Section 4.1) on all sequences and recorded the genus distribution. Although the greater depth 
of sequencing with 454 retrieves additional rare genera, the overall genus distributions are similar 
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(Pearson correlation coefficients 0.9852 and 0.9968, also see Supplementary Figure 17a). We recorded 
the functional abundance of eggNOG orthologous groups (OGs) in each sample (See Supplementary 
Methods Section 6).  The OG abundance distributions remain similar between the technologies 
(correlation: 0.9482 and 0.9153, see Supplementary Figure 17b). Notably, deeper 454 sequences 
retrieve slightly fewer OGs (Supplementary Table 20), probably due to shorter gene fragments (resulting 
from shorter reads or contigs) that make orthology assignment more difficult. The OGs that differ most 
in abundance between the Sanger- and pyrosequencing-based metagenomes were mostly unknown 
functions (Supplementary Figure 18), showing that functional interpretation of comparative analysis is 
not affected by this difference. These results imply that future samples from different sequencing 
technologies can be integrated and compared, provided that the sequencing coverage is sufficient to 
discriminate between meaningful and random variation. 

1.3 Functional rarefaction 
We simulated the total number of orthologous groups (OGs) that could be functionally assigned in 
relation to the number of sequenced samples (Fig. 1a). As many genes might be ‘bystanders’ i.e. genes 
from transient, perhaps food-associated microbiota that just passage through the gut, we assigned 
habitat information to 1368 out of the 1511 reference genomes and distinguished between eggNOG 
orthologous groups from gut and non-gut species. As expected, OGs found in known gut species seem to 
be close to saturation while functions from ‘non-gut’ species still accumulate with each sample at our 
given coverage of 53-295Mb per individual (Fig. 1a). Thus, although the coverage at hand will miss rare 
gut species and genes from these, the coverage seems sufficient to cover major trends caused by 
resident gut species and to robustly identify genera and functionalities that are common and different 
between samples.  

We computed the total number of eggNOG12 orthologous groups present in random combinations of n 
individuals (with n=2 to 35 (all samples except infants), 100 replicates per bin). From all genomes 
present in STRING and our reference genome set, two sets of orthologous groups were defined: those 
present in genomes known to be found in the mammalian intestine (“gut”, Supplementary Table 3) and 
all remaining organisms (“non-gut”). Gut genomes were identified using text mining of species 
descriptions on the sequencing centre websites69-74, the NCBI genome overview page75, the GOLD 
database76, and by further manual curation. Of all 1511 genomes (1069 species) in the reference 
genome set, 1368 genomes (958 species) could be classified. 325 reference genomes (192 species) were 
classified as gut associated species. 54 of these 192 gut species are in STRING (see Supplementary Figure 
19).  

2 Global phylogenetic and functional variation of intestinal 
metagenomes 

2.1 Non bacterial DNA content 
Before we identified the phylogenetic profile of the metagenomes, we investigated the non-bacterial 
DNA content in the samples. For this part of the analysis only, we counted the number of reads per 
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samples, since this is not used in a quantitative manner for comparative analysis. This is different from 
the quantitative abundance estimation by counting the mate-paired reads as a single DNA fragment, as 
in Supplementary Notes Sections 2.2 and 2.3. 

2.1.1 Eukaryotic contamination 
Although the gut ecosystem consists mostly of microbes, host human genome can contaminate the gut 
metagenome samples, and so can DNA from ingested plants and meat. We screened for these two types 
of contamination and estimated the levels to be very low. These estimates are an upperbound for the 
eukaryotic contamination, since we use a more sensitive criterion. 

2.1.1.1 Human DNA contamination 
On an average 0.14% of the reads from the 22 European samples were classified as potential human 
reads using this method (see Supplementary Table 21). This is very low considering that we used very 
lenient criteria to capture as many human sequences as possible. Note that the published datasets may 
have been screened for human reads before being made publicly available and 0.02% of the reads from 
these datasets were classified as potential human reads. 

2.1.1.2 Other eukaryotic contamination 
The eukaryotic DNA fraction (possibly from food intake), estimated by identifying metagenome proteins 
whose best hit in STRING v8 database comes from a eukaryote, amounts to less than 1.3% of the DNA 
fragments from any sample (0.5% on an average, see Supplementary Table 21). Interestingly, 5 out of 7 
eukaryotic kingdoms in STRING v8 were found in all 39 samples. We found extremely low human 
contamination (0.0068% ) that our prescreening step (see Supplementary Notes Section 2.1.1.1) failed 
to remove, while other metazoan and fungal species contributed more than half of the eukaryotic 
fraction (0.3%, see Supplementary Table 22) 

2.1.2 Prophage sequences 
To assess the fraction of prophage sequences, we performed a BLAST search of all reads of our samples 
against the ACLAME mobile genetic elements database77 as well as 2969 viral and 579 phage genomes 
from NCBI (from 
http://www.ncbi.nlm.nih.gov/genomes/genlist.cgi?taxid=10239&type=5&name=Viruses and 
http://www.ncbi.nlm.nih.gov/genomes/genlist.cgi?taxid=10239&type=6&name=Phages, respectively, as 
on 05 Feb 2010). On an average, 6.9% of the reads had a significant hit (more than 60 bits) to a 
sequence in these databases which is of the order of previous estimates of prophage sequences in 
bacterial genomes78. To estimate the lower bound of the prophage fraction, we estimated the number 
of these reads that had a significantly better hit to a viral sequence than to bacterial genome and found 
that at least 1.4% of our reads are of prophage origin (Supplementary Table 21).  

2.2 Phylogenetic groups identified in gut metagenomes 
We used the reference genome mapping procedure explained in Supplementary Methods Section 4.1 to 
estimate the phylogenetic abundance profile of each sample. Using an 85% DNA sequence similarity 
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threshold, which can reliably assign a sequence at the genus level (Supplementary Notes Section 1.2), 
we mapped the reads to the reference genome set and estimated the abundance of each genus in the 
reference set.  

Firmicutes were identified as the most abundant phylum in our samples with a mean abundance of 
38.8%, but they also show a high variability (standard deviation: 11.3%, abundance: 19.8 - 65.6%). The 
most abundant genus in this phylum is Faecalibacterium (mean abundance: 5.1%, standard deviation: 
3.6%, 0.5%-15.0%). Unclassified Lachnospiraceae (mean abundance: 3.2%, standard deviation: 2.0%, 
0.6%-9.5%) and Roseburia (mean abundance: 2.6%, standard deviation: 4.2%, 0.2 %-25.1%) are also 
abundant members of this phylum.   

The second most abundant and most variable phylum is Bacteroidetes (mean abundance: 27.8%, 
standard deviation: 16.6%, abundance: 0.1%-64.9%). Bacteroides was the most abundant genus overall, 
but also showed the highest variability across all genera (mean abundance: 13.9%, standard deviation: 
13.4%, 0.0%-54.7%). It also had the highest variation among cultivable genera in the HITChip analysis.  
Prevotella (mean abundance: 4.4%, standard deviation: 9.5%, 0.0%-35.5%) is also highly variable across 
all samples. Alistipes (mean abundance: 2.1%, standard deviation: 2.2%, 0.0%-9.1%) is another abundant 
genus from Bacteroidetes. 

Actinobacteria represent the third most abundant phylum (mean abundance: 8.2%, standard deviation: 
6.8%, abundance: 1.1%-32.5%). The most prominent Actinobacteria are Bifidobacterium (mean 
abundance: 4.5%, standard deviation: 4.7%, 0.0%-20.3%) and Collinsella (mean abundance: 1.8%, 
standard deviation: 2.2%, 0.0%-7.6%). 

In addition to these phyla we also detect some lower abundant phyla such as Proteobacteria (mean 
abundance: 2.1%, standard deviation: 3.5%, abundance: 0.2 - 21.2%),  Verrucomicrobia (mean 
abundance: 1.3%, standard deviation: 2.1%, abundance: 0.0 - 8.8%) and Euryarchaeota (mean 
abundance: 0.9%, standard deviation: 2.5%, abundance: 0.0 - 11.3%). 

Faecalibacterium, Bacteroides, Parabacteroides, Alistipes, Bifidobacterium and Collinsella were among 
the five most abundant genera from their respective phyla in at least 32 out of 35 samples in agreement 
with array-based profiling in the subset of 22 European samples (using the HITChip20; Supplementary 
Table 4). This implies that species from these genera are predisposed and/or selected to be among the 
abundant species in the gut environment regardless of geographic location. 

2.3 Functions identified in gut metagenomes 
Some of the orthologous groups that the genes from fecal metagenomes are assigned to have no or only 
loose functional descriptions (‘unknown’ and ‘general functions’ account for 16.2% and 11%, 
respectively) comparable to other metagenomic samples from diverse habitats79. However, functionally 
uncharacterized genes usually form small OGs (Supplementary Figure 20) while large OGs with many 
genes are usually well-characterized79 and their variation can be interpreted. The most frequent OG is 
formed by histidine kinases (COG0642), as reported previously for the Japanese dataset6, which 
contributes on average 0.8% of all assigned genes in each sample, implying intensive signaling in this 
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community, for example triggered by environmental (nutritional or stress-related) compounds or in the 
context of specific quorum sensing communication80.   

The most variable OG in our gut metagenome samples is an ATPase (COG1132) component of ABC-type 
transporters (ranging from 0.3% to 1.1%, Fig. 1c). ABC type transport system is one of the most 
conserved molecular machines, which contributes not only for efflux but also for influx of compounds. 
These transporters participate in the persistence of bacteria in their ecological environment81. Their 
tremendous variety is also observed in the STRING database (Supplementary Figure 21), suggesting the 
contribution to the diversity of bacterial ability, such as drug resistance. 

3 Highly abundant functions from low-abundance microbes 
To identify functions that are predominantly from low-abundance microbes, we estimated the 
phylogenetic origin of each function, by combining phylogenetic assignment of reads to genera/phyla 
and functional annotation of genes to orthologous groups, and assigned orthologous groups to 
genera/phyla through the reads that constitute genes. We then looked for highly abundant functions 
(among the top 20% = above 80th percentile) that are primarily contributed by low-abundance genera 
(<2.5%), and found 122 such orthologous groups in all samples (Supplementary Figure 2 and 
Supplementary Table 6). Since we only chose functions that received more than 50% contribution from 
such genera, our observations will still be valid even if the unmapped portions of the genes are mapped 
to their rightful genera. 

4 Robust clustering of samples across nations: Identification of 
enterotypes 

4.1 Deriving enterotypes 
Before identifying enterotype clusters in the samples, we removed the two American samples4 because 
they had very low Bacteroidetes potentially due to a technical artifact19. The remaining 33 Sanger-based 
metagenomic samples were clustered using genus abundance profiles in Fig. 1b as explained in 
Supplementary Methods Section 7. The Calinski-Harabasz (CH) index showed a clear global maximum at 
3 clusters in the Sanger dataset (Supplementary Figure 3a). When including the two American samples 
they formed a fourth cluster of their own (data not shown). The number of clusters in the other data 
sets was also 3 and thus confirmed our findings for the Sanger dataset (Supplementary Figure 3). 
Sanger- and pyrosequencing-based metagenomes from the same samples cluster together, reinforcing 
the feasibility of comparisons across sequencing platforms (Supplementary Figure 22).  

4.2 Drivers of enterotypes in three different datasets 
In the Sanger dataset, Bacteroides, Prevotella and Ruminococcus were the drivers of the three 
enterotypes. When we derived enterotypes from the 85 Illumina based metagenomes and the 154 16S 
rDNA datasets, we also identified three enterotypes where Bacteroides and Prevotella were still driving 
two of the three clusters. However, the third cluster was driven by different groups in these two 
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datasets: Blautia in the 16S rDNA dataset and unclassified Lachnospiraceae in the Illumina dataset. 
These three related groups fall under the Clostridiales order.  

There is still uncertainty in the Clostridiales order of the phylogenetic tree of bacteria, especially in the 
Lachnospiraceae/Ruminococcaceae families, although microbiologists are working hard to resolve this 
issue. The placement of the reference genomes to this section of the tree (we use the tree from the 
Bergey manual) thus inherits these issues. Most of the strains with species identification in our 
reference genome database originally named by microbiologists as Ruminococcus have now been 
moved to Lachnospiraceae in the Bergey Manual (4 out of 6 genomes from named Ruminococcus 
species in our database). Furthermore, a number of genomes with almost full length 16S rRNA genes can 
only be classified at the family level as “unclassified Lachnospiraceae”. Some of these are closely 
positioned with respect to Blautia in a phylogenetic tree based on 40 single copy marker genes 
(Supplementary Figure 23a). The uncertainty in the tree is further exemplified by Ruminococcus lactaris 
ATCC 29176: 

1) a full length 16S rRNA gene sequence was classified as Ruminococcus 
2) a partial 16S rRNA gene sequence was classified as Lachnospiraceae 
3) the marker gene based tree clearly places it among Lachnospiraceae. 

Given these uncertainties in this section of the tree we believe that that Enterotype 3 is driven by the 
same phylogenetic group but it is hard to ascertain who it is. In contrast, sections of the tree 
corresponding to Bacteroides and Prevotella show remarkable consistency (Supplementary Figure 23b) 
explaining why we do not face this issue in enterotypes 1 and 2.  

The difference between 16S dataset and metagenomic datasets can also be explained by the different 
reference databases used for the 16S based and reference genome alignment based phylogenetic 
analysis procedures. For example, in the 154 samples from the 16S dataset, 38 genera have more than 
0.1% abundance in more than 25% of the samples (≥39) as identified by the RDP Classifier. However, 13 
out of these 38 genera do not have a representation in our reference genome database containing 1511 
genomes, since there is no publicly available genome sequence for any member of these genera. 

The difference between the Sanger-based metagenomes and the Illumina-based metagenomes can also 
be explained by the resolution at which phylogenetic compositions are measured. We used the SOAP 
aligner with the same parameters as in the original study8, and this allows for only two differences 
between the Illumina read and the reference genome. This maps metagenomic reads that are closely 
related to the reference genome and hence is not at the same level of resolution as the BLAST-based 
mapping of Sanger-based metagenomes where we allow down to 85% sequence similarity to map at the 
genus level. 

4.3 Robustness of enterotype clusters 
To assess whether the samples are continuously distributed in the phylogenetic composition space, or 
whether they predominantly congregate around a few cluster centers, we simulated phylogenetic 
composition of hypothetical samples based on three models (namely random-uniform, template-
uniform and template-Gaussian) that capture properties of real abundance data to different extents as 
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explained in Supplementary Methods Section 8. Random uniform simulations are expected to behave 
very differently than real data, while we expect the template-based uniform simulations to be more 
similar to the real data. Template-based Gaussian simulations should be very similar to the real data 
because they capture many characteristics of the real data except for non-normal distributions and 
interactions between features. We used the silhouette validation technique to compare real data with 
simulated data (Supplementary Methods Section 7.4). The real data had a higher silhouette width than 
99% of the simulations for all datasets (Supplementary Figure 5). This implies that feature-feature 
interactions and non-normality of the distribution of features across samples contribute to the 
distinctiveness of clusters. We quantified the effect of removing samples from a cluster on the overall 
clustering behavior. Supplementary Figure 24 shows that the enterotypes generally stay intact (even 
when half of the samples in a cluster are removed, less than 6% of the samples are wrongly assigned). 

We also quantified the effect of removing the major driver of each enterotype in forming clusters. We 
selectively removed the major driver before clustering the samples and recalculated the clusters. In two 
out of the three enterotypes, it is very clear that even after the main driver is removed, the network of 
co-occurring genera recovers the enterotype (see Supplementary Figure 25 and Supplementary 
Methods Section 7.5). 

We also measured the effect of the number of samples on the optimal number of clusters by randomly 
sub-sampling half of each enterotype and estimating the optimal number of clusters using the CH-index. 
Comparison of Supplementary Figure 3 and Supplementary Figure 26 shows that more samples do not 
make the clustering less robust and thus the quality of the datasets determine the clustering quality and 
not the sample size. 

4.4 Generalization and predictive power of enterotype clusters 
The results show that accuracy, average precision and average precision gain are significantly higher for 
the classifier trained on real data than for any of the ones based on simulations for all datasets used in 
this study. Moreover, we observed that for the different simulations, classification improved with 
increasing similarity to real data -- “random uniform” simulations were most difficult to classify, while 
“template-based uniform” and “template-based Gaussian” were much easier to classify. Even though 
we employed a very simple classification algorithm, we obtained a leave-one-sample-out cross-
validation accuracy of 90.1% (Sanger data set), 86% (16S data set) and 97.6% (Illumina data set). An 
average precision gain of 3.2, 4, and 5.26, respectively, demonstrates that the enterotype clustering 
indeed lends itself to building models that are much more predictive than is expected for a random 
clustering. As we analyzed the generalization behavior by means of cross-validation, the model trained 
on the actual samples is expected to classify future samples (generated similarly) with similar accuracy. 

4.5 Independent experimental verification of enterotypes using HITChip 
As this is a far reaching concept we further validated the enterotypes identified in our Sanger-based 
metagenomes by an independent experimental approach: we analyzed the 22 European samples using 
HITChip to validate the stratification of the enterotypes and the drivers. 
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A phylogenetic analysis of the DNA extracts of the 22 European samples was performed with the Human 
Intestinal Tract Chip (HITChip)20. This phylogenetic microarray has over 4,800 oligonucleotide probes, 
which target the 16S rRNA genes of more than 1,100 intestinal bacterial phylotypes. Hybridization and 
analysis were performed as described before20 (brief summary in Supplementary Methods Section 4.4). 
Between class analysis on the genus profiles of these 22 samples using the enterotype classes from Fig. 
2a shows the same three drivers: Bacteroides, Prevotella and Ruminococcus (see Supplementary Figure 
4). This excludes possible confounding effects due to cloning bias of the E. coli host used. 

5 Phylogenetic and functional variation between enterotypes 

5.1 Phylogenetic composition of enterotypes 
The abundance of genera in each enterotype is listed in detail in Supplementary Table 23.  

5.1.1 Enterotype 1 
Enterotype 1 is dominated by the genus Bacteroides, which represents between 21.3% and 54.3% of all 
genera found in the samples. The second most abundant genus is Faecalibacterium at abundance 
between 0.5% and 8.7%. Bifidobacterium makes up between 0.6% and 12.1%. 

Unclassified Lachnospiraceae (1.5% - 5.0%) and Parabacteroides (0.2%-3.4%) also make up a reasonable 
portion of the samples from this enterotype. The assignment rate on genus level in this enterotype is 
between 50.0% and 71.0%. 

5.1.2 Enterotype 2 
Enterotype 2 is dominated by genera Prevotella (5.8%-35.9%) and Bacteroides (1.8%-15.3%). Other more 
abundant contributors are Faecalibacterium (1.6%-3.8%), unclassified Lachnospiraceae (0.8%-5.2%) and  
Collinsella (0.0%-4.9%). The assignment rate in this enterotype is between 21.0% and 60.2%. 

5.1.3 Enterotype 3 
In enterotype 3 Bacteroides (1.8%-17.6%) is the most abundant genus. Bifidobacterium (0.0%-20.3%) is 
the second most abundant genus. Other abundant genera in this enterotype are Faecalibacterium 
(0.6%-10.3%), unclassified Lachnospiraceae (0.6%-8.2), Alistipes (0.1%-6.3%), Ruminococcus (0.3%-7.1%), 
Collinsella (0.0%-7.5%) and Akkermansia (0.0%-8.9%). The assignment rate was between 20.1% and 
50.1%. 

6 Phylogenetic and functional biomarkers for host properties 
While correcting for multiple testing, we lose a very large number of significant associations which is a 
direct result of the low number of samples. In addition, we only take associations that are exclusively 
linked to one metadata factor into account, to compensate for confounding variables. This conservative 
approach leaves us with only few correlations (and e.g. no association between IBD and an enterotype, 
due to the fact that there are only two IBD patients), but allows us to report likely true findings (within 
the given probability margins).  
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6.1 Age bias in the dataset 
Enterotype 1 is enriched in Japanese individuals. The oldest Japanese subject is 45 years old and 20 out 
of the 22 European subjects are older than 45 years, which makes enterotype 1 younger than the rest of 
the dataset. Italian subjects are from a cohort of elderly individuals, so Italian subjects are older than the 
rest of the subjects.   

6.2 Identification of an unknown Clostridiales genus correlating with 
host-age 

When we classified our reference genome set of 1511 microbial genomes using the RDP Classifier that 
implements the recent reclassification of Firmicutes based on Bergey’s Manual of Systematic 
Bacteriology49, three genomes (from Clostridium bolteae ATCC BAA-613, Clostridium asparagiforme DSM 
15981 and Clostridiales bacterium 1_7_47FAA) were classified as “Unclassified Clostridiales”. We 
compared the almost full length (>1500bp long) 16S sequences of these three genomes and found that 
they were all more than 95% identical to each other. Therefore we conclude that the reads that are 
classified as “Unclassified Clostridiales” through their mappings (at >85% similarity) to these three 
genomes can be considered as a single genus that we call “unknown Clostridiales genus” in the 
manuscript. Abundance of this genus has a significant negative correlation with host-age (p<0.02). The 
increased chance for micro-aerobic regions in the gut with age could cause a decrease in their 
abundance82-83.  

6.3 Functions correlating with host-nationality 
With regard to nationality, the abundance of 10 orthologous groups (mismatch repair ATPases, DNA 
methylases and DNA polymerases; Supplementary Table 14) varies more between than within 
nationalities (Supplementary Figure 12b) and several functionalities are specifically overrepresented in 
different ethnic groups (e.g., a polar amino acid transporter module in Japanese individuals; see 
Supplementary Table 15 and Supplementary Table 16), possibly linked to nutrition (e.g., the strong 
presence of glutamate in Japanese diet84). Despite those potential molecular markers, overall, the 
functional composition of the metagenomes of individuals from different nations was similar at the 
given sequencing depth. For example, the core metagenome (the set of functions present in all 
individuals) has a similar size in each nation, suggesting that the core functioning of the human intestine 
is similar in different ethnicities (Supplementary Figure 13). This also confirms the similarities of gut 
metagenomes from a large cohort of deeply sequenced Danish and Spanish individuals8. 

6.4 Verifying host-phenotypic classifications based on hydrogenotrophic 
microorganisms 

With the current sequencing depth in our data set, additional phenotypic classification attempts such as 
those based on hydrogenotrophic microorganisms (methanogens, reductive acetogens or sulphate 
reducers) could not be verified using the functional marker approach, as the respective marker genes 
(e.g., coenzyme-M reductase mcrA, formyltetrahydrofolate synthetase, or dissimilatory sulphite 
reductase dsrA/dsrB) from these less abundant microbes could barely be identified. For example, mcrA 

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature09944

WWW.NATURE.COM/NATURE | 22



23 
 

was only found in 3 out of the 22 European samples, although 30-50% of the western population are 
estimated to have dominant methanogenic bacteria in their feces17. Yet, the three distinct pathways for 
hydrogen disposal could trigger the three different enterotypes and indeed Methanobrevibacter (a 
methanogen) and Desulfovibrio (a known sulfate-reducer) are enriched in enterotypes 3 and 1, 
respectively. However, as the enterotypes seem to be driven by a complex mixture of functional 
properties, they could also have been shaped by hitherto unexplored physiological conditions such as 
transit time or pH of luminal contents. 

6.5 Effect of genome size in functional over-representation in enterotypes 
We checked the genome size distributions for 6 COGs which are over-represented in each enterotype 
(Supplementary Figure 27). These COGs have a relatively stable average genome size, suggesting that 
genome size does not have a major effect on functional abundance. 
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