
 

 

Supplementary Methods 

Sample collection and DNA extraction 

All 368 faecal samples from 368 Chinese individuals living in the south of China, were 

collected by Shenzhen Second People’s Hospital, Peking University Shenzhen Hospital 

and Medical Research Center of Guangdong General Hospital, including 345 samples 

for MGWAS and an additional set of 23 samples for T2D classification. The patients 

who were diagnosed with Type 2 Diabetes Mellitus according to the 1999 WHO 

criteria38 constituted the case group in this study, and the rest non-diabetic 

individuals were taken as the control group. Detailed clinical information of all 

sample donors was collected and presented in Supplementary Table 1. The patients 

and healthy controls were asked to provide a frozen faecal sample. Fresh faecal 

samples were obtained at home, and samples were immediately frozen by storing in 

a home freezer for less than 1d. Frozen samples were transferred to BGI-Shenzhen, 

and then stored at -80°C until analysis.  

A frozen aliquot (200 mg) of each fecal sample was suspended in 250 µl of guanidine 

thiocyanate, 0.1 M Tris (pH 7.5) and 40 µl of 10% N-lauroyl sarcosine. DNA was 

extracted as previously described39. DNA concentration and molecular weight were 

estimated using a nanodrop instrument (Thermo Scientific) and agarose gel 

electrophoresis, respectively. 

 

DNA library construction and sequencing 

DNA library construction was performed following the manufacturer’s instruction 

(Illumina). We used the same workflow as described elsewhere to perform cluster 

generation, template hybridization, isothermal amplification, linearization, blocking 

and denaturation, and hybridization of the sequencing primers. 
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We constructed one paired-end (PE) library with insert size of 350bp for each 

samples, followed by a high-throughput sequencing to obtain around 20 million PE 

reads. The reads length for each end is 75bp-90bp (75bp and 90bp read length in 

stage I samples; 90bp read length for stage II samples). High quality reads were 

extracted by filtering low quality reads with ‘N’ base, adapter contamination or 

human DNA contamination from the Illumina raw data. On average, the proportion 

of high quality reads in all samples was about 98.1%, and the actual insert size of our 

PE library ranges from 313bp to 381bp. 

 

Gene catalogue construction 

Gene catalogue updating. Employing the same parameters that were used to 

construct the MetaHIT gene catalogue40, we performed de novo assembly and gene 

prediction for the high quality reads of 145 samples in stage I using SOAPdenovo 

v1.0641 and GeneMark v2.742, respectively. All predicted genes were aligned pairwise 

using BLAT and genes, of which over 90% of their length can be aligned to another 

one with more than 95% identity (no gaps allowed), were removed as redundancies, 

resulting in a non-redundant gene catalogue comprising of 2,088,328 genes. This 

gene catalogue from our Chinese samples was further combined with the previously 

constructed MetaHIT gene catalogue40, by removing redundancies in the same 

manner. At last, we obtained an updated gene catalogue that contains 4,267,985 

genes.  

 

Taxonomic assignment of genes. Taxonomic assignment of the predicted genes was 

performed using an in-house pipeline. In our analysis, we collected the reference 

microbial genomes from IMG database (v3.4, see the full list in Supplementary Table 

3), and then aligned all 4.3 million genes onto the reference genomes. Based on the 

comprehensive parameter exploration of sequence similarity across phylogenetic 
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ranks by MetaHIT enterotype paper43, we used the 85% identity as the threshold for 

genus assignment, as well as another threshold of 80% of the alignment coverage. 

For each gene, the highest scoring hit(s) above these two thresholds was chosen for 

the genus assignment. For the taxonomic assignment at the phylum level, the 65% 

identity was used instead. 

 

Functional annotation. We aligned putative amino acid sequences, which translated 

from the updated gene catalogue, against the proteins/domains in eggNOG (v3.0) 

and KEGG databases (release 59.0) using BLASTP (e-value ≤1e-5). Each protein was 

assigned to the KEGG orthologue group (KO) or eggNOG orthologue group (OG) by 

the highest scoring annotated hit(s) containing at least one HSP scoring over 60 bits. 

For the remaining genes without any annotation in eggNOG database, we identified 

novel gene families based on clustering all-against-all BLASTP results using MCL with 

an inflation factor of 1.1 and a bit-score cutoff of 6044. Using this approach, we 

identified 7,042 novel gene families (≥20 proteins) from the updated gene catalogue. 

 

Quantification of metagenome content 

Computation of relative gene abundance. The high quality reads from each sample 

were aligned against the gene catalogue by SOAP2 using the criterion of “identity > 

90%”. In our sequence-based profiling analysis, only two types of alignments could 

be accepted: i). an entire of a paired-end read can be mapped onto a gene with the 

correct insert-size; ii). one end of the paired-end read can be mapped onto the end 

of a gene, only if the other end of read was mapped outside the genic region. In both 

cases, the mapped read was counted as one copy. 

Then, for any sample 𝑆, we calculated the abundance as follows: 

Step 1: Calculation of the copy number of each gene: 
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Step 2: Calculation of the relative abundance of gene i 
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𝑎𝑖: The relative abundance of gene 𝑖 in sample 𝑆. 

𝐿 𝑖: The length of gene 𝑖. 

𝑥𝑖: The times which gene 𝑖 can be detected in sample 𝑆 (the number of mapped 

reads). 

𝑏𝑖: The copy number of gene 𝑖 in the sequenced data from sample 𝑆. 

 

Estimation of profiling accuracy. We used the method developed by Audic and 

Claverie (1997)45 to assess the theoretical accuracy of the relative abundance 

estimates. Given that we have observed 𝑥𝑖 reads from gene 𝑖, as it occupied only a 

small part of total reads in a sample, the distribution of 𝑥𝑖 is approximated well by a 

Poisson distribution. Let us denote 𝑁  the total reads number in a sample, 

so  𝑁 = ∑ 𝑥𝑖𝑖  . Suppose all genes are the same length, so the relative abundance 

value 𝑎𝑖  of gene i simply is 𝑎𝑖 = 𝑥𝑖 𝑁⁄ . Then we could estimate the expected 

probability of observing y𝑖  reads from the same gene i, is given by the formula 

below, 

𝑃(𝑎𝑖
′|𝑎𝑖) = 𝑃(𝑦𝑖|𝑥𝑖) =  

(𝑥𝑖 + 𝑦𝑖)!

𝑥𝑖! 𝑦𝑖! 2(𝑥𝑖+𝑦𝑖 +1)
 

Here, 𝑎𝑖
′ = 𝑦𝑖 𝑁⁄  is the relative abundance computed by y𝑖  reads (See the original 

paper45 for details). Based on this formula, we then made a simulation by setting the 

value of 𝑎𝑖  from 0.0 to 1e-5 and 𝑁 from 0 to 40 million, in order to compute the 

99% confidence interval for 𝑎𝑖
′  and to further estimate the detection error rate 

(Supplementary Figure 3). 
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Construction of gene, KO, and OG profile 

The updated gene catalogue contains 4,267,985 non-redundant genes, which can be 

classified into 6,313 KOs and 45,683 OGs (including 7,042 novel gene families). We 

first removed genes, KOs or OGs that were present in less than 6 samples across all 

145 samples in stage I. To reduce the dimensionality of the statistical analyses in 

MGWAS, in the construction of gene profile, we identified highly correlated gene 

pairs and then subsequently clustered these genes using a straightforward 

hierarchical clustering algorithm. If the Pearson correlation coefficient between any 

two genes is >0.9, we assigned an edge between these two genes. Then, the cluster 

A and B would not be clustered, if the total number of edges between A and B is 

smaller than |A|*|B|/3, where |A| and |B| are the sizes of A and B, respectively. 

Only the longest gene in a gene linkage group was selected to represent this group, 

yielding a total of 1,138,151 genes. These 1,138,151 genes and their associated 

measures of relative abundance in 145 stage I samples were used to establish the 

gene profile for the association study.  

For the KO profile, we utilized the gene annotation information of the original 

4,267,985 genes and summed the relative abundance of genes from the same KO. 

This gross relative abundance was taken as the content of this KO in a sample to 

generate the KO profile of the samples. The OG profile was constructed using the 

same methods.  

 

Bio-diversity analysis 

Within-sample diversity. Based on the gene profile, we calculated the within-sample 

(alpha) diversity to estimate the gene richness of a sample using Shannon index: 
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𝐻′ = − ∑ 𝑎𝑖

𝑆

𝑖=1

𝑙𝑛𝑎𝑖  

Where S is the number of genes and 𝑎𝑖  is the relative abundance of gene 𝑖 as 

defined above. A high alpha diversity indicates a high richness of genes in the 

sample. 

 

Rarefaction curve analysis. To assess the gene or gene family richness in our cohorts, 

we generated a rarefaction curve. For a given number of individual samples, we 

performed a randomized sampling 100 times in the T2D patients group or 

non-diabetic control group, respectively. Further, we randomly selected the given 

number of individual samples and then calculated the total number of genes/families 

that could be identified from these samples. Only the genes with ≥2 mapped reads 

and gene families with ≥10 mapped reads were determined to be present in a 

sample to eliminate the incorrectly identification. Actually, the conclusion that the 

gene/families richness of T2D patients group is higher than that of non-diabetic 

group was not changed under different thresholds. 

 

Enterotypes identification 

The genus relative abundance profile was constructed using the same methods as 

the KO/OG profile. After that, the genus profile was used for identifying enterotypes 

from our Chinese samples. We used the same identification method as described in 

the original paper of enterotypes43. In this study, samples were clustered using 

Jensen-Shannon distance and was then illustrated by PCA (Principal Component 

Analysis) graph that was implemented in “ade4” package in R software46. 
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Statistical analysis of MGWAS 

PERMANOVA analysis. In this study, the PERMANOVA (Permutational multivariate 

analysis of variance)47 was used to assess the effect of different covariate, such as 

enterotypes, T2D, age, gender and BMI, on all types of profiles. We performed the 

analysis using the method implemented in R package - “vegan”48, and the permuted 

P-value was obtained by 10,000 times permutations. 

 

Population stratification. To correct population stratifications of our metagenome 

-wide data, we used a modified version of the EIGENSTRAT method49 allowing the 

use of covariance matrices estimated from abundance levels instead of genotypes. 

However, as much of the signal in our data might be driven by the combined effect of 

many genes and not by just a few genes as assumed in GWAS studies, we modified 

the method further by replacing each PC axis with the residuals of this PC axis from a 

regression to T2D state. The number of PC axes of EIGENSTAT was determined by 

Tracy-Widom test at a significance level of P<0.0550. 

 

Statistical hypothesis test on profiles. In stage I, to identify the association between 

the metagenome profile and T2D, a two-tailed Wilcoxon rank-sum test was used in 

the profiles that were adjusted for non-T2D-realted population stratifications. Then, 

while examining the stage I markers in stage II, a one-tailed Wilcoxon rank-sum test 

was used instead. Because the T2D is the primary factor impacting on the profile of 

examined gene markers in stage II, we didn’t adjust the population stratification for 

these genes. 

 

Estimating the false discovery rate (FDR) and the power. Instead of a sequential 

P-value rejection method, we applied the “qvalue” method proposed in a previous 

study51 to estimate the FDR. In our MWAS, the statistical hypothesis tests were 
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performed on a large number of features of the gene, KO and OG profiles. Given that 

a FDR was obtained by the qvalue method52, we estimated the power 𝑃𝑒 for a given 

P-value threshold by the formula below,  

𝑃𝑒 =
𝑁𝑒(1 − 𝐹𝐷𝑅𝑒)

𝑁(1 − 𝜋0 )
 

Here, 𝜋0  is the proportion of null distribution P-values among all tested hypotheses; 

𝑁𝑒 is the number of P-values that were less than the P-value threshold; 𝑁 is the 

total number of all tested hypotheses; 𝐹𝐷𝑅𝑒 is the estimated false discovery rate 

under the P-value threshold. 

Taking the gene profile as an example, the estimated FDR and power for gene 

markers of stage II are shown in Fig. 1c. 

 

Identification of MetaHIT IBD-associated markers 

To identify the IBD-associated gene and OG markers for the 124 MetaHIT samples40, 

firstly, we performed stratified sampling to these samples and obtained a subgroup 

of 25 IBD patients and 47 control samples (see the following table).  

  
No. of 

Samples 
Nation 

Gender 

(M/F) 

Age 

(mean±sd) 

BMI 

(mean±sd) 

IBD patients 25 Spain=25 10/15 44.8±10.8 24.6±4.2 

Controls 47 Spain=14,Denmark=33 19/28 48.6±10.4 24.7±4.1 

 
P=0.154 P=0.906 

Then, we calculated the gene and OG relative abundance profiles for these samples 

by the methods as described before. Using a two-tailed Wilcoxon rank-sum test, we 

identified 151,039 IBD-associated gene markers (P<0.01, corresponding to 4.7% FDR) 

and 7,680 IBD-associated OG markers (P<0.05, 9.7% FDR). 
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Identification of Metagenomic Linkage Group (MLG) 

The clustering method for identifying MLG. In the present study, we devised a 

concept of metagenomic linkage group (MLG), which could facilitate the taxonomic 

description of metagenomic data from whole-genome shotgun sequencing. To 

identify MLG from the set of T2D-associated gene markers, we developed an 

in-house software that comprises three steps as indicated below:  

Step 1: The original set of T2D-associated gene markers was taken as initial 

sub-clusters of genes. It should be noted that in the establishment of the gene profile 

we had constructed gene linkage groups to reduce the dimensionality of the 

statistical analysis. Accordingly, all genes from a gene linkage group were considered 

as one sub-cluster. 

Step 2: We applied the Chameleon algorithm to combine the sub-clusters exhibiting 

a minimal similarity of 0.4 using dynamic modeling technology and basing selection 

on both interconnectivity and closeness53. The similarity here is defined by the 

product of interconnectivity and closeness (we used this definition in the whole 

analysis of MLG identification). We term these clusters semi-clusters. 

Step 3: To further merge the semi-clusters established in step 2. In this step, we first 

updated the similarity between any two semi-clusters, and then performed a 

taxonomic assignment for each semi-cluster (see the method below). Finally, two or 

more semi-clusters would be merged into a MLG if they satisfied both of the 

following two requirements: a) the similarity values between the semi-clusters were > 

0.2; b) all these semi-clusters were assigned from the same taxonomy lineage. 

 

Taxonomic assignment for MLGs. All genes from one MLG were aligned to the 

reference microbial genomes (IMG database, v3.4) at the nucleotide level (by 

BLASTN) and the NCBI-nr database (Feb. 2012) at the protein level (by BLASTP). The 

alignment hits were filtered by both the e-value (< 1×10-10 at the nucleotide level and 
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< 1×10-5 at the protein level) and the alignment coverage (>70% of a query sequence). 

From the alignments with the reference microbial genomes, we obtained a list of 

well-mapped bacterial genomes for each MLG and ordered these bacterial genomes 

according to the proportion of genes that could be mapped onto the bacterial 

genome, as well as the average identity of the alignments. The taxonomic 

assignment of a MLG was determined by the following principles: 1) if more than 90% 

of genes in this MLG can be mapped onto a reference genome with a threshold of 95% 

identity at the nucleotide level, we considered this particular MLG to originate from 

this known bacterial species; 2) if more than 80% of genes in this MLG can be 

mapped onto a reference genome with a threshold of 85% identity at the both 

nucleotide and protein levels, we considered this MLG to originate from the same 

genus of the matched bacterial species; 3) if the 16S rDNA sequences can be 

identified from the assembly result of a MLG, we performed the phylogenetic 

analysis by RDP-classifier54 (bootstrap value > 0.80) and then defined the taxonomic 

assignment for the MLG if the phylotype from 16S sequences was consistent with 

that from genes. 

 

Advanced-assembly for MLGs. To reconstruct the potential bacterial genomes, we 

designed an additional process of advanced-assembly for each MLG, which was 

implemented in four steps.  

Step 1: Taking the genes from a MLG as a seed, we identified samples that contain 

the seed with the highest abundance among all samples, and then selected the 

paired-end reads from these samples that could be mapped onto the seed (including 

the paired-end read that only one end could be mapped). The lower limit of the 

coverage of these paired-end reads is 50× in no more than 5 samples, which is 

computed by dividing the total size of selected reads by the total length of the seed. 

Step 2: A de novo assembly was performed on the selected reads in step 1 by using 

the SOAPdenovo with the same parameters used for the construction of the gene 
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catalogue. 

Step 3: To identify and remove the mis-assembled contigs probably caused by 

contaminated reads, we applied a composition-based binning method. Contigs 

whose GC content value and sequencing depth value were distinct from the other 

contigs of the assembly result were removed, as they might be wrongly assembled 

due to various reasons. 

Step 4: Taking the final assembly result from step 3 as a seed, we repeated the 

procedure from step 2 until that there were no further distinct improvements of the 

assembly (in detail, the increment of total contig size was less than 5%). 

 

MLG-based analysis 

Validation of MLG methods. The performance of our MLG identification methods 

was evaluated by following steps: 1) in our quantified gene result, the rarely present 

genes (present in <6 samples) were filtered at first; 2) based on the taxonomic 

assignment result in the updated gene catalogue, we identified a set of gut bacterial 

species by the criteria of containing 1,000~5,000 unique mapped genes, with the 

similarity threshold of 95%. In this step, we manually removed the redundant strains 

in one species and also discarded the genes that could be mapped onto more than 

one species. Ultimately, 130,065 genes from 50 gut bacterial species were identified 

as a test set for validating the MLG method; 3) the standard MLG method described 

above was performed on the test set. For each MLG, we computed the percentage of 

genes that were not from the major species as an error rate, which were showed in 

Supplementary Table 9. 

 

Relative abundance estimating of MLGs. We estimated the relative abundance of a 

MLG in all samples by using the relative abundance values of genes from this MLG. 

For this MLG, we first discarded genes that were among the 5% with the highest and 
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lowest relative abundance, respectively, and then fitted a Poisson distribution to the 

rest. The estimated mean of the Poisson distribution was interpreted as the relative 

abundance of this MLG. At last, the profile of MLGs among all samples was obtained 

for the following analyses. 

 

The co-occurrence network of MLGs. We calculated the Spearman’s rank correlation 

coefficient between MLGs based on the profile of these MLGs. A network was then 

constructed by using the method implemented in Cytoscape v2.855. In the network, 

the edges denoted the correlation between two MLGs, under the criterion that 

Spearman’s rank correlation coefficient > 0.40 (blue line of the edge) or < -0.40 (red 

line of the edge). The size of nodes was proportional to the gene number of the MLG, 

and the color of nodes denoted the taxonomic assignment of the MLG. 

 

Functional description of identified markers 

Functional analyses based on KO markers. Functional analysis was performed mainly 

on KEGG Orthologue (KO) markers, which had detailed information on biological 

pathway and module. The percentages of KO markers belong to each KEGG category 

(the KEGG Class at level 2) out of total T2D-enriched or control-enriched KO markers 

were designated as comparison parameter. Fisher’s exact test was used to calculate 

the significance level (Supplementary Figure 9).  

We then studied the T2D-associated KO markers at the pathway or module level. In 

the KEGG category of membrane transport, relative module classes were checked. 

For example, sugar-related and branch-chain-amino-acid-related membrane 

transport functions were notably from the set of T2D-enriched KOs. KO markers that 

belong to metabolism of cofactor and vitamins were further checked one by one in 

KEGG map to identify the type of reaction, such as the biosynthesis, degradation or 

reversible reaction. 
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To validate the relationship between cell motility related KO markers and 

butyrate-producing bacteria, the Spearman’s rank correlation coefficient was 

calculated between the profile of these KO markers and the genera. Only the 

relationships with the correlation coefficient above 0.5 or below -0.5 were showed in 

Supplementary Table 11a. In addition, we checked the taxonomic composition of 

genes that were annotated to these cell-motility-related KOs. At the genus level, we 

listed the top 3 mostly assigned genera for each KO, which was showed in 

Supplementary Table 11b. The method of taxonomic assignment was introduced 

previously.  

The functions that were not described in KEGG pathway or modules were checked 

manually. In detail, the drug resistance related KO markers were screened by key 

words screening, like penicillin, macrolide, multidrug, streptomycin, chloramphenicol 

and lactamase et al. Oxidative stress resistance related KO markers were also 

screened by key words of catalase, nitric oxide reductase, glutathione reductase, 

peroxidase, peroxiredoxin. 

With regard to some special functions indicated by our MLGs, for example, the 

butyrate production and sulfate reduction, we also searched the homologue genes in 

our gene catalogue corresponding to such functions, and then took the whole of 

these homologue genes as a functional group. Please see the example of 

butyrate-CoA gene identification in the next paragraph. 

 

Identification, phylogenetic and taxonomic analyses of butyrate-CoA genes. Using 

amino acid sequence of butyryl-CoA:acetate CoA-transferase from Roseburia hominis 

A2-183 as reference, we found 37 genes in the updated gene catalogue that covered > 

70% of the length of the reference sequence and were above the similarity 

threshold >70% using BLASTP. The taxonomic assignment of these genes had been 

done in the gene catalogue. Multiple sequence alignment of these 37 genes were 

performed at the amino acid level and the aligned amino acid sequences were then 
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translated back to nucleic acid sequence for phylogenetic tree construction  

(neighbor-joining method) where the 4-hydroxybutyrate CoA transferase gene from 

Anaerostipes caccae L1-92 was chosen as the out-group. Differences of the relative 

abundance of the butyryl-CoA: acetate CoA-transferase genes between T2D patients 

and healthy individuals were tested using Wilcoxon rank-sum test in all samples 

(Supplementary Figure 10).  

 

T2D classification by gut microbial markers 

Maximum Relevance Minimum Redundancy (mRMR) feature selection framework. 

To establish a T2D classification by gut metagenomic markers, we adopted an mRMR 

method to perform a feature selection56. We used the “sideChannelAttack” package 

of the R software to perform the incremental search and found 344 sequential 

markers sets. For each sequential set, we estimated the error rate by a leave-one-out 

cross-validation (LOOCV) of linear discrimination classifier. The optimal selection of 

marker sets was the one corresponding to the lowest error rate. In the present study, 

we made the feature selection on a set of 52,484 T2D-associated gene markers. We 

finally selected a set of 50 gut microbial gene markers as the optimal selection for 

T2D classification. 

 

Receiver Operator Characteristic (ROC) analysis. We applied the ROC analysis to 

assess the performance of the T2D classification based on metagenomic markers. 

Using on the 50 gut metagenomic markers selected by mRMR method, the support 

vector machine (SVM) classifier (realized by the “e1071” package of R software) with 

leave-pair-out cross-validation (LPOCV) advocated for analysis of small-sample 

biological datasets57, was used to generate ROC curve. The same method was also 

applied on the clinical datasets. By using the “pROC” package of R software58, we 

then computed the 95% confidence interval (CI) of the AUC with 10,000 bootstrap 
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replicates to assess the variability of the measure. 

 

Definition of T2D index. To evaluate the effect of the gut metagenome on T2D, we 

defined and computed the T2D index for each individual on the basis of the selected 

50 gut metagenomic markers by mRMR method. For each individual sample, the T2D 

index of sample 𝑗 that denoted by 𝐼𝑗 was computed by the formula below: 

𝐼𝑗
𝑑 =  ∑ 𝐴𝑖𝑗

𝑖∈𝑁

 

𝐼𝑗
𝑛 =  ∑ 𝐴𝑖𝑗

𝑖∈𝑀

 

𝐼𝑗 = (
𝐼𝑗

𝑑

|𝑁|
−  

𝐼𝑗
𝑛

|𝑀|
) × 106 

Where 𝐴𝑖𝑗 is the relative abundance of marker 𝑖 in sample 𝑗. 𝑁 is a subset of all 

T2D-enriched markers in these 50 selected gut metagenomic markers. 𝑀 is a subset 

of all control-enriched markers in these 50 selected gut metagenomic markers. And 

|𝑁| and |𝑀| are the sizes of these two sets. 
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Supplementary Figures 

 

 

Figure S1| the overall strategy of MGWAS used in our study.  

The text with grey colors indicated some alternative choices, but not used in this 

study. 
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Figure S2| the coverage of sequencing reads in the MetaHIT gene catalogue and 

the updated gene catalogue.  

The high-quality sequencing reads of 145 Chinese samples was mapped onto the 

MetaHIT gene catalogue (3.3 million genes) and the updated gene catalogue in this 

study (4.3 million genes). 
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Figure S3| Detection error rate distribution of relative abundance profiles in 

different sequencing amount.  

The X axis represents the sequencing amount of a sample, which was defined as the 

number of paired-end reads, and the Y axis represents the relative abundance of a 

gene. The 99% confidence interval (CI) of the relative abundance was estimated and 

the detection error rate was defined as the ratio of the interval width to the relative 

abundance itself. The scaled detection error rate, transformed by log10(log10(1 +

𝑥)), was used to color all the points, with warmer color representing larger detection 

error rate. Two indifference curves were added: detection error rate that fall to the 

upper right of the curves would be less than 1 and 10, respectively. 
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Figure S4| Enterotypes of the gut microbiome of Chinese population.  

(a), average silhouette width was used to determinate the optimal number of 

clusters. (b), abundance of the main contributed genera of each enterotypes. 
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c. 

 

d. 

PC Enterotypes Gender Diabetic Obese Age 

1 2.38E-20 0.033832 0.960569 0.166462 0.275406 

2 5.10E-17 0.583258 0.006623 0.807636 0.010483 

3 0.111214 0.938941 0.125364 0.415892 0.238878 

4 0.512009 0.569129 0.535923 0.323268 0.624889 

5 0.144566 0.216468 0.000168 0.594392 0.005285 

6 0.958097 0.394827 0.004891 0.801509 0.449390 

Figure S5| PCA results of gene, KO and OG profiles.  

In stage I, these PCA figures were generated in the gene profile (a), KO profile (b), OG 

profile (c) and genus profile (d), respectively. The method of enterotype classification 

was described in Supplementary Methods. Here, the three enterotypes were labeled 

and grouped in these PCA figures. In addition, the top six principle components (PCs) 
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were tested for correlations with some known factors, such as T2D (diabetic), BMI 

(obese), gender, enterotypes and age. Note that the PCA figure at the genus level is 

depicted as Fig. 1a in the main text. 
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Figure S6| Validating the T2D-associated genes in an independent sample set of 

stage II.  

278,168 gene markers that significantly associated with T2D in stage I, was quantified 

in stage II samples. Then, we performed a PCA analysis to see the subpopulation of 

these stage II samples. The first two principle components (PCs) were tested for the 

correlation with known factors. The T2D disease state was the primary significant 

factor to explain the different composition of these gut microbial genes. 
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Figure S7| the detailed pipeline of statistical analysis in the gene profile in a 

two-stage MGWAS. 
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Figure S8| the validation result of our method for identifying MLGs.  

To evaluate our MLG method, we customized a subset of 130,605 genes from 50 

sequenced bacterial genomes. And then we compared the MLG results on this gene 

set and the known bacterial species information. (a), at different thresholds of 

minimal gene number in a MLG, we computed the precision of these MLGs and the 
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gene coverage of original genes. (b), we identified MLGs with the threshold of 

minimal gene number 100. This figure showed the coverage of its genome genes by 

our identified MLGs. 
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Figure S9| the distribution of functional categories for T2D-associated OG markers 

and KO markers.  

(a), Comparison between the T2D-enriched and control-enriched OG markers on 25 

OG functional categories. (b), Comparison between the T2D-enriched and control 

-enriched KO markers on level 2 of KEGG functional category. 
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Figure S10| 37 butyryl-CoA: acetate CoA-transferase genes were identified in our 

updated gene catalogue.  

The numbers of samples out of 344 samples (stage I & stage II) that each gene was 

presented in are listed. Genes occurring in less than 6 samples were excluded from 

statistical test and no P-value is given. Possible source organisms of each gene were 

determined based on sequence comparison to the bacterial reference genome at 

nucleotide level and NCBI-nr database at protein level. The ones colored in red are 

known species of butyrate-producing bacteria isolated from human colon. The 

phylogenetic tree was constructed using the neighbor-joining method, based on 

nucleic acid sequences that were translated back from aligned protein sequences. 

Bootstrap values, each expressed as a percentage of 1,000 replications, are listed at 
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the nodes. 4-hydroxybutyrate CoA transferase gene sequence from Anaerostipes 

caccae L1-92 was chosen as the out group. The gross relative abundance of these 37 

butyrate-CoA transferase genes were significantly higher in healthy controls (P = 

3.2x10-6, Wilcoxon rank-sum test). 
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Figure S11| the gross relative abundance of the enterotypes-associated markers.  

The enterotypes of each sample was determined by clustering all 344 samples 

(Supplementary Table 2, see Supplementary Methods for enterotypes identification). 

To identify enterotypes-associated marker, we performed the two-stage MGWAS 

analysis to the samples (145 samples in stage I and 199 in stage II) using the same 

methods and parameters as T2D, which identifing 117,209 gene markers (stage II 

P<0.01, 1.3% FDR) and 8,676 OG markers (stage II P<0.05, 5.7% FDR).  
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Figure S12| an ecological comparison between T2D/IBD patients and controls.  

This figure showed an ecological comparison between T2D patients and controls (170 

vs. 174 samples), as well as the MetaHIT IBD patients (n=25) and controls (n=99), 

based the OG profile. The upward bars denoted the gross relative abundance of the 

T2D/IBD-associated OG markers for each sample. The downward bars denoted the 

within-sample diversity (the Shannon Index) in each group. The statistical significance 

was computed by Student’s t-test (** P<0.01). 
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Figure S13| 2-Dimensional histogram plotted of T2D-associated gene markers.  

The T2D-associated gene markers were divided into two classes: control-enriched 

marker and T2D-enriched marker. For each class of gene markers, we computed the 

occurrence rate and the median relative abundance of each gene and perform a 

2-Dimensional histogram to show the distribution of these genes. From this figure, 

we could see that the control-enriched gene markers were mostly present in high 

occurrence rate and high relative abundance. In contrast, the T2D-enriched gene 

markers were quite diverse and most of them are present in low occurrence rate.  

Note: Since the genes from the same MLG were linked together by similar abundance 

in different samples, we labeled the MLGs on this figure to show the abundance and 

occurrence rate of them. 
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Figure S14| Presence of the T2D-associated MLGs markers in all samples.  

The control-enriched markers had a higher occurrence rate than the T2D-enriched 

markers. 
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Figure S15| Occurrence rate distribution of T2D-associated OG markers. 

This density histogram showed a comparison of the occurrence rate distribution 

between T2D-enriched OG markers and control-enriched OG markers in all samples.  
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Figure S16| Estimating the optimum number of markers.  

We performed incremental search in T2D-associated gene markers by the minimum 

redundancy maximum relevance (mRMR) methods (see Supplementary Methods for 

detail), and generated sequential number of subsets. For each subset, the error rate 

was then estimated by a leave-one-out cross-validation (LOOCV) of a linear 

discrimination classifier. The optimum (lowest error rate) subset contains 50 gene 

markers. 

 

 

WWW.NATURE.COM/NATURE | 38

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature11450




