SUPPLEMENTARY INFORMATION

doi:10.1038/nature11450

Supplementary Methods

Sample collection and DNA extraction

All 368 faecal samples from 368 Chinese individuals living in the south of China, were
collected by Shenzhen Second People’s Hospital, Peking University Shenzhen Hospital
and Medical Research Center of Guangdong General Hospital, including 345 samples
for MGWAS and an additional set of 23 samples for T2D classification. The patients
who were diagnosed with Type 2 Diabetes Mellitus according to the 1999 WHO
criteria®® constituted the case group in this study, and the rest non-diabetic
individuals were taken as the control group. Detailed clinical information of all
sample donors was collected and presented in Supplementary Table 1. The patients
and healthy controls were asked to provide a frozen faecal sample. Fresh faecal
samples were obtained at home, and samples were immediately frozen by storing in
a home freezer for less than 1d. Frozen samples were transferred to BGI-Shenzhen,

and then stored at -80°C until analysis.

A frozen aliquot (200 mg) of each fecal sample was suspended in 250 pl of guanidine
thiocyanate, 0.1 M Tris (pH 7.5) and 40 ul of 10% N-lauroyl sarcosine. DNA was
extracted as previously described®®. DNA concentration and molecular weight were
estimated using a nanodrop instrument (Thermo Scientific) and agarose gel

electrophoresis, respectively.

DNA library construction and sequencing

DNA library construction was performed following the manufacturer’s instruction
(IMumina). We used the same workflow as described elsewhere to perform cluster
generation, template hybridization, isothermal amplification, linearization, blocking

and denaturation, and hybridization of the sequencing primers.
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We constructed one paired-end (PE) library with insert size of 350bp for each
samples, followed by a high-throughput sequencing to obtain around 20 million PE
reads. The reads length for each end is 75bp-90bp (75bp and 90bp read length in
stage | samples; 90bp read length for stage Il samples). High quality reads were
extracted by filtering low quality reads with ‘N’ base, adapter contamination or
human DNA contamination from the Illumina raw data. On average, the proportion
of high quality reads in all samples was about 98.1%, and the actual insert size of our

PE library ranges from 313bp to 381bp.

Gene catalogue construction

Gene catalogue updating. Employing the same parameters that were used to
construct the MetaHIT gene catalogue®, we performed de novo assembly and gene
prediction for the high quality reads of 145 samples in stage | using SOAPdenovo
v1.06** and GeneMark v2.7*?, respectively. All predicted genes were aligned pairwise
using BLAT and genes, of which over 90% of their length can be aligned to another
one with more than 95% identity (no gaps allowed), were removed as redundancies,
resulting in a non-redundant gene catalogue comprising of 2,088,328 genes. This
gene catalogue from our Chinese samples was further combined with the previously
constructed MetaHIT gene catalogue®, by removing redundancies in the same
manner. At last, we obtained an updated gene catalogue that contains 4,267,985

genes.

Taxonomic assignment of genes. Taxonomic assignment of the predicted genes was
performed using an in-house pipeline. In our analysis, we collected the reference
microbial genomes from IMG database (v3.4, see the full list in Supplementary Table
3), and then aligned all 4.3 million genes onto the reference genomes. Based on the

comprehensive parameter exploration of sequence similarity across phylogenetic
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ranks by MetaHIT enterotype paper®?, we used the 85% identity as the threshold for
genus assignment, as well as another threshold of 80% of the alignment coverage.
For each gene, the highest scoring hit(s) above these two thresholds was chosen for
the genus assignment. For the taxonomic assignment at the phylum level, the 65%

identity was used instead.

Functional annotation. We aligned putative amino acid sequences, which translated
from the updated gene catalogue, against the proteins/domains in eggNOG (v3.0)
and KEGG databases (release 59.0) using BLASTP (e-value <le-5). Each protein was
assigned to the KEGG orthologue group (KO) or eggNOG orthologue group (OG) by
the highest scoring annotated hit(s) containing at least one HSP scoring over 60 bits.
For the remaining genes without any annotation in eggNOG database, we identified
novel gene families based on clustering all-against-all BLASTP results using MCL with
an inflation factor of 1.1 and a bit-score cutoff of 60**. Using this approach, we

identified 7,042 novel gene families (220 proteins) from the updated gene catalogue.

Quantification of metagenome content

Computation of relative gene abundance. The high quality reads from each sample
were aligned against the gene catalogue by SOAP2 using the criterion of “identity >
90%”. In our sequence-based profiling analysis, only two types of alignments could
be accepted: i). an entire of a paired-end read can be mapped onto a gene with the
correct insert-size; ii). one end of the paired-end read can be mapped onto the end
of a gene, only if the other end of read was mapped outside the genic region. In both

cases, the mapped read was counted as one copy.
Then, for any sample S, we calculated the abundance as follows:

Step 1: Calculation of the copy number of each gene:
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a;: The relative abundance of gene i insample S.

L;: The length of gene .

x;: The times which gene i can be detected in sample S (the number of mapped

reads).

b;: The copy number of gene i in the sequenced data from sample S.

Estimation of profiling accuracy. We used the method developed by Audic and
Claverie (1997)* to assess the theoretical accuracy of the relative abundance
estimates. Given that we have observed x; reads from gene i, as it occupied only a
small part of total reads in a sample, the distribution of x; is approximated well by a
Poisson distribution. Let us denote N the total reads number in a sample,
so N=),x; . Suppose all genes are the same length, so the relative abundance
value a; of gene i simply isa; =x;/N. Then we could estimate the expected
probability of observing y; reads from the same gene i, is given by the formula

below,

(x; +y)!
Ayl 2(x+y+1)

P(afla) = Pyx) = -

Here, a; = y;/N is the relative abundance computed by y; reads (See the original
paper*®® for details). Based on this formula, we then made a simulation by setting the
value of a; from 0.0 to 1e-5 and N from O to 40 million, in order to compute the
99% confidence interval for a; and to further estimate the detection error rate

(Supplementary Figure 3).
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Construction of gene, KO, and OG profile

The updated gene catalogue contains 4,267,985 non-redundant genes, which can be
classified into 6,313 KOs and 45,683 OGs (including 7,042 novel gene families). We
first removed genes, KOs or OGs that were present in less than 6 samples across all
145 samples in stage |. To reduce the dimensionality of the statistical analyses in
MGWAS, in the construction of gene profile, we identified highly correlated gene
pairs and then subsequently clustered these genes using a straightforward
hierarchical clustering algorithm. If the Pearson correlation coefficient between any
two genes is >0.9, we assigned an edge between these two genes. Then, the cluster
A and B would not be clustered, if the total number of edges between A and B is
smaller than |A|*|B|/3, where |A| and |B| are the sizes of A and B, respectively.
Only the longest gene in a gene linkage group was selected to represent this group,
yielding a total of 1,138,151 genes. These 1,138,151 genes and their associated
measures of relative abundance in 145 stage | samples were used to establish the

gene profile for the association study.

For the KO profile, we utilized the gene annotation information of the original
4,267,985 genes and summed the relative abundance of genes from the same KO.
This gross relative abundance was taken as the content of this KO in a sample to
generate the KO profile of the samples. The OG profile was constructed using the

same methods.

Bio-diversity analysis

Within-sample diversity. Based on the gene profile, we calculated the within-sample

(alpha) diversity to estimate the gene richness of a sample using Shannon index:
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S

H = —Zai Ing,

i=1
Where S is the number of genes and a; is the relative abundance of gene i as

defined above. A high alpha diversity indicates a high richness of genes in the

sample.

Rarefaction curve analysis. To assess the gene or gene family richness in our cohorts,
we generated a rarefaction curve. For a given number of individual samples, we
performed a randomized sampling 100 times in the T2D patients group or
non-diabetic control group, respectively. Further, we randomly selected the given
number of individual samples and then calculated the total number of genes/families
that could be identified from these samples. Only the genes with 22 mapped reads
and gene families with 210 mapped reads were determined to be present in a
sample to eliminate the incorrectly identification. Actually, the conclusion that the
gene/families richness of T2D patients group is higher than that of non-diabetic

group was not changed under different thresholds.

Enterotypes identification

The genus relative abundance profile was constructed using the same methods as
the KO/OG profile. After that, the genus profile was used for identifying enterotypes
from our Chinese samples. We used the same identification method as described in
the original paper of enterotypes*®. In this study, samples were clustered using
Jensen-Shannon distance and was then illustrated by PCA (Principal Component

Analysis) graph that was implemented in “ade4” package in R software®®.
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Statistical analysis of MGWAS

PERMANOVA analysis. In this study, the PERMANOVA (Permutational multivariate
analysis of variance)*’ was used to assess the effect of different covariate, such as
enterotypes, T2D, age, gender and BMI, on all types of profiles. We performed the

748

analysis using the method implemented in R package - “vegan”"®, and the permuted

P-value was obtained by 10,000 times permutations.

Population stratification. To correct population stratifications of our metagenome
-wide data, we used a modified version of the EIGENSTRAT method*’ allowing the
use of covariance matrices estimated from abundance levels instead of genotypes.
However, as much of the signal in our data might be driven by the combined effect of
many genes and not by just a few genes as assumed in GWAS studies, we modified
the method further by replacing each PC axis with the residuals of this PC axis from a
regression to T2D state. The number of PC axes of EIGENSTAT was determined by

Tracy-Widom test at a significance level of P<0.05°°.

Statistical hypothesis test on profiles. Instage |, to identify the association between
the metagenome profile and T2D, a two-tailed Wilcoxon rank-sum test was used in
the profiles that were adjusted for non-T2D-realted population stratifications. Then,
while examining the stage | markers in stage Il, a one-tailed Wilcoxon rank-sum test
was used instead. Because the T2D is the primary factor impacting on the profile of
examined gene markers in stage Il, we didn’t adjust the population stratification for

these genes.

Estimating the false discovery rate (FDR) and the power. Instead of a sequential
P-value rejection method, we applied the “gvalue” method proposed in a previous

study®! to estimate the FDR. In our MWAS, the statistical hypothesis tests were
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performed on a large number of features of the gene, KO and OG profiles. Given that
a FDR was obtained by the qvalue method®?, we estimated the power P, for a given
P-value threshold by the formula below,

_ N,(1-FDR,)
¢ N1-m)

Here, 1, is the proportion of null distribution P-values among all tested hypotheses;

N_ is the number of P-values that were less than the P-value threshold; N is the

e
total number of all tested hypotheses; FDR, is the estimated false discovery rate

under the P-value threshold.

Taking the gene profile as an example, the estimated FDR and power for gene

markers of stage Il are shown in Fig. 1c.

Identification of MetaHIT IBD-associated markers

To identify the IBD-associated gene and OG markers for the 124 MetaHIT samples®,
firstly, we performed stratified sampling to these samples and obtained a subgroup

of 25 IBD patients and 47 control samples (see the following table).

No. of ) Gender Age BMI
Nation
Samples (M/F) (meanzsd) (meantsd)
IBD patients 25 Spain=25 10/15 44.8+10.8 24.614.2
Controls 47 Spain=14,Denmark=33 19/28 48.6+10.4 24.7+4.1

P=0.154 P=0.906

Then, we calculated the gene and OG relative abundance profiles for these samples
by the methods as described before. Using a two-tailed Wilcoxon rank-sum test, we
identified 151,039 IBD-associated gene markers (P<0.01, corresponding to 4.7% FDR)

and 7,680 IBD-associated OG markers (P<0.05, 9.7% FDR).
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Identification of Metagenomic Linkage Group (MLG)

The clustering method for identifying MLG. In the present study, we devised a
concept of metagenomic linkage group (MLG), which could facilitate the taxonomic
description of metagenomic data from whole-genome shotgun sequencing. To
identify MLG from the set of T2D-associated gene markers, we developed an

in-house software that comprises three steps as indicated below:

Step 1: The original set of T2D-associated gene markers was taken as initial
sub-clusters of genes. It should be noted that in the establishment of the gene profile
we had constructed gene linkage groups to reduce the dimensionality of the
statistical analysis. Accordingly, all genes from a gene linkage group were considered

as one sub-cluster.

Step 2: We applied the Chameleon algorithm to combine the sub-clusters exhibiting
a minimal similarity of 0.4 using dynamic modeling technology and basing selection
on both interconnectivity and closeness™. The similarity here is defined by the
product of interconnectivity and closeness (we used this definition in the whole

analysis of MLG identification). We term these clusters semi-clusters.

Step 3: To further merge the semi-clusters established in step 2. In this step, we first
updated the similarity between any two semi-clusters, and then performed a
taxonomic assignment for each semi-cluster (see the method below). Finally, two or
more semi-clusters would be merged into a MLG if they satisfied both of the
following two requirements: a) the similarity values between the semi-clusters were >

0.2; b) all these semi-clusters were assigned from the same taxonomy lineage.

Taxonomic assighment for MLGs. All genes from one MLG were aligned to the
reference microbial genomes (IMG database, v3.4) at the nucleotide level (by
BLASTN) and the NCBI-nr database (Feb. 2012) at the protein level (by BLASTP). The

alignment hits were filtered by both the e-value (< 1x10™° at the nucleotide level and
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< 1x107™ at the protein level) and the alignment coverage (>70% of a query sequence).
From the alignments with the reference microbial genomes, we obtained a list of
well-mapped bacterial genomes for each MLG and ordered these bacterial genomes
according to the proportion of genes that could be mapped onto the bacterial
genome, as well as the average identity of the alignments. The taxonomic
assignment of a MLG was determined by the following principles: 1) if more than 90%
of genes in this MLG can be mapped onto a reference genome with a threshold of 95%
identity at the nucleotide level, we considered this particular MLG to originate from
this known bacterial species; 2) if more than 80% of genes in this MLG can be
mapped onto a reference genome with a threshold of 85% identity at the both
nucleotide and protein levels, we considered this MLG to originate from the same
genus of the matched bacterial species; 3) if the 16S rDNA sequences can be
identified from the assembly result of a MLG, we performed the phylogenetic
analysis by RDP-classifier”* (bootstrap value > 0.80) and then defined the taxonomic
assignment for the MLG if the phylotype from 16S sequences was consistent with

that from genes.

Advanced-assembly for MLGs. To reconstruct the potential bacterial genomes, we
designed an additional process of advanced-assembly for each MLG, which was

implemented in four steps.

Step 1: Taking the genes from a MLG as a seed, we identified samples that contain
the seed with the highest abundance among all samples, and then selected the
paired-end reads from these samples that could be mapped onto the seed (including
the paired-end read that only one end could be mapped). The lower limit of the
coverage of these paired-end reads is 50x in no more than 5 samples, which is

computed by dividing the total size of selected reads by the total length of the seed.

Step 2: A de novo assembly was performed on the selected reads in step 1 by using

the SOAPdenovo with the same parameters used for the construction of the gene
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catalogue.

Step 3: To identify and remove the mis-assembled contigs probably caused by
contaminated reads, we applied a composition-based binning method. Contigs
whose GC content value and sequencing depth value were distinct from the other
contigs of the assembly result were removed, as they might be wrongly assembled

due to various reasons.

Step 4: Taking the final assembly result from step 3 as a seed, we repeated the
procedure from step 2 until that there were no further distinct improvements of the

assembly (in detail, the increment of total contig size was less than 5%).

MLG-based analysis

Validation of MLG methods. The performance of our MLG identification methods
was evaluated by following steps: 1) in our quantified gene result, the rarely present
genes (present in <6 samples) were filtered at first; 2) based on the taxonomic
assignment result in the updated gene catalogue, we identified a set of gut bacterial
species by the criteria of containing 1,000~5,000 unique mapped genes, with the
similarity threshold of 95%. In this step, we manually removed the redundant strains
in one species and also discarded the genes that could be mapped onto more than
one species. Ultimately, 130,065 genes from 50 gut bacterial species were identified
as a test set for validating the MLG method; 3) the standard MLG method described
above was performed on the test set. For each MLG, we computed the percentage of
genes that were not from the major species as an error rate, which were showed in

Supplementary Table 9.

Relative abundance estimating of MLGs. We estimated the relative abundance of a
MLG in all samples by using the relative abundance values of genes from this MLG.

For this MLG, we first discarded genes that were among the 5% with the highest and

WWW.NATURE.COM/NATURE | 11



doi:10.1038/nature11450 2T\ H; W SUPPLEMENTARY INFORMATION

lowest relative abundance, respectively, and then fitted a Poisson distribution to the
rest. The estimated mean of the Poisson distribution was interpreted as the relative
abundance of this MLG. At last, the profile of MLGs among all samples was obtained

for the following analyses.

The co-occurrence network of MLGs. We calculated the Spearman’s rank correlation
coefficient between MLGs based on the profile of these MLGs. A network was then
constructed by using the method implemented in Cytoscape v2.8°. In the network,
the edges denoted the correlation between two MLGs, under the criterion that
Spearman’s rank correlation coefficient > 0.40 (blue line of the edge) or < -0.40 (red
line of the edge). The size of nodes was proportional to the gene number of the MLG,

and the color of nodes denoted the taxonomic assignment of the MLG.

Functional description of identified markers

Functional analyses based on KO markers. Functional analysis was performed mainly
on KEGG Orthologue (KO) markers, which had detailed information on biological
pathway and module. The percentages of KO markers belong to each KEGG category
(the KEGG Class at level 2) out of total T2D-enriched or control-enriched KO markers
were designated as comparison parameter. Fisher’s exact test was used to calculate

the significance level (Supplementary Figure 9).

We then studied the T2D-associated KO markers at the pathway or module level. In
the KEGG category of membrane transport, relative module classes were checked.
For example, sugar-related and branch-chain-amino-acid-related membrane
transport functions were notably from the set of T2D-enriched KOs. KO markers that
belong to metabolism of cofactor and vitamins were further checked one by one in
KEGG map to identify the type of reaction, such as the biosynthesis, degradation or

reversible reaction.
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To validate the relationship between cell motility related KO markers and
butyrate-producing bacteria, the Spearman’s rank correlation coefficient was
calculated between the profile of these KO markers and the genera. Only the
relationships with the correlation coefficient above 0.5 or below -0.5 were showed in
Supplementary Table 11a. In addition, we checked the taxonomic composition of
genes that were annotated to these cell-motility-related KOs. At the genus level, we
listed the top 3 mostly assigned genera for each KO, which was showed in
Supplementary Table 11b. The method of taxonomic assignment was introduced

previously.

The functions that were not described in KEGG pathway or modules were checked
manually. In detail, the drug resistance related KO markers were screened by key
words screening, like penicillin, macrolide, multidrug, streptomycin, chloramphenicol
and lactamase et al. Oxidative stress resistance related KO markers were also
screened by key words of catalase, nitric oxide reductase, glutathione reductase,

peroxidase, peroxiredoxin.

With regard to some special functions indicated by our MLGs, for example, the
butyrate production and sulfate reduction, we also searched the homologue genes in
our gene catalogue corresponding to such functions, and then took the whole of
these homologue genes as a functional group. Please see the example of

butyrate-CoA gene identification in the next paragraph.

Identification, phylogenetic and taxonomic analyses of butyrate-CoA genes. Using
amino acid sequence of butyryl-CoA:acetate CoA-transferase from Roseburia hominis
A2-183 as reference, we found 37 genes in the updated gene catalogue that covered >
70% of the length of the reference sequence and were above the similarity
threshold >70% using BLASTP. The taxonomic assignment of these genes had been
done in the gene catalogue. Multiple sequence alignment of these 37 genes were

performed at the amino acid level and the aligned amino acid sequences were then
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translated back to nucleic acid sequence for phylogenetic tree construction
(neighbor-joining method) where the 4-hydroxybutyrate CoA transferase gene from
Anaerostipes caccae L1-92 was chosen as the out-group. Differences of the relative
abundance of the butyryl-CoA: acetate CoA-transferase genes between T2D patients
and healthy individuals were tested using Wilcoxon rank-sum test in all samples

(Supplementary Figure 10).

T2D classification by gut microbial markers

Maximum Relevance Minimum Redundancy (mRMR) feature selection framework.
To establish a T2D classification by gut metagenomic markers, we adopted an mRMR
method to perform a feature selection®®. We used the “sideChannelAttack” package
of the R software to perform the incremental search and found 344 sequential
markers sets. For each sequential set, we estimated the error rate by a leave-one-out
cross-validation (LOOCV) of linear discrimination classifier. The optimal selection of
marker sets was the one corresponding to the lowest error rate. In the present study,
we made the feature selection on a set of 52,484 T2D-associated gene markers. We
finally selected a set of 50 gut microbial gene markers as the optimal selection for

T2D classification.

Receiver Operator Characteristic (ROC) analysis. We applied the ROC analysis to
assess the performance of the T2D classification based on metagenomic markers.
Using on the 50 gut metagenomic markers selected by mRMR method, the support
vector machine (SVM) classifier (realized by the “e1071” package of R software) with
leave-pair-out cross-validation (LPOCV) advocated for analysis of small-sample
biological datasets®’, was used to generate ROC curve. The same method was also
applied on the clinical datasets. By using the “pROC” package of R software®®, we

then computed the 95% confidence interval (Cl) of the AUC with 10,000 bootstrap
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replicates to assess the variability of the measure.

Definition of T2D index. To evaluate the effect of the gut metagenome on T2D, we
defined and computed the T2D index for each individual on the basis of the selected
50 gut metagenomic markers by mRMR method. For each individual sample, the T2D

index of sample j that denoted by I; was computed by the formula below:

a _

iEN

Ij* = Z Ay

iEM

1 "
I; =<L— L) X 10°
INl M|
Where 4;; is the relative abundance of marker i in sample j. N is a subset of all
T2D-enriched markers in these 50 selected gut metagenomic markers. M is a subset

of all control-enriched markers in these 50 selected gut metagenomic markers. And

IN| and |M| are the sizes of these two sets.
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Supplementary Figures
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Figure S1| the overall strategy of MGWAS used in our study.

The text with grey colors indicated some alternative choices, but not used in this

study.
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Figure S2| the coverage of sequencing reads in the MetaHIT gene catalogue and
the updated gene catalogue.

The high-quality sequencing reads of 145 Chinese samples was mapped onto the
MetaHIT gene catalogue (3.3 million genes) and the updated gene catalogue in this

study (4.3 million genes).
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Figure S3| Detection error rate distribution of relative abundance profiles in

different sequencing amount.

The X axis represents the sequencing amount of a sample, which was defined as the
number of paired-end reads, and the Y axis represents the relative abundance of a
gene. The 99% confidence interval (Cl) of the relative abundance was estimated and
the detection error rate was defined as the ratio of the interval width to the relative
abundance itself. The scaled detection error rate, transformed by log,,(log,,(1 +
x)), was used to color all the points, with warmer color representing larger detection
error rate. Two indifference curves were added: detection error rate that fall to the

upper right of the curves would be less than 1 and 10, respectively.
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Figure S4| Enterotypes of the gut microbiome of Chinese population.

(a), average silhouette width was used to determinate the optimal number of

clusters. (b), abundance of the main contributed genera of each enterotypes.
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I
PCA based on gene profiles

PC [Enterotypes| Gender Diabetic Obese Age

6.03E-09 | 0.0980916 [ 0.2035157 | 0.245252 | 0.2280072
3.50E-13 | 0.12809 [0.8355036| 0.502191 | 0.7083126
9.75E-08 | 0.5775868 [ 0.0063891 | 0.8384416 | 0.3271619
1.28E-08 [0.2290345 | 0.0003417 | 0.6474829 | 0.0006967
0.229834 | 0.1513657 | 0.0060893 | 0.2373032 | 0.1569706
0.59753 | 0.3504538 | 0.0410659 | 0.3656636 | 0.3511615

DA W[N] =

PCA based on KO profiles

PC [Enterotypes| Gender Diabetic Obese Age

4.85E-11 | 0.3113559 | 0.735235 | 0.3677654 | 0.7409659
1.03E-01 | 0.7326512 | 0.0214509 | 0.5174426 | 0.0412655
1.27E-12 [0.0022293 | 0.7115227 | 0.9007549 [ 0.1299477
8.08E-04 |0.4158561 | 0.8665075 | 0.2130958 [ 0.7201283
0.866632 [ 0.0166046 [ 0.0071976 | 0.7083126 | 0.1119411
0.0147795 [ 0.4827822 | 9.09E-05 | 0.8291716 | 0.0043928

DO |W|N =
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C.
I
PCA based on OG profiles
PC [Enterotypes| Gender Diabetic Obese Age
1_| 2.28E-12 | 0.3295029 | 0.8355036 | 0.2436474 | 0.9668421
2 2.68E-15 | 0.0753389 | 0.0916234 | 0.6819864 | 0.011349
3 | 6.51E-05 | 0.4134873 | 0.3682217 | 0.8601569 | 0.7680369
4 2.71E-02 | 0.9323547 | 0.0018911 | 0.7740926 | 0.0576528
5 [0.4518879 | 0.0539226 | 0.0573706 | 0.2160203 | 0.4483649
6 [0.2268122 | 0.3700158 | 0.0003216 | 0.7409659 | 0.0110953
d.
PC Enterotypes Gender Diabetic Obese Age
1 2.38E-20 0.033832 | 0.960569 | 0.166462 | 0.275406
2 5.10E-17 0.583258 | 0.006623 | 0.807636 | 0.010483
3 0.111214 0.938941 | 0.125364 | 0.415892 | 0.238878
4 0.512009 0.569129 | 0.535923 | 0.323268 | 0.624889
5 0.144566 0.216468 | 0.000168 | 0.594392 | 0.005285
6 0.958097 0.394827 | 0.004891 | 0.801509 | 0.449390

Figure S5| PCA results of gene, KO and OG profiles.

In stage |, these PCA figures were generated in the gene profile (a), KO profile (b), OG
profile (c) and genus profile (d), respectively. The method of enterotype classification
was described in Supplementary Methods. Here, the three enterotypes were labeled

and grouped in these PCA figures. In addition, the top six principle components (PCs)
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were tested for correlations with some known factors, such as T2D (diabetic), BMI
(obese), gender, enterotypes and age. Note that the PCA figure at the genus level is

depicted as Fig. 1a in the main text.
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Figure S6| Validating the T2D-associated genes in an independent sample set of

stage Il.

278,168 gene markers that significantly associated with T2D in stage |, was quantified

in stage Il samples. Then, we performed a PCA analysis to see the subpopulation of

these stage Il samples. The first two principle components (PCs) were tested for the

correlation with known factors. The T2D disease state was the primary significant

factor to explain the different composition of these gut microbial genes.
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Stage |

Updated gene catalogue
(4,267,985 genes)

Covered by Chinese samples
(3,298,811 genes)

Covered by =6 samples
(1,613,061 genes)

Reducing the dimensionality

(1,138,151 genes)

Population adjustment

Two-sided Wilcoxon rank-
sum test

Stage | markers (278,168
genes, P<0.05)

Stagelll
Profiling in Stage Il

One-sided Wilcoxon rank-
sum test

T2D-associated gene markers
(52,484 genes, P<0.01)

Figure S7| the detailed pipeline of statistical analysis in the gene profile in a

two-stage MGWAS.
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Figure S8| the validation result of our method for identifying MLGs.

To evaluate our MLG method, we customized a subset of 130,605 genes from 50

sequenced bacterial genomes. And then we compared the MLG results on this gene

set and the known bacterial species information. (a), at different thresholds of

minimal gene number in a MLG, we computed the precision of these MLGs and the
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gene coverage of original genes. (b), we identified MLGs with the threshold of
minimal gene number 100. This figure showed the coverage of its genome genes by

our identified MLGs.
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Figure S9| the distribution of functional categories for T2D-associated OG markers

and KO markers.
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P-values Enrichment

Gene ID I_(iirg‘;:h (Wilcox'stest, (1=T2D, Source organism Y% similarity
n=344) 0=Control)
3863709 1,341 0.013704773 0 Roseburia 91.0
4163923 1,395 0.000314307 0 Roseburia inulinivorans 99.1
2835707 1,341 0.009106995 0 Unclassified
921917 1,341 0.162886123 o] Roseburia 80.0
3733262 1,341 0.071250008 0 Roseburia 79.0
81490 1,035 0.164718274 0 Eubacterium 87.1
2601218 1,341 0.006035311 0 Eubacterium rectale 99.0
2230827 1,341 0.053000702 1 Unclassified
187732 1,377 3.09283E-07 0 Roseburia intestinalis 98.3
3572277 1,341 0.122132664 0 Roseburia 82.4
478953 1,341 0.031505946 0 Unclassified
1455857 1,341 0.011518047 1 Unclassified
1486003 1,341 0.157236178 1 Unclassified
344421 1,353 0.195708142 0 Unclassified
2140427 1,341 0.496714865 0 Unclassified
2216163 1,077 0.032918437 o] Lachnospiraceae 89.5
2843340 1,341 0.000396764 0 Clostridium sp. SS2/1 99.9
2255468 1,176 0.179364422 0 Unclassffied
2808066 1,182 0.478478632 1 Eubacterium 89.8
3980578 1,401 0.097585439 1 Eubacterium hallii 99.6
4180720 1,197 0.167587354 0 Unclassified
24886 1,344 0.148139987 0 Unclassified
3868351 1,221 0.004893985 0 Unclassified
1796986 1,356 0.301977485 1 Unclassified
3868130 1,374 0.058223323 1 Unclassified
409284 1,344 0.234334752 0 Clostridiales 82.6
1842060 963 0.013237227 0 Clostridiales sp. $S3/4 94.4
Sf—————— 3253537 1,404 0.022823984 1 Clostridium symbiosum 100.0
————— 4102489 1,344 0.003417221 0 Clostridium 85.2
2872837 1,347 0.136246544 0 Faecalibacterium prausniftzii 98.1
4 3902729 1,347 0.001773163 0 Faecalibacterium 90.5
3972236 1,347 0.239400489 0 Faecalibacterium 91.4
3145940 1,347 0.000485572 0 Faecalibacterium cf. prausnifzii 99.0
— 2927660 1,347 0.000381794 0 Faecalibacterium prausnitzii 98.5
3308604 1,347 0.11947201 0 Faecalibacterium 88.7
2995486 1,347 0.183264357 o] Faecalibacterium prausnitzii  98.7
o 3241344 1,347 0.1324738869 0 Faecalibacterium 90.1

4-hydroxy-butyrate-CoA transferase from Anaerostipes caccae L1-92

03 02 0.1 00

Figure S10| 37 butyryl-CoA: acetate CoA-transferase genes were identified in our

updated gene catalogue.

The numbers of samples out of 344 samples (stage | & stage Il) that each gene was
presented in are listed. Genes occurring in less than 6 samples were excluded from
statistical test and no P-value is given. Possible source organisms of each gene were
determined based on sequence comparison to the bacterial reference genome at
nucleotide level and NCBI-nr database at protein level. The ones colored in red are
known species of butyrate-producing bacteria isolated from human colon. The
phylogenetic tree was constructed using the neighbor-joining method, based on
nucleic acid sequences that were translated back from aligned protein sequences.

Bootstrap values, each expressed as a percentage of 1,000 replications, are listed at
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the nodes. 4-hydroxybutyrate CoA transferase gene sequence from Anaerostipes
caccae L1-92 was chosen as the out group. The gross relative abundance of these 37
butyrate-CoA transferase genes were significantly higher in healthy controls (P =

3.2x10°®, Wilcoxon rank-sum test).
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Figure S11| the gross relative abundance of the enterotypes-associated markers.

The enterotypes of each sample was determined by clustering all 344 samples
(Supplementary Table 2, see Supplementary Methods for enterotypes identification).
To identify enterotypes-associated marker, we performed the two-stage MGWAS
analysis to the samples (145 samples in stage | and 199 in stage Il) using the same
methods and parameters as T2D, which identifing 117,209 gene markers (stage |l

P<0.01, 1.3% FDR) and 8,676 OG markers (stage Il P<0.05, 5.7% FDR).

WWW.NATURE.COM/NATURE | 32



doi:10.1038/nature11450 2T\ H; W SUPPLEMENTARY INFORMATION

NS

N —

S NS
E
a —
[0
o
© o
e}
o
= _
0
<

o

T2D patients Controls IBD patients Controls

> w_
s <
[
=
o
)
a 7
E _ PR
9 —
£ T
£ v
= NS *%

Figure S12| an ecological comparison between T2D/IBD patients and controls.

This figure showed an ecological comparison between T2D patients and controls (170
vs. 174 samples), as well as the MetaHIT IBD patients (n=25) and controls (n=99),
based the OG profile. The upward bars denoted the gross relative abundance of the
T2D/IBD-associated OG markers for each sample. The downward bars denoted the
within-sample diversity (the Shannon Index) in each group. The statistical significance

was computed by Student’s t-test (** P<0.01).
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Figure S13| 2-Dimensional histogram plotted of T2D-associated gene markers.

The T2D-associated gene markers were divided into two classes: control-enriched
marker and T2D-enriched marker. For each class of gene markers, we computed the
occurrence rate and the median relative abundance of each gene and perform a
2-Dimensional histogram to show the distribution of these genes. From this figure,
we could see that the control-enriched gene markers were mostly present in high
occurrence rate and high relative abundance. In contrast, the T2D-enriched gene

markers were quite diverse and most of them are present in low occurrence rate.

Note: Since the genes from the same MLG were linked together by similar abundance
in different samples, we labeled the MLGs on this figure to show the abundance and

occurrence rate of them.
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Figure S14| Presence of the T2D-associated MLGs markers in all samples.

The control-enriched markers had a higher occurrence rate than the T2D-enriched

markers.
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Figure S15| Occurrence rate distribution of T2D-associated OG markers.

This density histogram showed a comparison of the occurrence rate distribution

between T2D-enriched OG markers and control-enriched OG markers in all samples.
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Figure S16| Estimating the optimum number of markers.

We performed incremental search in T2D-associated gene markers by the minimum

redundancy maximum relevance (mMRMR) methods (see Supplementary Methods for

detail), and generated sequential number of subsets. For each subset, the error rate

was then estimated by a leave-one-out cross-validation (LOOCV) of a linear

discrimination classifier. The optimum (lowest error rate) subset contains 50 gene

markers.
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